JP2012092262A - Method for producing crystalline polyimide - Google Patents

Method for producing crystalline polyimide Download PDF

Info

Publication number
JP2012092262A
JP2012092262A JP2010242255A JP2010242255A JP2012092262A JP 2012092262 A JP2012092262 A JP 2012092262A JP 2010242255 A JP2010242255 A JP 2010242255A JP 2010242255 A JP2010242255 A JP 2010242255A JP 2012092262 A JP2012092262 A JP 2012092262A
Authority
JP
Japan
Prior art keywords
polyimide
diamine
producing
temperature
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010242255A
Other languages
Japanese (ja)
Other versions
JP5545172B2 (en
Inventor
Yuki Sato
勇希 佐藤
Hirotatsu Taura
弘達 田浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2010242255A priority Critical patent/JP5545172B2/en
Publication of JP2012092262A publication Critical patent/JP2012092262A/en
Application granted granted Critical
Publication of JP5545172B2 publication Critical patent/JP5545172B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a solvent-soluble crystalline polyimide having a high molecular weight.SOLUTION: The solvent-soluble crystalline polyimide having a high molecular weight is obtained by subjecting a nylon salt type monomer comprising tetracarboxylic acid or its alkyl ester object (where the alkyl has the carbon number of 1-5) and diamine to solid phase polymerization as a first step, and successively by subjecting it to suspension polymerization in a poor solvent at a higher temperature than the solid phase polymerization temperature as a second step.

Description

本発明は高分子量を有する溶媒可溶な結晶性ポリイミドの製造方法に関する。   The present invention relates to a method for producing a solvent-soluble crystalline polyimide having a high molecular weight.

ポリイミド樹脂は分子鎖の剛直性、共鳴安定化、強い化学結合によって、高熱安定性、高強度、高耐溶媒性を有する有用なエンジニアリングプラスチックであり、幅広い分野で応用されている。また結晶性を有しているポリイミドはその耐熱性、強度、耐薬品性をさらに向上させることができることから、金属代替等としての利用が期待されている。   Polyimide resins are useful engineering plastics with high thermal stability, high strength, and high solvent resistance due to molecular chain rigidity, resonance stabilization, and strong chemical bonding, and are applied in a wide range of fields. Moreover, since the crystalline polyimide can further improve its heat resistance, strength, and chemical resistance, it is expected to be used as a metal substitute.

しかし、ポリイミドの合成方法として多く用いられるものに、高温溶液重合や化学重合、あるいは原料を溶媒に仕込んだ後に、昇温し、ポリマーが析出してもそのままイミド化を進行させる懸濁重合(特許文献1参照)がある。しかしながら、高温溶液重合や化学重合では、ポリイミドの分子構造の高い安定性から、しばしば溶液中での不溶化が見られるため合成が困難となる。また、上記重合方法では、いずれも酸無水物を使用するため、反応仕込みの際の水分の徹底した除去が必要となるという問題もある。   However, high-temperature solution polymerization or chemical polymerization, or suspension polymerization in which imidization proceeds as it is even if the polymer is precipitated after charging the raw material in a solvent and then precipitating the polymer (patented) Reference 1). However, in high temperature solution polymerization and chemical polymerization, synthesis is difficult due to high instability in solution due to high stability of the molecular structure of polyimide. In addition, since any of the above polymerization methods uses an acid anhydride, there is also a problem that thorough removal of water at the time of reaction preparation is required.

これを改善するため、水を多量に含有した溶媒を用いた、ポリイミドの合成方法も開発されている (特許文献2参照)。しかしながら、この方法では水を多量に使用する(溶媒の80%以上)必要があるため、イミド化を行うための高温時に圧力の上昇を伴うという問題がある。   In order to improve this, a method for synthesizing polyimide using a solvent containing a large amount of water has also been developed (see Patent Document 2). However, since this method requires a large amount of water (80% or more of the solvent), there is a problem that the pressure is increased at a high temperature for performing imidization.

そこで、ポリイミドの合成には、固相で重合する方法が有効となる場合がある(非特許文献1参照)。固相重合では溶媒を必要としないため、溶媒の選定は必要とならず、さらに固相重合に用いるナイロン塩型モノマーの原料としては、テトラカルボン酸やそのジエステル体を使用することができるため、非常に簡便である。   Therefore, for the synthesis of polyimide, a method of polymerizing in a solid phase may be effective (see Non-Patent Document 1). Since solid phase polymerization does not require a solvent, it is not necessary to select a solvent, and as a raw material for the nylon salt type monomer used for solid phase polymerization, tetracarboxylic acid and its diester can be used. Very simple.

ところが固相重合によって得られるポリイミドは本来溶媒に溶解するような構造を有していながら濃硫酸にすらも不溶化するという問題がしばしば発生した。この現象は、分子間相互作用の強いポリイミドが、固相という、より接近した状態で存在するために、平面状のイミド基が直線的または平面的に配列し、剛直分子を形成し、分子の会合状態を解くことが不可能な程、強固な固まりとなっているためと考えられる(非特許文献2参照)。また、固相重合では分子の運動が制御されるため、構造によって分子量が増加しないという問題も見られた。   However, the polyimide obtained by solid-phase polymerization often has a problem that even a concentrated sulfuric acid is insoluble even though it originally has a structure that dissolves in a solvent. This phenomenon is caused by the fact that polyimide with strong intermolecular interaction exists in a more solid state called a solid phase, so that planar imide groups are arranged linearly or planarly to form rigid molecules, This is considered to be because the firmness is so strong that it is impossible to solve the meeting state (see Non-Patent Document 2). Moreover, since the movement of molecules is controlled in solid phase polymerization, there is a problem that the molecular weight does not increase depending on the structure.

一方で、ポリイミドに高い結晶性を付与することは、その耐熱性、機械物性をより向上させることが可能となる。長直鎖の脂肪族ジアミンと芳香族テトラカルボン酸からなるポリイミドは、直鎖脂肪族部位がソフトセグメント、芳香族部位がメソゲンとなり液晶性を示し、さらに冷却時にも規則的な配列は保たれ、高結晶性ポリイミドとなり得る(非特許文献1参照)。   On the other hand, imparting high crystallinity to polyimide makes it possible to further improve its heat resistance and mechanical properties. Polyimide composed of long linear aliphatic diamine and aromatic tetracarboxylic acid, the linear aliphatic part is a soft segment, the aromatic part is a mesogen and exhibits liquid crystallinity, and the regular arrangement is maintained even during cooling, It can be a highly crystalline polyimide (see Non-Patent Document 1).

しかしながら明確にソフトセグメントを有していないポリイミドに、成型時にも即座に結晶化するような速い結晶化速度を発現させるには、精密な分子設計を行うことが必要となり (特許文献3参照)、また、結晶性を有していても結晶化速度が遅いポリイミドの場合には、結晶化に長時間のアニールや(特許文献4参照)、早い結晶化速度をもともと有しているポリイミドの添加(特許文献5参照)等が必要となることも問題となる。   However, it is necessary to perform precise molecular design in order to allow a polyimide that does not have a clear soft segment to exhibit a high crystallization speed that immediately crystallizes even during molding (see Patent Document 3). In the case of a polyimide having crystallinity but a slow crystallization speed, annealing for a long time for crystallization (see Patent Document 4) or addition of a polyimide originally having a high crystallization speed ( It is also a problem that it is necessary to refer to Patent Document 5).

特許第2950489号公報Japanese Patent No. 2950489 特開平2001−181389号公報Japanese Patent Laid-Open No. 2001-181389 特開昭62―236858号公報Japanese Patent Laid-Open No. 62-236858 特開平10―152558号公報Japanese Patent Laid-Open No. 10-152558 特許第3708348号公報Japanese Patent No. 3708348

Macromolecules, 28, 6368, 1995Macromolecules, 28, 6368, 1995 「次世代のエレクトロニクス・電子材料に向けた新しいポリイミドの開発と高機能付与技術」, 技術情報協会,p53, 2003"Development of new polyimide and technology for high functionality for next-generation electronics and electronic materials", Technical Information Association, p53, 2003

本発明の目的は、従来技術における上記したような課題を解決し、結晶性で溶媒可溶であり、高分子量となるポリイミドを簡便に得ることが可能な製造方法を提供することにある。   An object of the present invention is to solve the above-described problems in the prior art, and to provide a production method capable of easily obtaining a crystalline, solvent-soluble and high molecular weight polyimide.

本発明者らは、前記の三つの特徴(高結晶性、溶媒可溶性、高分子量)について鋭意研究を重ねた結果、ナイロン塩型モノマーを、第一段階として固相重合を行った後、続いて第二段階において懸濁重合させることで、目的とする特徴を発現しうることを見いだし本発明に到達した。
すなわち、本発明は、テトラカルボン酸あるいはそのアルキルエステル体(アルキル基は炭素数1〜5)とジアミンとからなるナイロン塩型モノマーを、第一段階として固相重合を行った後、続いて第二段階において貧溶媒中で、固相重合温度より高い温度において懸濁重合させるポリイミドの製造方法である。
さらに本発明は、ピロメリット酸と脂肪族環を有するジアミンとから得られる下記(1)〜(3)の性状を有するポリイミドである。
(1)示差走査型熱量計で測定される20℃/minにおける降温時結晶化発熱ピークの熱量が5J/g以上である。
(2)25℃において濃硫酸(96%)20mlに0.1g以上溶解する。
(3)濃硫酸(96%)を溶媒として用い、濃度0.5g/dl、30℃で測定した対数粘度の値が1.0dl/g以上である。
As a result of intensive research on the above three characteristics (high crystallinity, solvent solubility, and high molecular weight), the present inventors conducted a solid-state polymerization as a first step, followed by a solid-phase polymerization of a nylon salt monomer. It was found that the objective characteristics can be expressed by suspension polymerization in the second stage, and the present invention has been achieved.
That is, in the present invention, a nylon salt monomer comprising tetracarboxylic acid or an alkyl ester thereof (an alkyl group having 1 to 5 carbon atoms) and a diamine is subjected to solid phase polymerization as a first step, This is a polyimide production method in which suspension polymerization is carried out at a temperature higher than the solid phase polymerization temperature in a poor solvent in two stages.
Furthermore, the present invention is a polyimide having the following properties (1) to (3) obtained from pyromellitic acid and a diamine having an aliphatic ring.
(1) The calorific value of the crystallization exothermic peak during cooling at 20 ° C./min as measured by a differential scanning calorimeter is 5 J / g or more.
(2) Dissolve 0.1 g or more in 20 ml of concentrated sulfuric acid (96%) at 25 ° C.
(3) Using concentrated sulfuric acid (96%) as a solvent, the logarithmic viscosity value measured at a concentration of 0.5 g / dl and 30 ° C. is 1.0 dl / g or more.

本発明の製造方法によって、結晶性を付与し、溶媒溶解性を向上させ、また分子量を増加させることが可能となった。   According to the production method of the present invention, crystallinity can be imparted, solvent solubility can be improved, and molecular weight can be increased.

本発明ではテトラカルボン酸あるいはそのアルキルエステル体(アルキル基は炭素数1〜5)とジアミンとからなるナイロン塩型モノマーをポリイミド原料として用いる。ナイロン塩型モノマーは再結晶により精製されたものであることが好ましい。   In the present invention, a nylon salt monomer composed of tetracarboxylic acid or an alkyl ester thereof (alkyl group has 1 to 5 carbon atoms) and a diamine is used as a polyimide raw material. The nylon salt monomer is preferably purified by recrystallization.

テトラカルボン酸としては脂肪族テトラカルボン酸、芳香族テトラカルボン酸のいずれも使用できるが、脂肪族環あるいは芳香族環を含んでいることが好ましい。テトラカルボン酸のアルキルエステル体(アルキル基は炭素数1〜5)を用いる場合、アルキル基の炭素数は1〜3が好ましい。また、テトラカルボン酸のアルキルエステル体(アルキル基は炭素数1〜5)としてはジアルキルエステル体が好ましい。
例えば、シクロブタン-1,2,3,4-テトラカルボン酸、シクロペンタン-1,2,3,4-テトラカルボン酸、シクロヘキサン-1,2,4,5-テトラカルボン酸、ピロメリット酸、3, 3’,4, 4’-ジフェニルスルホンテトラカルボン酸、3,3',4,4'-ベンゾフェノンテトラカルボン酸、ビフェニルテトラカルボン酸、ナフタレン-1,4,5,8-テトラカルボン酸等が推奨され、それらのアルキルエステル体を使用することも可能である。これらのうち、ピロメリット酸、シクロヘキサン-1,2,4,5-テトラカルボン酸、3,3',4,4'-ベンゾフェノンテトラカルボン酸等が好適に使用できる。
As the tetracarboxylic acid, either an aliphatic tetracarboxylic acid or an aromatic tetracarboxylic acid can be used, but it preferably contains an aliphatic ring or an aromatic ring. In the case of using an alkyl ester of tetracarboxylic acid (the alkyl group has 1 to 5 carbon atoms), the alkyl group preferably has 1 to 3 carbon atoms. Moreover, as the alkyl ester body of tetracarboxylic acid (the alkyl group has 1 to 5 carbon atoms), a dialkyl ester body is preferable.
For example, cyclobutane-1,2,3,4-tetracarboxylic acid, cyclopentane-1,2,3,4-tetracarboxylic acid, cyclohexane-1,2,4,5-tetracarboxylic acid, pyromellitic acid, 3 , 3 ', 4,4'-diphenylsulfonetetracarboxylic acid, 3,3', 4,4'-benzophenonetetracarboxylic acid, biphenyltetracarboxylic acid, naphthalene-1,4,5,8-tetracarboxylic acid, etc. It is recommended to use alkyl ester derivatives thereof. Of these, pyromellitic acid, cyclohexane-1,2,4,5-tetracarboxylic acid, 3,3 ′, 4,4′-benzophenone tetracarboxylic acid and the like can be suitably used.

ジアミンとしては、直鎖脂肪族ジアミン、その他の脂肪族ジアミン、芳香族ジアミンのいずれも使用できるが、脂肪族環あるいは芳香族環を含んでいることが好ましい。
例えば、1,4-フェニレンジアミン、1,3-フェニレンジアミン、2,4-トルエンジアミン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、α,α’-ビス(4-アミノフェニル)1,4-ジイソプロピルベンゼン、α,α’-ビス(3-アミノフェニル)-1,4-ジイソプロピルベンゼン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、4,4’-ジアミノジフェニルスルホン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、2,6-ジアミノナフタレン、1,5-ジアミノナフタレン、エチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、デカンジアミン、ドデカンジアミン、ポリエチレングリコールビス(3-アミノプロピル)エーテル、ポリプロピレングリコールビス(3-アミノプロピル)エーテル、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、p-キシリレンジアミン、m-キシリレンジアミン、シロキサンジアミン類、4, 4’-ジアミノジシクロヘキシルメタン、4,4'-メチレンビス(2-メチルシクロヘキシルアミン)、イソフォロンジアミン、ノルボルナンジアミン、ビス(アミノメチル)トリシクロ[5.2.1.02,6]デカン等が推奨される。これらのうち、1,3-ビス(アミノメチル)シクロヘキサン、ヘキサメチレンジアミン、ビス(アミノメチル)トリシクロ[5.2.1.02,6]デカン等が好適に使用できる。
As the diamine, any of linear aliphatic diamine, other aliphatic diamines, and aromatic diamines can be used, but it is preferable that the diamine contains an aliphatic ring or an aromatic ring.
For example, 1,4-phenylenediamine, 1,3-phenylenediamine, 2,4-toluenediamine, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 1,4 -Bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, α, α'-bis (4-aminophenyl) 1, 4-diisopropylbenzene, α, α'-bis (3-aminophenyl) -1,4-diisopropylbenzene, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 4,4'-diaminodiphenyl Sulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, 2,6-diaminonaphthalene, 1,5-diaminonaphthalene, ethylenediamine, hexamethylenediamine, Heptamethylene Amine, octamethylenediamine, decanediamine, dodecanediamine, polyethylene glycol bis (3-aminopropyl) ether, polypropylene glycol bis (3-aminopropyl) ether, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (Aminomethyl) cyclohexane, p-xylylenediamine, m-xylylenediamine, siloxane diamines, 4,4'-diaminodicyclohexylmethane, 4,4'-methylenebis (2-methylcyclohexylamine), isophoronediamine, norbornane Diamine, bis (aminomethyl) tricyclo [5.2.1.02,6] decane, etc. are recommended. Of these, 1,3-bis (aminomethyl) cyclohexane, hexamethylenediamine, bis (aminomethyl) tricyclo [5.2.1.02,6] decane, and the like can be suitably used.

第一段階の固相重合条件としてはTG/DTA(10℃/分)測定において、イミド化が進行し重量減少が開始する温度からイミド化が完結する温度の範囲内で行うのが好ましい。固相重合における加熱温度が高すぎると溶媒可溶性が低下する傾向が見られるため好ましくない。固相重合時間は10〜120分行うのが好ましく、特に40〜80分行うのがより好ましい。加熱雰囲気としては空気中で行うことも可能であるが、好ましくは窒素雰囲気、真空下等の酸素を含まない状態で行う。   As the solid phase polymerization conditions for the first stage, in the TG / DTA (10 ° C./min) measurement, it is preferable to carry out within the range from the temperature at which imidization proceeds and weight loss starts to the temperature at which imidization is completed. If the heating temperature in the solid phase polymerization is too high, the solvent solubility tends to decrease, which is not preferable. The solid phase polymerization time is preferably 10 to 120 minutes, more preferably 40 to 80 minutes. The heating atmosphere can be performed in the air, but is preferably performed in a nitrogen atmosphere, in a vacuum-free state such as under vacuum.

第二段階において貧溶媒中で、固相重合温度より高い温度、好ましくは前記イミド化が完結する温度以上において懸濁重合を行う。貧溶媒は固相重合後に得られる固体が常温で溶解しない溶媒であり、より好ましくは懸濁重合温度においても固体が溶解しない溶媒であり、さらに好ましくは固相重合後に得られる固体と親和性の高い溶媒である。貧溶媒としては2種類以上の混合溶媒系とすることも可能であり、貧溶媒が親水性である場合には本来ポリイミドの重合に悪影響を与える水を添加することも可能となる。また、高沸点溶媒を用いることも可能であるため、200℃を超えるような高温においても、反応容器内の圧力を低く抑えることが可能である。これら貧溶媒の例としては水、ベンゼン、トルエン、キシレン、アセトン、ヘキサン、ヘプタン、クロロベンゼン、メタノール、エタノール、n-プロパノール、イソプロパノール、メチルグリコール、メチルトリグリコール、ヘキシルグリコール、フェニルグリコール、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノイソブチルエーテル、メチルプロピレングリコール、メチルプロピレンジグリコール、プロピルプロピレングリコール、フェニルプロピレングリコール、N-メチル-2-ピロリドン、N, N-ジメチルアセトアミド、N, N-ジエチルアセトアミド、N, N-ジメチルホルムアミド、N, N-ジエチルホルムアミド、N-メチルカプロラクタム、ヘキサメチルホスホルアミド、テトラメチレンスルホン、ジメチルスルホキシド、m-クレゾール、フェノール、p-クロルフェノール、2-クロル-4-ヒドロキシトルエン、ジグライム、トリグライム、テトラグライム、ジオキサン、γ-ブチロラクトン、ジオキソラン、シクロヘキサノン、シクロペンタノン、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、1,1,2-トリクロロエタン、ジブロモメタン、トリブロモメタン、1,2-ジブロモエタン、1,1,2-トリブロモエタン等が挙げられるが、これらに限定されない。   In the second stage, suspension polymerization is carried out in a poor solvent at a temperature higher than the solid phase polymerization temperature, preferably at a temperature higher than the temperature at which the imidization is completed. The poor solvent is a solvent in which the solid obtained after solid-phase polymerization does not dissolve at room temperature, more preferably a solvent in which the solid does not dissolve even at suspension polymerization temperature, and more preferably an affinity with the solid obtained after solid-phase polymerization. It is a high solvent. As the poor solvent, two or more kinds of mixed solvent systems can be used. When the poor solvent is hydrophilic, it is possible to add water which has an adverse effect on the polymerization of polyimide. In addition, since a high boiling point solvent can be used, the pressure in the reaction vessel can be kept low even at a high temperature exceeding 200 ° C. Examples of these poor solvents are water, benzene, toluene, xylene, acetone, hexane, heptane, chlorobenzene, methanol, ethanol, n-propanol, isopropanol, methyl glycol, methyl triglycol, hexyl glycol, phenyl glycol, ethylene glycol, ethylene Glycol monomethyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monoisobutyl ether, methyl propylene glycol, methyl propylene diglycol, propyl propylene glycol, phenyl propylene glycol, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N, N-diethylformamide, N-methylcaprolactam, hexamethylphos Luamide, tetramethylene sulfone, dimethyl sulfoxide, m-cresol, phenol, p-chlorophenol, 2-chloro-4-hydroxytoluene, diglyme, triglyme, tetraglyme, dioxane, γ-butyrolactone, dioxolane, cyclohexanone, cyclopentanone, Examples include, but are not limited to, dichloromethane, chloroform, 1,2-dichloroethane, 1,1,2-trichloroethane, dibromomethane, tribromomethane, 1,2-dibromoethane, 1,1,2-tribromoethane, etc. Not.

上記懸濁重合において、加圧系で重合を行うことも可能であり、沸点がイミド化完結温度以下の貧溶媒を使用する際に有用であるが、懸濁重合中は溶媒とポリイミドが接触していないと本発明の特徴が発現しにくい傾向がある。すなわち、強い疎水性を持つポリイミドに水単独溶媒という組み合わせは、使用することは可能であるが好ましくはない。   In the above suspension polymerization, it is possible to carry out the polymerization in a pressurized system, which is useful when using a poor solvent having a boiling point equal to or lower than the imidization completion temperature, but the solvent and the polyimide are in contact with each other during the suspension polymerization. Otherwise, the characteristics of the present invention tend to be difficult to express. That is, a combination of a single hydrophobic solvent and a strong hydrophobic polyimide can be used but is not preferred.

本願発明の製造方法をピロメリット酸と脂肪族環を有するジアミンとから得られるポリイミドの製造に適用すると下記の(1)〜(3)の性状を有するポリイミドを得ることができる。
(1)示差走査型熱量計で測定される20℃/minにおける降温時結晶化発熱ピークの熱量が5J/g以上である。
(2)25℃において濃硫酸(96%)20mlに0.1g以上溶解する。
(3)濃硫酸(96%)を溶媒として用い、濃度0.5g/dl、30℃で測定した対数粘度の値が1.0dl/g以上である。
When the production method of the present invention is applied to the production of a polyimide obtained from pyromellitic acid and a diamine having an aliphatic ring, a polyimide having the following properties (1) to (3) can be obtained.
(1) The calorific value of the crystallization exothermic peak during cooling at 20 ° C./min as measured by a differential scanning calorimeter is 5 J / g or more.
(2) Dissolve 0.1 g or more in 20 ml of concentrated sulfuric acid (96%) at 25 ° C.
(3) Using concentrated sulfuric acid (96%) as a solvent, the logarithmic viscosity value measured at a concentration of 0.5 g / dl and 30 ° C. is 1.0 dl / g or more.

次に実施例を挙げて本発明をより詳しく説明するが、本発明はこれに限定されるものではない。また、各実施例における物性の評価は以下に示す方法により測定した。   EXAMPLES Next, although an Example is given and this invention is demonstrated in more detail, this invention is not limited to this. The physical properties in each example were evaluated by the following methods.

対数粘度μは得られたポリイミドを140〜180℃で2時間乾燥した後、ポリイミド0.1gを濃硫酸(96%、関東化学品)20mlに溶解し、キャノンフェンスケ粘度計を使用して30℃において測定を行った。対数粘度の値を分子量の指標とし、対数粘度が上昇した場合に分子量が上昇したと判断した。対数粘度μは下記式により求めた。
μ=ln(ts/t0)/C
t0: 溶媒の流れる時間
ts : 希薄高分子溶液の流れる時間
C : 0.5g/dl
The logarithmic viscosity μ is obtained by drying the obtained polyimide at 140 to 180 ° C. for 2 hours, then dissolving 0.1 g of polyimide in 20 ml of concentrated sulfuric acid (96%, Kanto Chemical), and using a Canon Fenceke viscometer at 30 ° C. Measurements were made at Using the value of logarithmic viscosity as an index of molecular weight, it was determined that the molecular weight was increased when the logarithmic viscosity was increased. The logarithmic viscosity μ was determined by the following formula.
μ = ln (ts / t 0 ) / C
t 0 : Solvent flow time
ts: Flow time of dilute polymer solution
C: 0.5g / dl

結晶性についてはエスアイアイ・ナノテクノロジー製示差走査熱量計装置(DSC-6220)において評価を行い、その測定条件は窒素雰囲気下、昇温10℃/min、冷却20℃/min、再昇温10℃/minの1サイクルである。なお、基本的な考えとして、結晶化し結晶化度の高いポリマーは非晶部分が少なくなるためTgが観測されにくくなる。また、本発明によって合成直後に結晶化しているポリマーでも、結晶化速度が遅いものは、本DSC測定においては一度溶融すると再びTcが観測されることは無い。   The crystallinity is evaluated with a differential scanning calorimeter (DSC-6220) manufactured by SII Nanotechnology. The measurement conditions are 10 ° C / min for heating in a nitrogen atmosphere, 20 ° C / min for cooling, 10 ° C for reheating. One cycle of ° C / min. As a basic idea, a polymer that is crystallized and has a high degree of crystallinity has less amorphous parts, so that Tg is difficult to observe. In addition, even if a polymer is crystallized immediately after synthesis according to the present invention, a polymer having a low crystallization rate is not observed again after melting once in this DSC measurement.

イミド化開始温度およびイミド化完結温度はエスアイアイ・ナノテクノロジー製示差熱・熱重量同時測定装置(TG/DTA-6200)において、窒素雰囲気下、昇温10℃/minで測定を行った際に、重量減少が初めに観測される温度および重量減少が見られなくなる温度を示している。   The imidization start temperature and imidation completion temperature were measured at a temperature increase of 10 ° C / min in a nitrogen atmosphere using a differential thermal and thermogravimetric simultaneous measurement device (TG / DTA-6200) manufactured by SII Nanotechnology. , The temperature at which weight loss is first observed and the temperature at which weight loss is no longer observed.

[実施例1]
反応器中でピロメリット酸(三菱ガス化学製)70.0g(0.28mol)をメタノール(三菱ガス化学製)/水=1/1の混合溶媒500ml中に溶解し65℃とした。1,3-ビス(アミノメチル)シクロヘキサン(三菱ガス化学製)39.2g(0.28mol)をメタノール/水=1/1の混合溶媒300mlに溶解させたものを反応器中に滴下し、発熱がとまった後に室温まで冷却した。析出してきた結晶をろ過し、80℃で加熱乾燥し、ナイロン塩型モノマー(ナイロン塩型モノマー1)102g(収率93%)を得た。イミド化開始温度は210℃、イミド化完結温度は249℃であった。
得られたナイロン塩型モノマー1、150gを熱風乾燥機の中に入れ、空気雰囲気下で220℃まで昇温した。220℃まで昇温してから1時間後に反応物を取り出し、3lオートクレーブ中に投入した。
さらに貧溶媒として2-(2-メトキシエトキシ)エタノール(キシダ化学製)1200gとイオン交換水300gを加え、密閉した後に、窒素置換を行った。250℃まで昇温し、ゲージ圧2.2MPaとなったところから2時間反応を行った後、回収、ろ過、洗浄を行い、さらに乾燥機で140℃、2時間乾燥を行い、116gのポリイミド1を得た。このポリイミド1をDSC測定した結果、昇温1度目にはTmが400℃に観測されるのみであり、Tg、Tcは観測されなかった(高い結晶化度を有している)。冷却時にはTcが340℃(発熱量18.6J/g)に観測され、高い結晶性を有していることが確認された。また、昇温2度目ではTgが260℃、Tmが400℃に観測された。また、対数粘度を測定したところ、1.6dl/gであった。
[Example 1]
In the reactor, 70.0 g (0.28 mol) of pyromellitic acid (Mitsubishi Gas Chemical) was dissolved in 500 ml of a mixed solvent of methanol (Mitsubishi Gas Chemical) / water = 1/1 to 65 ° C. A solution of 39.2 g (0.28 mol) of 1,3-bis (aminomethyl) cyclohexane (Mitsubishi Gas Chemical Co., Ltd.) dissolved in 300 ml of a mixed solvent of methanol / water = 1/1 was dropped into the reactor, and the heat generation stopped. After cooling to room temperature. The precipitated crystals were filtered and dried by heating at 80 ° C. to obtain 102 g (yield 93%) of a nylon salt monomer (nylon salt monomer 1). The imidization start temperature was 210 ° C., and the imidization completion temperature was 249 ° C.
150 g of the obtained nylon salt monomer 1, 150 g, was placed in a hot air dryer and heated to 220 ° C. in an air atmosphere. One hour after raising the temperature to 220 ° C., the reaction product was taken out and put into a 3 l autoclave.
Further, 1200 g of 2- (2-methoxyethoxy) ethanol (manufactured by Kishida Chemical Co., Ltd.) and 300 g of ion-exchanged water were added as a poor solvent, and after sealing, nitrogen substitution was performed. After raising the temperature to 250 ° C and reacting for 2 hours from the point where the gauge pressure became 2.2MPa, recovery, filtration and washing were performed, and further drying at 140 ° C for 2 hours with a dryer to obtain 116g of polyimide 1 Obtained. As a result of DSC measurement of this polyimide 1, Tm was only observed at 400 ° C. at the first temperature increase, and Tg and Tc were not observed (having high crystallinity). During cooling, Tc was observed at 340 ° C. (calorific value 18.6 J / g), confirming that it had high crystallinity. At the second temperature increase, Tg was observed at 260 ° C and Tm at 400 ° C. The logarithmic viscosity was measured and found to be 1.6 dl / g.

[比較例1]
ナイロン塩型モノマー1を固相重合のみを行った場合の比較例を以下に示す。
ナイロン塩型モノマー1、150gを加熱乾燥機の中に入れ、窒素雰囲気下とした後に250℃まで昇温した。2時間後に反応物を取り出し(ポリイミド1-2)、物性を評価した。対数粘度はポリイミド1-2が濃硫酸にも不溶化するため測定が不可能であった。DSC測定では昇温1度目にはTgが260℃、Tcが340℃、Tmが400℃に観測されるがTc、Tmは微弱なものであった。また、冷却時にTcは観測されなかった。昇温2度目では昇温1度目同様のピークが観測された。本発明の製造方法である実施例1で得られたポリイミド1に比べ結晶性、溶解性に顕著な差が見られた。
[Comparative Example 1]
A comparative example in which only the solid phase polymerization of the nylon salt monomer 1 is performed is shown below.
Nylon salt type monomer 1, 150 g was placed in a heat dryer, and the temperature was raised to 250 ° C. under a nitrogen atmosphere. After 2 hours, the reaction product was taken out (Polyimide 1-2) and evaluated for physical properties. The logarithmic viscosity could not be measured because polyimide 1-2 was insoluble in concentrated sulfuric acid. In DSC measurement, Tg was observed at 260 ° C, Tc at 340 ° C, and Tm at 400 ° C at the first temperature increase, but Tc and Tm were weak. In addition, Tc was not observed during cooling. At the second temperature increase, the same peak as the first temperature increase was observed. As compared with polyimide 1 obtained in Example 1 which is the production method of the present invention, significant differences in crystallinity and solubility were observed.

[比較例2]
ピロメリット酸二無水物(三菱ガス化学製) 196g(0.899mol)とイソプロピルアルコール(関東化学製) 505gを3lオートクレーブ中に投入した。80℃、3時間、加熱攪拌した後、50℃まで冷却した。冷却後、シリンジによって1,3-ビスアミノメチルシクロヘキサン128g(0.899mol)とイオン交換水 252gを導入し、220℃まで昇温した後、2時間攪拌した。室温まで冷却後、回収、ろ過、洗浄を行い、さらに真空乾燥機で100℃、18時間乾燥を行い、243gのポリイミド1-3を得た。DSC測定した結果、昇温1度目ではTg、Tcが観測されず、Tmが400℃であった。冷却時にはTcは観測されず、また、昇温2度目においてもTc、Tmは観測されずに、Tgのみが観測されたため、本発明の製造方法で得られたポリイミド1に比べ結晶性の顕著な差が確認された。対数粘度は、1.7dl/gであった。
[Comparative Example 2]
196 g (0.899 mol) of pyromellitic dianhydride (manufactured by Mitsubishi Gas Chemical) and 505 g of isopropyl alcohol (manufactured by Kanto Chemical) were charged into a 3 l autoclave. The mixture was heated and stirred at 80 ° C. for 3 hours, and then cooled to 50 ° C. After cooling, 128 g (0.899 mol) of 1,3-bisaminomethylcyclohexane and 252 g of ion-exchanged water were introduced with a syringe, the temperature was raised to 220 ° C., and the mixture was stirred for 2 hours. After cooling to room temperature, it was collected, filtered and washed, and further dried with a vacuum dryer at 100 ° C. for 18 hours to obtain 243 g of polyimide 1-3. As a result of DSC measurement, Tg and Tc were not observed at the first temperature rise, and Tm was 400 ° C. During cooling, Tc was not observed, and Tc and Tm were not observed even at the second temperature increase, but only Tg was observed. Thus, the crystallinity was remarkable as compared with polyimide 1 obtained by the production method of the present invention. The difference was confirmed. The logarithmic viscosity was 1.7 dl / g.

[実施例2]
反応器中でピロメリット酸5.16g(0.0443mol)をメタノール30ml中に溶解した。ビス(アミノメチル)トリシクロ[5.2.1.02,6]デカン(セラニーズケミカルズ品)7.50g(0.0443mol)をメタノール30mlに溶解させたものを反応器中に滴下し、発熱がとまった後に室温まで冷却した。得られた溶液をエタノール(関東化学製)300ml中に滴下して固体を析出させ、ろ過によって回収した。回収した固体をエタノール/水=2/1混合溶媒95mlによって再結晶し、析出してきた結晶をろ過した後、80℃で加熱乾燥し、目的とするナイロン塩型モノマー(ナイロン塩型モノマー2)4.43g(収率35%)を得た。イミド化開始温度は204℃、イミド化完結温度は241℃であった。
得られたナイロン塩型モノマー2、1.0gを加熱乾燥機の中に入れ、窒素雰囲気下とした後に220℃まで昇温した。220℃まで昇温してから1時間後に反応物を取り出し、20mlオートクレーブ中に投入した。
さらに貧溶媒として2-(2-メトキシエトキシ)エタノール8gとイオン交換水1gを加え、密閉した後に、窒素置換を行った。250℃まで昇温し、ゲージ圧1.5MPaとなったところから2時間反応を行った後、回収、ろ過、洗浄を行い、さらに乾燥機で180℃、2時間乾燥を行い、ポリイミド2を得た。このポリイミド2をDSC測定した結果、昇温一度目ではTg、Tcは観測されずTmが360℃に観測されたことから結晶化したポリイミドが得られたことが確認された。冷却時にはTcは観測されず、昇温二度目にはTgのみが272℃に観測された。また、対数粘度を測定したところ、0.74dl/gであった。
[Example 2]
In the reactor, 5.16 g (0.0443 mol) of pyromellitic acid was dissolved in 30 ml of methanol. Bis (aminomethyl) tricyclo [5.2.1.02,6] decane (Celanese Chemicals product) 7.50 g (0.0443 mol) dissolved in 30 ml of methanol was dropped into the reactor and cooled to room temperature after the heat generation stopped. did. The obtained solution was dropped into 300 ml of ethanol (manufactured by Kanto Chemical) to precipitate a solid, which was collected by filtration. The recovered solid is recrystallized with 95 ml of ethanol / water = 2/1 mixed solvent, and the precipitated crystals are filtered and dried by heating at 80 ° C. to obtain the desired nylon salt type monomer (nylon salt type monomer 2) 4.43 g (35% yield) was obtained. The imidization start temperature was 204 ° C, and the imidization completion temperature was 241 ° C.
The obtained nylon salt-type monomer 2, 1.0 g, was placed in a heat dryer, and the temperature was raised to 220 ° C. under a nitrogen atmosphere. One hour after raising the temperature to 220 ° C., the reaction product was taken out and put into a 20 ml autoclave.
Further, 8 g of 2- (2-methoxyethoxy) ethanol and 1 g of ion-exchanged water were added as a poor solvent, and after sealing, nitrogen substitution was performed. After raising the temperature to 250 ° C and reacting for 2 hours from the point where the gauge pressure became 1.5 MPa, recovery, filtration and washing were carried out, and further drying was carried out at 180 ° C for 2 hours with a dryer to obtain polyimide 2. . As a result of DSC measurement of this polyimide 2, Tg and Tc were not observed at the first temperature rise, and Tm was observed at 360 ° C., which confirmed that a crystallized polyimide was obtained. During cooling, Tc was not observed, and only Tg was observed at 272 ° C for the second temperature increase. The logarithmic viscosity was measured and found to be 0.74 dl / g.

[比較例3]
ナイロン塩型モノマー2を固相重合のみを行った場合の比較例を以下に示す。ナイロン塩型モノマー2を使用した以外は比較例1と同様の方法でポリイミド2-2を合成し、物性を評価した。対数粘度はポリイミドが濃硫酸にも不溶化するため測定が不可能であった。DSC測定では昇温一度目、冷却時、昇温二度目の各段階においても、Tgが270℃に観測されるのみでありTm、Tcは存在せず、本発明の製造方法で得られたポリイミド2に比べ結晶性、溶解性に顕著な差が見られた。
[Comparative Example 3]
A comparative example in which only the solid phase polymerization of the nylon salt monomer 2 is performed is shown below. Polyimide 2-2 was synthesized in the same manner as in Comparative Example 1 except that the nylon salt monomer 2 was used, and the physical properties were evaluated. The logarithmic viscosity could not be measured because the polyimide became insoluble in concentrated sulfuric acid. In the DSC measurement, the Tg is only observed at 270 ° C. in each stage of the first temperature rise, at the time of cooling, and at the second temperature rise, Tm and Tc are not present, and the polyimide obtained by the production method of the present invention Compared to 2, remarkable differences in crystallinity and solubility were observed.

[実施例3]
反応器中でピロメリット酸5.0g(0.0197mol)をメタノール40ml中に溶解した。1,6-ヘキサメチレンジアミン(和光純薬製)2.3g(0.0197mol)をメタノール40mlに溶解させたものを反応器中に滴下し、ナイロン塩型モノマーを析出させ、発熱がとまった後に室温まで冷却した。得られた固体をろ過によって回収し、80℃で2時間乾燥した。回収した固体を水60ml、90℃まで加熱し溶解させ再結晶を行った。ろ過によって結晶を回収し、80℃で加熱乾燥し、目的とするナイロン塩型モノマー(ナイロン塩型モノマー3)6.9g(収率95%)を得た。イミド化開始温度は237℃、イミド化完結温度は267℃であった。
ナイロン塩型モノマー3を用い、固相重合温度を230℃とした以外は実施例2と同様の方法で合成を行い、ポリイミド3を得た。得られたポリイミド3をDSC測定した結果、昇温一度目ではTg、Tcは観測されずTmが455℃に観測された。冷却時には389℃にピークトップを持つTc(発熱量21.5J/g)ピークが観測された。昇温2度目にはTgは観測されず、Tmが413℃に観測された。また、対数粘度を測定したところ、2.1dl/gであった。
[Example 3]
In the reactor, 5.0 g (0.0197 mol) of pyromellitic acid was dissolved in 40 ml of methanol. A solution of 2.3 g (0.0197 mol) of 1,6-hexamethylenediamine (manufactured by Wako Pure Chemical Industries, Ltd.) dissolved in 40 ml of methanol is dropped into the reactor to precipitate a nylon salt-type monomer, and after the exotherm has stopped, the temperature reaches Cooled down. The resulting solid was collected by filtration and dried at 80 ° C. for 2 hours. The recovered solid was heated to 60 ml and dissolved at 90 ° C. for dissolution and recrystallization. The crystals were collected by filtration and dried by heating at 80 ° C. to obtain 6.9 g (yield 95%) of the desired nylon salt type monomer (nylon salt type monomer 3). The imidization start temperature was 237 ° C., and the imidization completion temperature was 267 ° C.
Synthesis was performed in the same manner as in Example 2 except that the solid-phase polymerization temperature was set to 230 ° C. using the nylon salt type monomer 3 to obtain polyimide 3. As a result of DSC measurement of the obtained polyimide 3, Tg and Tc were not observed at the first temperature rise, and Tm was observed at 455 ° C. During cooling, a Tc peak with a peak top at 389 ° C (21.5 J / g calorific value) was observed. At the second temperature increase, Tg was not observed, and Tm was observed at 413 ° C. The logarithmic viscosity was measured and found to be 2.1 dl / g.

[比較例4]
ナイロン塩型モノマー3を固相重合のみを行った場合の比較例を以下に示す。ナイロン塩型モノマー3を使用した以外は比較例1と同様の方法でポリイミド3-2を合成し、物性を評価した。濃硫酸に溶解させたものを対数粘度測定したところ、0.94dl/gと本発明の製造方法で得られたポリイミド3に比べ顕著な差が見られた。DSC測定した結果、昇温一度目ではTg、Tcは観測されずTmが455℃に観測され、冷却時には389℃にピークトップを持つTc(発熱量15.3J/g)が観測された。昇温2度目にはTgは観測されず、Tmが413℃に観測された。熱的性質は本発明の製造方法によるポリイミド3と同等のものであることが確認された。
[Comparative Example 4]
A comparative example in which only the solid phase polymerization of the nylon salt type monomer 3 is performed is shown below. Polyimide 3-2 was synthesized in the same manner as in Comparative Example 1 except that the nylon salt type monomer 3 was used, and the physical properties were evaluated. The logarithmic viscosity of the product dissolved in concentrated sulfuric acid was measured and found to be 0.94 dl / g, which was significantly different from the polyimide 3 obtained by the production method of the present invention. As a result of DSC measurement, Tg and Tc were not observed at the first temperature rise, Tm was observed at 455 ° C, and Tc (calorific value 15.3J / g) having a peak top at 389 ° C was observed during cooling. At the second temperature increase, Tg was not observed, and Tm was observed at 413 ° C. It was confirmed that the thermal properties were equivalent to those of polyimide 3 produced by the production method of the present invention.

[比較例5]
ピロメリット酸二無水物1.50g(0.00687mol)とイソプロピルアルコール10.0gを20mlオートクレーブ中に投入した。80℃、3時間、加熱攪拌した後、室温まで冷却した。冷却後、1,6-ヘキサメチレンジアミン0.799g(0.00687mol)とイオン交換水 5.0gを導入し、220℃まで昇温した後、2時間攪拌した。室温まで冷却後、回収、ろ過、洗浄を行い、さらに真空乾燥機で100℃、18時間乾燥を行い、1.60g(収率89%)のポリイミド3-3を得た。ポリイミド3-3を濃硫酸に溶解させようとしたところ不溶化し、本発明の製造方法で得られたポリイミド3に比べ顕著な差が見られた。DSC測定した結果、分解温度と融点が極端に近かったため、正確な熱物性を得ることができなかった。
[Comparative Example 5]
Pyromellitic dianhydride 1.50 g (0.00687 mol) and isopropyl alcohol 10.0 g were charged into a 20 ml autoclave. The mixture was heated and stirred at 80 ° C. for 3 hours, and then cooled to room temperature. After cooling, 0.799 g (0.00687 mol) of 1,6-hexamethylenediamine and 5.0 g of ion-exchanged water were introduced, the temperature was raised to 220 ° C., and the mixture was stirred for 2 hours. After cooling to room temperature, it was collected, filtered and washed, and further dried with a vacuum dryer at 100 ° C. for 18 hours to obtain 1.60 g (yield 89%) of polyimide 3-3. When polyimide 3-3 was dissolved in concentrated sulfuric acid, it was insolubilized, and a significant difference was observed compared to polyimide 3 obtained by the production method of the present invention. As a result of DSC measurement, since the decomposition temperature and melting point were extremely close, accurate thermophysical properties could not be obtained.

Claims (10)

テトラカルボン酸あるいはそのアルキルエステル体(アルキル基は炭素数1〜5)とジアミンとからなるナイロン塩型モノマーを、第一段階として固相重合を行った後、続いて第二段階において貧溶媒中で、固相重合温度より高い温度において懸濁重合させるポリイミドの製造方法。   Nylon salt type monomer consisting of tetracarboxylic acid or its alkyl ester (alkyl group has 1 to 5 carbon atoms) and diamine is subjected to solid phase polymerization as the first stage, and then in a poor solvent in the second stage. And a method for producing polyimide by suspension polymerization at a temperature higher than the solid phase polymerization temperature. 第二段階が加圧下である請求項1に記載のポリイミドの製造方法。   The method for producing a polyimide according to claim 1, wherein the second stage is under pressure. 再結晶によりテトラカルボン酸あるいはそのアルキルエステル体(アルキルは炭素数1〜5)とジアミンとからなる塩を得る工程を有する請求項1または2に記載のポリイミドの製造方法。   The manufacturing method of the polyimide of Claim 1 or 2 which has the process of obtaining the salt which consists of tetracarboxylic acid or its alkylester body (alkyl is C1-C5) and diamine by recrystallization. テトラカルボン酸が脂肪族環あるいは芳香族環を有するテトラカルボン酸である請求項1〜3のいずれかに記載のポリイミドの製造方法。   The method for producing a polyimide according to any one of claims 1 to 3, wherein the tetracarboxylic acid is a tetracarboxylic acid having an aliphatic ring or an aromatic ring. テトラカルボン酸がピロメリット酸である請求項1〜3のいずれかに記載のポリイミドの製造方法。   The method for producing a polyimide according to claim 1, wherein the tetracarboxylic acid is pyromellitic acid. ジアミンが脂肪族環あるいは芳香族環を有するジアミンである請求項1〜5のいずれかに記載のポリイミドの製造方法。   The method for producing a polyimide according to any one of claims 1 to 5, wherein the diamine is an diamine having an aliphatic ring or an aromatic ring. ジアミンが直鎖脂肪族ジアミンである請求項1〜5のいずれかに記載のポリイミドの製造方法。   The method for producing a polyimide according to any one of claims 1 to 5, wherein the diamine is a linear aliphatic diamine. ジアミンが1,3−ビス(アミノメチル)シクロヘキサンである請求項1〜5のいずれかに記載のポリイミドの製造方法。   The method for producing a polyimide according to any one of claims 1 to 5, wherein the diamine is 1,3-bis (aminomethyl) cyclohexane. ピロメリット酸と脂肪族環を有するジアミンとから得られる下記(1)〜(3)の性状を有するポリイミド。
(1)示差走査型熱量計で測定される20℃/minにおける降温時結晶化発熱ピークの熱量が5J/g以上である。
(2)25℃において濃硫酸(96%)20mlに0.1g以上溶解する。
(3)濃硫酸(96%)を溶媒として用い、濃度0.5g/dl、30℃で測定した対数粘度の値が1.0dl/g以上である。
A polyimide having the following properties (1) to (3) obtained from pyromellitic acid and a diamine having an aliphatic ring.
(1) The calorific value of the crystallization exothermic peak during cooling at 20 ° C./min as measured by a differential scanning calorimeter is 5 J / g or more.
(2) Dissolve 0.1 g or more in 20 ml of concentrated sulfuric acid (96%) at 25 ° C.
(3) Using concentrated sulfuric acid (96%) as a solvent, the logarithmic viscosity value measured at a concentration of 0.5 g / dl and 30 ° C. is 1.0 dl / g or more.
脂肪族環を有するジアミンが1,3−ビス(アミノメチル)シクロヘキサンである請求項9記載のポリイミド。   The polyimide according to claim 9, wherein the diamine having an aliphatic ring is 1,3-bis (aminomethyl) cyclohexane.
JP2010242255A 2010-10-28 2010-10-28 Method for producing crystalline polyimide Active JP5545172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010242255A JP5545172B2 (en) 2010-10-28 2010-10-28 Method for producing crystalline polyimide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010242255A JP5545172B2 (en) 2010-10-28 2010-10-28 Method for producing crystalline polyimide

Publications (2)

Publication Number Publication Date
JP2012092262A true JP2012092262A (en) 2012-05-17
JP5545172B2 JP5545172B2 (en) 2014-07-09

Family

ID=46385986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010242255A Active JP5545172B2 (en) 2010-10-28 2010-10-28 Method for producing crystalline polyimide

Country Status (1)

Country Link
JP (1) JP5545172B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015098573A (en) * 2013-10-18 2015-05-28 株式会社Kri High crystal polyimide fine particle and method for producing the same
WO2016097232A1 (en) * 2014-12-18 2016-06-23 Rhodia Operations Process for producing aromatic polyimides

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733875A (en) * 1993-07-16 1995-02-03 Toho Rayon Co Ltd Highly crystalline polyimide powder and its production
JP2006143890A (en) * 2004-11-19 2006-06-08 Sony Chem Corp Method for producing polyimide microparticle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733875A (en) * 1993-07-16 1995-02-03 Toho Rayon Co Ltd Highly crystalline polyimide powder and its production
JP2006143890A (en) * 2004-11-19 2006-06-08 Sony Chem Corp Method for producing polyimide microparticle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015098573A (en) * 2013-10-18 2015-05-28 株式会社Kri High crystal polyimide fine particle and method for producing the same
WO2016097232A1 (en) * 2014-12-18 2016-06-23 Rhodia Operations Process for producing aromatic polyimides
CN107636044A (en) * 2014-12-18 2018-01-26 罗地亚经营管理公司 method for producing aromatic polyimide
JP2018505953A (en) * 2014-12-18 2018-03-01 ローディア オペレーションズ Method for producing aromatic polyimide
US20180355109A1 (en) * 2014-12-18 2018-12-13 Rhodia Operations Process for producing aromatic polyimides
US10745520B2 (en) 2014-12-18 2020-08-18 Centre National De La Recherche Scientifique Process for producing aromatic polyimides

Also Published As

Publication number Publication date
JP5545172B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
JP5365762B1 (en) Crystalline thermoplastic polyimide resin
JP6165153B2 (en) Polyimide and molded body thereof
KR102208953B1 (en) Method for producing polyimide resin powder, and thermoplastic polyimide resin powder
JP5948443B2 (en) Diamine compound containing two substituents as asymmetric structure, and polymer produced using the same
CN108219133B (en) Polyimide resin containing furan ring and preparation method thereof
JP2012072121A (en) Amide group-bearing alicyclic tetracarboxylic dianhydride, and resin obtained by using the same
Mi et al. Transparent and soluble polyimide films from 1, 4: 3, 6-dianhydro-D-mannitol based dianhydride and diamines containing aromatic and semiaromatic units: Preparation, characterization, thermal and mechanical properties
US7550553B2 (en) Fluorinated diamine and polymer made from the same
US10047246B2 (en) Varnish including 2-phenyl-4,4′-diaminodiphenyl ether, imide resin composition having excellent moldability, cured resin molded article having excellent breaking elongation, prepreg thereof, imide prepreg thereof, and fiber-reinforced material thereof having high heat resistance and excellent mechanical strength
KR102422752B1 (en) Novel tetracarboxylic dianhydride and polyimide and polyimide copolymer obtained from acid dianhydride
CN106459411B (en) Method for producing polyimide using water as dispersion medium and method for recovering water
Wen et al. Syntheses and characterizations of cardo polyimides based on new spirobifluorene diamine monomer
JPWO2019220969A1 (en) Resin molded body
JP2016523991A (en) Polyimide, method for producing the polyimide, and article obtained from the polyimide
Wang et al. Highly soluble polyimides containing di-tert-butylbenzene and dimethyl groups with good gas separation properties and optical transparency
TWI649350B (en) Resist resin and method of manufacturing same
JP5545172B2 (en) Method for producing crystalline polyimide
WO2022065063A1 (en) Polyimide resin composition and molded body
JP2014172911A (en) Polyimides
JPH04331229A (en) Polyether-imide imide resin and its manufacture
JP2013227500A (en) Solvent-soluble polyimide resin
Liaw et al. Synthesis and characterization of new organosoluble poly (ether-imide) s derived from various novel bis (ether anhydride) s
WO2020158523A1 (en) Novel diamine, novel polyimide derived therefrom, and molded body thereof
CN113667119B (en) Polyacetamide-imide film and preparation method thereof
TWI498312B (en) Dinitro compound, diamine compound, and aromatic polyimide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

R151 Written notification of patent or utility model registration

Ref document number: 5545172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151