JP2012089416A - Circuit breaker - Google Patents

Circuit breaker Download PDF

Info

Publication number
JP2012089416A
JP2012089416A JP2010236629A JP2010236629A JP2012089416A JP 2012089416 A JP2012089416 A JP 2012089416A JP 2010236629 A JP2010236629 A JP 2010236629A JP 2010236629 A JP2010236629 A JP 2010236629A JP 2012089416 A JP2012089416 A JP 2012089416A
Authority
JP
Japan
Prior art keywords
movable contact
contact
circuit breaker
conductor
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010236629A
Other languages
Japanese (ja)
Inventor
Kentaro Ogura
健太郎 小倉
Kyohei Minoda
強平 蓑田
Shinya Watanabe
真也 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010236629A priority Critical patent/JP2012089416A/en
Publication of JP2012089416A publication Critical patent/JP2012089416A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Breakers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a circuit breaker in which an arc generated between a fixed contact and the movable contact element of a movable contact maintains the movable contact element in open pole state after commutation to suppress restrike phenomenon when the main circuit is interrupted.SOLUTION: A movable contact 5 provided in a movable contact element 6 supported rotatably by a movable element holder 9 is separated from a fixed contact 3, the movable contact element 6 performs rotational movement, and maintains the open pole state by an electromagnetic repulsion force at a position where the direction of a current flowing through the flexible conductor 15 of a commutation traveling conductor 14 is opposite from the direction of a current flowing to the other end 6b side of the movable contact element thus suppressing restrike.

Description

この発明は、配線用遮断器や漏電遮断器などの回路遮断器に関するものであり、特にアーク転流後の再点弧を抑制した構成を備えた回路遮断器に係るものである。   The present invention relates to a circuit breaker such as a circuit breaker for wiring and an earth leakage breaker, and particularly relates to a circuit breaker having a configuration in which re-ignition after arc commutation is suppressed.

近年における低圧配線用設備の大容量化、省スペース化により、配線用遮断器・漏電遮断器などは外形寸法の小形化が要求されている。小形化における課題の一つとしてあげられるのが過電流を低く抑制する限流性能の向上である。事故時などの過電流の遮断時、通電状態の導体間に発生する電磁力を利用し、可動接点のある可動接触子を高速に開極させることでアーク長を引き延ばしてアーク抵抗を高めて限流する、あるいは、接点間に発生したアークを消弧装置である消弧板に引き込んで分断し、電極降下電圧の発生及びアークの冷却などによりアーク電圧を高めて限流させることが重要である。限流性能向上により回路遮断器の消弧室で処理するアークエネルギーの低下が可能となり、回路遮断器を構成する部品への熱的、電磁力的な負担が軽減して小形化が可能となる。   In recent years, due to the increase in capacity and space saving of low-voltage wiring facilities, wiring breakers, earth leakage circuit breakers, etc. are required to be reduced in outer dimensions. One of the issues in miniaturization is the improvement of current limiting performance that suppresses overcurrent. When an overcurrent is interrupted during an accident, etc., the electromagnetic force generated between the energized conductors is used to open the movable contact with the movable contact at high speed, thereby extending the arc length and limiting the arc resistance. It is important that the arc generated between the contacts or the arc generated between the contacts is drawn into the arc extinguishing plate, which is an arc extinguishing device, and the arc voltage is increased by limiting the current by generating an electrode drop voltage and cooling the arc. . Improved current-limiting performance enables the arc energy to be processed in the arc-extinguishing chamber of the circuit breaker to be reduced, reducing the thermal and electromagnetic load on the components that make up the circuit breaker and enabling downsizing. .

従来の配線用遮断器では、可動接触子が最大開極した先端周辺から、消弧装置の片側にほぼ平行配置されたアークランナを配置し、このアークランナを可動接触子より負荷側の通電路に機械的に接続して同電位とし、可動接触子上のアークスポットをアークランナに転流させる技術が示されている(例えば、特許文献1)。   In a conventional circuit breaker, an arc runner arranged almost in parallel is arranged on one side of the arc extinguishing device from the periphery of the tip where the movable contact is maximized. A technique is disclosed in which the electric potential is connected to the same potential and the arc spot on the movable contact is commutated to the arc runner (for example, Patent Document 1).

特開平02−265142号公報JP 02-265142 A

しかしながら上記特許文献1に開示された従来の回路遮断器にあっては、接点間にアークが発生し可動接触子が通電経路の一部となっている場合、アークを流れる電流と可動接触子を流れる電流はほぼ直角に近い角度をなすため、可動接触子側のアークスポット周辺の導体にはローレンツ力が作用して可動接触子を開極させる方向に駆動力が発生する。これは、可動接触子が接圧バネにより、常時、閉極(ON)方向に受けている駆動力に対する抗力となっている。従って、アークがアークランナーに完全に転流すると可動接触子は閉極方向の駆動力だけとなり、閉極動作を開始して接点間距離が短縮していく。このため、両接点間の耐絶縁性能が低下し、消弧装置に入り込んだアークが再び接点間に戻る再点弧現象が発生し、消弧装置での分断効果が無くなり、さらにアーク長も短縮されるため限流性能が低下し、遮断器の遮断性能を低下させるという問題点がある。   However, in the conventional circuit breaker disclosed in Patent Document 1, when an arc is generated between the contacts and the movable contact is part of the energization path, the current flowing through the arc and the movable contact are Since the flowing current forms an angle close to a right angle, Lorentz force acts on the conductor around the arc spot on the movable contact side, and a driving force is generated in a direction to open the movable contact. This is a resistance against the driving force that the movable contact is constantly receiving in the closing (ON) direction by the contact pressure spring. Therefore, when the arc completely commutates to the arc runner, the movable contact becomes only the driving force in the closing direction, and the closing operation is started to shorten the distance between the contacts. As a result, the insulation resistance between the contacts decreases, the arc that has entered the arc-extinguishing device re-ignites, and the arc-extinguishing effect disappears, further reducing the arc length. Therefore, there is a problem that the current limiting performance is lowered and the breaking performance of the circuit breaker is lowered.

この発明は上記のような課題を解決するためになされたものであって、アーク転流後に可動接触子を開極状態で維持することが出来て、再点弧現象を抑制した回路遮断器を提供することを目的とする。   The present invention has been made to solve the above-described problems. A circuit breaker capable of maintaining the movable contact in an open state after arc commutation and suppressing re-ignition phenomenon. The purpose is to provide.

この発明に係る回路遮断器は、固定接触子と可動接触子と転流走行導体とが設けられており、固定接触子は一端に固定接点が他端に入力端子が設けられ、可動接触子は可動子ホルダに回転可能なよう支持され一端に可動接点が、他端に転流走行導体に設けられた可撓導体に接続されるとともに、可動接触子は可動子ホルダを介して出力端子に接続されており、主回路に過電流が流れると、可動接触子の可動接点が固定接触子の固定接点から開離して可動接触子が回転移動を行い、可動接点と固定接点間に発生するアークが転流走行導体に転流し可撓導体に流れる電流の向きと、可動接触子の他端側に流れる電流の向きとが逆方向となる位置において、主回路の開極状態が維持されるものである。   The circuit breaker according to the present invention is provided with a fixed contact, a movable contact, and a commutation running conductor. The fixed contact has a fixed contact at one end and an input terminal at the other end. A movable contact is supported by the movable element holder so that it can rotate. A movable contact is connected to one end of the movable element. A flexible contact is provided to the other end of the commutating conductor. The movable contact is connected to the output terminal via the movable element holder. When an overcurrent flows through the main circuit, the movable contact of the movable contact is separated from the fixed contact of the fixed contact, the movable contact rotates, and an arc generated between the movable contact and the fixed contact is generated. The open circuit state of the main circuit is maintained at a position where the direction of the current commutated to the commutation running conductor and flowing to the flexible conductor is opposite to the direction of the current flowing to the other end of the movable contact. is there.

この発明によれば、上記のような構成を採用した回路遮断器であるので、アークが転流走行導体に転流後、閉極しようとする可動接触子を開極状態で維持することが可能となり、このため可動接点と固定接点間距離の短縮による再点弧現象を抑制した高い遮断性能を得ることができる。   According to the present invention, since the circuit breaker adopts the above-described configuration, it is possible to maintain the movable contact that is to be closed after the arc is commutated to the commutation running conductor in the open state. For this reason, it is possible to obtain a high breaking performance in which the re-ignition phenomenon due to the shortening of the distance between the movable contact and the fixed contact is suppressed.

実施の形態1の回路遮断器の閉極状態を示す側面図である。It is a side view which shows the closing state of the circuit breaker of Embodiment 1. 実施の形態1の回路遮断器の開極状態を示す側面図である。It is a side view which shows the open circuit state of the circuit breaker of Embodiment 1. 実施の形態1の回路遮断器の転流後の状態を示す側面図と転流後の通電経路を示す模式図である。It is the side view which shows the state after the commutation of the circuit breaker of Embodiment 1, and the schematic diagram which shows the electricity supply path | route after a commutation. 実施の形態1の可動接触子を示す上面図である。FIG. 3 is a top view showing the movable contact according to the first embodiment. 実施の形態2の回路遮断器の閉極状態を示す側面図である。It is a side view which shows the closing state of the circuit breaker of Embodiment 2. 実施の形態2の回路遮断器の開極状態を示す側面図である。It is a side view which shows the open circuit state of the circuit breaker of Embodiment 2. 実施の形態2の回路遮断器の転流後の状態を示す側面図と転流後の通電経路を示す模式図である。It is the side view which shows the state after the commutation of the circuit breaker of Embodiment 2, and the schematic diagram which shows the electricity supply path | route after a commutation. 実施の形態2の転流走行導体を示す上面図である。FIG. 6 is a top view showing a commutation running conductor according to a second embodiment. 実施の形態3の回路遮断器の閉極状態を示す側面図である。It is a side view which shows the closing state of the circuit breaker of Embodiment 3. 実施の形態3の回路遮断器の転流後の状態を示す側面図と転流後の通電経路を示す模式図である。It is the side view which shows the state after the commutation of the circuit breaker of Embodiment 3, and the schematic diagram which shows the electricity supply path | route after a commutation. 実施の形態4の回路遮断器の閉極状態を示す側面図である。It is a side view which shows the closing state of the circuit breaker of Embodiment 4. 実施の形態4の回路遮断器の転流後の状態を示す側面図と転流後の通電経路を示す模式図である。It is the side view which shows the state after the commutation of the circuit breaker of Embodiment 4, and the schematic diagram which shows the electricity supply path | route after a commutation. 実施の形態4の転流走行導体を示す上面図である。FIG. 10 is a top view showing a commutation running conductor according to a fourth embodiment.

実施の形態1.
この発明の実施の形態1を、図1〜図4を参照して説明する。
図1〜図3(a)は回路遮断器100の一部分である消弧室50の側面図であり、図には示していないが、異常電流を検知して開極指令を出力するリレー部や、同司令の伝達先で回路遮断器100のON・OFF動作を行う駆動機構部が配置されており、消弧室50はこれらと共に回路遮断器100の内部に一体収納されている。図1は閉極状態(接点ON状態)、図2、図3(a)は開極状態(接点OFF状態)を示している。消弧室50は絶縁物からなるベース1、カバー2などによって3相平行に区分されて回路遮断器100の内部に収納されている。消弧室50には一端に固定接点3が固着された固定接触子4、可動接触子の一端6aに可動接点5が固着された可動接触子6が配置されている。固定接触子4の固定接点3が固着されていない他端は、外部導体と接続される入力端子7となっている。可動接触子6はへの字形状であり、図1〜図3(a)において後述する転流走行導体14に対して逆への字型となるよう配置されており、さらに、逆への字型の頂点付近に回転軸8を有している。また、可動接触子の他端6bは転流走行導体14に設けられた可撓導体15に接続されている。さらにまた図4に可動接触子6を上方からの視点で見た図で示すように、回転軸8周辺は可動子ホルダ9で挟みこまれて支持されており、この可動子ホルダ9は可動接触子6と摺動接触状態となって電気的に接続されている。また、可動接触子6は図1〜図3(a)には示していないが閉極方向に駆動力を付与する接圧バネが装着されている。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described with reference to FIGS.
1 to 3 (a) are side views of the arc-extinguishing chamber 50 which is a part of the circuit breaker 100. Although not shown in the figure, a relay section that detects an abnormal current and outputs an opening command is shown. A drive mechanism for performing ON / OFF operation of the circuit breaker 100 is disposed at the transmission destination of the commander, and the arc extinguishing chamber 50 is integrally housed in the circuit breaker 100 together with these. FIG. 1 shows a closed state (contact ON state), and FIGS. 2 and 3A show an open state (contact OFF state). The arc extinguishing chamber 50 is divided into three phases in parallel by a base 1 made of an insulating material, a cover 2, and the like, and is housed in the circuit breaker 100. In the arc extinguishing chamber 50, a fixed contact 4 having a fixed contact 3 fixed to one end and a movable contact 6 having a movable contact 5 fixed to one end 6a of the movable contact are disposed. The other end of the fixed contact 4 where the fixed contact 3 is not fixed is an input terminal 7 connected to an external conductor. The movable contact 6 has a U-shape and is arranged in a reverse shape with respect to a commutation running conductor 14 described later in FIGS. 1 to 3A. A rotating shaft 8 is provided near the top of the mold. The other end 6 b of the movable contact is connected to a flexible conductor 15 provided on the commutation running conductor 14. Further, as shown in FIG. 4 in which the movable contactor 6 is viewed from above, the periphery of the rotary shaft 8 is sandwiched and supported by the movable element holder 9, and the movable element holder 9 is movable contactable. It is in sliding contact with the child 6 and is electrically connected. Although not shown in FIGS. 1 to 3A, the movable contact 6 is provided with a contact pressure spring that applies a driving force in the closing direction.

可動接触子6は、前述した回路遮断器100のON、OFF動作を行う図示省略した機械的構成の駆動機構部にリンクして可動接触子6を開閉動作させる絶縁物からなるクロスバー10で包囲支持されている。図1に示すように固定接触子4の上方には可動接触子6の開極時に固定接点3と可動接点5の間に発生するアークを取り込んで、分断、冷却する磁性体からなる消弧板11が複数枚重ねられた消弧装置12が配置されている。消弧装置12の右方にはベース1とカバー2が開口し遮断時に発生する図2に示すアーク16の熱ガスを排出する排気口13が有り、図には示していないがバリア材などによって排気口13は閉じられて回路遮断器100内部は閉塞状態となっている。上記バリア材は遮断時に消弧内部にアーク16が発生すると、発生圧力によって開放されて内部の熱ガスを排出させる。可動接触子6と消弧装置12の上方には転流走行導体14が配置されており、可撓導体15が可動接触子の可動接点5が固着されていない可動接触子の他端6bと接続されている。なお、図1〜図3(a)において図中の矢印は通電経路を示している。また図3(b)に通電経路のみを模式図として示す。   The movable contact 6 is surrounded by a crossbar 10 made of an insulator that is linked to a drive mechanism unit (not shown) that performs ON / OFF operation of the circuit breaker 100 described above to open and close the movable contact 6. It is supported. As shown in FIG. 1, an arc extinguishing plate made of a magnetic material that takes in and divides and cools an arc generated between the fixed contact 3 and the movable contact 5 when the movable contact 6 is opened above the fixed contact 4. An arc extinguishing device 12 in which a plurality of 11 are stacked is arranged. On the right side of the arc extinguishing device 12, there is an exhaust port 13 for discharging the hot gas of the arc 16 shown in FIG. 2, which is generated when the base 1 and the cover 2 are opened and shut off. The exhaust port 13 is closed and the inside of the circuit breaker 100 is closed. When the arc 16 is generated inside the arc extinguishing when interrupted, the barrier material is released by the generated pressure and discharges the internal hot gas. A commutating traveling conductor 14 is disposed above the movable contact 6 and the arc extinguishing device 12, and the flexible conductor 15 is connected to the other end 6b of the movable contact to which the movable contact 5 of the movable contact is not fixed. Has been. In FIG. 1 to FIG. 3A, the arrows in the drawings indicate energization paths. FIG. 3B shows only the energization path as a schematic diagram.

上記消弧室50において、図1の状態にあった消弧室50に過電流が流れると、可動接触子6を流れる電流と、これに対向する固定接触子4の電流の方向は逆方向であるため、流れる電流値に依存した電磁反発力が発生し可動接触子6は開極方向に駆動力が発生する。上記駆動力が図示省略した接圧バネの付勢力を越えると可動接触子6は開極動作を開始し、固定接点3と可動接点5が開離して接点間に図2に示すようにアーク16が発生する。この場合、通電経路は固定接触子4→アーク16→可動接触子6→可動子ホルダ9となる。可動接触子6の開極が進み、転流走行導体14に近接すると、アーク16周囲の圧力勾配による排気口13方向への熱ガスの流れ、固定接触子4と可動接触子6に流れる電流からの電磁駆動力などが作用し、アーク16に右方への駆動力が発生する。この結果、可動接触子6側のアークスポットは可動接触子6と同電位である転流走行導体14に転流する。   In the arc-extinguishing chamber 50, when an overcurrent flows through the arc-extinguishing chamber 50 in the state of FIG. 1, the direction of the current flowing through the movable contact 6 and the direction of the current of the stationary contact 4 facing this is opposite. Therefore, an electromagnetic repulsive force depending on the value of the flowing current is generated, and the movable contact 6 generates a driving force in the opening direction. When the driving force exceeds the biasing force of the contact pressure spring (not shown), the movable contact 6 starts to open, and the fixed contact 3 and the movable contact 5 are separated, and an arc 16 is formed between the contacts as shown in FIG. Will occur. In this case, the energization path is fixed contact 4 → arc 16 → movable contact 6 → movable element holder 9. When the opening of the movable contact 6 advances and approaches the commutation running conductor 14, the flow of hot gas in the direction of the exhaust port 13 due to the pressure gradient around the arc 16, the current flowing through the fixed contact 4 and the movable contact 6. The electromagnetic driving force acts on the arc 16 to generate a rightward driving force. As a result, the arc spot on the movable contact 6 side is commutated to the commutation running conductor 14 having the same potential as the movable contact 6.

これが図3に示したアーク16の状態であり、アーク長がより延長されてアーク抵抗が高くなり、過電流に対する限流効果が高くなる。転流前後で通電経路は変化し、転流後は図3の矢印で示すように、固定接触子4→アーク16→転流走行導体14→可撓導体15→可動接触子の他端6b側→可動子ホルダ9となる。さらに、アーク16には圧力勾配による駆動力と固定接触子4と転流走行導体14を流れる過電流からの電磁駆動力、消弧装置12を構成する磁性体である消弧板11の磁気吸引力などが作用し、消弧装置12に取り込まれて分断アーク16aとなる。この結果、電極降下電圧の発生と消弧板11の冷却効果によりアーク電圧が高くなり、過電流を低く制限する限流性能が高められる。   This is the state of the arc 16 shown in FIG. 3, the arc length is further extended, the arc resistance is increased, and the current limiting effect against the overcurrent is increased. The energization path changes before and after commutation, and after commutation, as indicated by the arrow in FIG. 3, the stationary contact 4 → arc 16 → commutation running conductor 14 → flexible conductor 15 → the other end 6b side of the movable contact. → The mover holder 9 is obtained. Further, the arc 16 has a driving force due to a pressure gradient, an electromagnetic driving force from an overcurrent flowing through the stationary contact 4 and the commutating traveling conductor 14, and a magnetic attraction of the arc extinguishing plate 11 that is a magnetic body constituting the arc extinguishing device 12. A force or the like acts and is taken into the arc-extinguishing device 12 to form a cutting arc 16a. As a result, the arc voltage increases due to the generation of the electrode drop voltage and the cooling effect of the arc extinguishing plate 11, and the current limiting performance for limiting the overcurrent to a low level is enhanced.

図3に示すように、アークが転流走行導体14に転流すると、可動接点5から回転子ホルダ9への通電経路が消失し、開極駆動力となっていた固定接触子4と可動接触子6の間の電磁反発力が消失する。従来の構成であれば、可動接触子6は上記接圧バネの付勢力により閉極方向に回転して開離距離が短縮することになり、固定接触子4と可動接触子6の間の絶縁耐力が低下して再びアークが固定接点3と可動接点5の間に戻り、アーク長の短縮と消弧板11での分断効果が消失して限流性能が低下してしまう。   As shown in FIG. 3, when the arc commutates to the commutation running conductor 14, the energization path from the movable contact 5 to the rotor holder 9 disappears, and the fixed contact 4 and the movable contact that have become the opening driving force are moved. The electromagnetic repulsion between the children 6 disappears. In the conventional configuration, the movable contact 6 is rotated in the closing direction by the biasing force of the contact pressure spring, and the separation distance is shortened, and the insulation between the fixed contact 4 and the movable contact 6 is reduced. The proof stress is lowered and the arc returns again between the fixed contact 3 and the movable contact 5, the arc length is shortened and the dividing effect at the arc extinguishing plate 11 is lost, and the current limiting performance is lowered.

この実施の形態1によれば、転流後の通電経路において、図3(b)にも示すように、可撓導体15の電流成分19と、可動接触子の他端6bから可動子ホルダ9までの電流成分20は通電方向が逆であるため、両導体には電磁反発力F(19−20)21が発生する。このため、電流成分20の導体部分には下方への駆動力が付与されるため、可動接点5が固着された可動接触子の一端6a側には上方への駆動力が発生する。従って、アーク16が移動後も回転軸8を支点とする逆への字型の可動接触子6に開極駆動力が継続的に作用し、開離距離の短縮が発生しない。なお、可動接触子の他端6b側の電流成分20と、可動子ホルダ9の電流成分22との間には、両導体に電磁反発力F(20−22)23が発生するが、可撓導体15と可動接触子の他端6b側との成す角度θ1の方が、可動接触子の他端6b側と可動子ホルダ9との成す角度θ2よりも鋭角であるつまり、θ1<θ2であることから、上記電磁反発力F(20−22)23の影響は支配的ではない。
以上の動作により、可動接触子6のアークが転流走行導体14に移動した後も接点間距離が短縮しないことで、再点弧が抑制され、結果として、限流性能を低下させることなく遮断性能を安定的に向上させることが可能となる。さらには電磁力的な負担が軽減して装置の小型化が可能となる。
According to the first embodiment, in the energization path after commutation, as shown in FIG. 3 (b), the movable element holder 9 is formed from the current component 19 of the flexible conductor 15 and the other end 6b of the movable contact. Since the current component 20 up to this point has the opposite energization direction, an electromagnetic repulsive force F (19-20) 21 is generated in both conductors. For this reason, since a downward driving force is applied to the conductor portion of the current component 20, an upward driving force is generated on the one end 6a side of the movable contact to which the movable contact 5 is fixed. Therefore, even after the arc 16 moves, the opening driving force continuously acts on the reverse-shaped movable contact 6 having the rotating shaft 8 as a fulcrum, and the opening distance is not shortened. An electromagnetic repulsive force F (20-22) 23 is generated in both conductors between the current component 20 on the other end 6b side of the movable contact and the current component 22 of the movable member holder 9, but the flexible contact is flexible. The angle θ1 formed between the conductor 15 and the other end 6b of the movable contact is a sharper angle than the angle θ2 formed between the other end 6b of the movable contact and the mover holder 9, that is, θ1 <θ2. Therefore, the influence of the electromagnetic repulsive force F (20-22) 23 is not dominant.
With the above operation, even after the arc of the movable contact 6 moves to the commutation running conductor 14, the distance between the contacts is not shortened, so that re-ignition is suppressed, and as a result, the current limiting performance is interrupted without deteriorating. The performance can be improved stably. Furthermore, the electromagnetic load is reduced and the apparatus can be downsized.

実施の形態2.
実施の形態2を図5〜図8を参照して説明する。
図1〜図3で示したと同様に図5〜図7(a)は回路遮断器100の消弧室50部分の側面図である。図5は、閉極状態(接点ON状態)、図6、図7(a)は開極状態(接点OFF状態)を示している。なお、以下の説明以外は前述の実施の形態1と同様である。
実施の形態2においては、転流走行導体14の図に垂直の幅方向中央部には開口部14aが設けられており、可動接触子6が開極してOFF状態に近づくと、可動接触子6の可動接点5を含む可動接触子の一端6aが開口部14aに挿入包囲される構造になっている。図8に可動接触子6と転流走行導体14を上方からの視点で示すが、回転軸8周辺は可動子ホルダ9で挟みこまれて支持され可動接触子6と摺動接触状態となって接続されている。さらに可動接触子の一端6aが開口部14aで包囲されている。図5〜図7(a)において図中の矢印は通電経路を示している。図7(b)に通電経路の模式図を示す。
上記消弧室50において、図5の状態にあった消弧室50に過電流が流れると、前述した実施の形態1と同様に可動接触子6は開極動作を開始し、図6に示すように固定接点3と可動接点5が開離して接点間にアーク16が発生する。この場合、通電経路は固定接触子4→アーク16→可動接触子6→可動子ホルダ9となる。可動接触子6の開極が進み、転流走行導体14に近接し、さらに可動接触子6側のアークスポット周囲を開口部14aで包囲することとなる。アークスポットの高さまで開口部14aが包囲していることで、転流走行導体14に転流する。これが図7(a)に示したアーク16の状態である。
図7(a)に示すように、アーク16が転流走行導体14に転流すると、可動接点5から可動子ホルダ9への通電経路が消失し、開極駆動力となっていた固定接触子4と可動接触子6の間の電磁反発力が消失する。
Embodiment 2. FIG.
A second embodiment will be described with reference to FIGS.
5 to 7A are side views of the arc-extinguishing chamber 50 portion of the circuit breaker 100 as shown in FIGS. FIG. 5 shows a closed state (contact ON state), and FIGS. 6 and 7A show an open state (contact OFF state). Except for the following description, the second embodiment is the same as the first embodiment.
In the second embodiment, an opening 14a is provided at the center in the width direction perpendicular to the figure of the commutation running conductor 14, and when the movable contact 6 opens and approaches the OFF state, the movable contact One end 6a of the movable contact including the six movable contacts 5 is inserted and surrounded by the opening 14a. FIG. 8 shows the movable contact 6 and the commutation running conductor 14 as viewed from above. The periphery of the rotary shaft 8 is supported by being sandwiched by the mover holder 9 and is in sliding contact with the movable contact 6. It is connected. Furthermore, one end 6a of the movable contact is surrounded by the opening 14a. In FIG. 5 to FIG. 7A, arrows in the drawings indicate energization paths. FIG. 7B shows a schematic diagram of the energization path.
In the arc-extinguishing chamber 50, when an overcurrent flows through the arc-extinguishing chamber 50 in the state of FIG. 5, the movable contact 6 starts the opening operation as in the first embodiment described above and is shown in FIG. Thus, the fixed contact 3 and the movable contact 5 are separated, and an arc 16 is generated between the contacts. In this case, the energization path is fixed contact 4 → arc 16 → movable contact 6 → movable element holder 9. The opening of the movable contact 6 progresses, the proximity of the commutation running conductor 14, and the surrounding of the arc spot on the movable contact 6 side is surrounded by the opening 14 a. The opening 14a is surrounded to the height of the arc spot, so that the commutation traveling conductor 14 is commutated. This is the state of the arc 16 shown in FIG.
As shown in FIG. 7A, when the arc 16 commutates to the commutation running conductor 14, the energization path from the movable contact 5 to the movable element holder 9 disappears, and the fixed contact that has become the opening driving force. The electromagnetic repulsion between 4 and the movable contact 6 disappears.

この実施の形態2によれば、転流後の通電経路において、図7(b)に示すように可撓導体15の電流成分19と、可動接触子の他端6bから可動子ホルダ9までの電流成分20は通電方向が逆であるため、両導体には電磁反発力F(19−20)21が発生する。このため、電流成分20の導体部分には下方への駆動力が付与されるため、可動子接触子の可動接点5が固着された可動接触子の一端6a側には上方への駆動力が発生する。従って、転流走行導体14にアーク16が移動した後も開極駆動力が継続的に作用し、開離距離の短縮が発生しない。なお、可動接触子6の電流成分20と、可動子ホルダ9の電流成分22との間には、両導体には電磁反発力F(20−22)23が発生するが、可撓導体15と可動接触子の他端6b側との成す角度θ1の方が、可動接触子の他端6b側と可動子ホルダ9との成す角度θ2よりも鋭角であることから、上記電磁反発力F(20−22)23の影響は支配的ではない。
以上の動作により、可動接触子6の図示省略したアークが転流走行導体14に移動した後も接点間距離が短縮しないことで、再点弧の発生を抑制し限流性能を低下させることなく遮断性能を安定的に向上させることが可能となる。
According to the second embodiment, in the energization path after commutation, as shown in FIG. 7B, the current component 19 of the flexible conductor 15 and the other end 6b of the movable contact to the movable holder 9 Since the current component 20 has the opposite energization direction, an electromagnetic repulsive force F (19-20) 21 is generated in both conductors. For this reason, since a downward driving force is applied to the conductor portion of the current component 20, an upward driving force is generated on the one end 6a side of the movable contact to which the movable contact 5 of the movable contact is fixed. To do. Therefore, even after the arc 16 moves to the commutation running conductor 14, the opening driving force is continuously applied, and the separation distance is not shortened. An electromagnetic repulsive force F (20-22) 23 is generated in both conductors between the current component 20 of the movable contact 6 and the current component 22 of the movable holder 9. Since the angle θ1 formed with the other end 6b of the movable contact is more acute than the angle θ2 formed with the other end 6b of the movable contact and the movable holder 9, the electromagnetic repulsive force F (20 -22) The influence of 23 is not dominant.
By the above operation, the distance between the contacts is not shortened even after the arc (not shown) of the movable contact 6 moves to the commutation running conductor 14, thereby suppressing the occurrence of re-ignition and reducing the current limiting performance. It is possible to stably improve the blocking performance.

実施の形態3.
実施の形態3を、図9、図10(a)を参照して説明する。
図1〜図3で示したと同様に図9、図10(a)は回路遮断器100の消弧室50部分の側面図である。図9は閉極状態(接点ON状態)、図10は開極状態(接点OFF状態)を示している。なお、以下の説明以外は前述した実施の形態1と同じである。
実施の形態3においては、可動接触子6の回転軸8周辺で摺動接触する可動子ホルダ9は、可動接触子6の回転軸8から消弧室50の左方に配置され、さらに、図10(a)の開極状態においては可動接触子6の上方で維持されることを特徴としている。
上記消弧室50において、図9の状態にあった消弧室50に過電流が流れると、可動接触子6の開離が進み、図10に示すように、アーク(図示省略)が転流走行導体14に転流すると、可動接点5周辺から回転軸8への通電経路が消失し、開極駆動力となっていた固定接触子4と可動接触子6の間の電磁反発力が消失する。
Embodiment 3 FIG.
The third embodiment will be described with reference to FIGS. 9 and 10A.
9 and 10A are side views of the arc extinguishing chamber 50 portion of the circuit breaker 100, as shown in FIGS. FIG. 9 shows a closed state (contact ON state), and FIG. 10 shows an open state (contact OFF state). Except for the following description, the second embodiment is the same as the first embodiment.
In the third embodiment, the mover holder 9 that is in sliding contact with the periphery of the rotary shaft 8 of the movable contact 6 is disposed on the left side of the arc extinguishing chamber 50 from the rotary shaft 8 of the movable contact 6. 10 (a) is maintained above the movable contact 6 in the open state.
In the arc-extinguishing chamber 50, when an overcurrent flows through the arc-extinguishing chamber 50 in the state of FIG. 9, the movable contact 6 is separated, and an arc (not shown) is commutated as shown in FIG. When commutating to the running conductor 14, the energization path from the periphery of the movable contact 5 to the rotating shaft 8 disappears, and the electromagnetic repulsive force between the fixed contact 4 and the movable contact 6 that has been the opening driving force disappears. .

この実施の形態3によれば、転流後の通電経路において、図10(b)に示すように可撓導体15の電流成分19と可動接触子の他端6b側の電流成分20は通電方向が逆であるため、両導体には電磁反発力F(19−20)21が発生する。このため、電流成分20が通電している可動接触子の他端6b側には下方への駆動力が付与されるため、可動接点5が固着された可動接触子の一端6a側には上方への駆動力が発生する。さらに、可動接触子の他端6b側の電流成分20と可動子ホルダ9を流れる電流成分26の間には、両導体に電磁反発力F(19−26)27が発生する。このため、電流成分20が通電している可動接触子の他端6b側には下方への駆動力が付与されるため、可動接点5が固着された可動接触子の一端6a側には上方への駆動力が発生する。従って、転流走行導体14にアークが移動した後も開極駆動力が継続的に作用し、開離距離の短縮が発生しないこととなる。
以上の動作により、可動接触子6の図示省略したアークが転流走行導体14に移動した後も接点間距離が短縮しないことで再点弧が発生を抑制して結果として、限流性能を低下させることなく遮断性能を安定的に向上させることが可能となる。なお、実施の形態3において転流走行導体14については、実施の形態2で示した構造でも同様の遮断性能向上効果が実現できる。
According to the third embodiment, in the energization path after commutation, as shown in FIG. 10B, the current component 19 of the flexible conductor 15 and the current component 20 on the other end 6b side of the movable contact are in the energization direction. Therefore, the electromagnetic repulsive force F (19-20) 21 is generated in both conductors. For this reason, since a downward driving force is applied to the other end 6b side of the movable contact to which the current component 20 is energized, the upper end is directed to the one end 6a side of the movable contact to which the movable contact 5 is fixed. The driving force is generated. Further, between the current component 20 on the other end 6b side of the movable contact and the current component 26 flowing through the movable holder 9, an electromagnetic repulsive force F (19-26) 27 is generated in both conductors. For this reason, since a downward driving force is applied to the other end 6b side of the movable contact to which the current component 20 is energized, the upper end is directed to the one end 6a side of the movable contact to which the movable contact 5 is fixed. The driving force is generated. Therefore, even after the arc moves to the commutation running conductor 14, the opening driving force is continuously applied, and the separation distance is not shortened.
By the above operation, even after the arc (not shown) of the movable contact 6 moves to the commutation running conductor 14, the distance between the contacts is not shortened, thereby suppressing the occurrence of re-ignition, resulting in a decrease in current limiting performance. It is possible to stably improve the shut-off performance without causing it. In the third embodiment, the commutation running conductor 14 can realize the same effect of improving the breaking performance even in the structure shown in the second embodiment.

実施の形態4.
実施の形態4を、図11〜図13を参照して説明する。
図11、図12(a)は回路遮断器100の消弧室50部分の側面図である。以下の説明以外は実施の形態1と同様である。図11は閉極状態(接点ON状態)、図12(a)は開極状態(接点OFF状態)を示している。この実施の形態4においては、図13に示すように、転流走行導体28の一端である左側端部は可動接触子の他端6bを挟み込み摺動接触状態である分岐導体28aであることを特徴としている。この分岐導体28aは転流走行導体28に開口28bを設けることによって形成されている。
上記消弧室50において、図11の状態にあった消弧室50に過電流が流れると、可動接触子6の開離が進み、図12に示すように、アーク(図示省略)が転流走行導体28に転流すると、可動接点5周辺から回転軸8への通電経路が消失し、開極駆動力となっていた固定接触子4と可動接触子6の間の電磁反発力が消失する。
Embodiment 4 FIG.
A fourth embodiment will be described with reference to FIGS.
FIGS. 11 and 12A are side views of the arc extinguishing chamber 50 of the circuit breaker 100. FIG. Except for the following description, the second embodiment is the same as the first embodiment. FIG. 11 shows a closed state (contact ON state), and FIG. 12A shows an open state (contact OFF state). In the fourth embodiment, as shown in FIG. 13, the left end which is one end of the commutation running conductor 28 is a branch conductor 28a which is in a sliding contact state with the other end 6b of the movable contact being sandwiched therebetween. It is a feature. The branch conductor 28a is formed by providing an opening 28b in the commutation running conductor 28.
In the arc-extinguishing chamber 50, when an overcurrent flows through the arc-extinguishing chamber 50 in the state shown in FIG. 11, the movable contact 6 advances, and an arc (not shown) is commutated as shown in FIG. When commutated to the running conductor 28, the energization path from the periphery of the movable contact 5 to the rotating shaft 8 disappears, and the electromagnetic repulsive force between the fixed contact 4 and the movable contact 6 that has been the opening driving force disappears. .

この実施の形態4によれば、転流後の通電経路において、図12(b)の通電経路の模式図に示すように、分岐導体28aの電流成分29と可動接触子の他端6b部の電流成分20の間には、両導体に電磁反発力F(29a−20)30が発生する。このため、可動接触子の他端6b側には下方への駆動力が付与されるため、可動接点5が固着された可動接触子の一端6a側には上方への駆動力が発生する。従って、転流走行導体14にアーク(図示省略)が移動した後も開極駆動力が継続的に作用し、開離距離の短縮が発生しないこととなる。なお、図12(b)に示す通電経路による電磁反発力の関係は図3(b)と同様であるので説明省略する。
以上の動作により、可動接触子6のアーク(図示省略)が転流走行導体28に転流した後も接点間距離が短縮しないことで、再点弧が抑制され、結果として限流性能を低下させることなく遮断性能を安定的に向上させることが可能となる。
なお、この実施の形態4において、転流走行導体14については実施の形態2で示した構造でもまた、可動子ホルダ9については実施の形態3で示した構造でも同様の遮断性能向上効果が実現できる。
According to the fourth embodiment, in the energization path after commutation, as shown in the schematic diagram of the energization path in FIG. 12B, the current component 29 of the branch conductor 28a and the other end 6b of the movable contact Between the current components 20, an electromagnetic repulsive force F (29a-20) 30 is generated in both conductors. For this reason, since a downward driving force is applied to the other end 6b side of the movable contact, an upward driving force is generated on the one end 6a side of the movable contact to which the movable contact 5 is fixed. Therefore, even after the arc (not shown) moves to the commutation running conductor 14, the opening driving force continuously acts, and the opening distance is not shortened. Note that the relationship of the electromagnetic repulsion force by the energization path shown in FIG. 12B is the same as that in FIG.
By the above operation, even after the arc (not shown) of the movable contact 6 commutates to the commutation running conductor 28, the distance between the contacts is not shortened, so that re-ignition is suppressed, resulting in a decrease in current limiting performance. It is possible to stably improve the shut-off performance without causing it.
In the fourth embodiment, the same breaking performance improvement effect is realized even in the structure shown in the second embodiment for the commutation running conductor 14 and in the structure shown in the third embodiment for the mover holder 9. it can.

3 固定接点、4 固定接触子、5 可動接点、6 可動接触子、7 入力端子、
9 可動子ホルダ、14 転流走行導体、14a 開口部、15 可撓導体、
28 転流走行導体、28a 分岐導体、28b 開口、100 回路遮断器。
3 fixed contact, 4 fixed contact, 5 movable contact, 6 movable contact, 7 input terminal,
9 mover holder, 14 commutation running conductor, 14a opening, 15 flexible conductor,
28 commutation running conductor, 28a branching conductor, 28b opening, 100 circuit breaker.

Claims (6)

主回路を開閉する回路遮断器であって、
前記回路遮断器には、固定接触子と可動接触子と転流走行導体とが設けられており、前記固定接触子は一端に固定接点が他端に入力端子が設けられ、前記可動接触子は可動子ホルダに回転可能なよう支持され一端に可動接点が、他端に前記転流走行導体に設けられた可撓導体に接続されるとともに、該可動接触子は前記可動子ホルダを介して出力端子に接続されており、前記主回路に過電流が流れると、前記可動接触子の可動接点が前記固定接触子の固定接点から開離して前記可動接触子が回転移動を行い、前記可動接点と固定接点間に発生するアークが前記転流走行導体に転流し前記可撓導体に流れる電流の向きと、前記可動接触子の他端側に流れる電流の向きとが逆方向となる位置において、前記主回路の開極状態が維持されることを特徴とする回路遮断器。
A circuit breaker that opens and closes the main circuit,
The circuit breaker is provided with a fixed contact, a movable contact, and a commutation running conductor, the fixed contact is provided with a fixed contact at one end and an input terminal at the other end, and the movable contact is A movable contact is supported by the movable element holder so as to be rotatable, and a movable contact is connected to one end and a flexible conductor provided to the commutation running conductor is connected to the other end, and the movable contact is output via the movable element holder. When the overcurrent flows through the main circuit, the movable contact of the movable contact is separated from the fixed contact of the fixed contact, and the movable contact rotates and moves with the movable contact. In the position where the direction of the current flowing through the flexible conductor and the direction of the current flowing through the other end of the movable contact are opposite to each other, the arc generated between the fixed contacts commutates to the commutation running conductor. The main circuit is kept open. Circuit breaker to.
主回路を開閉する回路遮断器であって、
前記回路遮断器には、固定接触子と可動接触子と転流走行導体とが設けられており、前記固定接触子は一端に固定接点が他端に入力端子が設けられ、前記可動接触子は可動子ホルダに回転可能なよう支持され一端に可動接点が、他端が前記転流走行導体の一端に分岐導体を形成するように設けられた開口に挿入されるよう延伸するとともに、該可動接触子は前記可動子ホルダを介して出力端子に接続されており、前記主回路に過電流が流れると、前記可動接触子の可動接点が前記固定接触子の固定接点から開離して前記可動接触子が回転移動を行い、前記可動接点と固定接点間に発生するアークが前記転流走行導体に転流し前記分岐導体に流れる電流の向きと、前記可動接触子の他端側に流れる電流の向きとが逆方向となる位置において、前記主回路の開極状態が維持されることを特徴とする回路遮断器。
A circuit breaker that opens and closes the main circuit,
The circuit breaker is provided with a fixed contact, a movable contact, and a commutation running conductor, the fixed contact is provided with a fixed contact at one end and an input terminal at the other end, and the movable contact is The movable contact is supported so as to be rotatable, and a movable contact is extended at one end, and the other end is inserted into an opening provided to form a branch conductor at one end of the commutation running conductor, and the movable contact The child is connected to the output terminal via the mover holder, and when an overcurrent flows through the main circuit, the movable contact of the movable contact is separated from the fixed contact of the fixed contact. Rotating and moving, an arc generated between the movable contact and the fixed contact is commutated to the commutation running conductor and flows through the branch conductor, and a current flows through the other end of the movable contact. In the opposite direction, Circuit breaker, characterized in that the open state of the main circuit is maintained.
前記可動接触子は前記転流走行導体に対して、逆への字型となるよう形成、配置されているとともに、逆への字型の頂点付近で前記可動子ホルダに回転可能に支持されていることを特徴とする請求項1、2のいずれか1項に記載の回路遮断器。 The movable contact is formed and arranged in a reverse letter shape with respect to the commutation running conductor, and is rotatably supported by the mover holder near the vertex of the reverse letter shape. The circuit breaker according to claim 1, wherein the circuit breaker is provided. 前記転流走行導体には開口部が設けられており、前記可動接触子の可動接点が前記固定接触子の固定接点から開離したとき、前記可動接点を含む前記可動接触子の一端部分が、前記開口部に挿入されるよう前記可動接触子が回転移動を行うことを特徴とする請求項1に記載の回路遮断器。 The commutation running conductor is provided with an opening, and when the movable contact of the movable contact is separated from the fixed contact of the fixed contact, one end portion of the movable contact including the movable contact is The circuit breaker according to claim 1, wherein the movable contact is rotated so as to be inserted into the opening. 前記主回路の開極状態の維持は、前記転流走行導体の可撓導体と、前記可動接触子の他端側となす角度をθ1とし、該可動接触子の他端側と、前記可動子ホルダとなす角度をθ2としたとき、θ1<θ2の関係にあることによってなされることを特徴とする請求項1に記載の回路遮断器。 The open circuit state of the main circuit is maintained by setting an angle between the flexible conductor of the commutation running conductor and the other end of the movable contact to θ1, and the other end of the movable contact and the movable 2. The circuit breaker according to claim 1, wherein the circuit breaker is formed by a relationship of θ <b> 1 <θ <b> 2 when an angle formed with the holder is θ <b> 2. 前記主回路の開極状態の維持は、前記転流走行導体の一端に形成された分岐導体と、前記可動接触子の他端側となす角度をθ1とし、該可動接触子の他端側と前記可動子ホルダとなす角度をθ2としたとき、θ1<θ2の関係にあることによってなされることを特徴とする請求項2に記載の回路遮断器。 The main circuit is maintained in an open state in that the angle between the branch conductor formed at one end of the commutation running conductor and the other end of the movable contact is θ1, and the other end of the movable contact is 3. The circuit breaker according to claim 2, wherein the circuit breaker has a relationship of θ <b> 1 <θ <b> 2, where θ <b> 2 is an angle formed with the movable element holder.
JP2010236629A 2010-10-21 2010-10-21 Circuit breaker Pending JP2012089416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010236629A JP2012089416A (en) 2010-10-21 2010-10-21 Circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010236629A JP2012089416A (en) 2010-10-21 2010-10-21 Circuit breaker

Publications (1)

Publication Number Publication Date
JP2012089416A true JP2012089416A (en) 2012-05-10

Family

ID=46260818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010236629A Pending JP2012089416A (en) 2010-10-21 2010-10-21 Circuit breaker

Country Status (1)

Country Link
JP (1) JP2012089416A (en)

Similar Documents

Publication Publication Date Title
WO2012160732A1 (en) Circuit breaker
JP5522327B2 (en) Circuit breaker
JP2013242977A (en) Switch
JP6103489B2 (en) Arc extinguishing mechanism of DC switch, DC switch and DC circuit breaker having the arc extinguishing mechanism
KR20100040819A (en) An arc remover with a current sensor and a hybrid switch with a current sensor
US10014139B2 (en) Over-current protection assembly
JP5121608B2 (en) Circuit breaker
JP5515719B2 (en) Circuit breaker
KR20100039318A (en) An arc remover and a hybrid switch
JP2001216881A (en) Pole for circuit breaker
JP6203428B2 (en) DC high speed circuit breaker
JP2012138173A (en) Circuit breaker
JP6160106B2 (en) Circuit breaker
JP2002008508A (en) Circuit breaker
JP2012089416A (en) Circuit breaker
KR20020090903A (en) Molded case circuit breaker
JP6516078B1 (en) Circuit breaker and circuit breaker method
JP6005085B2 (en) Switchgear
JP6879173B2 (en) Switchgear
JP5260457B2 (en) Circuit breaker
JP2009170299A (en) Circuit breaker
JP2022049539A (en) Circuit breaker
JP5664333B2 (en) Circuit breaker
JP6198450B2 (en) Switch
JP2010170787A (en) Circuit breaker unit