JP2012090506A - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
JP2012090506A
JP2012090506A JP2010237686A JP2010237686A JP2012090506A JP 2012090506 A JP2012090506 A JP 2012090506A JP 2010237686 A JP2010237686 A JP 2010237686A JP 2010237686 A JP2010237686 A JP 2010237686A JP 2012090506 A JP2012090506 A JP 2012090506A
Authority
JP
Japan
Prior art keywords
circuit
capacitor
contact
excitation
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010237686A
Other languages
Japanese (ja)
Other versions
JP5498348B2 (en
Inventor
Hironobu Kusunoki
博敦 楠
Kenji Takao
健志 高尾
Hiroaki Yamaguchi
弘昭 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2010237686A priority Critical patent/JP5498348B2/en
Publication of JP2012090506A publication Critical patent/JP2012090506A/en
Application granted granted Critical
Publication of JP5498348B2 publication Critical patent/JP5498348B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rectifiers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power conversion device capable of detecting a breakdown of one of a plurality of capacitors connected in series or in parallel.SOLUTION: There is provided a capacitor abnormality detection circuit comprising a switch unit 7SW, an excitation resistance 8R, a contact resistance 9R, and a diode 10D. The switch unit 7SW includes an excitation circuit and a contact circuit, and the contact circuit is closed when a predetermined amount of current flows through the excitation circuit. The excitation circuit of the switch unit 7SW and the excitation resistance 8R and the contact circuit and the contact resistance 9R are alternately connected in series by an amount equal to the number of serial connections of a capacitor, and this series circuit is connected in parallel to the capacitor. A junction point of the excitation resistance 8R and the next switch unit and a junction point of the contact resistance 9R and the next switch unit are connected, and the diode 10D is connected to a corresponding junction point of the capacitor via these connected points. When excitation of the switch circuit 7SW having the lowest potential is switched off, it is determined that at least one of the capacitors connected in series is short-circuited.

Description

本発明は、電力変換装置に係り、特に平滑用のコンデンサ回路の短絡故障を検知する機能を備えた電力変換装置に関する。   The present invention relates to a power converter, and more particularly, to a power converter having a function of detecting a short-circuit fault in a smoothing capacitor circuit.

最近の電力変換装置の高電圧化、大型化に伴い、高電圧、大容量のコンデンサを必要とする装置が出現している。このような装置では、コンデンサを多数直列、並列接続して使用する。コンデンサの直列数、並列数が多くなると、部分的にコンデンサが短絡故障(以下単に故障と呼称する。)しても装置全体の異常として検知することができず、そのまま使用し続けると次々とコンデンサが故障して大きな被害に至るまで気付かない場合がある。このような拡大被害を防止するため、通常はコンデンサの故障検出回路を設ける。   With the recent increase in voltage and size of power conversion devices, devices that require high voltage and large capacity capacitors have appeared. In such a device, a large number of capacitors are connected in series or in parallel. If the number of capacitors in series and parallel increases, even if the capacitor is partially short-circuited (hereinafter simply referred to as a failure), it cannot be detected as an abnormality of the entire device. May not be noticed until it breaks down and causes great damage. In order to prevent such expansion damage, a capacitor failure detection circuit is usually provided.

この故障検出回路として、直流電圧を監視する方法が一般的であるが、上述のようにコンデンサの直列、並列数が増えると、個々のコンデンサの電圧を監視する回路を設けないと前述のような問題を解決できない。従って故障検出回路が複雑となってしまう。   As this failure detection circuit, a method of monitoring a DC voltage is common, but as described above, if the number of capacitors in series and parallel increases, a circuit for monitoring the voltage of each capacitor is not provided. The problem cannot be solved. Therefore, the failure detection circuit becomes complicated.

これに対し、直列、並列接続のコンデンサの中間点をダイオードブリッジで接続し、ダイオードブリッジの直流電圧端子間の電圧を検出するレベル検出器で構成し、このレベル検出器の出力を監視することによって個々のコンデンサの故障を検知する提案が為されている(例えば特許文献1参照。)。   On the other hand, by connecting the middle points of series and parallel capacitors with a diode bridge, it consists of a level detector that detects the voltage between the DC voltage terminals of the diode bridge, and by monitoring the output of this level detector Proposals have been made to detect failure of individual capacitors (see, for example, Patent Document 1).

特開平8−62270号公報(第3−4頁、図1)JP-A-8-62270 (page 3-4, FIG. 1)

特許文献1に示された手法は、コンデンサの中間点をダイオードブリッジ回路で整流して、ダイオードブリッジの直流端子間の電圧をレベル検出器で検出し、その検出レベルによって、何れかのコンデンサが故障したかどうかを検知する。この手法によれば、多数の直列、並列接続のコンデンサ回路でも対応でき、検出回路は1箇所でよく安価なもので構成可能と記述されている。しかしながら、コンデンサの直列接続数が2の倍数でないと中間点が得られないという問題がある。また、コンデンサの直列、並列数が多数になると、例えコンデンサの直列接続数が2の倍数であっても、1個のコンデンサが故障を起こしたとき、電圧の変動レベルは少なくなるので、検出が困難となって信頼性に欠ける問題がある。また、コンデンサの直列、並列接続の1点を接地または中性点としたときに検出が困難となるという問題もある。   In the technique disclosed in Patent Document 1, the intermediate point of a capacitor is rectified by a diode bridge circuit, the voltage between the DC terminals of the diode bridge is detected by a level detector, and one of the capacitors fails depending on the detection level. Detect whether or not According to this technique, it is described that a large number of capacitor circuits connected in series and in parallel can be used, and that the detection circuit can be constructed at a single location and at a low cost. However, there is a problem that an intermediate point cannot be obtained unless the number of capacitors connected in series is a multiple of two. Also, if the number of capacitors in series and parallel is large, even if the number of capacitors connected in series is a multiple of two, when one capacitor fails, the voltage fluctuation level decreases, so detection There is a problem that is difficult and unreliable. There is also a problem that detection becomes difficult when one point of series and parallel connection of capacitors is grounded or neutral point.

本発明は、上記の問題点に鑑みて為されたものであり、複数のコンデンサが直列、並列に接続されていても、比較的簡単な回路で1個のコンデンサの故障を確実に検知可能な故障検出回路を備えた電力変換装置を提供することを目的とする。   The present invention has been made in view of the above problems, and even when a plurality of capacitors are connected in series and in parallel, a failure of one capacitor can be reliably detected with a relatively simple circuit. It aims at providing the power converter device provided with the failure detection circuit.

上記目的を達成するために、本発明の電力変換装置は、交流電源の交流電圧を直流電圧に変換するコンバータと、この直流電圧を平滑するために直列接続され、高電位側から、第1、第2、・・・、第Nと定めたN(Nは2以上の整数)個のコンデンサで構成される第1のコンデンサ回路と、前記第1のコンデンサ回路と同一構成で、前記第1のコンデンサ回路と並列に設けられた第2のコンデンサ回路と、前記2N個のコンデンサの何れかが短絡故障したことを検出するコンデンサ異常検出回路とを具備し、前記コンデンサ異常検出回路は、励磁回路と、この励磁電流によって接点が閉路する接点回路を備え、高電位側から、第1、第2、・・・、第Nと定めるN個のスイッチ回路と、前記N個のスイッチ回路の各々の励磁回路と交互に直列に接続されるN個の励磁抵抗と、前記N個のスイッチ回路の各々の接点回路と交互に直列に接続されるN個の接点抵抗とを有し、前記第1のコンデンサ回路の第1のコンデンサの高電位側に、前記第1のスイッチ回路の励磁回路及び接点回路の一端を接続し、前記第1のスイッチ回路に接続された第1の励磁抵抗と前記第2のスイッチ回路の励磁回路の接続点を第1の接続点とし、この第1の接続点に、前記第1のスイッチ回路に接続された第1の接点抵抗と前記第2のスイッチ回路の接点回路の接続点を接続すると共に、この第1の接続点から前記第1のコンデンサ回路の第2のコンデンサの高電位側に電流を流す方向に第1のダイオードを接続し、以下同様に順次第K{K=2、3、・・・(N−1)}の接続点に前記第Kのスイッチ回路に接続された第Kの接点抵抗と前記第(K+1)のスイッチ回路の接点回路の接続点を接続すると共に、この第Kの接続点から前記第1のコンデンサ回路の第(K+1)のコンデンサの高電位側に電流を流す方向に第Kのダイオードを接続し、第Nのスイッチ回路に接続された第Nの励磁抵抗の他端と、第Nのスイッチ回路に接続された第Nの接点抵抗の他端とを、前記第1のコンデンサ回路の第Nのコンデンサの低電位側に接続し、前記第1乃至第Kの接続点から夫々前記第2のコンデンサ回路の第2乃至第(K+1)のコンデンサの高電位側に電流を流す方向にK個のダイオードを夫々接続し、前記コンバータを運転中に前記第Nのスイッチ回路の励磁がオフしたとき、前記2N個のコンデンサのうち少なくとも1台が短絡故障したと判断するようにしたことを特徴としている。   In order to achieve the above object, a power conversion device of the present invention includes a converter that converts an AC voltage of an AC power source into a DC voltage, and a series connection for smoothing the DC voltage. A first capacitor circuit configured by N capacitors (N is an integer of 2 or more) defined as second,..., N, and the same configuration as the first capacitor circuit; A second capacitor circuit provided in parallel with the capacitor circuit; and a capacitor abnormality detection circuit that detects that any of the 2N capacitors has a short circuit failure. The capacitor abnormality detection circuit includes: an excitation circuit; , A contact circuit that closes the contact by this excitation current, and N switch circuits defined as first, second,..., N from the high potential side, and excitation of each of the N switch circuits. Alternating with circuit N excitation resistors connected to each other, and N contact resistors connected alternately in series with the contact circuits of each of the N switch circuits, and the first capacitor circuit One end of an excitation circuit and a contact circuit of the first switch circuit is connected to the high potential side of the capacitor, and a first excitation resistor connected to the first switch circuit and an excitation circuit of the second switch circuit The first connection point is connected to the connection point between the first contact resistance connected to the first switch circuit and the contact circuit of the second switch circuit. At the same time, a first diode is connected in a direction in which a current flows from the first connection point to the high potential side of the second capacitor of the first capacitor circuit. Similarly, the first K {K = 2, 3 ,... (N-1)} at the connection point of the Kth switch circuit. And the connection point of the contact circuit of the (K + 1) th switch circuit is connected to the connection point of the (K + 1) th capacitor of the first capacitor circuit from the Kth connection point. The Kth diode is connected in the direction in which current flows to the high potential side, the other end of the Nth excitation resistor connected to the Nth switch circuit, and the Nth contact resistance connected to the Nth switch circuit Are connected to the low potential side of the Nth capacitor of the first capacitor circuit, and the second to (K + 1) th of the second capacitor circuit are respectively connected from the first to Kth connection points. At least one of the 2N capacitors is connected when K diodes are respectively connected in the direction in which a current flows to the high potential side of the capacitor, and excitation of the Nth switch circuit is turned off during operation of the converter. Is found to have failed. Is characterized in that the the to.

本発明によれば、複数のコンデンサが直列、並列に接続されていても、比較的簡単な回路で1個のコンデンサの故障を確実に検知可能な故障検出回路を備えた電力変換装置を提供することが可能となる。   According to the present invention, there is provided a power conversion device including a failure detection circuit capable of reliably detecting a failure of one capacitor with a relatively simple circuit even when a plurality of capacitors are connected in series and in parallel. It becomes possible.

本発明の実施例1に係る電力変換装置の回路構成図。The circuit block diagram of the power converter device which concerns on Example 1 of this invention. 本発明の実施例1に係る電力変換装置のスイッチ回路の内部構成図。The internal block diagram of the switch circuit of the power converter device which concerns on Example 1 of this invention. 本発明の実施例1に係る電力変換装置の動作を説明するタイムチャート。The time chart explaining operation | movement of the power converter device which concerns on Example 1 of this invention. 本発明の実施例2に係る電力変換装置の回路構成図。The circuit block diagram of the power converter device which concerns on Example 2 of this invention. 本発明の実施例3に係る電力変換装置に用いられるコンデンサ故障検出回路用標準化ユニットの回路構成図。The circuit block diagram of the standardization unit for capacitor | condenser failure detection circuits used for the power converter device which concerns on Example 3 of this invention.

以下、図面を参照して本発明の実施例について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下、本発明の実施例1に係る電力変換装置を図1乃至図3を参照して説明する。   Hereinafter, the power converter concerning Example 1 of the present invention is explained with reference to Drawing 1 thru / or Drawing 3.

図1は本発明の実施例1に係る電力変換装置の回路構成図である。3相交流電源1から開閉器2を介してコンバータ3に交流電圧を給電する。コンバータ3は例えばブリッジ接続されたダイオードから構成され、交流電圧を直流電圧に変換する。尚、コンバータ3はスイッチング素子を用いた自励式のものであっても良い。この直流電圧は、平滑用のコンデンサ回路4及びこれと並列に接続されたコンデンサ回路5によって平滑され、インバータ30に給電される。インバータ30は直流電圧を再び交流電圧に変換して交流電動機40を駆動する。   FIG. 1 is a circuit configuration diagram of a power conversion apparatus according to Embodiment 1 of the present invention. An AC voltage is supplied from the three-phase AC power source 1 to the converter 3 via the switch 2. The converter 3 is composed of, for example, a diode connected in a bridge, and converts an AC voltage into a DC voltage. The converter 3 may be a self-excited type using a switching element. This DC voltage is smoothed by the smoothing capacitor circuit 4 and the capacitor circuit 5 connected in parallel therewith, and is supplied to the inverter 30. The inverter 30 drives the AC motor 40 by converting the DC voltage into an AC voltage again.

コンデンサ回路4はコンデンサ4C1、4C2及び4C3を直列接続して構成されている。同様にコンデンサ回路5はコンデンサ5C1、5C2及び5C3を直列接続して構成されている。   The capacitor circuit 4 is configured by connecting capacitors 4C1, 4C2, and 4C3 in series. Similarly, the capacitor circuit 5 is configured by connecting capacitors 5C1, 5C2, and 5C3 in series.

コンデンサ故障検出回路20はコンデンサ4C1、4C2及び4C3並びにコンデンサ5C1、5C2及び5C3の何れかが故障したことを検出する。以下、コンデンサ故障検出回路20の内部構成について説明する。   The capacitor failure detection circuit 20 detects that any of the capacitors 4C1, 4C2, and 4C3 and the capacitors 5C1, 5C2, and 5C3 has failed. Hereinafter, the internal configuration of the capacitor failure detection circuit 20 will be described.

コンデンサ故障検出回路20は、コンデンサ回路4及び5の直列数と同数のスイッチ回路7SW1、7SW2及び7SW3を備えている。図2にこれらと同一の構成であるスイッチ回路7SWの内部構成を示す。図2に示したようにスイッチ回路7SWは励磁コイル7EXとこれと直列に設けられた抵抗7SRによる直列回路(以下励磁回路と呼称する。)と、励磁コイル7EXに所定値以上の電流が流れたときに閉路する接点7MSの回路(以下接点回路と呼称する。)から構成されている。   The capacitor failure detection circuit 20 includes the same number of switch circuits 7SW1, 7SW2, and 7SW3 as the series number of the capacitor circuits 4 and 5. FIG. 2 shows an internal configuration of the switch circuit 7SW having the same configuration as these. As shown in FIG. 2, in the switch circuit 7SW, a current exceeding a predetermined value flows through the exciting coil 7EX and a series circuit (hereinafter referred to as an exciting circuit) by a resistor 7SR provided in series therewith, and the exciting coil 7EX. It is composed of a contact 7MS circuit (hereinafter referred to as a contact circuit) that is sometimes closed.

スイッチ回路7SW1の励磁回路の一端及び接点回路の一端をコンデンサ4C1の高電位端(コンバータ3の正電位端)に接続する。そして、7SW1の励磁回路の他端を励磁電流調整用の励磁抵抗8R1を介してスイッチ回路7SW2の励磁回路の一端に、SW1の接点回路の他端を電圧分担用の接点抵抗9R1を介してスイッチ回路7SW2の接点回路の一端に接続する。そしてスイッチ回路7SW2の励磁回路の一端とスイッチ回路7SW2の接点回路の一端同士を接続し、その接続点からコンデンサ4C2の高電位端に電流を流す方向にダイオード10D1を接続する。また、上記接続点からコンデンサ5C2の高電位端に電流を流す方向にダイオード11D1を接続する。   One end of the excitation circuit of the switch circuit 7SW1 and one end of the contact circuit are connected to the high potential end of the capacitor 4C1 (the positive potential end of the converter 3). Then, the other end of the excitation circuit of 7SW1 is switched to one end of the excitation circuit of the switch circuit 7SW2 via the excitation resistor 8R1 for adjusting the excitation current, and the other end of the contact circuit of SW1 is switched via the contact resistor 9R1 for voltage sharing. Connect to one end of the contact circuit of the circuit 7SW2. Then, one end of the excitation circuit of the switch circuit 7SW2 and one end of the contact circuit of the switch circuit 7SW2 are connected to each other, and the diode 10D1 is connected in a direction in which current flows from the connection point to the high potential end of the capacitor 4C2. Further, the diode 11D1 is connected in a direction in which current flows from the connection point to the high potential end of the capacitor 5C2.

同様に、7SW2の励磁回路の他端を、励磁抵抗8R2を介してスイッチ回路7SW3の励磁回路の一端に、7SW2の接点回路の他端を、接点抵抗9R2を介してスイッチ回路7SW3の接点回路の一端に接続する。スイッチ回路7SW3の励磁回路の一端とスイッチ回路7SW3の接点回路の一端同士を接続し、その接続点からコンデンサ4C3の高電位端に電流を流す方向にダイオード10D2を接続する。また、上記接続点からコンデンサ5C3の高電位端に電流を流す方向にダイオード11D2を接続する。そして、最も電位が低いスイッチ回路7SW3の励磁回路の他端及び接点回路の他端を夫々励磁抵抗8R3及び接点抵抗9R3を介してコンデンサ4C3の低電位端(コンバータ3の負電位端)に接続する。   Similarly, the other end of the excitation circuit of 7SW2 is connected to one end of the excitation circuit of the switch circuit 7SW3 via the excitation resistor 8R2, and the other end of the contact circuit of 7SW2 is connected to the contact circuit of the switch circuit 7SW3 via the contact resistor 9R2. Connect to one end. One end of the excitation circuit of the switch circuit 7SW3 and one end of the contact circuit of the switch circuit 7SW3 are connected to each other, and the diode 10D2 is connected in a direction in which a current flows from the connection point to the high potential end of the capacitor 4C3. Further, the diode 11D2 is connected in a direction in which a current flows from the connection point to the high potential end of the capacitor 5C3. Then, the other end of the excitation circuit of the switch circuit 7SW3 having the lowest potential and the other end of the contact circuit are connected to the low potential end of the capacitor 4C3 (the negative potential end of the converter 3) via the excitation resistor 8R3 and the contact resistor 9R3, respectively. .

コンデンサ異常検知器21は、コンバータ3を運転中に接点抵抗9R3の両端の電圧が所定値以下になったとき、コンデンサ4C1、4C2及び4C3並びにコンデンサ5C1、5C2及び5C3の何れかが故障したと判断する。   The capacitor abnormality detector 21 determines that any of the capacitors 4C1, 4C2, and 4C3 and the capacitors 5C1, 5C2, and 5C3 has failed when the voltage across the contact resistance 9R3 becomes equal to or lower than a predetermined value during operation of the converter 3. To do.

以上の図1に示した構成は、コンデンサの直列数が3の場合であるが、この直列数が増えた場合でも、上述と同様の接続を行えば良い。すなわち、最も電位が高いスイッチ回路7SWに関する接続は上記スイッチ回路7SW1の接続と同一とし、最も電位が低いスイッチ回路7SWに関する接続は上記スイッチ回路7SW3の接続と同一とし、他の全てのスイッチ回路7SWに関する接続は上記スイッチ回路7SW2の接続と同一とすれば良い。   The above-described configuration shown in FIG. 1 is a case where the number of series capacitors is 3, but even when the number of series increases, the same connection as described above may be performed. That is, the connection related to the switch circuit 7SW having the highest potential is the same as the connection of the switch circuit 7SW1, the connection related to the switch circuit 7SW having the lowest potential is the same as the connection of the switch circuit 7SW3, and all the other switch circuits 7SW are related. The connection may be the same as the connection of the switch circuit 7SW2.

以下、コンデンサ故障検出回路20の動作について説明する。まず、コンバータ3を運転中、コンデンサ回路4内のコンデンサ4C1、4C2及び4C3並びにコンデンサ回路5内のコンデンサ5C1、5C2及び5C3が全て正常であれば、スイッチ回路7SW1、7SW2及び7SW3の各励磁回路には励磁電流が流れて各接点回路は全て閉路する。例えば、スイッチ回路7SW1の励磁回路に流れる電流はコンデンサ4C1に印加されている電圧を、抵抗8R1と抵抗7SRの和で除した値となる。   Hereinafter, the operation of the capacitor failure detection circuit 20 will be described. First, if the capacitors 4C1, 4C2 and 4C3 in the capacitor circuit 4 and the capacitors 5C1, 5C2 and 5C3 in the capacitor circuit 5 are all normal during the operation of the converter 3, the excitation circuits of the switch circuits 7SW1, 7SW2 and 7SW3 are used. The exciting current flows and all the contact circuits are closed. For example, the current flowing through the excitation circuit of the switch circuit 7SW1 is a value obtained by dividing the voltage applied to the capacitor 4C1 by the sum of the resistor 8R1 and the resistor 7SR.

この状態で、例えばコンデンサ4C1が故障して短絡状態となったときの状態推移について、図3を参照して説明する。図に示すように、時刻t=T0においてコンデンサ4C1が故障したとする。この故障によってコンデンサ4C1に印加される電圧は瞬時にゼロとなる。従ってスイッチ回路7SW1の励磁回路には電流が流れなくなるので接点7MSが開路してスイッチ回路7SW1の接点回路が開路状態となる。故障したコンデンサ4C1以外のコンデンサ4C2及び4C3に印加される電圧は約1.5倍となるが、図示したようにダイオード10D1及び10D2の順方向電圧が瞬時にゼロとなるため、スイッチ回路7SW2の励磁回路及びスイッチ回路7SW3の励磁回路には電流が流れなくなり、スイッチ回路7SW2及びスイッチ回路7SW3の接点回路も開路状態となる。このため、コンバータ3を運転中に接点抵抗9R3の両端の電圧が所定値を越えていた正常状態からコンデンサ4C1が故障して短絡状態となったとき、接点抵抗9R3の両端の電圧はゼロとなるので、コンデンサ4C1の故障検知が可能となる。この故障信号を電力変換装置の保護シーケンスに取り込んで図1の開閉器2をオフすることによって過電圧状態となっているコンデンサ4C2及び4C3への故障拡大などを防止することが可能となる。尚、コンバータ3が自励式の場合には、開閉器2をオフする代わりにコンバータ3をゲートブロックするようにしても良い。   In this state, for example, a state transition when the capacitor 4C1 breaks down and becomes a short circuit state will be described with reference to FIG. As shown in the figure, it is assumed that the capacitor 4C1 has failed at time t = T0. Due to this failure, the voltage applied to the capacitor 4C1 instantaneously becomes zero. Accordingly, since no current flows through the excitation circuit of the switch circuit 7SW1, the contact 7MS is opened, and the contact circuit of the switch circuit 7SW1 is opened. Although the voltage applied to the capacitors 4C2 and 4C3 other than the failed capacitor 4C1 is about 1.5 times, the forward voltage of the diodes 10D1 and 10D2 instantaneously becomes zero as shown in the figure, so that the excitation of the switch circuit 7SW2 No current flows through the excitation circuit of the circuit and the switch circuit 7SW3, and the contact circuits of the switch circuit 7SW2 and the switch circuit 7SW3 are also opened. For this reason, when the capacitor 4C1 breaks down from a normal state where the voltage across the contact resistor 9R3 exceeds a predetermined value during operation of the converter 3, the voltage across the contact resistor 9R3 becomes zero. Therefore, the failure detection of the capacitor 4C1 can be performed. By incorporating this failure signal into the protection sequence of the power converter and turning off the switch 2 in FIG. 1, it becomes possible to prevent the failure from expanding to the capacitors 4C2 and 4C3 that are in an overvoltage state. If the converter 3 is self-excited, the converter 3 may be gate-blocked instead of turning off the switch 2.

ここで重要な点は、コンデンサ4C1が故障して短絡状態となったとき、コンデンサ5C1からの放電電流をダイオード10D1の存在によって流れないようにしている点である。また、コンデンサ5C1が故障した場合を想定すると、故障検出動作は上記と同様となるが、ダイオード11D1の存在によってコンデンサ4C1からの放電電流は流れない。上記については、全てのコンデンサに対して成立するので、図1の回路構成は、並列接続されたコンデンサの一方が故障しても、他方に過大な放電電流が流れて共づれ故障することが防止されるように構成されていることが分かる。   The important point here is that the discharge current from the capacitor 5C1 is prevented from flowing due to the presence of the diode 10D1 when the capacitor 4C1 fails and is short-circuited. Further, assuming that the capacitor 5C1 has failed, the failure detection operation is similar to the above, but the discharge current from the capacitor 4C1 does not flow due to the presence of the diode 11D1. Since the above is true for all capacitors, the circuit configuration in FIG. 1 prevents the failure of one of the parallel-connected capacitors due to excessive discharge current flowing through the other. It can be seen that they are configured as described above.

次に、コンデンサ4C2が故障して短絡状態となったときには、この故障によってコンデンサ4C2に印加される電圧は瞬時にゼロとなる。従ってスイッチ回路7SW2の励磁回路には電流が流れなくなるのでスイッチ回路7SW2の接点回路が開路状態となる。この場合も、ダイオード10D1及び10D2の作用によって、スイッチ回路7SW3の励磁回路にも電流が流れなくなり、スイッチ回路7SW3の接点回路も開路状態となる。コンデンサ5C2が故障して短絡状態となったときの基本動作は上記と同様である。   Next, when the capacitor 4C2 fails and becomes short-circuited, the voltage applied to the capacitor 4C2 due to this failure instantaneously becomes zero. Therefore, no current flows through the excitation circuit of the switch circuit 7SW2, so that the contact circuit of the switch circuit 7SW2 is opened. Also in this case, due to the action of the diodes 10D1 and 10D2, no current flows through the excitation circuit of the switch circuit 7SW3, and the contact circuit of the switch circuit 7SW3 is also opened. The basic operation when the capacitor 5C2 fails and is short-circuited is the same as described above.

更に、コンデンサ4C3が故障して短絡状態となったときには、この故障によってコンデンサ4C3に印加される電圧は瞬時にゼロとなり、従ってスイッチ回路7SW3の励磁回路には電流が流れなくなるのでスイッチ回路7SW3の接点回路が開路状態となる。コンデンサ5C3が故障して短絡状態となったときの基本動作は上記と同様である。   Further, when the capacitor 4C3 fails and is short-circuited, the voltage applied to the capacitor 4C3 instantaneously becomes zero due to this failure, so that no current flows through the excitation circuit of the switch circuit 7SW3. The circuit is opened. The basic operation when the capacitor 5C3 fails and is short-circuited is the same as described above.

このようにどのコンデンサが短絡故障しても、最も電位が低いスイッチ回路7SW3の励磁回路には電流が流れなくなる。よって、最も電位が低い箇所に取り付いているスイッチ回路7SW3の状態をコンデンサ異常検知器11によって検知すれば、何れか1個のコンデンサの短絡故障を検出することが可能となる。   Thus, no matter which capacitor is short-circuited, no current flows through the excitation circuit of the switch circuit 7SW3 having the lowest potential. Therefore, if the capacitor abnormality detector 11 detects the state of the switch circuit 7SW3 attached to the place having the lowest potential, it is possible to detect a short-circuit failure of any one of the capacitors.

以上説明したように本実施例によれば直列接続されたコンデンサの何れか1個が短絡故障したことを確実に検知し、故障したコンデンサと並列接続されたコンデンサを含む健全なコンデンサの保護を行うことが可能となる。   As described above, according to the present embodiment, any one of the capacitors connected in series is reliably detected as a short circuit failure, and the sound capacitors including the capacitors connected in parallel with the failed capacitors are protected. It becomes possible.

ここで、スイッチ回路7SWには、市販の安価なリレーを用いることが可能である。リレーのコイル7EXが励磁状態でリレー接点7MSがオン状態(a接点)となる。リレー接点がb接点であっても同様の検出が可能となる。これを図1と同様の回路で検出する場合は、動作が逆となり、接点抵抗9R3の両端の電圧が正常時ゼロであったものが所定値以上となったとき、何れか1個のコンデンサが故障したものと判断すれば良い。   Here, a commercially available inexpensive relay can be used for the switch circuit 7SW. The relay contact 7MS is turned on (a contact) while the relay coil 7EX is excited. The same detection is possible even if the relay contact is a b contact. When this is detected by a circuit similar to that in FIG. 1, the operation is reversed, and when the voltage across the contact resistor 9R3 is zero when the normal value is greater than or equal to a predetermined value, any one capacitor is What is necessary is just to judge that it was out of order.

また、必ずしも接点抵抗9R3の両端の電圧をコンデンサ異常検知器21で検出する必要はなく、上述したように最も電位が低い箇所に取り付いているスイッチ回路7SW3の励磁状態の変化を何らかの方法で検出すれば良い。例えば、励磁抵抗8R3の電圧の検出でも良く、また、スイッチ回路7SW3に更に接点回路を設け、そのオンオフ状態を検出しても良い。更に、光電変換素子を接点回路または励磁回路に使用して、光による絶縁検出を行っても良い。   Further, it is not always necessary to detect the voltage across the contact resistor 9R3 with the capacitor abnormality detector 21, and as described above, the change in the excitation state of the switch circuit 7SW3 attached to the portion having the lowest potential can be detected by some method. It ’s fine. For example, the voltage of the exciting resistor 8R3 may be detected, or a contact circuit may be further provided in the switch circuit 7SW3 to detect the on / off state. Further, the photoelectric conversion element may be used for a contact circuit or an excitation circuit to detect insulation by light.

一般的にコンデンサを直列接続した場合は、個々のコンデンサの容量にバラツキがあるため、コンデンサと並列に抵抗を接続してコンデンサ間の電圧バランスをとることが行われるが、この実施例1の場合は、励磁抵抗8R1、8R2及び8R3を上記バランス抵抗と兼用させることが可能となる。また、接点抵抗9R1、9R2及び9R3も上記バランス抵抗と兼用させるようにしても良い。   In general, when capacitors are connected in series, there is a variation in the capacitance of each capacitor. Therefore, a resistor is connected in parallel with the capacitor to balance the voltage between the capacitors. The excitation resistors 8R1, 8R2 and 8R3 can be used also as the balance resistor. Further, the contact resistors 9R1, 9R2 and 9R3 may also be used as the balance resistor.

図4は本発明の実施例2に係る電力変換装置の回路構成図である。この実施例2の各部について、図1の本発明の実施例1に係る電力変換装置の各部と同一部分は同一符号で示し、その説明は省略する。この実施例2が実施例1と異なる点は、コンデンサ6C1、6C2、及び6C3の直列回路で構成されるコンデンサ回路6を設けた点、ダイオード12D1を設け、ダイオード11D1のアノード端から電流を流す方向にコンデンサ6C2の高電位端に接続した点、またダイオード12D2を設け、ダイオード11D2のアノード端から電流を流す方向にコンデンサ6C3の高電位端に接続した点である。   FIG. 4 is a circuit configuration diagram of the power conversion apparatus according to the second embodiment of the present invention. About each part of this Example 2, the same part as each part of the power converter device which concerns on Example 1 of this invention of FIG. 1 is shown with the same code | symbol, and the description is abbreviate | omitted. The second embodiment is different from the first embodiment in that a capacitor circuit 6 composed of a series circuit of capacitors 6C1, 6C2, and 6C3 is provided, a diode 12D1 is provided, and a current flows from the anode end of the diode 11D1. Is connected to the high potential end of the capacitor 6C2, and a diode 12D2 is provided, and is connected to the high potential end of the capacitor 6C3 in a direction in which current flows from the anode end of the diode 11D2.

この図4に示した回路構成において、異常検出のために設けたスイッチ回路7SW1、7SW2及び7SW3の直列回路から見て、コンデンサ回路4、5、及び6は全て同一条件で並列に接続されていると言うことができる。従って、実施例1で説明したように、コンデンサ6C1、6C2、及び6C3の何れかが故障した場合であっても、コンデンサ異常検知器21による故障検出が可能となり、またダイオード12D1、12D2によってコンデンサ回路4または5を構成する何れかのコンデンサが故障しても過大な放電電流が流れることを防止している。すなわち、この実施例2の場合であっても、全体を構成する何れかのコンデンサが故障しても、これを検知することが可能であるばかりでなく、当該コンデンサと並列に接続されているコンデンサに放電電流は流れない。   In the circuit configuration shown in FIG. 4, the capacitor circuits 4, 5, and 6 are all connected in parallel under the same conditions as seen from the series circuit of the switch circuits 7SW1, 7SW2, and 7SW3 provided for detecting an abnormality. Can be said. Therefore, as described in the first embodiment, even when any of the capacitors 6C1, 6C2, and 6C3 fails, the failure detection by the capacitor abnormality detector 21 is possible, and the capacitor circuit is provided by the diodes 12D1 and 12D2. Even if any of the capacitors constituting 4 or 5 fails, an excessive discharge current is prevented from flowing. That is, even in the case of the second embodiment, it is possible not only to detect any of the capacitors that constitute the whole, but also to detect a capacitor connected in parallel with the capacitor. There is no discharge current.

尚、本実施例は並列に設けられるコンデンサ回路が3個の場合であるが、これが更に増えていった場合であっても、上述したように異常検出のために設けたスイッチ回路7SW1、7SW2及び7SW3の直列回路から見て、全てのコンデンサ回路が同一条件で並列に接続されるようにダイオードを接続すれば良いことが分かる。   In this embodiment, the number of capacitor circuits provided in parallel is three. However, even when the number of capacitor circuits is increased further, as described above, the switch circuits 7SW1, 7SW2 and It can be seen from the 7SW3 series circuit that the diodes may be connected so that all the capacitor circuits are connected in parallel under the same conditions.

また、コンデンサ異常検知器21の故障信号を電力変換装置の保護シーケンスに取り込んで図3の開閉器2をオフすることによって過電圧状態となっているコンデンサへの故障拡大などが防止可能となることは実施例1の場合と同様である。   In addition, by incorporating the failure signal of the capacitor abnormality detector 21 into the protection sequence of the power converter and turning off the switch 2 in FIG. 3, it is possible to prevent the failure from being expanded to the overvoltage capacitor. This is the same as in the first embodiment.

図5は本発明の実施例3に係る電力変換装置に用いられるコンデンサ故障検出回路用標準化ユニットの回路構成図である。図示したようにスイッチ回路7SW、抵抗8R、抵抗9R及びダイオード10D、11Dを組み込んだ標準化ユニット50を準備すれば、この標準化ユニット50を組み合わせることによって実施例1に示したコンデンサ故障検出回路20を容易に組み立てることができる。   FIG. 5 is a circuit configuration diagram of a standardization unit for a capacitor failure detection circuit used in the power conversion apparatus according to Embodiment 3 of the present invention. As shown in the figure, if the standardization unit 50 incorporating the switch circuit 7SW, the resistor 8R, the resistor 9R, and the diodes 10D and 11D is prepared, the capacitor failure detection circuit 20 shown in the first embodiment can be easily achieved by combining the standardization unit 50. Can be assembled into.

標準化ユニット50の端子構成は、スイッチ回路7SWの励磁回路と接点回路の一端同士を接続した点を端子P、接点抵抗9Rと接点7MSの接続点を端子D1、ダイオード11Dのカソード端子をD2、ダイオード10Dのカソード側を端子N、ダイオード10Dの両端を端子S1、S2、ダイオード11Dの両端を端子S3、S4とする。図示したように、端子D2と端子S2、端子Nと端子S1、端子S2と端子S3、また端子D2と端子S4は同一の接続点である。端子D1、D2は電圧検出用の端子として設けてあり、端子S1、S2及び端子S3、S4は、図1で説明すると最も電位が低い箇所のスイッチ回路7SW3を含む標準化ユニット用に設けてあり、ダイオード10D及びダイオード11Dを夫々短絡するための短絡用端子である。   The terminal configuration of the standardization unit 50 is such that the point where the excitation circuit of the switch circuit 7SW and one end of the contact circuit are connected to each other is the terminal P, the connection point between the contact resistor 9R and the contact 7MS is the terminal D1, and the cathode terminal of the diode 11D is D2. The cathode side of 10D is a terminal N, both ends of the diode 10D are terminals S1 and S2, and both ends of the diode 11D are terminals S3 and S4. As illustrated, the terminal D2 and the terminal S2, the terminal N and the terminal S1, the terminal S2 and the terminal S3, and the terminal D2 and the terminal S4 are the same connection point. The terminals D1 and D2 are provided as voltage detection terminals, and the terminals S1 and S2 and the terminals S3 and S4 are provided for a standardization unit including the switch circuit 7SW3 at the lowest potential as described in FIG. This is a short-circuiting terminal for short-circuiting the diode 10D and the diode 11D.

上記において、図1のスイッチ回路7SW1または7SW2を組み込んだ標準化ユニットにおいては端子D1、S1及びS2並びにS3及びS4は使用しないので、標準化ユニットとして、端子P、端子D2及び端子Nのみの3端子の標準化ユニットでコンデンサ故障検出回路を構成し、電位が最も低い箇所についてはダイオード10D及び11Dを持たない標準化ユニットを適用するようにしても良い。   In the above, the standardized unit incorporating the switch circuit 7SW1 or 7SW2 in FIG. 1 does not use the terminals D1, S1, and S2, and S3 and S4. Therefore, as the standardized unit, only the three terminals of the terminal P, the terminal D2, and the terminal N are used. A capacitor failure detection circuit may be configured by the standardization unit, and a standardization unit that does not have the diodes 10D and 11D may be applied to a portion having the lowest potential.

以上説明したように図5の標準化ユニット50を使用すれば、量産性が高いばかりでなく、用品は全て低圧用品で構成可能となるので経済性が極めて良好となる。   As described above, if the standardization unit 50 shown in FIG. 5 is used, not only the mass productivity is high, but all the products can be constituted by low-pressure products, so that the economy is extremely good.

また、図5において、ダイオード11Dと並列にダイオード12Dを設ける構成とすれば実施例2に適用可能な標準化ユニットを提供することができることは明らかであり、また、更にコンデンサ回路が増えた場合でも、同一構成のダイオードを追加すれば良いことも明らかである。   In addition, in FIG. 5, it is clear that the standardized unit applicable to the second embodiment can be provided if the diode 12D is provided in parallel with the diode 11D, and even when the capacitor circuit is further increased, It is obvious that a diode having the same configuration may be added.

以上本発明のいくつかの実施例を説明したが、これらの実施例は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施例やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1 交流電源
2 開閉器
3 コンバータ
4、5、6 コンデンサ回路
4C1、4C2、4C3、5C1、5C2、5C3、6C1、6C2、6C3 コンデンサ
7SW、7SW1、7SW2、7SW3、7SW4 スイッチ回路
7EX 励磁コイル
7MS 接点
7SR 抵抗
8R、8R1、8R2、8R3 励磁抵抗
9R、9R1、9R2、9R3 接点抵抗
10D、10D1、10D2、11D、11D1、11D2、12D1、12D2 ダイオード
20 コンデンサ故障検出回路
21 コンデンサ異常検知器
30 インバータ
40 交流電動機
50 標準化ユニット
DESCRIPTION OF SYMBOLS 1 AC power supply 2 Switch 3 Converter 4, 5, 6 Capacitor circuit 4C1, 4C2, 4C3, 5C1, 5C2, 5C3, 6C1, 6C2, 6C3 Capacitor 7SW, 7SW1, 7SW2, 7SW3, 7SW4 Switch circuit 7EX Excitation coil 7MS Contact 7SR Resistance 8R, 8R1, 8R2, 8R3 Excitation resistance 9R, 9R1, 9R2, 9R3 Contact resistance 10D, 10D1, 10D2, 11D, 11D1, 11D2, 12D1, 12D2 Diode 20 Capacitor failure detection circuit 21 Capacitor abnormality detector 30 Inverter 40 AC motor 50 Standardization unit

Claims (6)

交流電源の交流電圧を直流電圧に変換するコンバータと、
この直流電圧を平滑するために直列接続され、高電位側から、第1、第2、・・・、第Nと定めたN(Nは2以上の整数)個のコンデンサで構成される第1のコンデンサ回路と、
前記第1のコンデンサ回路と同一構成で、前記第1のコンデンサ回路と並列に設けられた第2のコンデンサ回路と、
前記2N個のコンデンサの何れかが短絡故障したことを検出するコンデンサ異常検出回路と
を具備し、
前記コンデンサ異常検出回路は、
励磁回路と、この励磁電流によって接点が閉路する接点回路を備え、高電位側から、第1、第2、・・・、第Nと定めるN個のスイッチ回路と、
前記N個のスイッチ回路の各々の励磁回路と交互に直列に接続されるN個の励磁抵抗と、
前記N個のスイッチ回路の各々の接点回路と交互に直列に接続されるN個の接点抵抗と、
を有し、
前記第1のコンデンサ回路の第1のコンデンサの高電位側に、前記第1のスイッチ回路の励磁回路及び接点回路の一端を接続し、
前記第1のスイッチ回路に接続された第1の励磁抵抗と前記第2のスイッチ回路の励磁回路の接続点を第1の接続点とし、この第1の接続点に、前記第1のスイッチ回路に接続された第1の接点抵抗と前記第2のスイッチ回路の接点回路の接続点を接続すると共に、この第1の接続点から前記第1のコンデンサ回路の第2のコンデンサの高電位側に電流を流す方向に第1のダイオードを接続し、
以下同様に順次第K{K=2、3、・・・(N−1)}の接続点に前記第Kのスイッチ回路に接続された第Kの接点抵抗と前記第(K+1)のスイッチ回路の接点回路の接続点を接続すると共に、この第Kの接続点から前記第1のコンデンサ回路の第(K+1)のコンデンサの高電位側に電流を流す方向に第Kのダイオードを接続し、
第Nのスイッチ回路に接続された第Nの励磁抵抗の他端と、第Nのスイッチ回路に接続された第Nの接点抵抗の他端とを、前記第1のコンデンサ回路の第Nのコンデンサの低電位側に接続し、
前記第1乃至第Kの接続点から夫々前記第2のコンデンサ回路の第2乃至第(K+1)のコンデンサの高電位側に電流を流す方向にK個のダイオードを夫々接続し、
前記コンバータを運転中に前記第Nのスイッチ回路の励磁がオフしたとき、
前記2N個のコンデンサのうち少なくとも1台が短絡故障したと判断するようにしたことを特徴とする電力変換装置。
A converter that converts the AC voltage of the AC power source into a DC voltage;
In order to smooth the DC voltage, a first connected by N (N is an integer of 2 or more) capacitors defined as first, second,..., N from the high potential side. Capacitor circuit,
A second capacitor circuit having the same configuration as the first capacitor circuit and provided in parallel with the first capacitor circuit;
A capacitor abnormality detection circuit for detecting that any of the 2N capacitors has a short circuit failure;
The capacitor abnormality detection circuit is:
An excitation circuit and a contact circuit whose contact is closed by the excitation current, and N switch circuits defined as first, second,..., N from the high potential side;
N exciting resistors connected alternately in series with each exciting circuit of the N switch circuits;
N contact resistors connected alternately in series with the contact circuits of each of the N switch circuits;
Have
One end of the excitation circuit and the contact circuit of the first switch circuit is connected to the high potential side of the first capacitor of the first capacitor circuit,
A connection point between the first excitation resistor connected to the first switch circuit and the excitation circuit of the second switch circuit is defined as a first connection point, and the first switch circuit is connected to the first connection point. And a connection point of the contact circuit of the second switch circuit is connected to the high potential side of the second capacitor of the first capacitor circuit from the first connection point. Connect the first diode in the direction of current flow,
In the same manner, the Kth contact resistance connected to the Kth switch circuit and the (K + 1) th switch circuit are sequentially connected to the Kth {K = 2, 3, ... (N-1)} connection points. A connection point of the contact circuit, and a Kth diode in a direction in which a current flows from the Kth connection point to the high potential side of the (K + 1) th capacitor of the first capacitor circuit,
The other end of the Nth exciting resistor connected to the Nth switch circuit and the other end of the Nth contact resistor connected to the Nth switch circuit are connected to the Nth capacitor of the first capacitor circuit. Connected to the low potential side of
K diodes are connected in the direction in which current flows from the first to Kth connection points to the high potential sides of the second to (K + 1) th capacitors of the second capacitor circuit, respectively.
When the excitation of the Nth switch circuit is turned off during operation of the converter,
It is determined that at least one of the 2N capacitors has a short circuit failure.
前記第1のコンデンサ回路と並列に同一構成のコンデンサ回路を、前記第1のコンデンサ回路と並列にM個(Mは1以上の整数)設け、
前記コンデンサ異常検出回路は、
前記第1乃至第Kの接続点から夫々前記第L(L=1、2、・・・M)のコンデンサ回路の第2乃至第(K+1)のコンデンサの夫々の高電位側に電流を流す方向に(M×K)個のダイオードを夫々接続したことを特徴とする請求項1に記載の電力変換装置。
M capacitor circuits having the same configuration in parallel with the first capacitor circuit are provided in parallel with the first capacitor circuit (M is an integer of 1 or more);
The capacitor abnormality detection circuit is:
The direction in which current flows from the first to Kth connection points to the high potential sides of the second to (K + 1) th capacitors of the Lth (L = 1, 2,... M) capacitor circuits, respectively. The power converter according to claim 1, wherein (M × K) diodes are connected to each other.
前記第Nの接点抵抗の両端の電圧が所定値以下になったとき、
前記コンデンサのうち少なくとも1台が短絡故障したと判断するようにしたことを特徴とする請求項1または至請求項2に記載の電力変換装置。
When the voltage across the Nth contact resistance becomes a predetermined value or less,
The power converter according to claim 1 or 2, wherein at least one of the capacitors is determined to have a short circuit failure.
前記コンデンサ異常検出回路が異常を検出したとき、前記コンバータの入力側に設けられた開閉器をオフするか、または前記コンバータをゲートブロックするようにしたことを特徴とする請求項1乃至請求項3の何れか1項に記載の電力変換装置。   4. The switch provided on the input side of the converter is turned off or the converter is gate-blocked when the capacitor abnormality detection circuit detects an abnormality. The power converter device according to any one of the above. 前記コンデンサ異常検出回路は、
各1個の前記スイッチ回路、前記励磁抵抗、及び前記接点抵抗並びに前記コンデンサ回路の数であるQ個(Qは2以上の整数)の前記ダイオードを用い、当該スイッチ回路の励磁回路及び接点回路の一端を接続して第1の端子とし、前記励磁回路の他端に励磁抵抗を接続してこの励磁抵抗の他端を第1の接続点とし、前記接点回路の他端と前記第1の接続点間に接点抵抗を接続し、前記第1の接続点から電流が流れる方向にQ個の前記ダイオードを接続してその他端を第2、第3、・・・、第(Q+1)の端子とする標準化ユニットを組み合わせて構成するようにしたことを特徴とする請求項1乃至請求項4の何れか1項に記載の電力変換装置。
The capacitor abnormality detection circuit is:
Each of the switch circuit, the excitation resistor, the contact resistance, and Q (Q is an integer of 2 or more), which is the number of the capacitor circuits, are used, and the excitation circuit and the contact circuit of the switch circuit. One end is connected as a first terminal, an excitation resistor is connected to the other end of the excitation circuit, the other end of the excitation resistor is used as a first connection point, and the other end of the contact circuit is connected to the first connection. A contact resistance is connected between the points, Q diodes are connected in a direction in which current flows from the first connection point, and the other ends are connected to the second, third,..., (Q + 1) terminals. The power conversion device according to any one of claims 1 to 4, wherein the standardization unit is configured to be combined.
前記標準化ユニットの前記接点回路と前記接点抵抗の接続点に第(Q+2)の端子を設け、前記各々のダイオードの両端に短絡用の端子を設けたことを特徴とする請求項5に記載の電力変換装置。   6. The electric power according to claim 5, wherein a (Q + 2) -th terminal is provided at a connection point between the contact circuit and the contact resistance of the standardization unit, and short-circuit terminals are provided at both ends of each diode. Conversion device.
JP2010237686A 2010-10-22 2010-10-22 Power converter Active JP5498348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010237686A JP5498348B2 (en) 2010-10-22 2010-10-22 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010237686A JP5498348B2 (en) 2010-10-22 2010-10-22 Power converter

Publications (2)

Publication Number Publication Date
JP2012090506A true JP2012090506A (en) 2012-05-10
JP5498348B2 JP5498348B2 (en) 2014-05-21

Family

ID=46261482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010237686A Active JP5498348B2 (en) 2010-10-22 2010-10-22 Power converter

Country Status (1)

Country Link
JP (1) JP5498348B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017199405A1 (en) * 2016-05-19 2017-11-23 三菱電機株式会社 Power conversion device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04347531A (en) * 1991-05-23 1992-12-02 Mitsubishi Electric Corp Abnormality detector for dc capacitor
JPH0862270A (en) * 1994-08-19 1996-03-08 Toshiba Corp Capacitor-fault detecting circuit
JPH11118860A (en) * 1997-10-09 1999-04-30 Fuji Electric Co Ltd Method and device for detecting failure of dc capacitor
WO2011161730A1 (en) * 2010-06-25 2011-12-29 東芝三菱電機産業システム株式会社 Power conversion apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04347531A (en) * 1991-05-23 1992-12-02 Mitsubishi Electric Corp Abnormality detector for dc capacitor
JPH0862270A (en) * 1994-08-19 1996-03-08 Toshiba Corp Capacitor-fault detecting circuit
JPH11118860A (en) * 1997-10-09 1999-04-30 Fuji Electric Co Ltd Method and device for detecting failure of dc capacitor
WO2011161730A1 (en) * 2010-06-25 2011-12-29 東芝三菱電機産業システム株式会社 Power conversion apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017199405A1 (en) * 2016-05-19 2017-11-23 三菱電機株式会社 Power conversion device
JPWO2017199405A1 (en) * 2016-05-19 2018-05-31 三菱電機株式会社 Power converter

Also Published As

Publication number Publication date
JP5498348B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP5470549B2 (en) Power converter
US10541539B1 (en) Converter, inverter, AC motor driving apparatus, and air conditioner using the same
RU2584096C2 (en) Direct voltage power switch
JP6575289B2 (en) Power converter
CN103650319A (en) Method for energizing a chain-link converter, controller, computer programs and computer program products
CN116540008A (en) System and method for detecting ground faults in DC systems
US20150177287A1 (en) Capacitor failure
CN109204445B (en) Monitoring system for electric power steering
JP2010252536A (en) Inverter device and fault diagnosis method for the same
GB2520121A (en) Short-circuit protection
JP2008067566A (en) Three-level inverter system
JP5498348B2 (en) Power converter
JP2020058123A (en) Controller for high voltage apparatus
US20230078868A1 (en) Device and method for diagnosing failure of inverter initial charging circuit
EP3118984A1 (en) Capacitor bank
JP5223320B2 (en) Shared printed circuit board and DC power supply circuit using the same
CN106885965B (en) Device and method for fault detection of frequency converter
JPH0862270A (en) Capacitor-fault detecting circuit
KR20100124898A (en) Onen phase relay circuit and open phase warning circuit for three phase motor
WO2017199405A1 (en) Power conversion device
JP6570073B2 (en) Failure detection device
JP2014027796A (en) Electronic circuit device
WO2021014573A1 (en) Multiple power conversion system
JP6686352B2 (en) Temperature detection circuit
WO2019207788A1 (en) Motor control device and machine device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140307

R150 Certificate of patent or registration of utility model

Ref document number: 5498348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250