JP2012092045A - Immunopotentiator derived from helminth parasite - Google Patents

Immunopotentiator derived from helminth parasite Download PDF

Info

Publication number
JP2012092045A
JP2012092045A JP2010240882A JP2010240882A JP2012092045A JP 2012092045 A JP2012092045 A JP 2012092045A JP 2010240882 A JP2010240882 A JP 2010240882A JP 2010240882 A JP2010240882 A JP 2010240882A JP 2012092045 A JP2012092045 A JP 2012092045A
Authority
JP
Japan
Prior art keywords
surfactant
parasite
fraction
group
immunostimulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010240882A
Other languages
Japanese (ja)
Other versions
JP5935200B2 (en
Inventor
Masahiro Morimoto
將弘 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaguchi University NUC
Original Assignee
Yamaguchi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaguchi University NUC filed Critical Yamaguchi University NUC
Priority to JP2010240882A priority Critical patent/JP5935200B2/en
Publication of JP2012092045A publication Critical patent/JP2012092045A/en
Application granted granted Critical
Publication of JP5935200B2 publication Critical patent/JP5935200B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a Th2-mediated immunopotentiator causing strong Th2-mediated immune activation in vivo, and to provide a method for producing the immunopotentiator.SOLUTION: A treated material obtained by subjecting Nippostrongylus brasiliensis as a kind of digestive tract helminth parasite to ultrasonic crushing treatment and a TritonX-114-containing water solution as one of surfactant are mixed, and thereafter, the water layer and surfactant layer are subjected to layer separation treatment. A surfactant-removed extracted fraction obtained by removing the TritonX-114, from a surfactant fraction obtained by extracting the surfactant layer as the surfactant fraction, by an ethanol precipitation method has an action of increasing an IgE amount as the index of Th2-mediated immunopotentiation, increasing the number of eosinophils or increasing IL-4 expression level by oral administration for a single time.

Description

本発明は、寄生虫から界面活性剤を用いて抽出した界面活性剤画分から界面活性剤を除去した脱界面活性剤抽出画分を有効成分とするTh2免疫賦活剤や該免疫賦活剤の製造方法等に関する。   The present invention relates to a Th2 immunostimulant comprising a desurfactant extracted fraction obtained by removing a surfactant from a surfactant fraction extracted from a parasite using a surfactant and a method for producing the immunostimulant. Etc.

免疫反応において、機能するヘルパーT細胞(Th)は、主にタイプI(Th1)細胞とタイプII(Th2)細胞とに分類され(例えば、非特許文献1、非特許文献16、非特許文献17参照)、そのうちTh1細胞は細胞性炎症反応に関与することが知られており、かかる細胞性炎症反応としては、例えばTh1細胞が分泌するサイトカイン(Th1サイトカイン)であるIL−2やIFN−γにより誘導される細胞障害性反応、遅延型過敏反応等が知られている。他方、Th2細胞は体液性免疫反応に関与することが知られており、かかる体液性免疫反応としては、例えばTh2細胞が分泌するサイトカイン(Th2サイトカイン)であるIL−4やIL−5により誘導されるIgE量増加に伴ったアレルギー反応や、寄生虫からの防御反応等が知られている(例えば非特許文献17参照)。また、Th1サイトカイン及びTh2サイトカインがそれぞれ他方のサイトカインの働きを抑制することにより、免疫反応のタイプがTh1型又はTh2型のどちらか一方に迅速に変化することが知られている(例えば非特許文献1、非特許文献16参照)。こうした免疫反応のシステムにより、生体内では外来抗原の種類に応じて適切な免疫反応が誘導される(例えば非特許文献1、非特許文献16参照)が、免疫反応のバランス制御が乱れ、Th1型に過度に傾くとクローン病などの組織障害性疾患や、慢性関節リウマチ、自己免疫性肝炎などの臓器特異的自己免疫疾患を引き起こすことが知られている(例えば非特許文献1、非特許文献7、非特許文献16参照)。また、逆にTh2型に過度に傾くとアレルギー、アトピー、全身性自己免疫疾患などの免疫疾患を引き起こすことが知られている(例えば非特許文献1、非特許文献16参照)。これらの疾患を治療するために、乱れた免疫反応のバランスを正常な状態に戻すことを目的とした研究が行われている。   In an immune reaction, functioning helper T cells (Th) are mainly classified into type I (Th1) cells and type II (Th2) cells (for example, Non-Patent Document 1, Non-Patent Document 16, Non-Patent Document 17). Among them, Th1 cells are known to be involved in cellular inflammatory reactions. Examples of such cellular inflammatory reactions include IL-2 and IFN-γ, which are cytokines secreted by Th1 cells (Th1 cytokines). Induced cytotoxic reactions, delayed hypersensitivity reactions and the like are known. On the other hand, Th2 cells are known to be involved in humoral immune responses. Such humoral immune responses are induced by IL-4 and IL-5, which are cytokines secreted by Th2 cells (Th2 cytokines), for example. Allergic reactions associated with increased IgE levels, defense reactions from parasites, and the like are known (see, for example, Non-Patent Document 17). Further, it is known that the type of immune reaction is rapidly changed to either Th1 type or Th2 type by inhibiting the action of the other cytokine by Th1 cytokine and Th2 cytokine (for example, non-patent literature). 1 and non-patent document 16). Such an immune reaction system induces an appropriate immune response in vivo according to the type of foreign antigen (see, for example, Non-Patent Document 1 and Non-Patent Document 16), but the balance control of the immune reaction is disturbed, and the Th1 type It is known that excessive tilting causes tissue damage diseases such as Crohn's disease and organ-specific autoimmune diseases such as rheumatoid arthritis and autoimmune hepatitis (for example, Non-Patent Document 1 and Non-Patent Document 7). Non-patent document 16). On the other hand, it is known that excessively tilting to Th2 type causes immune diseases such as allergies, atopy, and systemic autoimmune diseases (see, for example, Non-Patent Document 1 and Non-Patent Document 16). In order to treat these diseases, research aimed at restoring the balance of disturbed immune responses to normal is being conducted.

LPS(Lipo poly saccharide)やCpG(cytosine-phosphate-guanine)は、単回投与でもTh1免疫反応の活性化を誘導できることから(例えば非特許文献14参照)、過度にTh2型に傾いたバランスをTh1型側へ戻すツールとして注目されている。免疫反応の活性化(免疫賦活化)におけるプロセスの一つとして、抗原が抗原提示細胞に取り込まれた後、抗原処理されたペプチド断片がプロセシングによりMHC(主要組織適合性抗原複合体)分子と結合し、その後抗原提示細胞の細胞表面に発現した抗原をTh細胞が認識して感作が起こることが知られているが(例えば非特許文献1、非特許文献6)、LPSやCpGによるTh1免疫反応の活性化(Th1免疫賦活化)は、上記プロセスとは異なり、LPSやCpGがTLR(Tall-like receptor)のリガンドとして直接抗原提示細胞を刺激して宿主に免疫反応を起こすことから、LPSやCpGはTh1免疫賦活活性を有する物質(Th1 activator)としての有用性が高いことが知られている。また、上記Th1免疫賦活活性を有する物質は、それ単独でTh1免疫賦活化ができるので、Th1免疫反応のメカニズムを解明する基礎研究、例えば抗原提示細胞における細胞内刺激伝達経路を解明する研究などにも応用されていることが知られている(例えば非特許文献14参照)。   Since LPS (Lipopolysaccharide) and CpG (cytosine-phosphate-guanine) can induce the activation of Th1 immune response even after single administration (see, for example, Non-Patent Document 14), the balance that is excessively inclined to Th2 type is Th1. It is attracting attention as a tool to return to the mold side. As one of the processes in the activation of immune response (immunostimulation), after antigen is taken up by antigen-presenting cells, the antigen-treated peptide fragment binds to MHC (major histocompatibility antigen complex) molecule by processing Then, it is known that Th cells recognize antigens expressed on the cell surface of antigen-presenting cells, and sensitization occurs (for example, Non-Patent Document 1, Non-Patent Document 6), but Th1 immunization with LPS or CpG The activation of the reaction (Th1 immunostimulation) is different from the above-mentioned process, because LPS and CpG directly stimulate antigen-presenting cells as ligands of TLR (Tall-like receptor) and cause an immune reaction in the host. It is known that CpG is highly useful as a substance having Th1 immunostimulatory activity (Th1 activator). In addition, since the substance having Th1 immunostimulatory activity can be Th1 immunostimulatory by itself, it is suitable for basic research to elucidate the mechanism of Th1 immune reaction, for example, research to elucidate intracellular stimulation transmission pathways in antigen-presenting cells. Is also known to be applied (see Non-Patent Document 14, for example).

他方、Th2免疫賦活活性を有する物質の探索も行われており、それらの中でも、例えばマイコプラズマの菌体表面に存在する不溶性物質(リポペプチド)であるPam−3−cys(例えば非特許文献3参照)やFSL−1(例えば非特許文献4参照)などが、TLR2(Tall-like receptor 2)を介して直接抗原提示細胞に作用することにより、Th2免疫賦活化することが報告されているが、一方で、これらの物質は、Th2サイトカインに加えてTh1サイトカイン(IL−6など)の産生も増加する効果があること(例えば非特許文献14参照)、Th2免疫賦活化にはin vitroの実験系においても高用量必要(例えば非特許文献4参照)であること、Th2免疫賦活化による効果が十分でない(例えば非特許文献14参照)ことも知られている。さらに、強いTh2免疫賦活化を引き起こす消化管寄生虫からTh2免疫賦活活性を有する物質を探索する研究も行われており、その結果、いくつかTh2免疫賦活化する物質が同定されているが、それらの物質は単なる抗原としてアジュバントが必要であったり、頻回投与による感作・チャレンジが必要であったり(例えば非特許文献6参照)、又はin vitroでしかその効果が認められない(例えば非特許文献8参照)ことが知られている。   On the other hand, a search for a substance having Th2 immunostimulatory activity has also been conducted, and among them, for example, Pam-3-cys which is an insoluble substance (lipopeptide) present on the surface of mycoplasma cells (see, for example, Non-patent Document 3). ) And FSL-1 (see, for example, Non-Patent Document 4) have been reported to activate Th2 immunostimulation by directly acting on antigen-presenting cells via TLR2 (Tall-like receptor 2). On the other hand, these substances have the effect of increasing the production of Th1 cytokines (IL-6 and the like) in addition to Th2 cytokines (see, for example, Non-Patent Document 14), and in vitro experimental systems are used for Th2 immunostimulation. Also requires a high dose (see, for example, Non-Patent Document 4), and the effect of Th2 immunostimulation is not sufficient (see, for example, Non-Patent Document 14) And it is also known. Furthermore, research has been conducted to search for substances having Th2 immunostimulatory activity from gastrointestinal parasites that cause strong Th2 immunostimulation. As a result, some substances that activate Th2 immunostimulatory have been identified. These substances require an adjuvant as a mere antigen, require sensitization / challenge by frequent administration (see, for example, Non-Patent Document 6), or are effective only in vitro (for example, non-patent) Reference 8) is known.

Mosmann TR, Sad S. 1996. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today. 17(3): 138-46.Mosmann TR, Sad S. 1996. The expanding universe of T-cell subsets: Th1, Th2 and more.Immunol Today. 17 (3): 138-46. Bordier C. 1981. Phase separation of integral membrane proteins in TritonX-114 solution. J Biol Chem. 256(4): 1604-7.Bordier C. 1981.Phase separation of integral membrane proteins in TritonX-114 solution.J Biol Chem. 256 (4): 1604-7. Hasebe A, Mu HH, Washburn LR, Chan FV, Pennock ND, Taylor ML, Cole BC. 2007. Inflammatory lipoproteins purified from a toxigenic and arthritogenic strain of Mycoplasma arthritidis are dependent on Toll-like receptor 2 and CD14. Infect Immun. 75(4): 1820-6.Hasebe A, Mu HH, Washburn LR, Chan FV, Pennock ND, Taylor ML, Cole BC. 2007. Inflammatory lipoproteins purified from a toxigenic and arthritogenic strain of Mycoplasma arthritidis are dependent on Toll-like receptor 2 and CD14. Infect Immun. 75 (4): 1820-6. Kiura K, Kataoka H, Yasuda M, Inoue N, Shibata K. 2006. The diacylated lipopeptide FSL-1 induces TLR2-mediated Th2 responses. FEMS Immunol Med Microbiol. 48(1): 44-55.Kiura K, Kataoka H, Yasuda M, Inoue N, Shibata K. 2006. The diacylated lipopeptide FSL-1 induces TLR2-mediated Th2 responses. FEMS Immunol Med Microbiol. 48 (1): 44-55. N. Ishikawa, Y. Horii, Y. Nawa. 1994. Inhibitory effects of concurrently present ’normal’ Nippostrongylus brasiliensis worms on expulsion of ’damaged’ worms and associated goblet cell changes in rats. Parasite Immunology. 16: 329-332.N. Ishikawa, Y. Horii, Y. Nawa. 1994. Inhibitory effects of concurrently present ‘normal’ Nippostrongylus brasiliensis worms on expulsion of ‘damaged’ worms and associated goblet cell changes in rats. Parasite Immunology. 16: 329-332. Wilson MS, Elnekave E, Mentink-Kane MM, Hodges MG, Pesce JT, Ramalingam TR, Thompson RW, Kamanaka M, Flavell RA, Keane-Myers A, Cheever AW, Wynn TA. 2007. IL-13Ralpha2 and IL-10 coordinately suppress airway inflammation, airway-hyperreactivity, and fibrosis in mice. J Clin Invest. 117(10): 2941-51.Wilson MS, Elnekave E, Mentink-Kane MM, Hodges MG, Pesce JT, Ramalingam TR, Thompson RW, Kamanaka M, Flavell RA, Keane-Myers A, Cheever AW, Wynn TA. 2007. IL-13Ralpha2 and IL-10 coordinately suppress airway inflammation, airway-hyperreactivity, and fibrosis in mice.J Clin Invest. 117 (10): 2941-51. R W Summers, D E Elliott, J F Urban Jr, R Thompson, J V Weinstock. 2005. Trichuris suis therapy in Crohn’s disease. Gut. 54: 87-90.R W Summers, D E Elliott, J F Urban Jr, R Thompson, J V Weinstock. 2005. Trichuris suis therapy in Crohn ’s disease. Gut. 54: 87-90. Li Q, Kumar A, Gui JF, Yu FS. 2008. Staphylococcus aureuslipoproteins trigger human corneal epithelial innate response through toll-like receptor-2. Microb Pathog. 44(5): 426-34.Li Q, Kumar A, Gui JF, Yu FS. 2008. Staphylococcus aureuslipoproteins trigger human corneal epithelial innate response through toll-like receptor-2. Microb Pathog. 44 (5): 426-34. Metcalfe DD.1984. Mast cell mediators with emphasis on intestinal mast cells. Ann Allergy. 53: 563-75.Metcalfe DD.1984. Mast cell mediators with emphasis on intestinal mast cells. Ann Allergy. 53: 563-75. McKenzie GJ, Bancroft A, Grencis RK, McKenzie AN. 1998. A distinct role for interleukin-13 in Th2-cell-mediated immune responses. Curr Biol. 8(6): 339-42.McKenzie GJ, Bancroft A, Grencis RK, McKenzie AN. 1998. A distinct role for interleukin-13 in Th2-cell-mediated immune responses. Curr Biol. 8 (6): 339-42. Perdue MH, Ramage JK, Burget D, Marshall J, Masson S. 1989. Intestinal mucosal injury is associated with mast cell activation and leukotriene generation during Nippostrongylus-induced inflammation in the rat. Dig Dis Sci. 34(5): 724-31.Perdue MH, Ramage JK, Burget D, Marshall J, Masson S. 1989. Intestinal mucosal injury is associated with mast cell activation and leukotriene generation during Nippostrongylus-induced inflammation in the rat.Dig Dis Sci. 34 (5): 724-31 . Holland MJ, Harcus YM, Riches PL, Maizels RM. 2000. Proteins secreted by the parasitic nematode Nippostrongylus brasiliensis act as adjuvants for Th2 responses. Eur J Immunol. 30(7): 1977-87.Holland MJ, Harcus YM, Riches PL, Maizels RM. 2000. Proteins secreted by the parasitic nematode Nippostrongylus brasiliensis act as adjuvants for Th2 responses. Eur J Immunol. 30 (7): 1977-87. Dullemen HMV. 1994. Treatment of Crohn’s disease with anti-tumor necrosis factor chimeric antibody (cA2). Gastroentrerol. 109: 129-135.Dullemen HMV. 1994. Treatment of Crohn ’s disease with anti-tumor necrosis factor chimeric antibody (cA2). Gastroentrerol. 109: 129-135. Dillon S, Agrawal A, Van Dyke T, Landreth G, McCauley L, Koh A, Maliszewski C, Akira S, Pulendran B. 2004. A Toll-like receptor 2 ligand stimulates Th2 responses in vivo, via induction of extracellular signal-regulated kinase mitogen-activated protein kinase and c-Fos in dendritic cells. J Immunol. 172(8): 4733-43.Dillon S, Agrawal A, Van Dyke T, Landreth G, McCauley L, Koh A, Maliszewski C, Akira S, Pulendran B. 2004. A Toll-like receptor 2 ligand stimulates Th2 responses in vivo, via induction of extracellular signal-regulated kinase mitogen-activated protein kinase and c-Fos in dendritic cells. J Immunol. 172 (8): 4733-43. Kamiya M, Oku Y, Itayama H, Ohbayashi M. 1985. Prolonged expulsion of adult Trichinella spiralis and eosinophil infiltration in mast cell-deficient W/Wv mice. J Helminthol. 59(3): 233-9.Kamiya M, Oku Y, Itayama H, Ohbayashi M. 1985. Prolonged expulsion of adult Trichinella spiralis and eosinophil infiltration in mast cell-deficient W / Wv mice. J Helminthol. 59 (3): 233-9. Carter LL, Dutton RW. 1996. Type 1 and type 2: a fundamental dichotomy for all T-cell subsets. Curr Opin Immunol. 8(3): 336-42.Carter LL, Dutton RW. 1996. Type 1 and type 2: a fundamental dichotomy for all T-cell subsets. Curr Opin Immunol. 8 (3): 336-42. Urban JF Jr, Madden KB, Svetic A, Cheever A, Trotta PP, Gause WC, Katona IM, Finkelman FD. 1992. The importance of Th2 cytokines in protective immunity to nematodes. Immunol Rev. 127: 205-20.Urban JF Jr, Madden KB, Svetic A, Cheever A, Trotta PP, Gause WC, Katona IM, Finkelman FD. 1992. The importance of Th2 cytokines in protective immunity to nematodes. Immunol Rev. 127: 205-20.

in vivoで使用する上でTh2免疫賦活活性の十分な効果を有する物質は、未だ見つかっていないのが現状である。そのため、Th2免疫賦活活性を有する物質の探索は、Th1側に傾いた免疫反応のバランスをTh2側に戻す治療薬としてだけでなく、Th2免疫賦活化の初期におけるメカニズムを解明し、アレルギーの予防、又は治療薬開発のための知見を得るためにも重要であると考えられている。本発明の課題は、in vivoで強いTh2免疫賦活化を引き起こすTh2免疫賦活剤を提供することにある。   At present, a substance having a sufficient effect of Th2 immunostimulatory activity for use in vivo has not yet been found. Therefore, the search for a substance having Th2 immunostimulatory activity is not only a therapeutic agent that restores the balance of immune response leaning to Th1 side to Th2 side, but also elucidates the mechanism in the early stage of Th2 immunostimulation, preventing allergy, It is also considered important for obtaining knowledge for therapeutic drug development. An object of the present invention is to provide a Th2 immunostimulator that causes strong Th2 immunostimulation in vivo.

この分野の研究者は、消化管蠕虫性寄生虫のTh2免疫賦活作用に着目し、専ら消化管蠕虫性寄生虫の水溶性抽出画分についてのTh2免疫賦活作用について検討をしてきた(例えば非特許文献8)。しかし、本発明者は、消化管蠕虫性寄生虫の水溶性抽出画分のTh2免疫賦活作用では実用化の限界があると考えていた。最近、消化管蠕虫性寄生虫の一種であるニッポストロンジラス・ブラジリエンシス(Nippostrongylus brasiliensis)(以下「Nb」ということがある)を感染させたラットからNbを採取し、別のラットにNbを感染させる実験において、排除時期に物理的な傷害を受けたNbの方が感染初期に採取したNbと比べて早期にTh2賦活化反応を起こし、Nbが排除されることが報告された(例えば非特許文献5)。これらの結果から、本発明者は、Nbから漏出した成分には高いTh2免疫賦活作用があるのではないかと考え、その成分を探索するために、精製やその後の製剤化が不利と考えられるNbの水難溶性画分について検討することとした。そして、界面活性剤の1つであるTritonX-114を用いて抽出したNb由来の界面活性剤画分(水難溶性画分)には、従来技術では得られていない高いTh2免疫賦活作用があることを見い出し、本発明を完成するに至った。   Researchers in this field have focused on the Th2 immunostimulatory action of gastrointestinal helminth parasites, and have studied exclusively the Th2 immunostimulatory action of water-soluble extract fractions of gastrointestinal helminth parasites (for example, non-patented) Reference 8). However, the present inventor considered that there is a limit to practical use in the Th2 immunostimulatory action of the water-soluble extract fraction of gastrointestinal helminth parasites. Recently, Nb was collected from a rat infected with Nippostrongylus brasiliensis (hereinafter sometimes referred to as “Nb”), a kind of gastrointestinal helminthic parasite, and Nb was collected in another rat. In experiments to infect Nb, it was reported that Nb physically damaged at the time of exclusion caused Th2 activation reaction earlier than Nb collected at the early stage of infection, and Nb was eliminated (for example, non-existing). Patent Document 5). From these results, the present inventor considers that the component leaked from Nb may have a high Th2 immunostimulatory effect, and in order to search for the component, Nb is considered to be disadvantageous in purification and subsequent formulation. It was decided to examine the poorly water-soluble fraction. The Nb-derived surfactant fraction (poorly water-soluble fraction) extracted using TritonX-114, which is one of the surfactants, has a high Th2 immunostimulatory effect that has not been obtained in the prior art. As a result, the present invention has been completed.

すなわち本発明は、(1)寄生虫から界面活性剤を用いて抽出した界面活性剤画分から界面活性剤を除去した脱界面活性剤抽出画分を有効成分とすることを特徴とするTh2免疫賦活剤や、(2)脱界面活性剤抽出画分の有効成分が、ペプチドを含むことを特徴とする上記(1)記載のTh2免疫賦活剤や、(3)寄生虫が蠕虫性寄生虫であることを特徴とする上記(1)又は(2)記載のTh2免疫賦活剤や、(4)蠕虫性寄生虫がニッポストロンジラス・ブラジリエンシス(Nippostrongylus brasiliensis)であることを特徴とする上記(3)記載のTh2免疫賦活剤や、(5)界面活性剤がTritonX-114(登録商標)であることを特徴とする上記(1)〜(4)のいずれか記載のTh2免疫賦活剤や、(6)Th2免疫賦活活性の有無をIgE量の増加、好酸球数の増加、又はIL−4発現量の増加に基づいて判定することを特徴とする上記(1)〜(5)のいずれか記載のTh2免疫賦活剤や、(7)経口投与の形態で用いられることを特徴とする上記(1)〜(6)のいずれか記載のTh2免疫賦活剤に関する。   That is, the present invention provides (1) a Th2 immunostimulation characterized by using, as an active ingredient, a desurfactant extracted fraction obtained by removing a surfactant from a surfactant fraction extracted from a parasite using a surfactant. (2) The Th2 immunostimulator according to (1) above, wherein the active ingredient of (2) the desurfactant extracted fraction contains a peptide, and (3) the parasite is a helminth parasite (2) The Th2 immunostimulator according to (1) or (2) above, or (4) the helminth parasite is Nippostrongylus brasiliensis (3 ) Th2 immunostimulator, (5) The Th2 immunostimulator according to any one of (1) to (4) above, wherein the surfactant is TritonX-114 (registered trademark), 6) Increasing IgE amount with or without Th2 immunostimulatory activity The Th2 immunostimulator according to any one of (1) to (5) above, wherein the determination is based on an increase in the number of eosinophils or an increase in the expression level of IL-4, or (7) oral administration The Th2 immunostimulator according to any one of (1) to (6) above, which is used in the form of

また本発明は、(8)上記(1)〜(7)のいずれか記載のTh2免疫賦活剤を含有することを特徴とする免疫賦活活性を有する組成物に関する。   The present invention also relates to (8) a composition having immunostimulatory activity, comprising the Th2 immunostimulator according to any one of (1) to (7) above.

さらに本発明は、(9)(a)寄生虫又はその処理物と界面活性剤含有水溶液とを混合する工程;(b)水層と界面活性剤層との層分離処理を行う工程;(c)界面活性剤画分を採取する工程;(d)界面活性剤画分から界面活性剤の除去処理を行い、脱界面活性剤抽出画分を得る工程;を備えたことを特徴とするTh2免疫賦活剤の製造方法や、(10)寄生虫の処理物が、寄生虫の物理的破壊処理物であることを特徴とする上記(9)記載の製造方法や、(11)寄生虫が蠕虫性寄生虫であることを特徴とする上記(9)又は(10)記載の製造方法や、(12)蠕虫性寄生虫がニッポストロンジラス・ブラジリエンシス(Nippostrongylus brasiliensis)であることを特徴とする上記(11)記載の製造方法や、(13)界面活性剤がTritonX-114(登録商標)であることを特徴とする上記(9)〜(12)のいずれか記載の製造方法や、(14)工程(d)における界面活性剤の除去処理が、タンパク質の沈殿処理を含むことを特徴とする上記(9)〜(13)のいずれか記載の製造方法に関する。   Furthermore, the present invention includes (9) (a) a step of mixing a parasite or a processed product thereof with a surfactant-containing aqueous solution; (b) a step of performing a layer separation treatment between the aqueous layer and the surfactant layer; A step of collecting a surfactant fraction; and a step of (d) removing the surfactant from the surfactant fraction to obtain a desurfactant-extracted fraction. (10) The production method according to the above (9), wherein the processed product of the parasite is a physical destruction processed product of the parasite, and (11) the parasite is a helminth parasite (9) The production method according to (9) or (10) above, wherein the helminth parasite is Nippostrongylus brasiliensis (Nippostrongylus brasiliensis) 11) the production method described in the above, and (13) the surfactant is TritonX-114 (9) The production method according to any one of (9) to (12) above, wherein (14) the surfactant removal treatment in step (d) includes a protein precipitation treatment. The manufacturing method according to any one of (9) to (13) above.

従来技術(例えば非特許文献6、非特許文献8参照)によると、Th2免疫賦活化を引き起こす物質は、単なる抗原としてアジュバントが必要なものや、頻回投与による感作・チャレンジが必要なものや、in vitroでしかその活性効果が認められないのに対し、本発明のTh2免疫賦活剤によると、単回の経口投与によるTh2免疫賦活剤、特にアジュバントを併用しなくてもよい副作用の少ない免疫賦活剤の開発や、ワクチン開発に繋がることが期待でき、さらに、Th2免疫賦活化の初期におけるメカニズムを解明する基礎研究にとっても有用なツールとなることが期待される。   According to conventional techniques (for example, see Non-Patent Document 6 and Non-Patent Document 8), substances that cause Th2 immunostimulation are those that require an adjuvant as a simple antigen, those that require sensitization / challenge by frequent administration, However, according to the Th2 immunostimulant of the present invention, the Th2 immunostimulator by a single oral administration, particularly immunity with few side effects that does not require the use of an adjuvant. It can be expected to lead to the development of activators and vaccines, and is also expected to be a useful tool for basic research to elucidate the mechanism at the early stage of Th2 immunostimulation.

本発明のTh2免疫賦活剤(TX)、寄生虫全成分(AW)又はPBSの投与後7日及び14日における各群の体重を示す図である。It is a figure which shows the body weight of each group on the 7th and 14th day after administration of Th2 immunostimulator (TX) of this invention, a parasite all component (AW), or PBS. TX、AW又はPBSの投与後7日及び14日における各群の小腸重量(g/BWg×100)を示す図である。It is a figure which shows the small intestine weight (g / BWgx100) of each group in the 7th and 14th day after administration of TX, AW, or PBS. TX、AW又はPBSの投与後7日及び14日における各群の脾臓重量(g/BWg×100)を示す図である。It is a figure which shows the spleen weight (g / BWgx100) of each group in the 7th and 14th day after administration of TX, AW, or PBS. TX、AW又はPBSの投与後7日及び14日における各群の腸間膜リンパ節重量(g/BWg×100)をグラフで示す図である。It is a figure which shows the mesenteric lymph node weight (g / BWg * 100) of each group in the 7th and 14th day after administration of TX, AW, or PBS with a graph. TX、AW又はPBSの投与後7日及び14日における各群の末梢血中の好酸球数を示す図である。It is a figure which shows the eosinophil count in the peripheral blood of each group on the 7th and 14th day after administration of TX, AW or PBS. TX又はPBSの投与後7日及び14日における各群の血清中のIgE濃度を示す図である。It is a figure which shows the IgE density | concentration in the serum of each group on the 7th and 14th day after administration of TX or PBS. TX又はPBSの投与後7日における各群の脾臓及び腸間膜リンパ節でのIL−4mRNA発現量(PBS投与群を1.00とする。)を示す図である。縦軸は、2の指数値を表す。It is a figure which shows the IL-4 mRNA expression level (PBS administration group shall be 1.00) in the spleen and mesenteric lymph node of each group on the 7th day after the administration of TX or PBS. The vertical axis represents the exponent value of 2. PBS投与群における投与後7日の小腸(H−E染色切片)の光学顕微鏡(160倍)観察の結果を示す図である。It is a figure which shows the result of the optical microscope (160 time) observation of the small intestine (HE dyeing | staining section | slice) 7 days after administration in a PBS administration group. PBS投与群における投与後7日の小腸(アルシアンブルー染色切片)の光学顕微鏡(160倍)観察の結果を示す図である。It is a figure which shows the result of the optical microscope (160 time) observation of the small intestine (Alcian blue dyeing | staining section | slice) 7 days after administration in a PBS administration group. AW群における投与後7日の小腸(H−E染色切片)の光学顕微鏡(160倍)観察の結果を示す図である。It is a figure which shows the result of the optical microscope (160 time) observation of the small intestine (HE dyeing | staining section | slice) 7 days after administration in an AW group. AW群における投与後7日の小腸(アルシアンブルー染色切片)の光学顕微鏡(160倍)観察の結果を示す図である。It is a figure which shows the result of the optical microscope (160 time) observation of the small intestine (Alcian blue dyeing | staining section | slice) 7 days after administration in an AW group. TX群における投与後7日の小腸(H−E染色切片)の光学顕微鏡(160倍)観察の結果を示す図である。It is a figure which shows the result of the optical microscope (160 time) observation of the small intestine (HE dyeing | staining section | slice) 7 days after administration in a TX group. TX群における投与後7日の小腸(アルシアンブルー染色切片)の光学顕微鏡(160倍)観察の結果を示す図である。It is a figure which shows the result of the optical microscope (160 time) observation of the small intestine (alcian blue dyeing | staining section | slice) 7 days after administration in TX group. TX群、SDS処理TX群又はProK処理TX群における投与後3日及び5日目の各群の末梢血中の好酸球数を示す図である。It is a figure which shows the eosinophil count in the peripheral blood of each group of the 3rd and 5th day after administration in TX group, SDS processing TX group, or ProK processing TX group.

本発明のTh2免疫賦活剤としては、寄生虫から界面活性剤を用いて抽出した界面活性剤画分から界面活性剤を除去した脱界面活性剤抽出画分を有効成分として含有するものであれば特に制限されず、また、本発明のTh2免疫賦活剤の製造方法としては、寄生虫又はその処理物と界面活性剤含有水溶液とを混合する工程(a);水層と界面活性剤層との層分離処理を行う工程(b);界面活性剤画分を採取する工程(c);界面活性剤画分から界面活性剤の除去処理を行い、脱界面活性剤抽出画分を得る工程(d);を備えた方法であれば特に制限されず、ここで「Th2免疫賦活剤」とは、Th2免疫反応を活性化する作用を有するものをいう。   As the Th2 immunostimulant of the present invention, as long as it contains, as an active ingredient, a desurfactant extracted fraction obtained by removing a surfactant from a surfactant fraction extracted from a parasite using a surfactant. The method for producing the Th2 immunostimulator of the present invention is not limited, and the step (a) of mixing a parasite or a processed product thereof with a surfactant-containing aqueous solution; a layer of an aqueous layer and a surfactant layer Step (b) for performing a separation treatment; Step (c) for collecting a surfactant fraction; Step (d) for obtaining a desurfactant-extracted fraction by performing a treatment for removing the surfactant from the surfactant fraction; The “Th2 immunostimulant” herein refers to a substance having an action of activating a Th2 immune reaction.

上記寄生虫としては、胞子虫類、根足虫類、鞭毛虫類等の単細胞からなる原虫性寄生虫や、線虫、吸虫類、条虫類等の多細胞からなる蠕虫性寄生虫を挙げることができるが、蠕虫性寄生虫に感染するとTh2免疫賦活化が起こることから、蠕虫性寄生虫が好ましい。蠕虫性寄生虫のうち、マウスに感染する蠕虫性寄生虫としては、例えばTrichuris muris、Trichinella spiralis、ニッポストロンジラス・ブラジリエンシス(Nippostrongylus brasiliensis)、Heligmonsomoides polygyrus、Hymenolepsis nana等を挙げることができ、ラットに感染する蠕虫性寄生虫としては、例えばAngiostrongylus等を挙げることができ、豚に感染する蠕虫性寄生虫としては、例えばTrichuris suis、Ascaris suum等を挙げることができ、イヌ又はネコに感染する蠕虫性寄生虫としては、例えばTrichuris vulpis、Toxocara、Gnathostoma、Ancylostoma等を挙げることができ、海洋哺乳動物に感染する蠕虫性寄生虫としては、例えばAnisakis、Pseudoterranova等を挙げることができ、鳥類に感染する蠕虫性寄生虫としては、例えばS. douthitti、Trichobilharzia ocellata、T. stagnicolae、T. physellae、Gigantobilharzia huronensis等を挙げることができ、これらの中でもニッポストロンジラス・ブラジリエンシスを好適に例示することができる。   Examples of the parasites include protozoan parasites composed of single cells such as sporeworms, rhizopods and flagellates, and helminth parasites composed of multiple cells such as nematodes, flukes and tapeworms. However, helminth parasites are preferred because Th2 immunostimulation occurs upon infection with helminth parasites. Of the helminthic parasites, examples of helminthic parasites that infect mice include Trichuris muris, Trichinella spiralis, Nippostrongylus brasiliensis, Heligmonsomoides polygyrus, Hymenolepsis nana, and the like. Examples of helminth parasites that infect worms include Angiostrongylus, and examples of helminth parasites that infect pigs include Trichuris suis, Ascaris suum, and worms that infect dogs and cats. Examples of sexual parasites include Trichuris vulpis, Toxocara, Gnathostoma, and Ancylostoma. Examples of helminth parasites that infect marine mammals include Anisakis and Pseudoterranova, which infect birds. Examples of helminthic parasites include S. douthitti, Trichobilharzia ocellata, T. stagnicolae, T. physellae, Gigantobilharzia hur onensis etc. can be mentioned, and among these, Nippostrongiras bragiliensis can be preferably exemplified.

上記界面活性剤としては、非イオン性界面活性剤、両イオン性界面活性剤及びイオン性界面活性剤を挙げることができ、これらのうち、非イオン性界面活性剤として、例えばTritonX-100、TritonX-114、NP-40、Tween-20、Tween-80等を挙げることができ、両イオン性界面活性剤として、例えば7BzO、SB3−10、SB3−14、CHAPS、アミドスルホベタイン−14(ASB14)等を挙げることができ、イオン性界面活性剤として、例えば臭化セチルトリメチルアンモニウム(CTAB)、ドデシル硫酸ナトリウム(SDS)等を挙げることができ、これらの中でも曇点が約20℃であり、生理的な条件下で水溶液画分と界面活性剤画分に分離することができるため、TritonX-114が好ましい。   Examples of the surfactant include nonionic surfactants, amphoteric surfactants, and ionic surfactants. Among these, nonionic surfactants include, for example, TritonX-100 and TritonX. -114, NP-40, Tween-20, Tween-80 and the like. Examples of amphoteric surfactants include 7BzO, SB3-10, SB3-14, CHAPS, and amidosulfobetaine-14 (ASB14). Examples of the ionic surfactant include cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS). Among these, the cloud point is about 20 ° C. TritonX-114 is preferable because it can be separated into an aqueous solution fraction and a surfactant fraction under typical conditions.

上記脱界面活性剤抽出画分には、例えば寄生虫の構成成分であるポリヌクレオチド、ペプチド、脂質、糖質等が含まれている可能性があり、これらの中でもプロテアーゼ処理によりTh2免疫賦活活性が失われるため、ペプチドが含まれている可能性が大きい。かかる脱界面活性剤抽出画分は以下のようにして調製することができる。   The above-mentioned desurfactant-extracted fraction may contain, for example, polynucleotides, peptides, lipids, carbohydrates and the like, which are constituents of parasites. Among these, the Th2 immunostimulatory activity can be obtained by protease treatment. Since it is lost, it is highly possible that peptides are included. Such a desurfactant-extracted fraction can be prepared as follows.

まず、寄生虫又はその処理物と界面活性剤含有水溶液とを混合する。上記寄生虫の処理物を得るための方法としては、寄生虫と界面活性剤含有水溶液とを混合する前に、界面活性剤含有水溶液が浸透しやすいように寄生虫を破壊した処理方法が好ましく、例えば生化学的破壊処理、物理的破壊処理等を挙げることができるが、寄生虫を効果的且つ効率的に破壊処理することができる物理的破壊処理が好ましい。物理的破壊処理における処理方法としては、例えば凍結融解法、超音波破砕処理法、ホモジナイザーによる破砕法、ガラスビーズによる破砕法等を挙げることができ、これらの中でも超音波破砕処理法を好適に例示することができる。   First, a parasite or a processed product thereof and a surfactant-containing aqueous solution are mixed. As a method for obtaining the processed product of the parasite, a treatment method in which the parasite is destroyed so that the surfactant-containing aqueous solution can easily penetrate before mixing the parasite and the surfactant-containing aqueous solution is preferable. For example, biochemical destruction treatment, physical destruction treatment, and the like can be mentioned, and physical destruction treatment that can effectively and efficiently destroy the parasite is preferable. Examples of the treatment method in the physical destruction treatment include a freeze-thaw method, an ultrasonic crushing method, a homogenizer crushing method, a glass bead crushing method, etc. Among them, the ultrasonic crushing treatment method is preferably exemplified. can do.

上記界面活性剤含有水溶液としては、上記界面活性剤を含有している水溶液であればよく、界面活性剤の濃度は、使用する界面活性剤の種類に応じて公知の使用マニュアル(例えばMolecular Cloningなど)により適宜選択することができ、例えばTritonX-114を用いる場合、0.2%〜10%が好ましく、1%〜3%がより好ましい。また、必要に応じて、緩衝剤、タンパク質分解酵素阻害剤、防腐剤等を添加してもよい。   The surfactant-containing aqueous solution may be an aqueous solution containing the surfactant, and the concentration of the surfactant may vary depending on the type of surfactant used (for example, Molecular Cloning). For example, when TritonX-114 is used, it is preferably 0.2% to 10%, more preferably 1% to 3%. Moreover, you may add a buffer, a proteolytic enzyme inhibitor, a preservative, etc. as needed.

次に、水層と界面活性剤層との層分離処理を行う。かかる層分離処理としては、界面活性剤含有水溶液をその曇点より低い温度から高い温度へ上昇させるとミセル形成ができなくなり、水層と界面活性剤層とに分離する現象を利用した処理が好ましく、界面活性剤としてTritonX-114を用いる場合、その曇点が約20℃であるため、曇点より低い温度としては、0℃〜20℃、好ましくは2℃〜10℃を、曇点より高い温度としては、20℃〜42℃、好ましくは30℃〜40℃をそれぞれ例示することができる。   Next, a layer separation process is performed between the aqueous layer and the surfactant layer. As such a layer separation treatment, a treatment using a phenomenon in which micelle formation cannot be achieved when a surfactant-containing aqueous solution is raised from a temperature lower than its cloud point to a higher temperature, and separation into an aqueous layer and a surfactant layer is preferable. When TritonX-114 is used as the surfactant, the cloud point is about 20 ° C., so the temperature lower than the cloud point is 0 ° C. to 20 ° C., preferably 2 ° C. to 10 ° C., higher than the cloud point. Examples of the temperature include 20 ° C to 42 ° C, preferably 30 ° C to 40 ° C.

続いて、界面活性剤画分を採取する。かかる採取方法としては、水層と界面活性剤層とに層分離した界面活性剤含有水溶液から、界面活性剤層を界面活性剤画分として採取できる方法であればよく、界面活性剤は水と比べ比重が重いため、水層よりも界面活性剤層の方が下に分離することから、水層部分をデカンテーションやピペットなどにより回収することで除く方法等を挙げることができる。   Subsequently, the surfactant fraction is collected. Such a collecting method may be any method that can collect a surfactant layer as a surfactant fraction from a surfactant-containing aqueous solution separated into an aqueous layer and a surfactant layer. Since the specific gravity is heavier than that of the aqueous layer, the surfactant layer is separated below the aqueous layer. Therefore, a method of removing the aqueous layer by collecting the aqueous layer by decantation or pipette can be used.

次いで、界面活性剤画分から界面活性剤の除去処理を行い、脱界面活性剤抽出画分を得る。界面活性剤画分から界面活性剤の除去方法としては、例えばカラム、限外ろ過膜などを用いた非変性条件下で行う方法や、メタノール沈殿、エタノール沈殿、アセトン沈殿、TCA(トリクロロ酢酸)沈殿などを用いた変性条件下で行う方法等を挙げることができるが、変性条件下でもTh2免疫賦活活性は消失しないため、操作の簡易性及び費用対効果の面から考慮すると、変性条件下で行う方法が好ましい。このように、界面活性剤画分から界面活性剤を除去すると、本発明のTh2免疫賦活剤の有効成分である脱界面活性剤抽出画分を得ることができる。   Next, a surfactant is removed from the surfactant fraction to obtain a desurfactant extracted fraction. Examples of the method for removing the surfactant from the surfactant fraction include a method under non-denaturing conditions using a column, an ultrafiltration membrane, etc., methanol precipitation, ethanol precipitation, acetone precipitation, TCA (trichloroacetic acid) precipitation, etc. And the like. However, since the Th2 immunostimulatory activity does not disappear even under denaturing conditions, considering the ease of operation and cost effectiveness, the method is carried out under denaturing conditions. Is preferred. As described above, when the surfactant is removed from the surfactant fraction, a desurfactant extracted fraction that is an active ingredient of the Th2 immunostimulator of the present invention can be obtained.

上記脱界面活性剤抽出画分がTh2免疫賦活活性を有することを確認する方法としては、例えばTh2免疫賦活により誘導される(増加する)物質、Th2免疫賦活により抑制される(減少する)物質等を指標とする方法を挙げることができ、これらの中でもTh2免疫賦活により増加する物質を指標にして行うことが好ましい。かかるTh2免疫賦活により増加する物質として、例えばIgE、好酸球、Th2サイトカイン(IL−4、IL−5、IL−9、IL−10、IL−13など)等を挙げることができ、これらの中でもIgE、好酸球、IL−4を好適に例示することができる。   As a method for confirming that the above-mentioned desurfactant-extracted fraction has Th2 immunostimulatory activity, for example, a substance induced (increased) by Th2 immunostimulation, a substance suppressed (decrease) by Th2 immunostimulatory, etc. Can be mentioned, and among these, it is preferable to carry out using as an index a substance that increases by Th2 immunostimulation. Examples of substances that increase by Th2 immunostimulation include IgE, eosinophils, Th2 cytokines (IL-4, IL-5, IL-9, IL-10, IL-13, etc.), and the like. Among these, IgE, eosinophils, and IL-4 can be preferably exemplified.

本発明のTh2免疫賦活活性を有する組成物としては、本発明のTh2免疫賦活剤を含有するものであれば特に制限されず、本発明のTh2免疫賦活剤を医薬用の治療剤として用いる場合などの、Th2免疫賦活剤に薬学的に許容される通常の担体、結合剤、安定化剤、賦形剤、希釈剤、pH緩衝剤、崩壊剤、可溶化剤、溶解補助剤、等張剤等の各種調剤用配合成分が添加された組成物や、本発明のTh2免疫賦活剤をサプリメントとして用いる場合などの、防腐剤、抗酸化剤、着色剤、甘味剤等の配合成分が添加された組成物を例示することができる。   The composition having the Th2 immunostimulatory activity of the present invention is not particularly limited as long as it contains the Th2 immunostimulator of the present invention, and the case where the Th2 immunostimulator of the present invention is used as a therapeutic agent for pharmaceuticals, etc. Normal carriers, binders, stabilizers, excipients, diluents, pH buffers, disintegrants, solubilizers, solubilizers, isotonic agents, etc., pharmaceutically acceptable for Th2 immunostimulators Compositions to which various ingredients for preparations are added and compositions to which ingredients such as preservatives, antioxidants, colorants, sweeteners are added, such as when the Th2 immunostimulant of the present invention is used as a supplement, etc. Things can be exemplified.

本発明のTh2免疫賦活剤やTh2免疫賦活活性を有する組成物の投与形態としては、粉末、顆粒、錠剤、カプセル剤、シロップ剤、懸濁液等の剤型で投与する経口投与や、溶液、乳剤、懸濁液等の剤型を注射、又はスプレー剤の型で鼻孔内投与する非経口投与を挙げることができるが、単回の経口投与でも十分Th2免疫賦活効果があるため、経口投与が好ましい。また、本発明のTh2免疫賦活剤やTh2免疫賦活活性を有する組成物は、クローン病などの組織障害性疾患や、慢性関節リウマチ、自己免疫性肝炎などの臓器特異的自己免疫疾患に有用な医薬品、サプリメント、機能性食品として用いることができる。かかる機能性食品としては、ヨーグルト、ドリンクヨーグルト、ジュース、牛乳、豆乳、酒類、コーヒー、紅茶、煎茶、ウーロン茶、スポーツ飲料等の各種飲料や、プリン、クッキー、パン、ケーキ、ゼリー、煎餅などの焼き菓子、羊羹などの和菓子、冷菓、チューインガム等のパン・菓子類や、うどん、そば等の麺類や、かまぼこ、ハム、魚肉ソーセージ等の魚肉練り製品や、みそ、しょう油、ドレッシング、マヨネーズ、甘味料等の調味類や、チーズ、バター等の乳製品や、豆腐、こんにゃく、その他佃煮、餃子、コロッケ、サラダ等の各種総菜を挙げることができる。   Examples of the dosage form of the Th2 immunostimulator and the composition having Th2 immunostimulatory activity of the present invention include oral administration in a dosage form such as powder, granule, tablet, capsule, syrup, suspension, solution, Examples include parenteral administration in which dosage forms such as emulsions and suspensions are injected or administered intranasally in the form of sprays, but a single oral administration has sufficient Th2 immunostimulatory effect, so oral administration is preferable. Further, the Th2 immunostimulatory agent and the composition having Th2 immunostimulatory activity of the present invention are pharmaceuticals useful for tissue disorder diseases such as Crohn's disease, organ-specific autoimmune diseases such as rheumatoid arthritis and autoimmune hepatitis. Can be used as a supplement, functional food. Such functional foods include yogurt, drink yogurt, juice, milk, soy milk, liquor, coffee, tea, sencha, oolong tea, sports drinks and other beverages, pudding, cookies, bread, cakes, jellies, rice crackers, etc. Japanese sweets such as confectionery, sheep candy, frozen confectionery, bread and confectionery such as chewing gum, noodles such as udon and soba, fish paste products such as kamaboko, ham and fish sausage, miso, soy sauce, dressing, mayonnaise, sweeteners, etc. Examples include seasonings, dairy products such as cheese and butter, and various side dishes such as tofu, konjac, other boiled rice cakes, dumplings, croquettes, and salads.

以下実施例により、本発明を具体的に説明するが、本発明の技術的範囲はかかる実施例により制限されるものではない。実施例において、全てのデータは、平均±標準誤差(SE)で示し、統計学的解析を用いた有意差の検定はMann-Whitney U-testにより行った。平均値間の相違は、P−valueが0.05未満であるときに有意とした。なお、本実施例におけるラットとしては、SDラット(Slc社)又はWistarラット(Slc社)を用い、マウスとしては、ICRマウス(Slc社)(雌・8週齢・SPF)を用いた。また、本実施例におけるラットの飼育方法としては、解剖時までウッドチップ(滅菌済み)を敷いたプラスチックケージで、120℃、20分間加熱滅菌した試料(日本クレア、CE−2、大阪、日本)と水道水を自由摂取させる方法を用い、マウスの飼育方法としては、ウッドチップを敷いたメタルケージ(共に加熱滅菌済み)で、120℃、20分間加熱滅菌した飼料(日本クレア、CE−2、大阪、日本)と水道水を自由摂取させる方法を用いた。なお、上記ラット及びマウスの飼育方法は、山口大学農学部動物実験指針に従って行った。   Hereinafter, the present invention will be specifically described by way of examples. However, the technical scope of the present invention is not limited by the examples. In the examples, all data are shown as mean ± standard error (SE), and the test of significant difference using statistical analysis was performed by Mann-Whitney U-test. Differences between means were significant when P-value was less than 0.05. In this example, SD rats (Slc) or Wistar rats (Slc) were used as rats, and ICR mice (Slc) (female, 8 weeks old, SPF) were used as mice. In addition, as a method for raising rats in this example, a sample (Nihon Clare, CE-2, Osaka, Japan) that was heat sterilized at 120 ° C. for 20 minutes in a plastic cage in which wood chips (sterilized) were laid until dissection. As a breeding method of mice, the feed was heat-sterilized at 120 ° C. for 20 minutes in a metal cage (both heat-sterilized) with wood chips (Japan Claire, CE-2, (Osaka, Japan) and a method of freely taking tap water. The method for raising the rats and mice was carried out in accordance with the animal experiment guidelines of the Faculty of Agriculture, Yamaguchi University.

[Nbの継代方法及び回収方法]
ニッポストロンジラス・ブラジリエンシス(Nb)(東京慈恵会医科大学より分与)は、ラットを用いて継代及び増殖させた後、回収した。Baermann法により第3期幼虫(L3)におけるNb3500〜4000隻/匹を回収した(工程1)後、Nbをラットの鼠径部皮下に接種し、8日後に成虫となったNbから排出された卵を含むラットの結腸便及び盲腸便を採取した(工程2)。その後、Nbから排出された卵をチャコール培養法を行いてL3まで成長させた(工程3)。再び工程1〜工程3を繰り返すことにより、Nbの継代及び増殖を行った。また、Nbの回収はBaermann法により以下に述べる手順で行った。すなわち、Nbの接種から8日後のラットの小腸を採取し、縦に切り開いた後、200mlのメートルグラスの口を覆うようにクリップで留めたガーゼの上に載せ0.9%生理食塩水(PBS)に浸し、Nbが濾過されるように37℃の条件下で1時間放置した。その後、底に沈んだNbを少量の生理食塩水とともに採取し、濾紙を乗せた漏斗に移して約80mlの生理食塩水を数回通し、濾過洗浄した後、Nbを回収した。
[Nb passage method and recovery method]
Nippostrongiras bragiliensis (Nb) (distributed by Tokyo Jikei University School of Medicine) was recovered after being subcultured and expanded using rats. After collecting Nb3500-4000 vessels / animal in the third stage larvae (L3) by the Baermann method (Step 1), Nb was inoculated subcutaneously into the groin area of the rat, and the eggs discharged from Nb that became adults 8 days later Intestinal stool and cecal stool were collected (step 2). Thereafter, the eggs discharged from Nb were grown to L3 by performing a charcoal culture method (step 3). By repeating step 1 to step 3 again, Nb was passaged and propagated. The recovery of Nb was performed by the procedure described below by the Baermann method. That is, the small intestine of a rat 8 days after Nb inoculation was collected, cut vertically, and then placed on a gauze clipped so as to cover the mouth of a 200 ml metric glass, 0.9% physiological saline (PBS And was allowed to stand at 37 ° C. for 1 hour so that Nb was filtered. After that, Nb sinking to the bottom was collected together with a small amount of physiological saline, transferred to a funnel on which filter paper was placed, passed through about 80 ml of physiological saline several times, filtered and washed, and Nb was recovered.

[TritonX-114による脱界面活性剤画分の取得方法]
上記実施例1により回収した成虫Nb約2000匹にTE(Tris-EDTA Buffer)1mlを加えた後、超音波破砕処理をBRANSON SONIFIER 450を用いて行った。上記処理により得られた超音波破砕処理物に対して、10%TritonX-114(Sigma-Aldrich社製)溶液を0.25ml加え、4℃で2.5時間静置した後、遠心処理(13000rpm、3分間、4℃)により上清を回収し、その後静置処理(37℃、10分間)及び遠心処理(13000rpm、5分間、24℃)により層分離を行った後(例えば非特許文献2、非特許文献8参照)、上層(水層)を除去した下層(界面活性剤層)へ1mlTE及び、2.5倍量のエタノールに加え、その後−4℃で一晩静置した後、遠心処理(3000rpm、20分、4℃)により得られた沈殿(脱界面活性剤画分)を、0.2mlPBSに懸濁した。
[Method for obtaining fraction of desurfactant by TritonX-114]
After adding 1 ml of TE (Tris-EDTA Buffer) to about 2000 adult Nb recovered in Example 1 above, ultrasonic crushing treatment was performed using BRANSON SONIFIER 450. 0.25 ml of 10% TritonX-114 (Sigma-Aldrich) solution was added to the ultrasonically crushed product obtained by the above treatment, and the mixture was allowed to stand at 4 ° C. for 2.5 hours, and then centrifuged (13,000 rpm). The supernatant is collected by 3 minutes, 4 ° C., and then subjected to layer separation by stationary treatment (37 ° C., 10 minutes) and centrifugation (13000 rpm, 5 minutes, 24 ° C.) (for example, Non-Patent Document 2). In addition, 1 ml TE and 2.5 times the amount of ethanol were added to the lower layer (surfactant layer) from which the upper layer (aqueous layer) was removed, and the mixture was then allowed to stand at −4 ° C. overnight and centrifuged. The precipitate (desurfactant fraction) obtained by the treatment (3000 rpm, 20 minutes, 4 ° C.) was suspended in 0.2 ml PBS.

[脱界面活性剤画分のマウスへの経口投与]
上記実施例2により得られた脱界面活性剤画分のタンパク質量をBradford法を用いて測定した後、タンパク質濃度が150μg/500μlとなるようにオリーブ油で希釈した脱界面活性剤画分を、マウスに経口投与する群を脱界面活性剤画分投与(TX)群とした。また、コントロールとして、上記脱界面活性剤画分の代わりにPBSを、マウスに経口投与する群をPBS投与(PBS)群とした。さらに、成虫Nb約2000匹に対してTE1mlを加えて超音波破壊処理を行って得られた超音波破砕処理物を、150μg/500μlとなるようにオリーブ油で希釈した後、その超音波破砕処理物をマウスに経口投与する群をNb投与(AW)群とした。すなわち、TX群、PBS群、及びAW群の計3群に分けて、ゾンデを用いた経口(胃内)投与を行った。
[Oral administration of desurfactant fraction to mice]
After the protein amount of the desurfactant fraction obtained in Example 2 above was measured using the Bradford method, the desurfactant fraction diluted with olive oil so that the protein concentration was 150 μg / 500 μl was added to the mouse. The group to be orally administered to was designated as a desurfactant fraction administration (TX) group. As a control, a group in which PBS was orally administered to mice instead of the desurfactant fraction was defined as a PBS administration (PBS) group. Furthermore, the ultrasonic disruption product obtained by adding 1 ml of TE to about 2000 adult Nb and subjecting to ultrasonic disruption was diluted with olive oil to 150 μg / 500 μl. Was orally administered to mice as Nb administration (AW) group. That is, oral (intragastric) administration using a sonde was performed in a total of three groups, a TX group, a PBS group, and an AW group.

マウスに経口投与した後、7日及び14日に各群の体重(g)を測定した結果、PBS群、AW群やTX群の各群において、体重に有意な差は認められなかった(図1)。   After oral administration to mice, the body weight (g) of each group was measured on the 7th and 14th. As a result, no significant difference was observed in the body weight in each of the PBS group, AW group and TX group (Fig. 1).

消化管寄生蠕虫感染時に認められる生体反応として、腸管でのマスト細胞及び杯細胞の増加、杯細胞からの粘液分泌の亢進、腸間膜リンパ節やパイエル板の腫大等が知られている(例えば非特許文献17参照)。またNb感染個体の小腸では、活性化した粘膜型マスト細胞が産生するロイコトリエンやヘパリン(例えば非特許文献9参照)、ヒスタミン放出による腸管上皮の透過性亢進等によって浮腫が生じる(例えば非特許文献11参照)ことが報告されており、マスト細胞数の増加もTh2サイトカインの産生増加によって生ずると考えられている(例えば非特許文献11参照)。そこで、もし寄生虫由来の脱界面活性剤画分の経口投与によりTh2免疫反応が活性化がされるとすれば、TX群のマウス小腸に浮腫が生じ、小腸の重量が増加していることが予想される。そこで、小腸の重量を測定した(図2)。また、比較対照として脾臓及び腸間膜リンパ節の重量についても測定した(図3及び図4)。経口投与した後、7日及び14日のいずれの場合においても、PBS群やAW群と比べ、TX群の方が小腸の重量(g/BWg×100)は有意に少なかった(図2)。また、脾臓重量(g/BWg×100)及び腸間膜リンパ節重量(g/BWg×100)については、PBS群、AW群やTX群の各群において有意差は認められなかった(図3及び図4)。   Known biological reactions observed during gastrointestinal parasitic helminth infection include increases in mast cells and goblet cells in the intestinal tract, increased mucus secretion from goblet cells, and swelling of mesenteric lymph nodes and Peyer's patches. For example, refer nonpatent literature 17). In the small intestine of Nb-infected individuals, edema occurs due to leukotriene and heparin produced by activated mucosal mast cells (see, for example, Non-Patent Document 9), increased permeability of the intestinal epithelium by histamine release, etc. (for example, Non-Patent Document 11). The increase in the number of mast cells is considered to be caused by the increase in production of Th2 cytokine (for example, see Non-Patent Document 11). Therefore, if the Th2 immune reaction is activated by oral administration of the parasite-derived desurfactant fraction, edema occurs in the mouse small intestine of the TX group, and the weight of the small intestine increases. is expected. Therefore, the weight of the small intestine was measured (FIG. 2). In addition, the weights of the spleen and mesenteric lymph nodes were also measured as a comparative control (FIGS. 3 and 4). After oral administration, the weight of the small intestine (g / BWg × 100) was significantly less in the TX group than in the PBS group or AW group on both the 7th and 14th days (FIG. 2). Further, regarding the spleen weight (g / BWg × 100) and the mesenteric lymph node weight (g / BWg × 100), no significant difference was observed in each of the PBS group, AW group and TX group (FIG. 3). And FIG. 4).

さらに、小腸において、Th2免疫賦活化が原因で生じる炎症等による組織変化が見られるかどうかを調べるために、病理組織学的観察を行った。病理組織標本は、以下の手順により作製した。すなわち、PBS群、AW群、及びTX群の各群において、経口投与後7日や14日のマウスを、それぞれエーテル麻酔した後、ヘパリン化シリンジを用いて心臓からの全採血により安楽殺させ、その後脾臓、腸間膜リンパ節、肝臓、及び十二指腸基部から空腸を採材した後、カルノア液で固定し、その後4μmのパラフィン切片(病理組織標本)を作製した。上記病理組織標本を、定法のヘマトキシリン・エオジン(H−E)染色、及びアルシアンブルー染色を施した後、光学顕微鏡により観察した結果、寄生虫感染による粘膜固有層の水腫は認められなかった(図8〜図13)。また、Th2免疫賦活化によりTh2サイトカインが、肥満(マスト)細胞数や杯細胞数を増加することが報告されているため、上記病理組織標本におけるマスト細胞数及び杯細胞数を、マウス1頭につき絨毛−陰窩を1単位として10単位以上計数して平均値を求め、小腸粘膜1絨毛あたりの細胞数(細胞数/絨毛陰窩単位)として算出した結果、マスト細胞数はPBS群の0.12に対してTX群では0.16とほとんど差はなく、また同様に、杯細胞は対照群の4.2に対してTX群では4.1とほとんど差が認められなかった。   Furthermore, histopathological observation was performed in order to examine whether or not tissue change due to inflammation or the like caused by Th2 immunostimulation was observed in the small intestine. A histopathological specimen was prepared by the following procedure. That is, in each group of PBS group, AW group, and TX group, mice were anesthetized with ether after 7 or 14 days after oral administration, and then euthanized by whole blood collection using a heparinized syringe, Thereafter, the jejunum was collected from the spleen, mesenteric lymph node, liver, and duodenum base, and then fixed with Carnoy's solution, and then a 4 μm paraffin section (pathological tissue specimen) was prepared. As a result of observing the histopathological specimen with a conventional hematoxylin-eosin (HE) staining and Alcian blue staining with an optical microscope, no edema of the lamina propria due to parasitic infection was observed ( 8 to 13). In addition, since Th2 cytokines have been reported to increase the number of obese (mast) cells and goblet cells by Th2 immunostimulation, the number of mast cells and goblet cells in the above pathological tissue specimen can be determined for each mouse. The average value was obtained by counting 10 or more units with villi-crypt as 1 unit, and the number of cells per villi of the small intestine mucosa (cell number / villi crypt unit) was calculated. Compared to 12, there was little difference in the TX group with 0.16, and similarly, goblet cells showed little difference with 4.2 in the TX group versus 4.1 in the control group.

病理組織学的観察からは、Th2免疫賦活化が起こっているかどうかはわからなかったので、次にTh2免疫賦活化の有無を検証する別の指標として、IgE量の増加、好酸球数の増加、及びIL−4mRNA量の増加を用いて解析を行った。IgE量を測定するために、各群から採取した末梢血から遠心分離(12000rpm、30分)により調製した血清を、−80℃で凍結保存した後、マウスIgE測定キット(森永生科学研究所)を用いてEIAサンドイッチ法により解析を行った(図6)。その結果、経口投与後7日での末梢血中のIgE濃度(ng/ml)は、PBS群とTX群の各群において有意差は認められなかったのに対し、経口投与後14日でのIgE濃度は、PBS群と比べTX群の方が4.3倍高く、有意に上昇していた(図6)。   From histopathological observations, it was not known whether Th2 immunostimulation occurred or not. As another index for verifying the presence of Th2 immunostimulation, an increase in IgE amount and an increase in eosinophil count , And an increase in IL-4 mRNA level was used for analysis. In order to measure the amount of IgE, serum prepared from peripheral blood collected from each group by centrifugation (12000 rpm, 30 minutes) was stored frozen at −80 ° C. and then mouse IgE measurement kit (Morinaga Institute of Science) Was analyzed by the EIA sandwich method (FIG. 6). As a result, the IgE concentration (ng / ml) in the peripheral blood 7 days after oral administration was not significantly different between the PBS group and TX group, whereas it was 14 days after oral administration. The IgE concentration was 4.3 times higher in the TX group than in the PBS group, and was significantly increased (FIG. 6).

また、好酸球数を計測するために、心採血により採取した血液の一部をHinkelmann液(0.5% yellow eosin、0.5% phenol、0.5% formalin)で10倍希釈し、穏やかに攪拌した後、好酸球計算盤(TATAI)を用いて好酸球数の計数を行った(図5)。その結果、経口投与後7日での末梢血中の好酸球数(好酸球数/0.1mm)は、PBS群と比べてAW群の方が2.4倍、PBS群に比べてTX群の方が6.8倍増加しており、さらにAW群に比べてTX群の方が2.9倍増加しており、それぞれ有意差が認められた。他方、経口投与後14日では、TX群における好酸球数(好酸球数/0.1mm)は、7日と比べ減少しており、PBS群と有意差は認められなかった(図5)。 In addition, in order to measure the number of eosinophils, a part of blood collected by cardiac blood sampling is diluted 10 times with Hinkelmann's solution (0.5% yellow eosin, 0.5% phenol, 0.5% formalin) After gently stirring, the number of eosinophils was counted using an eosinophil counter (TATAI) (FIG. 5). As a result, the number of eosinophils in the peripheral blood 7 days after oral administration (eosinophil count / 0.1 mm 3 ) was 2.4 times higher in the AW group than in the PBS group, compared to the PBS group. The TX group increased by 6.8 times, and the TX group increased by 2.9 times compared with the AW group. On the other hand, on day 14 after oral administration, the number of eosinophils in the TX group (eosinophil count / 0.1 mm 3 ) decreased compared to 7 days, and no significant difference was observed with the PBS group (Fig. 5).

さらに、IL−4mRNA量の検出するために、以下の手順に従ってRNAの抽出、cDNAの合成、及び定量PCRによるmRNAの検出を行った。すなわち、経口投与後7日のTX群及びPBS群におけるマウスの脾臓の一部、並びに腸間膜リンパ節から、RNeasyTMKit(QIAGEN社製)を用いてマニュアルに従い、RNAを抽出した。続いて、抽出したRNA10μlにランダムプライマー(Invitrogen社製)を1μg加え、70℃で10分間、直ちに氷上で静置した後、5×RT buffer、dNTP、0.1M DTT、RNAsin(Promega社製)を加えて19μlとし、42℃で2分間、SuperScriptII(Invitrogen社製)1μlを加えて計20μlとし42℃で50分間、70℃で15分間反応させることでcDNAを合成した。さらに、合成したcDNA、IL−4遺伝子産物(IL−4mRNA)を増幅するプライマーセット(Applied Biosystems社製)、及びTaqManTMGene Expression Assaysキット(Applied Biosystems社製)を用いたStep OneTMReal−Time PCR System(Applied Biosystems社製)によりリアルタイムPCR法を行い、IL−4のmRNA量を定量した。PCRの条件としては、50℃で2分間、95℃で10分間を1サイクル、95℃で15秒間、60℃で1分間を50サイクルとして行った。なお、コントロールとしてハウスキーピング遺伝子である18s rRNAmRNAを増幅するプライマーセット(Applied Biosystems社製)を用いたリアルタイムPCR法を行い、算出された18s rRNAmRNA量の値によりIL−4mRNA量の値を標準化した。さらに、PBS群におけるIL−4mRNA量の値を1とした場合のTX群におけるIL−4mRNA量の値を算出した(図7)。その結果、脾臓では、PBS群と比べTX群におけるIL−4mRNA量に有意差は認められなかった。他方、腸間膜リンパ節では、PBS群と比べTX群におけるIL−4mRNA発現は128倍上昇しており、有意差が認められた(図7)。 Furthermore, in order to detect the amount of IL-4 mRNA, RNA extraction, cDNA synthesis, and mRNA detection by quantitative PCR were performed according to the following procedures. That is, RNA was extracted according to the manual using RNeasy Kit (manufactured by QIAGEN) from part of the spleen of mice in the TX group and PBS group 7 days after oral administration and mesenteric lymph nodes. Subsequently, 1 μg of a random primer (Invitrogen) was added to 10 μl of the extracted RNA, and immediately left on ice at 70 ° C. for 10 minutes, and then 5 × RT buffer, dNTP, 0.1 M DTT, RNAsin (Promega) Was added to make 19 μl, and 1 μl of SuperScript II (manufactured by Invitrogen) was added for 2 minutes at 42 ° C. to give a total of 20 μl, which was reacted at 42 ° C. for 50 minutes and 70 ° C. for 15 minutes. Further, Step One Real-Time using a synthesized cDNA, a primer set for amplifying IL-4 gene product (IL-4 mRNA) (Applied Biosystems), and TaqMan Gene Expression Assays kit (Applied Biosystems). Real-time PCR was performed by PCR System (Applied Biosystems) to quantify the amount of IL-4 mRNA. PCR conditions were 50 ° C. for 2 minutes, 95 ° C. for 10 minutes for 1 cycle, 95 ° C. for 15 seconds, and 60 ° C. for 1 minute for 50 cycles. As a control, a real-time PCR method using a primer set (manufactured by Applied Biosystems) that amplifies 18s rRNA mRNA that is a housekeeping gene was performed, and the value of IL-4 mRNA was standardized by the calculated value of 18s rRNA mRNA. Further, the value of IL-4 mRNA in the TX group was calculated when the value of IL-4 mRNA in the PBS group was 1 (FIG. 7). As a result, in the spleen, there was no significant difference in the amount of IL-4 mRNA in the TX group compared to the PBS group. On the other hand, in the mesenteric lymph node, IL-4 mRNA expression in the TX group was increased 128-fold compared with the PBS group, and a significant difference was observed (FIG. 7).

脱界面活性剤画分の有効成分がペプチド(タンパク質を含む)であるかどうかを調べるために、タンパク質の変性剤であるSDS及びタンパク質分解酵素であるProK(Sigma社製)を用いて検討した。すなわち、脱界面活性剤画分を、0.5% SDS/TE溶液中、又は0.001% ProK/(0.5% SDS/TE)溶液中で、37℃、12時間処理を行った後、2.5倍量のエタノールに加え、その後−4℃で一晩静置した後、遠心処理(3000rpm、20分、4℃)により得られた沈殿物を、0.2ml PBSに懸濁した。かかる沈殿物のうち、SDS処理したものをマウスへ経口投与する群をSDS処理TX群、ProK処理したものをマウスへ経口投与する群をProK処理TX群とし、投与後3日及び5日における好酸球数を算出した(図14)。その結果、投与後3日及び5日のいずれの場合においても好酸球数はTX群と比べProK処理TX群では著しく減少し、有意差が認められた。また、SDS処理TX群においても、わずかであるが有意な減少が認められた。   In order to examine whether the active ingredient of the desurfactant fraction is a peptide (including protein), SDS was used as a protein denaturing agent and ProK (manufactured by Sigma) as a proteolytic enzyme. That is, after the desurfactant fraction was treated in a 0.5% SDS / TE solution or a 0.001% ProK / (0.5% SDS / TE) solution at 37 ° C. for 12 hours. , 2.5 times the amount of ethanol, and then allowed to stand at −4 ° C. overnight, and then the precipitate obtained by centrifugation (3000 rpm, 20 minutes, 4 ° C.) was suspended in 0.2 ml PBS. . Of these precipitates, the group treated orally administered to mice with SDS was treated with SDS treated TX, and the group treated orally treated with ProK treated with mice was treated with ProK treated TX. The number of acid spheres was calculated (FIG. 14). As a result, the eosinophil count was significantly decreased in the ProK-treated TX group compared to the TX group in both cases of 3 days and 5 days after administration, and a significant difference was observed. In the SDS-treated TX group, a slight but significant decrease was observed.

〔考察〕
本発明における実施例3では、Nb由来の脱界面活性剤画分の経口投与によってTh2免疫賦活化が起こるかどうかを検証するために、Th2免疫賦活化の指標とされる種々の反応を用いた。その結果、投与後7日で末梢血中の好酸球数及び腸間膜リンパ節でのIL−4mRNA量の著明な増加が認められた(図5及び図7)。さらに、Nbの全成分を投与したAW群における末梢血中の好酸球数は、PBSを投与したPBS群と比べ有意に増加していたが、その割合は脱界面活性剤画分を投与したTX群と比べると有意に低かった。このことは、Th2免疫賦活化する有効成分がNbに含まれていることを示すだけでなく、上記有効成分は本実施例により分離した脱界面活性剤画分に主に含まれていることを示している。
[Discussion]
In Example 3 of the present invention, in order to verify whether Th2 immunostimulation occurs by oral administration of the Nb-derived desurfactant fraction, various reactions used as indicators of Th2 immunostimulation were used. . As a result, a marked increase in the number of eosinophils in peripheral blood and the amount of IL-4 mRNA in mesenteric lymph nodes was observed 7 days after administration (FIGS. 5 and 7). Furthermore, the number of eosinophils in peripheral blood in the AW group to which all the components of Nb were administered was significantly increased as compared with the PBS group to which PBS was administered, but the ratio was administered to the desurfactant fraction. Compared with TX group, it was significantly lower. This not only indicates that the active ingredient for Th2 immunostimulation is contained in Nb, but also that the active ingredient is mainly contained in the desurfactant fraction separated by this example. Show.

腸間膜リンパ節でのIL−4mRNA量の増加や好酸球数の増加は、投与後7日で認められたが、末梢血中のIgE濃度の増加は投与後7日では認められず、14日で認められた。他方、好酸球数は、投与後14日ではPBS群と同程度まで減少していた。これらの結果は、Nb由来の脱界面活性剤画分の投与によって少なくとも7日目にはTh2免疫賦活化が起こること、及び、14日目にはTh2免疫賦活化レベルは通常状態に戻るが、Th2免疫反応の活性化によりIL−4産生が増加され、その結果IgE濃度が上昇することを示している。以前本発明者は、Nbは投与後7日までにほとんどが排除され、その排除にはTh2免疫賦活化が必須であること、及びIgE濃度の増加は投与後14日に初めて認められることを示しており、本実施例はこれらの結果を支持している。   An increase in the amount of IL-4 mRNA and an increase in the number of eosinophils in the mesenteric lymph node was observed 7 days after administration, but an increase in IgE concentration in peripheral blood was not observed 7 days after administration. Recognized in 14 days. On the other hand, the number of eosinophils decreased to the same extent as in the PBS group 14 days after administration. These results indicate that administration of the Nb-derived desurfactant fraction causes Th2 immunostimulation to occur at least on day 7 and Th2 immunostimulation levels return to normal on day 14, Activation of the Th2 immune response increases IL-4 production, resulting in increased IgE concentrations. Previously, the inventor has shown that Nb is almost eliminated by 7 days after administration, Th2 immunostimulation is essential for its elimination, and that an increase in IgE concentration is first observed 14 days after administration. The present example supports these results.

Nb感染時に認められる生体反応として、腸管でのマスト細胞及び杯細胞の増加、杯細胞からの粘液分泌の亢進、腸間膜リンパ節やパイエル板の腫大などが知られている(例えば非特許文献17参照)。またNbが感染した小腸では、活性化した粘膜型マスト細胞が産生するロイコトリエンやヘパリン(例えば非特許文献9参照)、ヒスタミン放出による腸管上皮の透過性亢進等によって浮腫が生じる(例えば非特許文献9、非特許文献11参照)ことが報告されており、マスト細胞数の増加もTh2サイトカインの産生増加によって生ずると考えられている(例えば非特許文献11、非特許文献17参照)。本実施例におけるNb由来の脱界面活性剤画分による投与においても、Th2免疫賦活化による浮腫が生じ、その結果TX群の小腸重量は増加することが予想されたが、逆にPBS群よりも少ない結果となった(図2)。さらに、病理組織学的観察から、TX群の小腸において炎症などの反応性変化は認められず、またマスト細胞や杯細胞の数もPBS群と比べて著明な増加は認められなかった(図8〜図13)。マスト細胞数の増加には、Th2サイトカインに加え、SCF(Stem Cell Factor)等の増殖因子も関与していることが報告されている(例えば非特許文献17参照)。また、SCFレセプター機能不全の突然変異(W/W)マウスでは、消化管寄生虫感染時にTh2サイトカインの産生増加が生じても、マスト細胞数が増加しないことが示されている(例えば非特許文献15参照)。これらの従来技術の知見から、本実施例3において、リンパ節でのIL−4産生増加や、好酸球数の増加が認められたにもかかわらず、マスト細胞数や杯細胞数が増加しなかった原因として、Nb由来の脱界面活性剤画分の投与は寄生虫感染とは異なり、SCFの産生等には作用を及ぼさなかった可能性が考えられる。また、杯細胞の増殖には、Th2サイトカインの一つであるIL−13が必須であるとの報告があることから(例えば非特許文献10参照)、杯細胞数が増えていない原因をより詳細に検証するために、IL−13の産生量を検出する必要がある。さらに、消化管寄生虫の排虫によるTh2免疫賦活化は、寄生虫の種類によって賦活化のレベルが違うこと(例えば非特許文献17参照)、及び好酸球の分化増殖や、IgEの産生、杯細胞数、マスト細胞数等の増加には、関与するTh2サイトカインに違いがあること(例えば非特許文献17参照)も報告されており、本実施例におけるTh2免疫反応の活性化のメカニズムをより詳細に解析するためには、それぞれのサイトカインの産生量の変化を基に検証することが必要だと考えられる。 Known biological reactions observed during Nb infection include increased mast cells and goblet cells in the intestinal tract, increased mucus secretion from goblet cells, and swelling of mesenteric lymph nodes and Peyer's patches (for example, non-patented) Reference 17). In the small intestine infected with Nb, edema occurs due to leukotriene and heparin produced by activated mucosal mast cells (see, for example, Non-Patent Document 9), increased permeability of the intestinal epithelium by release of histamine, and the like (for example, Non-Patent Document 9). It is reported that the increase in the number of mast cells is also caused by the increase in production of Th2 cytokine (for example, see Non-Patent Document 11 and Non-Patent Document 17). Even in the administration using the Nb-derived desurfactant fraction in this example, edema due to Th2 immunostimulation occurred, and as a result, the small intestine weight of the TX group was expected to increase. There were few results (Figure 2). Furthermore, from the histopathological observation, no reactive changes such as inflammation were observed in the small intestine of the TX group, and the number of mast cells and goblet cells was not significantly increased compared to the PBS group (Fig. 8 to 13). In addition to Th2 cytokines, it has been reported that growth factors such as SCF (Stem Cell Factor) are also involved in the increase in the number of mast cells (see, for example, Non-Patent Document 17). In addition, in mutant (W / W v ) mice with SCF receptor dysfunction, it has been shown that the number of mast cells does not increase even when increased production of Th2 cytokine occurs during gastrointestinal parasite infection (for example, non-patented) Reference 15). From these prior art findings, in Example 3, the number of mast cells and the number of goblet cells increased in spite of the increase in IL-4 production in the lymph nodes and the increase in the number of eosinophils. As a cause of the absence, it is considered that administration of the Nb-derived desurfactant fraction did not affect the production of SCF or the like unlike the parasitic infection. Further, since there is a report that IL-13, which is one of Th2 cytokines, is essential for the proliferation of goblet cells (see, for example, Non-Patent Document 10), the reason why the number of goblet cells has not increased is described in more detail. Therefore, it is necessary to detect the production amount of IL-13. Furthermore, Th2 immunostimulation by gastrointestinal parasites is different in the level of activation depending on the type of parasite (see, for example, Non-Patent Document 17), differentiation and proliferation of eosinophils, production of IgE, It has also been reported that there are differences in Th2 cytokines involved in the increase in the number of goblet cells, mast cells, etc. (see, for example, Non-Patent Document 17). In order to analyze in detail, it is considered necessary to verify based on changes in the amount of each cytokine produced.

Th2免疫反応の活性化のメカニズムとしては、抗原が抗原提示細胞に取り込まれた後、抗原処理されたペプチド断片がプロセシングによりMHC分子と結合し、その後抗原提示細胞の細胞表面に発現した抗原をT細胞が認識して感作が起こり、その後抗原がT細胞に侵入することによってTh2免疫賦活化が起こるメカニズムと、抗原提示細胞の細胞表面上に存在するTLR2(例えば非特許文献3、非特許文献14参照)等のレセプターに直接作用し、Th2免疫賦活化が起こるメカニズムとを、挙げることができるが、アジュバントと混合した頻回投与によりTh2免疫賦活化が起こることが知られている従来技術は(例えば非特許文献6、非特許文献12参照)、前者のメカニズムによるものと考えられ、他方、本実施例では、経口投与で、且つ単回の投与でも有意にTh2免疫反応を活性化させることができたことから、より直接的な後者のメカニズムによるものと考えることができる。細菌由来のLPSやCpGなど、直接抗原提示細胞に働きかけてTh1免疫賦活化を誘導する物質の発見により、Th1免疫賦活化機構の初期反応の研究が進んだこと(例えば非特許文献4、非特許文献14参照)からも、本発明で用いたNb由来の脱界面活性剤画分が直接抗原提示細胞に作用することがわかれば、未だに不明な点が多いTh2免疫賦活化機構の初期反応のメカニズムの解明にも繋がると考えられる。   The activation mechanism of the Th2 immune reaction is that, after an antigen is taken up by an antigen-presenting cell, the antigen-treated peptide fragment binds to an MHC molecule by processing, and then the antigen expressed on the cell surface of the antigen-presenting cell is expressed by T A mechanism in which Th2 immunostimulation occurs when a cell recognizes and sensitizes, and then an antigen enters the T cell, and TLR2 present on the cell surface of the antigen-presenting cell (for example, Non-Patent Document 3, Non-Patent Document) 14) and the like, the mechanism of causing Th2 immunostimulation can be mentioned, but the prior art known to cause Th2 immunostimulation by frequent administration mixed with an adjuvant is known. (For example, see Non-Patent Document 6 and Non-Patent Document 12), which is considered to be due to the former mechanism. It is given by, and a significantly Th2 immune response in the administration of single dose since that could be activated, can be attributed to the more direct latter mechanism. The discovery of substances that directly act on antigen-presenting cells and induce Th1 immunostimulation such as LPS and CpG derived from bacteria has advanced research on the initial reaction of the Th1 immunostimulation mechanism (for example, Non-Patent Document 4, Non-Patent Documents). From Reference 14), if it is found that the Nb-derived desurfactant fraction used in the present invention directly acts on antigen-presenting cells, the mechanism of the initial reaction of the Th2 immunostimulatory mechanism still has many unclear points. It is thought that it leads to elucidation of.

Th1/Th2免疫反応のバランスが崩れると、様々な免疫疾患が生じると考えられている。Th1/Th2免疫反応バランスが過剰にTh1へ傾く病気、すなわちTh1病としては、クローン病、慢性関節リウマチ、自己免疫性肝炎等を挙げることができる。これらの中でもクローン病は、潰瘍性大腸炎とともに炎症性腸疾患と称され、消化管全般で発病しうる慢性疾患であることが知られている。その原因は未だ不明であるが、遺伝的な素因を持ち、主にIFN−γの粘膜障害性による炎症等の症状を引き起こし、Th1免疫反応を過剰に活性化して発症すると考えられている(例えば非特許文献7、非特許文献13参照)。根本的な治療法はなく、アミノサリチル酸製剤やステロイド剤などの消炎鎮痛剤で寛解を図るとともに、重症例のクローン病治療には免疫抑制剤が用いられてきた。しかし、ステロイドや免疫抑制剤では重度の副作用が懸念されており、近年では、抗TNF−α抗体製剤であるインフリキシマブが一般的に使用されているが、単回投与では長期寛解維持が困難な場合が多く、継続的に投与する必要がある(例えば非特許文献13参照)。従って、本発明の脱界面活性剤画分のうち、強いTh2免疫賦活活性の有効成分はペプチド(タンパク質を含む)である可能性は高いが(図14)、かかる有効成分の同定や分子構造の解明などさらなる研究が進めば、Th1型に過度に傾いたクローン病等の新しい治療法の開発に繋がることが期待される。   It is considered that various immune diseases occur when the balance of the Th1 / Th2 immune response is lost. Examples of diseases in which the Th1 / Th2 immune reaction balance is excessively inclined toward Th1, that is, Th1 diseases include Crohn's disease, rheumatoid arthritis, autoimmune hepatitis and the like. Among these, Crohn's disease is called inflammatory bowel disease together with ulcerative colitis, and is known to be a chronic disease that can develop in the entire digestive tract. Although the cause is still unknown, it has a genetic predisposition and is thought to cause symptoms such as inflammation mainly due to mucosal damage of IFN-γ, and to develop by overactivating the Th1 immune response (for example, (See Non-Patent Document 7 and Non-Patent Document 13). There is no fundamental treatment, and remission is achieved with antiseptic analgesics such as aminosalicylic acid preparations and steroids, and immunosuppressants have been used to treat Crohn's disease in severe cases. However, serious side effects are concerned with steroids and immunosuppressants, and in recent years, infliximab, an anti-TNF-α antibody preparation, is commonly used, but it is difficult to maintain long-term remission with a single administration Therefore, it is necessary to administer continuously (for example, see Non-Patent Document 13). Therefore, although the active component having strong Th2 immunostimulatory activity is likely to be a peptide (including protein) in the desurfactant fraction of the present invention (FIG. 14), identification of such active component and molecular structure If further research such as elucidation proceeds, it is expected to lead to the development of new treatment methods such as Crohn's disease that is excessively inclined to Th1 type.

本発明におけるTh2免疫賦活活性を有する組成物は、単回の経口投与により非常に強いTh2免疫賦活化を誘導することができることから、その有効成分の同定や分子構造の解明など研究を進めることにより、Th2免疫賦活剤としての薬品や、ワクチン開発に繋がることが期待できる。   Since the composition having Th2 immunostimulatory activity in the present invention can induce very strong Th2 immunostimulatory by a single oral administration, by conducting research such as identification of its active ingredients and elucidation of its molecular structure It can be expected to lead to the development of drugs and vaccines as Th2 immunostimulators.

Claims (14)

寄生虫から界面活性剤を用いて抽出した界面活性剤画分から界面活性剤を除去した脱界面活性剤抽出画分を有効成分とすることを特徴とするTh2免疫賦活剤。 A Th2 immunostimulant comprising, as an active ingredient, a desurfactant extracted fraction obtained by removing a surfactant from a surfactant fraction extracted from a parasite using a surfactant. 脱界面活性剤抽出画分の有効成分が、ペプチドを含むことを特徴とする請求項1記載のTh2免疫賦活剤。 The Th2 immunostimulator according to claim 1, wherein the active ingredient of the desurfactant extracted fraction contains a peptide. 寄生虫が蠕虫性寄生虫であることを特徴とする請求項1又は2記載のTh2免疫賦活剤。 The Th2 immunostimulator according to claim 1 or 2, wherein the parasite is a helminth parasite. 蠕虫性寄生虫がニッポストロンジラス・ブラジリエンシス(Nippostrongylus brasiliensis)であることを特徴とする請求項3記載のTh2免疫賦活剤。 The Th2 immunostimulant according to claim 3, wherein the helminth parasite is Nippostrongylus brasiliensis. 界面活性剤がTritonX-114(登録商標)であることを特徴とする請求項1〜4のいずれか記載のTh2免疫賦活剤。 The Th2 immunostimulator according to any one of claims 1 to 4, wherein the surfactant is TritonX-114 (registered trademark). Th2免疫賦活活性の有無をIgE量の増加、好酸球数の増加、又はIL−4発現量の増加に基づいて判定することを特徴とする請求項1〜5のいずれか記載のTh2免疫賦活剤。 The Th2 immunostimulatory activity according to any one of claims 1 to 5, wherein the presence or absence of Th2 immunostimulatory activity is determined based on an increase in IgE amount, an increase in eosinophil count, or an increase in IL-4 expression level. Agent. 経口投与の形態で用いられることを特徴とする請求項1〜6のいずれか記載のTh2免疫賦活剤。 The Th2 immunostimulator according to any one of claims 1 to 6, wherein the Th2 immunostimulator is used in a form of oral administration. 請求項1〜7のいずれか記載のTh2免疫賦活剤を含有することを特徴とする免疫賦活活性を有する組成物。 A composition having an immunostimulatory activity, comprising the Th2 immunostimulator according to claim 1. 以下の工程(a)〜(d)の工程を備えたことを特徴とするTh2免疫賦活剤の製造方法。
(a)寄生虫又はその処理物と界面活性剤含有水溶液とを混合する工程;
(b)水層と界面活性剤層との層分離処理を行う工程;
(c)界面活性剤画分を採取する工程;
(d)界面活性剤画分から界面活性剤の除去処理を行い、脱界面活性剤抽出画分を得る工程;
A method for producing a Th2 immunostimulator comprising the following steps (a) to (d):
(A) a step of mixing a parasite or a processed product thereof with a surfactant-containing aqueous solution;
(B) a step of performing a layer separation treatment between the aqueous layer and the surfactant layer;
(C) collecting a surfactant fraction;
(D) a step of removing the surfactant from the surfactant fraction to obtain a desurfactant extracted fraction;
寄生虫の処理物が、寄生虫の物理的破壊処理物であることを特徴とする請求項9記載の製造方法。 The method according to claim 9, wherein the processed product of the parasite is a processed product of physical destruction of the parasite. 寄生虫が蠕虫性寄生虫であることを特徴とする請求項9又は10記載の製造方法。 The method according to claim 9 or 10, wherein the parasite is a helminth parasite. 蠕虫性寄生虫がニッポストロンジラス・ブラジリエンシス(Nippostrongylus brasiliensis)であることを特徴とする請求項11記載の製造方法。 The method according to claim 11, wherein the helminth parasite is Nippostrongylus brasiliensis. 界面活性剤がTritonX-114(登録商標)であることを特徴とする請求項9〜12のいずれか記載の製造方法。 The production method according to claim 9, wherein the surfactant is TritonX-114 (registered trademark). 工程(d)における界面活性剤の除去処理が、タンパク質の沈殿処理を含むことを特徴とする請求項9〜13のいずれか記載の製造方法。 The method according to claim 9, wherein the surfactant removal treatment in the step (d) includes a protein precipitation treatment.
JP2010240882A 2010-10-27 2010-10-27 Immunostimulants from helminth parasites Active JP5935200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010240882A JP5935200B2 (en) 2010-10-27 2010-10-27 Immunostimulants from helminth parasites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010240882A JP5935200B2 (en) 2010-10-27 2010-10-27 Immunostimulants from helminth parasites

Publications (2)

Publication Number Publication Date
JP2012092045A true JP2012092045A (en) 2012-05-17
JP5935200B2 JP5935200B2 (en) 2016-06-15

Family

ID=46385848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010240882A Active JP5935200B2 (en) 2010-10-27 2010-10-27 Immunostimulants from helminth parasites

Country Status (1)

Country Link
JP (1) JP5935200B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05502214A (en) * 1989-07-21 1993-04-22 ダラテック ピーテーワイ リミテッド Non-live vaccine for deworming
WO1996029082A1 (en) * 1995-03-23 1996-09-26 Governors Of Dalhousie College And University A process of prolonging organ allograft survival
JP2001527048A (en) * 1997-12-31 2001-12-25 ユニヴァーシティー オブ アイオワ リサーチ ファンデーション Use of parasitic agents for prevention and control of autoimmune diseases

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05502214A (en) * 1989-07-21 1993-04-22 ダラテック ピーテーワイ リミテッド Non-live vaccine for deworming
WO1996029082A1 (en) * 1995-03-23 1996-09-26 Governors Of Dalhousie College And University A process of prolonging organ allograft survival
JP2001527048A (en) * 1997-12-31 2001-12-25 ユニヴァーシティー オブ アイオワ リサーチ ファンデーション Use of parasitic agents for prevention and control of autoimmune diseases

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6014039806; Ann. Immunol. Vol.127C, pp.209-213, 1976 *
JPN6014039808; Acta Tropica Vol.36, 1979, pp.297-322 *

Also Published As

Publication number Publication date
JP5935200B2 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
Laurent et al. Innate immune responses play a key role in controlling infection of the intestinal epithelium by Cryptosporidium
Hossain et al. Pattern Recognition Receptors and Cytokines in Mycobacterium tuberculosis Infection—The Double‐Edged Sword?
Segura et al. Impairment of dendritic cell function by excretory‐secretory products: a potential mechanism for nematode‐induced immunosuppression
AU2006218875B2 (en) Compositions comprising Actinidia and methods of use thereof
Dong et al. Imbalanced inflammatory response in subchronic arsenic‐induced liver injury and the protective effects of Ginkgo biloba extract in rats: Potential role of cytokines mediated cell–cell interactions
Ke et al. The anti-lung cancer activity of SEP is mediated by the activation and cytotoxicity of NK cells via TLR2/4 in vivo
KR20100124304A (en) Activation of innate and adaptive immune responses by a ginseng extract
Lin et al. Immunopathological effects of Agaricus blazei Murill polysaccharides against Schistosoma mansoni infection by Th1 and NK1 cells differentiation
CN107205461A (en) The ginseng source polysaccharide component handled through ferment and preparation for improving immunity function
Arai et al. Potential of human helminth therapy for resolution of inflammatory bowel disease: The future ahead
Lai et al. Type II arabinogalactan from Anoectochilus formosanus induced dendritic cell maturation through TLR2 and TLR4
Sakai et al. Lactobacillus pentosus strain S-PT84 improves steatohepatitis by maintaining gut permeability
Peón et al. Regulation of immunity by Taeniids: lessons from animal models and in vitro studies
Nada et al. Therapeutic effect of Nigella sativa and ivermectin versus albendazole on experimental trichinellosis in mice
Leber et al. Oral treatment with BT-11 ameliorates inflammatory bowel disease by enhancing regulatory T cell responses in the gut
KR101713822B1 (en) Pharmaceutical composition for the prevention and treatment of autoimmune disease in nervous system comprising extracts of crude drug complex
Qiu et al. Effects of Astragalus polysaccharides on associated immune cells and cytokines in immunosuppressive dogs
Zhou et al. Isomaltulose alleviates acute colitis via modulating gut microbiota and the Treg/Th17 balance in mice
JP5935200B2 (en) Immunostimulants from helminth parasites
US20230125749A1 (en) Composition containing peptide or peptide compound as active ingredient, and medical use therefor
KR102270850B1 (en) Pharmaceutical composition for treating or preventing Arthritis
KR102226729B1 (en) Structure and functional characterization of yeast derived polysaccharides in inducing Treg cells
KR102247809B1 (en) Composition for improving acquired immunity including Codium fragile extraction and red ginseng extract
TW201722455A (en) Prophylactic and/or therapeutic agent for nafld/nash
Yu et al. Jiang Zhi Granule protects immunological barrier of intestinal mucosa in rats with non-alcoholic steatohepatitis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160422

R150 Certificate of patent or registration of utility model

Ref document number: 5935200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250