JP2012089714A - Electromagnetic shield housing - Google Patents

Electromagnetic shield housing Download PDF

Info

Publication number
JP2012089714A
JP2012089714A JP2010236017A JP2010236017A JP2012089714A JP 2012089714 A JP2012089714 A JP 2012089714A JP 2010236017 A JP2010236017 A JP 2010236017A JP 2010236017 A JP2010236017 A JP 2010236017A JP 2012089714 A JP2012089714 A JP 2012089714A
Authority
JP
Japan
Prior art keywords
coil
shielding plate
shielding
electromagnetic
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010236017A
Other languages
Japanese (ja)
Other versions
JP5754913B2 (en
Inventor
Haruhiro Horiuchi
晴宏 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2010236017A priority Critical patent/JP5754913B2/en
Publication of JP2012089714A publication Critical patent/JP2012089714A/en
Application granted granted Critical
Publication of JP5754913B2 publication Critical patent/JP5754913B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Details Of Aerials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electromagnetic shield housing capable of reducing the volume of an enclosure without reducing a quality factor a coil.SOLUTION: In an enclosure in which a winding type coil 50 is housed, an electromagnetic shield housing 100 that is a conductive shield plate surrounding the coil 50 includes: a bottom shield plate 10V, a right side shield plate 10R, a left side shield plate 10L, a front part shield plate 10F, and a rear part shield plate 10B in each of which a slit part 11 is provided so as to have the orthogonal direction with respect to a direction of current flowing into the coil 50 along the current direction at specific interval.

Description

本発明は、巻線型のコイルが収納され、遮蔽板を備えた電磁遮蔽筐体に関する。   The present invention relates to an electromagnetic shielding housing in which a winding type coil is housed and provided with a shielding plate.

電磁波を遮断する遮蔽板を備えた外筐体内に電子機器の本体部を収納する電磁遮蔽筐体は、従来例えば特許文献1に記載のように、通風孔を有する外部筐体に遮蔽板を配置することが開示されている。   An electromagnetic shielding casing that houses a main body of an electronic device in an outer casing having a shielding plate that shields electromagnetic waves is conventionally arranged in an external casing having ventilation holes, as described in Patent Document 1, for example. Is disclosed.

尚、金属壁に囲まれた電磁波の遮蔽効果を説明する方形導波管理論は、下記非特許文献1に記載されている。   Non-patent document 1 describes a rectangular waveguide management theory that explains the shielding effect of electromagnetic waves surrounded by a metal wall.

特開平5−72364号公報JP-A-5-72364

クレートン・R.ポール、「EMC概論」、ミマツデータシステム、1996/02出版 pp700−705Clayton R. Paul, "Introduction to EMC", Mimatsu Data System, 1996/02 publication pp700-705

電磁界の漏洩防止用金属遮蔽板を用いた筐体内にヘリカル型、一様螺旋型のコイルを収納し、該コイルに電流を流すと、コイルの導体に平行する方向で遮蔽板内にコイルの電流と反対方向に渦電流が発生する。   When a helical type or uniform helical type coil is housed in a casing using a metal shielding plate for preventing electromagnetic field leakage, and a current is passed through the coil, the coil is placed in the shielding plate in a direction parallel to the coil conductor. Eddy current is generated in the opposite direction of the current.

この渦電流はコイルのQ(品質)を減少させる。渦電流はコイルの電流が大きくなる、或いはコイルと遮蔽板の距離が短くなると大きくなる。したがって、Qへの影響を避けるためには遮蔽板とコイルの間の距離を大きくしたり、電流を下げる必要があった。   This eddy current reduces the Q (quality) of the coil. The eddy current increases as the coil current increases or the distance between the coil and the shielding plate decreases. Therefore, in order to avoid the influence on Q, it is necessary to increase the distance between the shielding plate and the coil or to reduce the current.

しかし、遮蔽板とコイルの間の距離を大きくすると筐体の体積が大きくなってしまうという問題があった。   However, when the distance between the shielding plate and the coil is increased, there is a problem that the volume of the housing is increased.

本発明は上記課題を解決するものであり、その目的は、コイルのQを低下させることなく筐体の体積を減少させることができる電磁遮蔽筐体を提供することにある。   The present invention solves the above-described problems, and an object of the present invention is to provide an electromagnetic shielding housing capable of reducing the volume of the housing without reducing the Q of the coil.

上記課題を解決するための請求項1に記載の電磁遮蔽筐体は、巻線型のコイルが収納される筐体において、前記コイルを囲む導体の遮蔽板であって、前記コイルに流れる電流の方向に対して直交方向となる切れ込み部を、前記電流の方向に沿って所定間隔で設けた遮蔽板を備えたことを特徴としている。   The electromagnetic shielding case according to claim 1 for solving the above problem is a shielding plate for a conductor surrounding the coil in a case in which a wound coil is accommodated, and a direction of a current flowing in the coil It is characterized in that a shielding plate is provided in which cut portions that are orthogonal to each other are provided at predetermined intervals along the current direction.

上記構成によれば、切れ込み部によって、遮蔽板に誘起される渦電流の流れが阻害され、コイルのQが低下することを防止でき、またコイルと遮蔽板の間の距離を小さく構成することができる。   According to the said structure, the flow of the eddy current induced by a shielding board can be inhibited by the notch | incision part, it can prevent that Q of a coil falls, and the distance between a coil and a shielding board can be comprised small.

また、請求項2に記載の電磁遮蔽筐体は、前記遮蔽板が、互いに対向配設された第1、第2の遮蔽板で構成され、前記コイルに流れる電流の方向に対して直交方向に設けられた第1の遮蔽板の切れ込み部に対して、第2の遮蔽板における切れ込み部以外の部位が対向するように配設されていることを特徴としている。   Further, in the electromagnetic shielding case according to claim 2, the shielding plate is configured by first and second shielding plates arranged to face each other, and is orthogonal to the direction of the current flowing through the coil. It is characterized in that a portion other than the cut portion of the second shielding plate is disposed so as to face the cut portion of the provided first shielding plate.

上記構成によれば、切れ込み部から電磁界、磁束が漏出することを防ぐことができる。   According to the said structure, it can prevent that an electromagnetic field and a magnetic flux leak from a notch part.

また、請求項3に記載の電磁遮蔽筐体は、前記第1の遮蔽板と第2の遮蔽板の間には間隙dが設けられ、前記切れ込み部の前記電流の方向に沿う方向の幅をWa,切れ込み部の設置間隔をWcとしたときに、前記dを小さく、且つ前記第1の遮蔽板と第2の遮蔽板の切れ込み部以外の部位どうしが対向する重なり部位における、前記電流の方向に沿う方向の長さl=(Wc−Wa)/2が、大となるように、前記Wa,Wcが設定されていることを特徴としている。   Further, in the electromagnetic shielding case according to claim 3, a gap d is provided between the first shielding plate and the second shielding plate, and the width of the cut portion in the direction along the current direction is Wa, When the installation interval of the notches is Wc, d is small, and the direction of the current is along the overlapping portion where the portions other than the notches of the first shielding plate and the second shielding plate face each other. The above-described Wa and Wc are set so that the length of the direction l = (Wc−Wa) / 2 becomes large.

上記構成によれば、間隙dによって換気をとることができるとともに、電磁界、磁束の漏出をさらに防止することができる。   According to the said structure, while being able to take ventilation with the gap | interval d, the leakage of an electromagnetic field and magnetic flux can further be prevented.

また、請求項4に記載の電磁遮蔽筐体は、前記コイルから発生し遮蔽板から漏洩する電磁束を打ち消す方向に磁束を発生する補助コイルを、前記遮蔽板近傍のコイル径方向の外周部位に配設したことを特徴としている。   The electromagnetic shielding case according to claim 4 has an auxiliary coil that generates magnetic flux in a direction that cancels out the electromagnetic flux generated from the coil and leaking from the shielding plate, at an outer peripheral portion in the coil radial direction in the vicinity of the shielding plate. It is characterized by being arranged.

上記構成によれば、コイルからコイル径方向外周側に漏洩する電磁束を打ち消すことができるため、磁束をコイルの長さ方向(軸方向)に集中させることができる。   According to the said structure, since the electromagnetic flux which leaks from a coil to the coil radial direction outer peripheral side can be negated, magnetic flux can be concentrated in the length direction (axial direction) of a coil.

また、前記切れ込み部の最大長は、前記コイルに流れる電流の波長λの1/8以下に形成されていることを特徴としている。   Further, the maximum length of the cut portion is formed to be 1/8 or less of the wavelength λ of the current flowing through the coil.

上記構成によれば、電磁界、磁束の漏出防止効果をさらに高めることができる。   According to the said structure, the leakage prevention effect of an electromagnetic field and magnetic flux can further be improved.

(1)請求項1〜5に記載の発明によれば、切れ込み部によって、遮蔽板に誘起される渦電流の流れを阻害することができる。このため、コイルのQを低下させることなくコイルと遮蔽板の間の距離を小さくし、筐体の体積を減少させることができる。
(2)請求項2に記載の発明によれば、切れ込み部から電磁界、磁束が漏出することを防ぐことができる。
(3)請求項3に記載の発明によれば、間隙dによって換気をとることができるとともに、電磁界、磁束の漏出をさらに防止することができる。
(4)請求項4に記載の発明によれば、コイルからコイル径方向外周側に漏洩する電磁束を打ち消すことができるため、磁束をコイルの長さ方向(軸方向)に集中させることができる。
(5)前記切れ込み部の最大長を、前記コイルに流れる電流の波長λの1/8以下に形成することにより、電磁界、磁束の漏出防止効果をさらに高めることができる。
(1) According to the inventions of the first to fifth aspects, the flow of eddy currents induced in the shielding plate can be inhibited by the cut portions. For this reason, the distance between the coil and the shielding plate can be reduced without reducing the Q of the coil, and the volume of the housing can be reduced.
(2) According to invention of Claim 2, it can prevent that an electromagnetic field and a magnetic flux leak from a notch part.
(3) According to the invention described in claim 3, ventilation can be taken by the gap d, and leakage of electromagnetic field and magnetic flux can be further prevented.
(4) According to the invention described in claim 4, since the electromagnetic flux leaking from the coil to the outer circumference side in the radial direction of the coil can be canceled out, the magnetic flux can be concentrated in the length direction (axial direction) of the coil. .
(5) By forming the maximum length of the cut portion to be 1/8 or less of the wavelength λ of the current flowing through the coil, the effect of preventing leakage of electromagnetic fields and magnetic flux can be further enhanced.

本発明の一実施形態例を示し、(a)は正面図、(b)はカバーを外した平面図。1 shows an embodiment of the present invention, (a) is a front view, and (b) is a plan view with a cover removed. FIG. 本発明の他の実施形態例を示し、(a)は正面図、(b)はカバーを外した平面図。The other embodiment example of this invention is shown, (a) is a front view, (b) is the top view which removed the cover. 本発明の他の実施形態例を示し、(a)は2枚の遮蔽板の要部断面図、(b)は切れ込み部の正面図。The other embodiment example of this invention is shown, (a) is principal part sectional drawing of two shielding boards, (b) is a front view of a notch part. 本発明の他の実施形態例を示し、(a)は正面図、(b)は平面図、(c)は要部を透視した斜視図。The other embodiment example of this invention is shown, (a) is a front view, (b) is a top view, (c) is the perspective view which saw through the principal part. 本発明の他の実施形態例におけるコイルと補助コイルの等価回路図。The equivalent circuit schematic of the coil and auxiliary coil in the other embodiment of this invention. 本発明の他の実施形態例における要部説明図。Explanatory drawing in the principal part in the other embodiment of this invention.

以下、図面を参照しながら本発明の実施の形態を説明するが、本発明は下記の実施形態例に限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments.

図1は、本発明の一実施形態例における電磁遮蔽筐体100を表し、(a)は正面を示し、(b)は平面を示している。電磁遮蔽筐体100は、導体(例えば金属)の遮蔽板10を用いて、天井部が開口された矩形の筐体に構成され、その内部には正四角形状に巻回されたコイル50が収納されている。   1A and 1B show an electromagnetic shielding casing 100 according to an embodiment of the present invention, in which FIG. 1A shows a front view and FIG. 1B shows a plane. The electromagnetic shielding casing 100 is configured as a rectangular casing with a ceiling portion opened using a shielding plate 10 made of a conductor (for example, metal), and a coil 50 wound in a regular square shape is accommodated therein. Has been.

遮蔽板10は、底部遮蔽板10V、右側遮蔽板10R、左側遮蔽板10L、前部遮蔽板10Fおよび後部遮蔽板10Bにより構成され、それら各遮蔽板10には、コイル50に流れる電流の方向に対して直交方向となる切れ込み部11が、前記電流の方向に沿って所定間隔で複数個設けられている。   The shielding plate 10 includes a bottom shielding plate 10V, a right shielding plate 10R, a left shielding plate 10L, a front shielding plate 10F, and a rear shielding plate 10B. Each shielding plate 10 has a current flowing in the coil 50 in the direction of current. On the other hand, a plurality of cut portions 11 that are orthogonal to each other are provided at predetermined intervals along the current direction.

電磁遮蔽筐体100の天井開口部位には、樹脂性のカバー12が設けられており、図1(b)では図示省略している。   A resinous cover 12 is provided at the ceiling opening portion of the electromagnetic shielding casing 100, and is not shown in FIG.

前記遮蔽板10に設けた切れ込み部11によって、コイル50に電流を流したときに遮蔽板10に誘起される渦電流の流れが阻害される。   The notch 11 provided in the shielding plate 10 inhibits the flow of eddy current induced in the shielding plate 10 when a current is passed through the coil 50.

切れ込み部11は、遮蔽板10を例えば図3(b)に示すように長方形状に切り欠いて形成され、その切れ込みによって生じた空間の直線的に最も長い部分(一般的には対角線)の長さは、少なくともコイル50に流れている電流の波長λ(近接しているコイルと共振している場合は共振周波数から導かれる波長)の1/8以下であることが望ましい。   The cut portion 11 is formed by cutting the shielding plate 10 into, for example, a rectangular shape as shown in FIG. 3B, and the length of the linearly longest portion (generally a diagonal line) of the space generated by the cut. It is desirable that it is at least 1/8 or less of the wavelength λ of the current flowing through the coil 50 (the wavelength derived from the resonance frequency when resonating with the adjacent coil).

遮蔽板10は、金属遮蔽板の代わりに軟磁性材料を用いる他、金属層上に軟磁性層を積層しても良い。前記軟磁性材料としてはアモルファス合金、パーマロイ、電磁軟鉄、ケイ素鋼板、軟磁性フェライト等が挙げられる。   For the shielding plate 10, a soft magnetic material may be used instead of the metal shielding plate, or a soft magnetic layer may be laminated on the metal layer. Examples of the soft magnetic material include amorphous alloy, permalloy, electromagnetic soft iron, silicon steel plate, and soft magnetic ferrite.

次に図2に、遮蔽板10の外周部位に、切れ込み部11を覆うように遮蔽板20を重ねて電磁遮蔽筐体110を構成した実施例を示す。   Next, FIG. 2 shows an embodiment in which the electromagnetic shielding casing 110 is configured by overlapping the shielding plate 20 so as to cover the cut portion 11 on the outer peripheral portion of the shielding plate 10.

図2において、図1と同一部分は同一符号をもって示している。遮蔽板20は距離(d)を隔てて遮蔽板10に対向配設されている。遮蔽板20は、遮蔽板10と同様に、底部遮蔽板20V、右側遮蔽板20R、左側遮蔽板20L、前部遮蔽板20Fおよび後部遮蔽板20Bにより構成され、それら各遮蔽板20には、コイル50に流れる電流の方向に対して直交方向となる切れ込み部21が、前記電流の方向に沿って所定間隔で複数個設けられている。   2, the same parts as those in FIG. 1 are denoted by the same reference numerals. The shielding plate 20 is disposed to face the shielding plate 10 with a distance (d). As with the shielding plate 10, the shielding plate 20 includes a bottom shielding plate 20V, a right shielding plate 20R, a left shielding plate 20L, a front shielding plate 20F, and a rear shielding plate 20B. Each shielding plate 20 includes a coil. A plurality of cut portions 21 that are orthogonal to the direction of the current flowing through 50 are provided at predetermined intervals along the direction of the current.

そして遮蔽板20は、遮蔽板10の切れ込み部11に対して、遮蔽板20における切れ込み部21以外の部位が対向するように配設されている。   The shielding plate 20 is disposed so that a portion other than the notch 21 in the shielding plate 20 faces the notch 11 of the shielding plate 10.

遮蔽板10と20の間の距離dは、λ/8以下であることが望ましい。この遮蔽板10と20の間の隙間は、電磁界の漏出を防止すると同時に換気をする効果を持つ。さらに互いに対向する側の切れ込み部を覆うことにより、磁束の漏出を防止する効果もある。   The distance d between the shielding plates 10 and 20 is desirably λ / 8 or less. The gap between the shielding plates 10 and 20 has the effect of ventilating while preventing leakage of the electromagnetic field. Furthermore, covering the notches on the sides facing each other also has an effect of preventing leakage of magnetic flux.

ここで、金属壁に囲まれた電磁波の遮蔽効果を方形導波管理論によって説明する。誘電体で満たされたdの内径を持つ方形導波管を考える(本実施例における遮蔽板10と20の間の距離dに相当)。導波管内を伝播する電磁波の位相速度:vr、光速:c、比誘電率:εrとすると、遮断周波数は以下の式(1)で与えられる。   Here, the shielding effect of the electromagnetic wave surrounded by the metal wall will be described by the rectangular waveguide management theory. Consider a rectangular waveguide with an inner diameter of d filled with a dielectric (corresponding to the distance d between the shielding plates 10 and 20 in this example). Assuming that the phase velocity of the electromagnetic wave propagating in the waveguide is vr, the speed of light is c, and the relative dielectric constant is εr, the cutoff frequency is given by the following equation (1).

Figure 2012089714
Figure 2012089714

方形導波管の減衰率αは、非特許文献1より、次の式(2)で与えられる。   The attenuation factor α of the rectangular waveguide is given by the following equation (2) from Non-Patent Document 1.

Figure 2012089714
Figure 2012089714

従って、長さlの導波管の減衰(シールド効果SE)は以下の式(3)で与えられる。   Accordingly, the attenuation (shielding effect SE) of the waveguide of length l is given by the following equation (3).

Figure 2012089714
Figure 2012089714

従って電波が漏出する経路が狭く長いことが電波の漏洩防止には有効である。   Therefore, a narrow and long path for radio wave leakage is effective in preventing radio wave leakage.

そこで本実施例では、遮蔽板の断面を示す図3(a)のように、遮蔽板10側の切れ込み部11におけるコイルの電流方向に沿う方向の幅をWa、切れ込み部11の設置間隔(遮蔽板10におけるコイルの電流方向に沿う方向の長さ)をWcとした(遮蔽板20側においても同様とする)ときに、遮蔽板10と20の間の距離dを狭くし、且つ遮蔽板10と20どうしが対向して重なる部位における、コイルの電流方向に沿う方向の長さl=(Wc−Wa)/2が大となるように、前記Wa,Wcを設定するものである。   Therefore, in this embodiment, as shown in FIG. 3A showing a cross section of the shielding plate, the width in the direction along the current direction of the coil in the notch 11 on the shielding plate 10 side is Wa, and the installation interval (shielding) of the notch 11 When the length of the plate 10 along the current direction of the coil is Wc (the same applies to the shielding plate 20 side), the distance d between the shielding plates 10 and 20 is reduced, and the shielding plate 10 Wa and Wc are set such that the length l = (Wc−Wa) / 2 in the direction along the current direction of the coil at the portion where the two and 20 are opposed to each other is large.

また他の実施例として、図4に示すように、遮蔽板に近接して漏洩磁束に錯交し漏洩電磁波を打ち消す方向に磁束を発生する補助コイル(リングコイル)60を設けるものである。   As another embodiment, as shown in FIG. 4, an auxiliary coil (ring coil) 60 is provided in the vicinity of the shielding plate to generate a magnetic flux in a direction that crosses the leakage magnetic flux and cancels the leakage electromagnetic wave.

図4において、図2と同一部分は同一符号をもって示している。図4において図2と異なる部分は、コイル50から発生し遮蔽板10,20から漏洩する電磁束を打ち消す方向に磁束を発生する補助コイル60を、遮蔽板10,20の近傍(電磁遮蔽筐体110の天井側)のコイル50の径方向外周部位に配設し、保持した点にあり、その他は図2と同一に構成されている。   4, the same parts as those in FIG. 2 are denoted by the same reference numerals. 4 differs from FIG. 2 in that an auxiliary coil 60 that generates a magnetic flux in a direction that cancels out the electromagnetic flux generated from the coil 50 and leaks from the shielding plates 10 and 20 is disposed near the shielding plates 10 and 20 (electromagnetic shielding casing). 110 (on the ceiling side of 110) is arranged and held in the radially outer peripheral portion of the coil 50, and the others are configured in the same manner as in FIG.

尚、補助コイル60の配設位置を保持する手段は図示省略している。   A means for holding the position where the auxiliary coil 60 is disposed is not shown.

また図4(a)において、前部遮蔽板における切れ込み部は、内側の前部遮蔽板10Fの切れ込み部11のみを図示し、外側の前部遮蔽板20Fの切れ込み部21は図示省略している。   Further, in FIG. 4A, the notch in the front shielding plate shows only the notch 11 in the inner front shielding plate 10F, and the notch 21 in the outer front shielding plate 20F is not shown. .

また図4(c)は電磁遮蔽筐体110の内部を透視した斜視図であり、コイル50を図示省略しているとともに、前部遮蔽板10F,20Fおよび右側遮蔽板10R,20Rの各切れ込み部11、21は図示省略している。   FIG. 4C is a perspective view of the inside of the electromagnetic shielding housing 110 seen through. The coil 50 is not shown, and the notches of the front shielding plates 10F and 20F and the right shielding plates 10R and 20R are shown. 11 and 21 are not shown.

ここで、コイル50に流れる電流をi1,補助コイル60に流れる電流をi2、コイル50のインダクタンスをL1,補助コイル60のインダクタンスをL2、相互インダクタンスをMとすると、等価回路は図5のようになる。
これは以下の方程式に書くことができる。
Here, assuming that the current flowing through the coil 50 is i 1 , the current flowing through the auxiliary coil 60 is i 2 , the inductance of the coil 50 is L 1 , the inductance of the auxiliary coil 60 is L 2 , and the mutual inductance is M, the equivalent circuit is shown in FIG. It becomes like 5.
This can be written in the following equation:

Figure 2012089714
Figure 2012089714

補助コイル60の抵抗R2が小さければ補助コイル60に流れる電流はコイル50に流れる電流と位相が反転する。従って磁束も反転し磁束分布が電磁遮蔽板(10、20)の周囲の漏洩電磁束を抑制し、その結果コイル前面(コイル50の長さ(軸)方向)に磁束を集中させることができる。 If the resistance R 2 of the auxiliary coil 60 is small, the phase of the current flowing through the auxiliary coil 60 is reversed from that of the current flowing through the coil 50. Accordingly, the magnetic flux is also reversed, and the magnetic flux distribution suppresses the leakage magnetic flux around the electromagnetic shielding plates (10, 20). As a result, the magnetic flux can be concentrated on the front surface of the coil (the length (axis) direction of the coil 50).

前記補助コイル60は金属の遮蔽板10,20に電気的に接続されていても良い。また、補助コイル60の導電体の上に磁性層を積層しても良い。   The auxiliary coil 60 may be electrically connected to the metal shielding plates 10 and 20. Further, a magnetic layer may be laminated on the conductor of the auxiliary coil 60.

尚、換気を行なわない場合は、2層の遮蔽板10,20の間を樹脂等で充填することも可能である。さらに、遮蔽板を3層以上に多層化することもできる。また図6に示すように、遮蔽板10、20の間に導電性の連結壁30を設けることにより開口部を小さくして遮断周波数を下げることが可能となる。   When ventilation is not performed, the space between the two shielding plates 10 and 20 can be filled with resin or the like. Furthermore, the shielding plate can be multi-layered into three or more layers. In addition, as shown in FIG. 6, by providing a conductive connecting wall 30 between the shielding plates 10 and 20, it is possible to reduce the opening and lower the cutoff frequency.

また、コイル50の形状は多角形、円形、楕円形のヘリカル型、一様螺旋の何れでも良く、コイル50の断面は長方形、円形、楕円形の何れでも良い。   The shape of the coil 50 may be any of a polygonal shape, a circular shape, an elliptical helical shape, and a uniform spiral shape, and the cross section of the coil 50 may be any of a rectangular shape, a circular shape, and an elliptical shape.

10,20…遮蔽板
11,21…切れ込み部
12…カバー
30…連結壁
50…コイル
60…補助コイル
100,110…電磁遮蔽筐体
DESCRIPTION OF SYMBOLS 10,20 ... Shielding plate 11,21 ... Cut part 12 ... Cover 30 ... Connection wall 50 ... Coil 60 ... Auxiliary coil 100, 110 ... Electromagnetic shielding housing

Claims (4)

巻線型のコイルが収納される筐体において、
前記コイルを囲む導体の遮蔽板であって、前記コイルに流れる電流の方向に対して直交方向となる切れ込み部を、前記電流の方向に沿って所定間隔で設けた遮蔽板を備えたことを特徴とする電磁遮蔽筐体。
In a housing that houses a wound coil,
A shield plate for a conductor surrounding the coil, comprising a shield plate provided with notches that are orthogonal to the direction of current flowing in the coil at predetermined intervals along the current direction. An electromagnetic shielding housing.
前記遮蔽板は、互いに対向配設された第1、第2の遮蔽板で構成され、前記コイルに流れる電流の方向に対して直交方向に設けられた第1の遮蔽板の切れ込み部に対して、第2の遮蔽板における切れ込み部以外の部位が対向するように配設されていることを特徴とする請求項1に記載の電磁遮蔽筐体。 The shielding plate is composed of first and second shielding plates arranged to face each other, and with respect to a cut portion of the first shielding plate provided in a direction orthogonal to the direction of the current flowing through the coil. The electromagnetic shielding casing according to claim 1, wherein the second shielding plate is disposed so that portions other than the cut portion are opposed to each other. 前記第1の遮蔽板と第2の遮蔽板の間には間隙dが設けられ、
前記切れ込み部の前記電流の方向に沿う方向の幅をWa,切れ込み部の設置間隔をWcとしたときに、
前記dを小さく、且つ前記第1の遮蔽板と第2の遮蔽板の切れ込み部以外の部位どうしが対向する重なり部位における、前記電流の方向に沿う方向の長さl=(Wc−Wa)/2が、大となるように、前記Wa,Wcが設定されていることを特徴とする請求項2に記載の電磁遮蔽筐体。
A gap d is provided between the first shielding plate and the second shielding plate,
When the width in the direction along the current direction of the cut portion is Wa and the installation interval of the cut portions is Wc,
The length l in the direction along the direction of the current l = (Wc−Wa) / in an overlapping portion where the portion d is small and the portions other than the cut portions of the first shielding plate and the second shielding plate face each other. The electromagnetic shielding casing according to claim 2, wherein the Wa and Wc are set so that 2 is large.
前記コイルから発生し遮蔽板から漏洩する電磁束を打ち消す方向に磁束を発生する補助コイルを、前記遮蔽板近傍のコイル径方向の外周部位に配設したことを特徴とする請求項1ないし3のいずれか1項に記載の電磁遮蔽筐体。 4. An auxiliary coil that generates magnetic flux in a direction that cancels out electromagnetic flux generated from the coil and leaking from the shielding plate is disposed at an outer peripheral portion in the coil radial direction in the vicinity of the shielding plate. The electromagnetic shielding housing according to any one of claims.
JP2010236017A 2010-10-21 2010-10-21 Electromagnetic shielding housing Expired - Fee Related JP5754913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010236017A JP5754913B2 (en) 2010-10-21 2010-10-21 Electromagnetic shielding housing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010236017A JP5754913B2 (en) 2010-10-21 2010-10-21 Electromagnetic shielding housing

Publications (2)

Publication Number Publication Date
JP2012089714A true JP2012089714A (en) 2012-05-10
JP5754913B2 JP5754913B2 (en) 2015-07-29

Family

ID=46261003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010236017A Expired - Fee Related JP5754913B2 (en) 2010-10-21 2010-10-21 Electromagnetic shielding housing

Country Status (1)

Country Link
JP (1) JP5754913B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057115U (en) * 1983-09-26 1985-04-20 北芝電機株式会社 Magnetic shield structure of transformer
JPH0722231A (en) * 1993-06-21 1995-01-24 Toshiba Corp Superconducting magnet for mri system
JPH1140978A (en) * 1997-07-15 1999-02-12 Sumitomo Electric Ind Ltd Method for reducing leaked magnetic field for magnetic circuit and electromagnetic actuator employing the reduction method
JP2001035733A (en) * 1999-07-23 2001-02-09 Hitachi Ltd Magnetic shield device for stationary induction electrical apparatus
JP2003069271A (en) * 2001-08-30 2003-03-07 Canon Inc Multi-layered shield structure and electronic device
JP2004327763A (en) * 2003-04-25 2004-11-18 Matsushita Electric Ind Co Ltd Magnetic shielding method and magnetic field generator using the same
JP2006178713A (en) * 2004-12-22 2006-07-06 Fuji Electric Holdings Co Ltd Information processor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057115U (en) * 1983-09-26 1985-04-20 北芝電機株式会社 Magnetic shield structure of transformer
JPH0722231A (en) * 1993-06-21 1995-01-24 Toshiba Corp Superconducting magnet for mri system
JPH1140978A (en) * 1997-07-15 1999-02-12 Sumitomo Electric Ind Ltd Method for reducing leaked magnetic field for magnetic circuit and electromagnetic actuator employing the reduction method
JP2001035733A (en) * 1999-07-23 2001-02-09 Hitachi Ltd Magnetic shield device for stationary induction electrical apparatus
JP2003069271A (en) * 2001-08-30 2003-03-07 Canon Inc Multi-layered shield structure and electronic device
JP2004327763A (en) * 2003-04-25 2004-11-18 Matsushita Electric Ind Co Ltd Magnetic shielding method and magnetic field generator using the same
JP2006178713A (en) * 2004-12-22 2006-07-06 Fuji Electric Holdings Co Ltd Information processor

Also Published As

Publication number Publication date
JP5754913B2 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
US10186753B2 (en) Antenna device and portable electronic device using the same
US20160164178A1 (en) Antenna device and portable electronic device using the same
KR102004807B1 (en) Coil component
JP6187606B2 (en) Printed board
JP2015211421A (en) Antenna device
JP2013160638A (en) Current detector
JP2009071604A (en) Flat antenna
JP6129091B2 (en) Antenna device and portable electronic device using the same
JP2016136698A (en) Antenna structure, non-contact power transmission mechanism, and electronic device
JP2016140026A (en) Antenna device
CN103576112B (en) Magnetic resonance equipment electromagnetic shielding method and the device for accordingly being shielded
JP5414401B2 (en) Static induction machine
JP5754913B2 (en) Electromagnetic shielding housing
JP5930400B2 (en) Open magnetic shield structure with conductor circuit
JP7116531B2 (en) common mode choke coil
JP5928496B2 (en) Antenna device and portable electronic device using the same
JP2011035159A (en) Stationary induction appliance
JP2010074116A (en) Transformer
JP2016165155A (en) Antenna device and portable electronic apparatus using the same
US11075031B2 (en) Inductor and inductor arrangement
JP4371307B2 (en) Zero-phase current transformer
JPS6264024A (en) Unnecessary radiation preventer
JP2011165917A (en) Magnetic shield box
JP5191118B2 (en) Obstacle wave breaking transformer
JP7122137B2 (en) Electric unit for wireless power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150526

R150 Certificate of patent or registration of utility model

Ref document number: 5754913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees