JP2012088138A - Outside diameter measuring apparatus - Google Patents

Outside diameter measuring apparatus Download PDF

Info

Publication number
JP2012088138A
JP2012088138A JP2010234353A JP2010234353A JP2012088138A JP 2012088138 A JP2012088138 A JP 2012088138A JP 2010234353 A JP2010234353 A JP 2010234353A JP 2010234353 A JP2010234353 A JP 2010234353A JP 2012088138 A JP2012088138 A JP 2012088138A
Authority
JP
Japan
Prior art keywords
light
light receiving
outer diameter
light projecting
circular cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010234353A
Other languages
Japanese (ja)
Other versions
JP5333947B2 (en
Inventor
利満 ▲浜▼本
Toshimitsu Hamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2010234353A priority Critical patent/JP5333947B2/en
Publication of JP2012088138A publication Critical patent/JP2012088138A/en
Application granted granted Critical
Publication of JP5333947B2 publication Critical patent/JP5333947B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an outside diameter measuring apparatus capable of obtaining high measurement accuracy even when measuring the outside diameter of a bar steel, a linear material, or a steel pipe which is a material having a circular cross section and high temperature, and capable of preventing attachment of scales and dust to a light projection part and a light receiving part.SOLUTION: An outside diameter measuring apparatus 1 includes an outside diameter measuring instrument 2 for measuring the outside diameter of a bar steel W and an insertion member 3 for inserting the bar steel W. The outside diameter measuring instrument 2 includes a light projection part 21 for projecting light L to the bar steel W, a light receiving part 22 for receiving the light L and a control calculation part 23 for calculating the outside diameter of the bar steel W. The insertion member 3 has an insertion port 31 for inserting the bar steel W, and the insertion port 31 is formed so as to be opposed to an optical path from the light projection part 21 to the light receiving part 22. The insertion member 3 has an annular vent 32 surrounding the insertion port 31, and the vent 32 forms an air curtain A on the outer periphery of the bar steel W in the diameter direction of the bar steel W by sending air F in the axial direction of the bar steel W. There is no shelter in the sending direction of air F sent from the vent 32.

Description

本発明は、断面円形材の外径を測定する外径測定装置に関する。特に、外径の測定精度が良く、かつ、スケールや粉塵が投光部及び受光部に付着し難い外径測定装置に関する。   The present invention relates to an outer diameter measuring device that measures the outer diameter of a circular cross-sectional material. In particular, the present invention relates to an outer diameter measuring apparatus that has a good outer diameter measurement accuracy and that scales and dust are less likely to adhere to a light projecting part and a light receiving part.

従来から、例えば熱間圧延後の高温状態の棒鋼(断面円形材)、線材(断面円形材)や鋼管(断面円形材)等の外径の測定においては、棒鋼、線材、鋼管が高温であるために接触して測定することができないので、多方向からその輪郭を光学的にとらえ、光学的にその外径を測定する外径測定装置が知られている。
しかしながら、このような外径測定装置においては、高温状態の棒鋼、線材、鋼管の表面から剥離したスケールや粉塵等が投光部や受光部に付着し、投光部や受光部の表面が汚れるために測定が行えなくなるという問題がある。
このために、エアーによってスケールや粉塵を吹き飛ばすことにより、投光部や受光部の表面にスケールや粉塵が付着するのを防ぐようにした外径測定装置がある。
Conventionally, for example, in the measurement of the outer diameter of a steel bar (cross-sectional circular material), a wire (cross-sectional circular material), a steel pipe (cross-sectional circular material) in a high temperature state after hot rolling, the steel bar, the wire, and the steel pipe are hot. Therefore, an outer diameter measuring device that optically captures the contour from multiple directions and optically measures the outer diameter is known.
However, in such an outer diameter measuring device, scales and dusts peeled off from the surface of high-temperature steel bars, wires, and steel pipes adhere to the light projecting part and the light receiving part, and the surfaces of the light projecting part and the light receiving part are soiled. Therefore, there is a problem that measurement cannot be performed.
For this reason, there is an outer diameter measuring device that prevents the scale and dust from adhering to the surface of the light projecting unit and the light receiving unit by blowing off the scale and dust with air.

このようなエアーによってスケールや粉塵を吹き飛ばす外径測定装置の例を、図1を参照して説明する。図1(a)は、外径測定装置の側面の一部断面図であり、図1(b)は投光部と受光部を図1(a)におけるD方向から見た正面図である。
外径測定装置101は、棒鋼Wの外径を測定する外径測定器102と、棒鋼Wを挿通させる挿通部材103とを備えている。外径測定器102は、棒鋼Wに光Lを投光する投光部121と、投光部121が投光した光Lを受光する受光部122とを有している。外径測定器102は、投光部121と受光部122とを3組有している(図1(a)では、1組の投光部121と受光部122のみを示している)。
挿通部材103は、棒鋼Wを挿通させる挿通口131を有しており、挿通口131が投光部121から受光部122への光路に対向するように設けられている。
また、挿通部材103は、棒鋼Wの側面に棒鋼Wの径方向外方の周囲からエアーFを送風する送風口132を有しており、送風口132は吸気を行う吸気口133と連通している。吸気口133は、ブロワー(図示せず)に接続されている。
An example of an outer diameter measuring device that blows off scales and dust with such air will be described with reference to FIG. FIG. 1A is a partial cross-sectional view of the side surface of the outer diameter measuring device, and FIG. 1B is a front view of the light projecting unit and the light receiving unit viewed from the direction D in FIG.
The outer diameter measuring device 101 includes an outer diameter measuring instrument 102 that measures the outer diameter of the steel bar W, and an insertion member 103 that allows the steel bar W to pass therethrough. The outer diameter measuring device 102 includes a light projecting unit 121 that projects light L onto the steel bar W, and a light receiving unit 122 that receives the light L projected by the light projecting unit 121. The outer diameter measuring instrument 102 has three sets of a light projecting unit 121 and a light receiving unit 122 (in FIG. 1A, only one set of the light projecting unit 121 and the light receiving unit 122 is shown).
The insertion member 103 has an insertion port 131 through which the steel bar W is inserted, and the insertion port 131 is provided so as to face the optical path from the light projecting unit 121 to the light receiving unit 122.
Further, the insertion member 103 has a blower port 132 that blows air F from the outer periphery in the radial direction of the steel bar W on the side surface of the steel bar W, and the blower port 132 communicates with the suction port 133 that performs intake. Yes. The intake port 133 is connected to a blower (not shown).

投光部121は、例えばLEDやハロゲンランプであり、棒鋼Wの外径方向の周縁に光Lを投光する。受光部122は、例えばCCDラインセンサであって棒鋼Wの外径の周縁に投光された光Lを受光した受光素子と、棒鋼Wの影になって投光された光Lを受光しない受光素子との境界の位置から、棒鋼Wの外径が演算される。
3組の投光部121と受光部122は、それぞれの投光部121から受光部122への光路が、挿通口131の径方向の中心Oで互いに120度の角度で交差するように配置されている。
投光部121と受光部122は、挿通口131の径方向の中心Oを起点として、棒鋼Wの周方向に回転自在になっており、棒鋼Wの外径を棒鋼Wの周方向の全ての位置から測定する。
The light projecting unit 121 is, for example, an LED or a halogen lamp, and projects light L onto the outer peripheral edge of the steel bar W. The light receiving unit 122 is, for example, a CCD line sensor, and a light receiving element that receives the light L projected on the outer peripheral edge of the steel bar W, and a light receiving unit that does not receive the light L projected in the shadow of the steel bar W. From the position of the boundary with the element, the outer diameter of the steel bar W is calculated.
The three sets of the light projecting unit 121 and the light receiving unit 122 are arranged so that the optical paths from the respective light projecting units 121 to the light receiving unit 122 intersect each other at an angle of 120 degrees at the radial center O of the insertion port 131. ing.
The light projecting unit 121 and the light receiving unit 122 are rotatable in the circumferential direction of the steel bar W starting from the radial center O of the insertion port 131, and the outer diameter of the steel bar W is set to all the circumferential direction of the steel bar W. Measure from position.

しかしながら、棒鋼Wの表面には高温の空気層が層状に形成されており、このような外径測定装置101においてはその空気層が送風口132からのエアーFによって乱され、そのために、投光部121から棒鋼Wの表面近傍に投光された光Lの屈折方向が乱れ、外径の測定値にバラツキが生じるという問題がある。
この外径測定装置101による棒鋼Wの測定結果を図2に示す。3組の投光部121と受光部122のそれぞれの組が、棒鋼Wの周方向の全ての位置から測定している。挿通口131の径方向の中心Oを通り光Lに平行な直線から棒鋼Wの周縁までの距離(以下、この距離を仮想半径という)が測定され、基準値(この測定の場合は20mm)との差で表わされている。そして、棒鋼Wの全周囲から測定した仮想半径の平均値が仮想半径平均値とされ、仮想半径平均値の2倍が棒鋼Wの外径とされる。
However, a high temperature air layer is formed on the surface of the steel bar W, and in such an outer diameter measuring device 101, the air layer is disturbed by the air F from the air blowing port 132. There is a problem that the refraction direction of the light L projected from the portion 121 to the vicinity of the surface of the steel bar W is disturbed, and the measured value of the outer diameter varies.
The measurement result of the steel bar W by the outer diameter measuring device 101 is shown in FIG. Each of the three sets of the light projecting part 121 and the light receiving part 122 is measured from all positions in the circumferential direction of the steel bar W. A distance from the straight line passing through the center O in the radial direction of the insertion opening 131 to the periphery of the steel bar W from the straight line parallel to the light L (hereinafter, this distance is referred to as a virtual radius) is measured, and a reference value (20 mm in this case) is obtained. It is expressed by the difference between The average value of the virtual radius measured from the entire circumference of the steel bar W is taken as the virtual radius average value, and twice the virtual radius average value is taken as the outer diameter of the steel bar W.

しかしながら、3組の投光部121と受光部122による仮想半径の測定値R101、R102、R103を示す線が図2のように互いに離れ、仮想半径平均値にバラツキが生じている。3組の投光部121と受光部122による棒鋼Wの仮想半径平均値の内で最小値が19.90mm、最大値が20.10mmで、最大値と最小値との差が0.20mmであり、測定精度が十分でない。   However, the lines indicating the measured values R101, R102, and R103 of the virtual radius by the three sets of the light projecting unit 121 and the light receiving unit 122 are separated from each other as shown in FIG. 2, and the virtual radius average value varies. Among the virtual radius average values of the steel bars W by the three sets of the light projecting part 121 and the light receiving part 122, the minimum value is 19.90 mm, the maximum value is 20.10 mm, and the difference between the maximum value and the minimum value is 0.20 mm. Yes, measurement accuracy is not enough.

また、エアーの送風を棒鋼Wの軸方向に行う外径測定装置も知られている(例えば、特許文献1参照)。
しかしながら、この特許文献1の外径測定装置においては、エアーの送風方向に遮蔽物が有るためにエアーが遮蔽物に当接し、スケールや粉塵が舞い上がる虞がある。また投光部及び受光部とエアーとの間が離れていないために、舞い上がったスケールや粉塵が投光部及び受光部に付着する虞がある。
Also known is an outer diameter measuring device that blows air in the axial direction of the steel bar W (for example, see Patent Document 1).
However, in the outer diameter measuring apparatus of Patent Document 1, since there is a shield in the air blowing direction, there is a possibility that air abuts on the shield and the scale and dust rise. Further, since the light projecting unit and the light receiving unit are not separated from the air, the scales and dust that have risen may adhere to the light projecting unit and the light receiving unit.

実開昭54−123856号公報Japanese Utility Model Publication No. 54-123856

本発明は、斯かる従来技術の問題を解決するためになされたものであり、断面円形材である高温の棒鋼、線材や鋼管の外径を測定しても測定精度が良く、かつ、スケールや粉塵が投光部及び受光部に付着し難い外径測定装置を提供することを課題とする。   The present invention has been made to solve such problems of the prior art, and has high measurement accuracy even when measuring the outer diameter of high-temperature steel bars, wire rods, and steel pipes, which are circular cross-sectional materials, and has a scale, It is an object of the present invention to provide an outer diameter measuring device in which dust hardly adheres to the light projecting unit and the light receiving unit.

前記課題を解決するため、本発明者は、エアーの送風方向等を検討した。その結果、断面円形材の径方向外方の周囲を断面円形材の軸方向にエアーを送風して環状のエアーカーテンを形成し、エアーの送風方向に遮蔽物を有さないようにすると外径の測定精度が良くなるという知見を得た。   In order to solve the above-mentioned problems, the present inventor examined the air blowing direction and the like. As a result, air is blown in the axial direction of the cross-section circular material to form an annular air curtain around the outer periphery in the radial direction of the cross-section circular material, and if there is no shielding in the air blowing direction, the outer diameter We obtained the knowledge that the measurement accuracy is improved.

本発明は、上記の本発明者の知見に基づき完成されたものである。すなわち、前記課題を解決するため、本発明は、断面円形材の外径を測定する外径測定装置であって、前記断面円形材の軸方向に垂直な方向から該断面円形材の側面に向けて光を投光する投光部と、該断面円形材を挟んで前記投光部の反対側に設けられ該投光部が投光した光を受光する受光部とを具備する外径測定器と、前記断面円形材が挿通する挿通口を有する挿通部材とを備え、前記挿通部材は、前記挿通口が前記投光部から前記受光部への光路に対向するように設けられ、前記挿通部材は、前記挿通口を囲繞する環状の送風口を有し、前記送風口は、前記断面円形材の径方向外方の周囲を該断面円形材の軸方向にエアーを送風して環状のエアーカーテンを形成し、前記投光部及び受光部は、前記挿通口を挿通する前記断面円形材と離間し、前記環状のエアーカーテンよりも前記断面円形材の径方向外方に設けられ、前記エアーの送風方向に遮蔽物を有さないことを特徴とする外径測定装置を提供する。   The present invention has been completed based on the knowledge of the present inventors. That is, in order to solve the above-mentioned problem, the present invention is an outer diameter measuring device for measuring an outer diameter of a circular cross-sectional material, and is directed from a direction perpendicular to the axial direction of the circular cross-sectional material toward a side surface of the circular cross-sectional material. An outer diameter measuring instrument comprising: a light projecting unit that projects light; and a light receiving unit that is provided on the opposite side of the light projecting unit across the circular member in cross section and receives the light projected by the light projecting unit And an insertion member having an insertion port through which the circular cross-sectional material is inserted, and the insertion member is provided so that the insertion port faces an optical path from the light projecting unit to the light receiving unit, and the insertion member Has an annular air outlet surrounding the insertion opening, and the air outlet blows air around the radially outer side of the circular cross-section member in the axial direction of the circular cross-section member. The light projecting portion and the light receiving portion are separated from the circular cross-sectional material that is inserted through the insertion opening. Than said annular air curtain provided radially outward of said circular section material, to provide an outer diameter measuring device, characterized in that no shielding the blowing direction of the air.

本発明によれば、断面円形材が高温の棒鋼、線材や鋼管であっても、送風口から断面円形材の径方向外方の周囲を断面円形材の軸方向にエアーが送風されて環状のエアーカーテンが形成されることにより、断面円形材の表面の層状の高温の空気層が乱れ難いので、投光部から断面円形材の表面近傍に投光された光の屈折方向が乱れ難くなるために外径の測定精度が良い。
また、投光部及び受光部が断面円形材と離間していることと、投光部及び受光部と断面円形材との間に環状のエアーカーテンが有り、エアーの送風方向に遮蔽物を有さないようにすることにより、断面円形材より剥離したスケールや粉塵は環状のエアーカーテンに閉じ込められた状態で外部に排出される。そのため、スケールや粉塵は環状のエアーカーテンの径方向外方に設けられた投光部及び受光部に付着し難くなるので、スケールや粉塵による汚れによって外径の測定が出来なくなる虞が少ない。
According to the present invention, even if the cross-sectional circular material is a high-temperature steel bar, wire, or steel pipe, air is blown in the axial direction of the circular cross-sectional material around the radial outer periphery of the circular cross-sectional material from the air outlet. Since the air curtain is formed, the layered high-temperature air layer on the surface of the circular cross-section material is not easily disturbed, so the refraction direction of the light projected from the light projecting portion to the vicinity of the surface of the circular cross-section material is not easily disturbed. In addition, the measurement accuracy of the outer diameter is good.
In addition, the light projecting unit and the light receiving unit are separated from the circular cross-sectional material, and there is an annular air curtain between the light projecting unit and the light receiving unit and the circular cross-sectional material, and there is a shield in the air blowing direction. By not doing so, the scale and dust peeled off from the circular cross-sectional material are discharged outside in a state of being confined in an annular air curtain. Therefore, the scale and dust are less likely to adhere to the light projecting portion and the light receiving portion provided radially outward of the annular air curtain, so that there is little possibility that the outer diameter cannot be measured due to dirt due to the scale or dust.

好ましくは、外径測定装置は、前記投光部及び受光部を覆い、前記環状のエアーカーテンに対向する開口部を有するカバー部と、前記カバー部に設けられ該カバー部の内部と外部とを連通する連通口とを備え、前記カバー部は、前記送風口よりも前記エアーの送風方向下流側に設けられ、前記開口部は、前記環状のエアーカーテンの近傍に位置する。   Preferably, the outer diameter measuring device covers the light projecting part and the light receiving part, and has a cover part having an opening facing the annular air curtain, and an inside and an outside of the cover part provided in the cover part. The cover portion is provided on the downstream side of the air blowing direction with respect to the air blowing direction, and the opening portion is located in the vicinity of the annular air curtain.

斯かる好ましい方法によれば、環状のエアーカーテンによるエジェクター効果によって、カバー部の内部の空気がカバー部の外部に吸引され排出されるので、例えカバー部の内部にスケールや粉塵が侵入したとしてもそれらのスケールや粉塵がカバー部の外部に吸引され排出され、投光部及び受光部に付着し難くなる。   According to such a preferable method, the air inside the cover part is sucked and discharged outside the cover part due to the ejector effect by the annular air curtain, so even if scales or dust enter the inside of the cover part. Those scales and dust are sucked and discharged outside the cover part, and are difficult to adhere to the light projecting part and the light receiving part.

好ましくは、前記カバー部は、前記投光部及び受光部に対して前記エアーの送風方向上流側に、前記断面円形材の径方向外方の周囲に環状に設けられた第1カバー部材と、前記投光部及び受光部に対して前記エアーの送風方向下流側に、前記断面円形材の径方向外方の周囲に環状に設けられた第2カバー部材と、前記投光部及び受光部に対して前記断面円形材の径方向外方の周囲に環状に設けられ前記第1カバー部材及び第2カバー部材の間に介在し該第1カバー部材及び第2カバー部材を接続する第3カバー部材とを有する   Preferably, the cover portion is provided on the upstream side in the air blowing direction with respect to the light projecting portion and the light receiving portion, and a first cover member provided in an annular shape around a radially outer side of the circular cross-section member; A second cover member provided annularly around the radially outer side of the cross-sectional circular material, on the downstream side in the air blowing direction with respect to the light projecting unit and the light receiving unit, and the light projecting unit and the light receiving unit On the other hand, a third cover member that is annularly provided around the radially outer side of the circular cross-section member and is interposed between the first cover member and the second cover member and connects the first cover member and the second cover member. And having

本発明によれば、断面円形材が高温の棒鋼、線材や鋼管であっても、外径の測定精度が良い。また、スケールや粉塵が投光部及び受光部に付着し難い。   According to the present invention, even when the cross-sectional circular material is a high-temperature steel bar, wire rod, or steel pipe, the measurement accuracy of the outer diameter is good. In addition, scale and dust are less likely to adhere to the light projecting unit and the light receiving unit.

図1(a)は、従来の外径測定装置の側面の一部断面図であり、図1(b)は投光部と受光部を図1(a)におけるD方向から見た正面図である。FIG. 1A is a partial cross-sectional view of a side surface of a conventional outer diameter measuring device, and FIG. 1B is a front view of a light projecting unit and a light receiving unit viewed from the direction D in FIG. is there. 図2は、同外径測定装置によって測定した棒鋼の仮想半径の測定結果である。FIG. 2 is a measurement result of the virtual radius of the steel bar measured by the outer diameter measuring device. 図3(a)は、第1の実施形態に係る外径測定装置の側面の一部断面図であり、図3(b)は、挿通部材に棒鋼が挿入されたときの斜視図であり、図3(c)は、受光部が投光部からの光を受光する状態を示す図であり、図3(d)は、投光部と受光部を図3(a)におけるD方向から見た正面図である。FIG. 3A is a partial cross-sectional view of the side surface of the outer diameter measuring apparatus according to the first embodiment, and FIG. 3B is a perspective view when a steel bar is inserted into the insertion member, FIG. 3C is a diagram illustrating a state in which the light receiving unit receives light from the light projecting unit. FIG. 3D illustrates the light projecting unit and the light receiving unit viewed from the direction D in FIG. FIG. 図4(a)は、得られた仮想半径の値を測定結果の図にプロットする方法を説明する図であり、図4(b)は、同外径測定装置によって測定した棒鋼の仮想半径の測定結果である。FIG. 4A is a diagram for explaining a method of plotting the obtained value of the virtual radius on the measurement result diagram, and FIG. 4B is a diagram of the virtual radius of the steel bar measured by the outer diameter measuring device. It is a measurement result. 図5(a)は、第2の実施形態に係る外径測定装置の側面の一部断面図であり、図5(b)は、カバー部の斜視図である。Fig.5 (a) is a partial cross section figure of the side surface of the outer diameter measuring apparatus which concerns on 2nd Embodiment, FIG.5 (b) is a perspective view of a cover part.

(第1の実施形態)
本発明の第1の実施形態に係る外径測定装置について、図3を参照して説明する。図3(a)は、外径測定装置の側面の一部断面図であり、図3(b)は、外径測定装置の挿通部材に棒鋼が挿入されたときの斜視図であり、図3(c)は、受光部が投光部からの光を受光する状態を示す図であり、図3(d)は、投光部と受光部を図3(a)におけるD方向から見た正面図である。
外径測定装置1は、棒鋼Wの外径を測定する外径測定器2と、棒鋼Wを挿通させる挿通部材3とを備えている。
外径測定器2は、棒鋼Wに光Lを投光する投光部21と、投光部21が投光した光Lを受光して光Lに相当する電気信号を送信する受光部22と、投光部21に光Lを投光させると共に、受光部22が送信する電気信号に基づいて、棒鋼Wの外径を演算する制御演算部23とを有している。
外径測定器2は、投光部21と受光部22とを3組有している(図3(a)では、1組の投光部21と受光部22のみを示している)。
挿通部材3は、棒鋼Wを挿通させる挿通口31を有しており、挿通口31が投光部21から受光部22への光路に対向するように設けられている。また、挿通部材3は、挿通口31を囲繞する環状の送風口32を有しており、送風口32は吸気を行う吸気口33と連通している。吸気口33は、ブロワー(図示せず)に接続されている。
送風口32は、棒鋼Wの径方向外方の周囲を棒鋼Wの軸方向にエアーFを送風して環状のエアーカーテンAを形成する。送風口32から送風されるエアーFの送風方向には遮蔽物がない。エアーカーテンAの環状部分の厚みは、薄すぎると断面円形材より剥離したスケールや粉塵がエアーカーテンAに閉じ込めることができにくくなり、一方厚すぎるとエアーFが棒鋼Wにあたることにより、棒鋼表面の層状の高温の空気層を乱し、外径の測定精度を悪化させてしまう。そのため、エアーカーテンAの環状部分の厚みは、送風口32の吹き出し位置で、10〜15mmが好ましく、本実施形態では10mmである。エアーFの風量は、少なすぎると断面円形材より剥離したスケールや粉塵がエアーカーテンAに閉じ込められた状態で外部に排出されにくくなり、一方多すぎるとエアーFが棒鋼Wにあたることにより、棒鋼表面の層状の高温の空気層を乱し、外径の測定精度を悪化させてしまう。そのため、エアーFの風量は、送風口32の吹き出し位置で、0.30〜0.50Nm/cm・minが好ましく、本実施形態では0.37Nm/cm・minである。
(First embodiment)
The outer diameter measuring apparatus according to the first embodiment of the present invention will be described with reference to FIG. 3 (a) is a partial cross-sectional view of the side surface of the outer diameter measuring device, and FIG. 3 (b) is a perspective view when a steel bar is inserted into the insertion member of the outer diameter measuring device. (C) is a figure which shows the state which a light-receiving part receives the light from a light projection part, FIG.3 (d) is the front which looked at the light projection part and the light-receiving part from the D direction in Fig.3 (a). FIG.
The outer diameter measuring device 1 includes an outer diameter measuring device 2 that measures the outer diameter of the steel bar W, and an insertion member 3 through which the steel bar W is inserted.
The outer diameter measuring device 2 includes a light projecting unit 21 that projects light L onto the steel bar W, and a light receiving unit 22 that receives the light L projected by the light projecting unit 21 and transmits an electrical signal corresponding to the light L. In addition, the light projecting unit 21 projects light L, and the control calculating unit 23 calculates the outer diameter of the steel bar W based on the electrical signal transmitted by the light receiving unit 22.
The outer diameter measuring device 2 has three sets of the light projecting unit 21 and the light receiving unit 22 (in FIG. 3A, only one set of the light projecting unit 21 and the light receiving unit 22 is shown).
The insertion member 3 has an insertion port 31 through which the steel bar W is inserted, and the insertion port 31 is provided so as to face the optical path from the light projecting unit 21 to the light receiving unit 22. The insertion member 3 has an annular air blowing port 32 that surrounds the insertion port 31, and the air blowing port 32 communicates with an air intake port 33 that performs intake. The intake port 33 is connected to a blower (not shown).
The air blowing port 32 blows air F around the radially outer periphery of the steel bar W in the axial direction of the steel bar W to form an annular air curtain A. There is no obstruction in the blowing direction of the air F blown from the blowing port 32. If the thickness of the annular portion of the air curtain A is too thin, it becomes difficult for scale and dust peeled off from the circular cross-section material to be trapped in the air curtain A. On the other hand, if the air curtain A is too thick, the air F hits the steel bar W. The layered high-temperature air layer is disturbed and the measurement accuracy of the outer diameter is deteriorated. Therefore, the thickness of the annular portion of the air curtain A is preferably 10 to 15 mm at the blowing position of the air blowing port 32, and is 10 mm in the present embodiment. If the air volume of the air F is too small, the scale and dust peeled off from the circular cross-section material will be difficult to be discharged to the outside while confined in the air curtain A. On the other hand, if the air volume is too large, the air F will hit the steel bar W. The layered high-temperature air layer is disturbed, and the measurement accuracy of the outer diameter is deteriorated. Therefore, the air volume of the air F is a balloon position of the air blowing port 32 is preferably 0.30~0.50Nm 3 / cm 2 · min, in the present embodiment is a 0.37Nm 3 / cm 2 · min.

投光部21は、例えばLEDやハロゲンランプであり、棒鋼Wの径方向の周縁に光Lを投光する。受光部22は、例えばCCDラインセンサであり、棒鋼Wの測定される外径方向に平行な方向に複数の受光素子221をライン状に有している。制御演算部23は、棒鋼Wの径方向の周縁に投光された光Lを受光した受光素子221と、棒鋼Wの影になって投光された光Lを受光しない受光素子221との境界の位置に基づいて棒鋼Wの外径を演算する。
3組の投光部21と受光部22は、それぞれの光路が、挿通口31の径方向の中心Oで互いに120度の角度で交差するように配置されている。投光部21及び受光部22は、挿通口31を挿通する棒鋼Wと離間し、環状のエアーカーテンAよりも棒鋼Wの径方向外方に設けられている。
投光部21と受光部22は、挿通口31の径方向の中心Oを起点として、棒鋼Wの周方向に回転自在になっている。制御演算部23は、回転駆動部(図示せず)によって投光部21と受光部22を棒鋼Wの周方向に回転させ、棒鋼Wの外径を棒鋼Wの周囲の全周の位置から測定する。
The light projecting unit 21 is, for example, an LED or a halogen lamp, and projects light L onto the peripheral edge in the radial direction of the steel bar W. The light receiving unit 22 is a CCD line sensor, for example, and has a plurality of light receiving elements 221 in a line shape in a direction parallel to the outer diameter direction of the steel bar W. The control calculation unit 23 is a boundary between the light receiving element 221 that receives the light L projected on the peripheral edge in the radial direction of the steel bar W and the light receiving element 221 that does not receive the light L projected in the shadow of the steel bar W. The outer diameter of the steel bar W is calculated based on the position.
The three sets of the light projecting unit 21 and the light receiving unit 22 are arranged so that their optical paths intersect each other at an angle of 120 degrees at the radial center O of the insertion port 31. The light projecting unit 21 and the light receiving unit 22 are separated from the steel bar W inserted through the insertion port 31 and are provided radially outward of the steel bar W from the annular air curtain A.
The light projecting unit 21 and the light receiving unit 22 are rotatable in the circumferential direction of the steel bar W starting from the radial center O of the insertion port 31. The control calculation unit 23 rotates the light projecting unit 21 and the light receiving unit 22 in the circumferential direction of the steel bar W by a rotation driving unit (not shown), and measures the outer diameter of the steel bar W from the position of the entire circumference around the steel bar W. To do.

挿通口31の径方向の中心Oを通り光Lに平行な直線Mから棒鋼Wの周縁までの距離(以下、この距離を仮想半径という)が測定される。この図3(c)の例の場合、仮想半径としてx1とx2が測定されている。そして、棒鋼Wの全周囲から測定した仮想半径の平均値が仮想半径平均値とされ、仮想半径平均値の2倍が棒鋼Wの外径とされる。   A distance from the straight line M passing through the center O in the radial direction of the insertion port 31 and parallel to the light L to the peripheral edge of the steel bar W (hereinafter, this distance is referred to as a virtual radius) is measured. In the example of FIG. 3C, x1 and x2 are measured as virtual radii. The average value of the virtual radius measured from the entire circumference of the steel bar W is taken as the virtual radius average value, and twice the virtual radius average value is taken as the outer diameter of the steel bar W.

次に棒鋼Wの外径の測定方法について説明する。
ブロワーが駆動されてエアーFが吸気口33に送風されている状態で、棒鋼Wが挿通口31の径方向の中心に挿入される。送風口32から棒鋼Wの径方向外方の周囲を棒鋼Wの軸方向にエアーFが送風されて、棒鋼Wの径方向外方の周囲に環状のエアーカーテンAが形成される。
制御演算部23は、回転駆動部によって投光部21と受光部22とを棒鋼Wの周方向に回転させ、投光部21に光Lを投光させ、受光部22からの電気信号に基づいて棒鋼Wの外径を演算する。
Next, a method for measuring the outer diameter of the steel bar W will be described.
In a state where the blower is driven and the air F is blown to the intake port 33, the steel bar W is inserted into the center of the insertion port 31 in the radial direction. Air F is blown in the axial direction of the steel bar W around the radially outer periphery of the steel bar W from the blower opening 32, and an annular air curtain A is formed around the radially outer side of the steel bar W.
The control calculation unit 23 causes the light projecting unit 21 and the light receiving unit 22 to rotate in the circumferential direction of the steel bar W by the rotation driving unit, causes the light projecting unit 21 to project the light L, and based on the electrical signal from the light receiving unit 22. The outer diameter of the steel bar W is calculated.

この外径測定装置1による棒鋼Wの測定結果を図4に示す。3組の投光部21と受光部22のそれぞれの組が、棒鋼Wの周方向の全ての位置から測定している。仮想半径が基準値(この測定の場合は20mm)との差で表わされている。図3(c)の例のように、水平方向から測定された仮想半径がx1及びx2の場合には、図4(a)のように、座標の中心を垂直に通る直線上にx1とx2が基準値との差に基づいてプロットされる。図4(b)は、そのようにして仮想半径が全周に亘ってプロットされた測定結果である。
3組の投光部21と受光部22による測定結果R1、R2、R3がそれぞれ示されており、測定値R1、R2、R3を示す線が互いに近接しており、従来の外径測定装置による測定値よりもバラツキが小さい。
3組の投光部21と受光部22による棒鋼Wの仮想半径平均値の内で最小値が19.85mm、最大値が19.98mmで、最大値と最小値との差が0.13mmであり測定精度が良好である。
The measurement result of the steel bar W by the outer diameter measuring device 1 is shown in FIG. Each of the three sets of the light projecting portion 21 and the light receiving portion 22 is measured from all positions in the circumferential direction of the steel bar W. The virtual radius is represented by the difference from the reference value (20 mm in this measurement). When the virtual radii measured from the horizontal direction are x1 and x2 as in the example of FIG. 3C, as shown in FIG. 4A, x1 and x2 are on a straight line passing through the center of the coordinates vertically. Is plotted based on the difference from the reference value. FIG. 4B shows the measurement result in which the virtual radius is plotted over the entire circumference.
The measurement results R1, R2, and R3 by the three sets of the light projecting unit 21 and the light receiving unit 22 are shown, and the lines indicating the measured values R1, R2, and R3 are close to each other. The variation is smaller than the measured value.
Among the virtual radius average values of the steel bars W by the three sets of the light projecting unit 21 and the light receiving unit 22, the minimum value is 19.85 mm, the maximum value is 19.98 mm, and the difference between the maximum value and the minimum value is 0.13 mm. Yes Measurement accuracy is good.

このように、棒鋼Wが高温であっても、送風口32から棒鋼Wの径方向外方の周囲を棒鋼Wの軸方向にエアーFが送風されて環状のエアーカーテンAが形成されることにより、棒鋼Wの表面の層状の高温の空気層が乱れ難いので、投光部21から棒鋼Wの表面近傍に投光された光Lの屈折方向が乱れ難くなり外径の測定精度が良くなる。
また、投光部21及び受光部22が棒鋼Wと離間していることと、投光部21及び受光部22と棒鋼Wとの間に環状のエアーカーテンAが有ることと、エアーの送風方向に遮蔽物を有さないようにすることにより、棒鋼Wより剥離したスケールや粉塵は環状のエアーカーテンに閉じ込められた状態で外部に排出される。そのため、スケールや粉塵は環状のエアーカーテンAの径方向外方に設けられた投光部21及び受光部22に付着し難くなるので、スケールや粉塵による汚れによって外径の測定が出来なくなる虞が少ない。
Thus, even if the steel bar W is hot, the air F is blown from the air outlet 32 in the axial direction of the steel bar W around the radially outer side of the steel bar W to form the annular air curtain A. Since the layered high-temperature air layer on the surface of the steel bar W is not easily disturbed, the refraction direction of the light L projected from the light projecting portion 21 to the vicinity of the surface of the steel bar W is not easily disturbed, and the outer diameter measurement accuracy is improved.
In addition, the light projecting unit 21 and the light receiving unit 22 are separated from the steel bar W, the annular air curtain A is present between the light projecting unit 21 and the light receiving unit 22, and the steel bar W, and the air blowing direction. Therefore, the scale and dust peeled off from the steel bar W are discharged to the outside while being confined in the annular air curtain. Therefore, the scale and dust are less likely to adhere to the light projecting unit 21 and the light receiving unit 22 provided radially outward of the annular air curtain A, and there is a possibility that the outer diameter cannot be measured due to dirt due to the scale or dust. Few.

また、投光部21と受光部22を次のような構成にしても良い。投光部21がレーザ走査装置(例えば、レーザ光源とポリゴンミラーとの組み合わせ)であり、受光部22が光電子増倍管等の光検出器である。
例えば、レーザ走査装置として、レーザ光源とポリゴンミラーとを組み合わせた構成を用いる場合、ポリゴンミラーは、棒鋼Wの軸方向と平行に設けられた軸の軸周りに一定速度で回転駆動し、レーザ光源より出射されたレーザ光を反射面で反射させることにより、レーザ光を棒鋼Wの外径方向に沿って走査する。
光検出器の受光範囲は棒鋼Wの外径よりも広くなっており、光検出器は棒鋼Wを走査したレーザ光を受光し、受光した光に相当する電気信号を制御演算部23に送信する。制御演算部23は、走査されたレーザ光が棒鋼Wに当たって光検出器がレーザ光を検出しない時間長さから、棒鋼Wの外径を演算する。
このような構成にすることにより、前述した投光部21がLEDやハロゲンランプであり、受光部22がCCDラインセンサである場合と同様に、棒鋼Wの外径を測定することができる。
Further, the light projecting unit 21 and the light receiving unit 22 may be configured as follows. The light projecting unit 21 is a laser scanning device (for example, a combination of a laser light source and a polygon mirror), and the light receiving unit 22 is a photodetector such as a photomultiplier tube.
For example, in the case of using a configuration in which a laser light source and a polygon mirror are combined as a laser scanning device, the polygon mirror is rotationally driven at a constant speed around the axis of the shaft provided in parallel with the axial direction of the steel bar W, and the laser light source The laser beam is scanned along the outer diameter direction of the steel bar W by reflecting the laser beam emitted from the reflecting surface.
The light receiving range of the light detector is wider than the outer diameter of the steel bar W, and the light detector receives the laser light scanned on the steel bar W and transmits an electric signal corresponding to the received light to the control calculation unit 23. . The control calculation unit 23 calculates the outer diameter of the bar W from the length of time that the scanned laser beam hits the bar W and the photodetector does not detect the laser beam.
With this configuration, the outer diameter of the steel bar W can be measured as in the case where the light projecting unit 21 is an LED or a halogen lamp and the light receiving unit 22 is a CCD line sensor.

(第2の実施形態)
次に、第2の実施形態に係る外径測定装置1について図5を参照して説明する。図5(a)は、外径測定装置の側面の一部断面図であり、図5(b)は、カバー部の斜視図である。
本実施形態に係る外径測定装置1は、第1の実施形態に係る外径測定装置1の構成に加えて、投光部21及び受光部22を覆うカバー部4を有している。
カバー部4は、投光部21及び受光部22に対してエアーFの送風方向上流側に、棒鋼Wの径方向外方の周囲に環状に設けられた第1カバー部材41と、投光部21及び受光部22に対してエアーの送風方向下流側に、棒鋼Wの径方向外方の周囲に環状に設けられた第2カバー部材42と、投光部21及び受光部22に対して棒鋼Wの径方向外方の周囲に環状に設けられ第1カバー部材41及び第2カバー部材42の間に介在し第1カバー部材41及び第2カバー部材42を接続する第3カバー部材43とを有している。また、カバー部4は、環状のエアーカーテンAに対向する開口部44と、カバー部4の内部と外部とを連通する連通口45とを有している。開口部44は環状のエアーカーテンAの近傍に位置している。
(Second Embodiment)
Next, the outer diameter measuring apparatus 1 according to the second embodiment will be described with reference to FIG. FIG. 5A is a partial cross-sectional view of the side surface of the outer diameter measuring device, and FIG. 5B is a perspective view of the cover portion.
The outer diameter measuring apparatus 1 according to the present embodiment has a cover part 4 that covers the light projecting part 21 and the light receiving part 22 in addition to the configuration of the outer diameter measuring apparatus 1 according to the first embodiment.
The cover unit 4 includes a first cover member 41 provided in an annular shape around the radially outer side of the steel bar W on the upstream side in the air blowing direction of the air F with respect to the light projecting unit 21 and the light receiving unit 22, and the light projecting unit The second cover member 42 provided annularly around the radially outer side of the steel bar W on the downstream side in the air blowing direction with respect to the light guide 21 and the light receiving part 22, and the steel bar with respect to the light projecting part 21 and the light receiving part 22 A third cover member 43 provided in a ring around the radially outer side of W and interposed between the first cover member 41 and the second cover member 42 and connecting the first cover member 41 and the second cover member 42; Have. Moreover, the cover part 4 has the opening part 44 which opposes the cyclic | annular air curtain A, and the communicating port 45 which connects the inside and the exterior of the cover part 4. As shown in FIG. The opening 44 is located in the vicinity of the annular air curtain A.

このような構成において、送風口32からエアーFが送風されると、開口部44が環状のエアーカーテンAの近傍にあるので、エアーFの流れによるエジェクター効果により、カバー部4内部の空気が開口部44からカバー部4外部に吸引される。すると、カバー部4には連通口45が設けられているので、矢印F1に示すように、連通口45から新たな空気がカバー部4に供給され、カバー部4内部の空気が続けてカバー部4外部に吸引され排出される。
このようにカバー部4内部の空気がカバー部4外部に吸引され排出されることにより、カバー部4内部に例えスケールや粉塵が侵入したとしても、それらのスケールや粉塵がカバー部4外部に吸引され排出され、投光部21及び受光部22に付着し難くなる。
In such a configuration, when the air F is blown from the air blowing port 32, the opening 44 is in the vicinity of the annular air curtain A, so that the air inside the cover 4 is opened by the ejector effect due to the flow of the air F. The part 44 is sucked outside the cover part 4. Then, since the communication port 45 is provided in the cover part 4, as indicated by an arrow F 1, new air is supplied from the communication port 45 to the cover unit 4, and the air inside the cover unit 4 continues to cover the cover unit 4. 4 Sucked outside and discharged.
Thus, even if scales and dust enter the inside of the cover part 4 because the air inside the cover part 4 is sucked and discharged outside the cover part 4, those scales and dust are sucked outside the cover part 4 It is difficult to adhere to the light projecting unit 21 and the light receiving unit 22.

開口部44は、環状のエアーカーテンAにできるだけ近づけるのがよいが、エアーFが第1カバー部材41に当接しないように開口部44と環状のエアーカーテンAの間に間隔を開けることが望ましい。また、連通口45は、開口部44から離して、投光部21や受光部22の近傍に設けることが望ましい。また、連通口45は、投光部21及び受光部22毎に設けることが望ましいが、1つだけでもよい。   The opening 44 is preferably as close as possible to the annular air curtain A, but it is desirable to leave a gap between the opening 44 and the annular air curtain A so that the air F does not contact the first cover member 41. . Further, the communication port 45 is preferably provided in the vicinity of the light projecting unit 21 and the light receiving unit 22 apart from the opening 44. Further, although it is desirable to provide the communication port 45 for each of the light projecting unit 21 and the light receiving unit 22, only one communication port 45 may be provided.

また、本実施形態の例として1個のカバー部4によって、全ての投光部21及び受光部22を覆う外径測定装置1を示したが、複数のカバー部4によって、全ての投光部21及び受光部22を分けて覆うようにしてもよく、例えば、それぞれの投光部21及び受光部22を個別のカバー部4によって覆ってもよい。
また、カバー部4の形状は、第1カバー部材41、第2カバー部材42、第3カバー部材43を用いた形状に限定されず、開口部44と連通口45とを有していればよい。
Moreover, although the outer diameter measuring apparatus 1 which covers all the light projection parts 21 and the light-receiving parts 22 by one cover part 4 as an example of this embodiment was shown, all the light projection parts are shown by several cover parts 4. 21 and the light receiving unit 22 may be separately covered. For example, the light projecting unit 21 and the light receiving unit 22 may be covered by the individual cover unit 4.
Moreover, the shape of the cover part 4 is not limited to the shape using the 1st cover member 41, the 2nd cover member 42, and the 3rd cover member 43, What is necessary is just to have the opening part 44 and the communication port 45. FIG. .

なお、本発明は、上記実施形態の構成に限られず、発明の趣旨を変更しない範囲で種々の変形が可能である。例えば、第1の実施形態及び第2の実施形態において、投光部21と受光部22の組数はいくつでもよく、例えば1組でもよい。
また、棒鋼Wを、外径測定装置1に対して相対的に棒鋼Wの軸方向に移動させながら、棒鋼Wの外径を測定してもよい。このようにして測定することにより、棒鋼Wの軸方向に沿った棒鋼Wの外径分布を測定することができる。
In addition, this invention is not restricted to the structure of the said embodiment, A various deformation | transformation is possible in the range which does not change the meaning of invention. For example, in the first embodiment and the second embodiment, the number of sets of the light projecting unit 21 and the light receiving unit 22 may be any number, for example, one set.
Further, the outer diameter of the steel bar W may be measured while moving the steel bar W in the axial direction of the steel bar W relative to the outer diameter measuring device 1. By measuring in this way, the outer diameter distribution of the steel bar W along the axial direction of the steel bar W can be measured.

1・・・外径測定装置
2・・・外径測定器
21・・・投光部
22・・・受光部
3・・・挿通部材
31・・・挿通口
32・・・送風口
4・・・カバー部
41・・・第1カバー部材
42・・・第2カバー部材
43・・・第3カバー部材
44・・・開口部
45・・・連通口
A・・・エアーカーテン
L・・・光
W・・・棒鋼(断面円形材)
DESCRIPTION OF SYMBOLS 1 ... Outer diameter measuring device 2 ... Outer diameter measuring device 21 ... Light projection part 22 ... Light receiving part 3 ... Insertion member 31 ... Insertion port 32 ... Blower port 4 .... -Cover part 41 ... 1st cover member 42 ... 2nd cover member 43 ... 3rd cover member 44 ... Opening part 45 ... Communication port A ... Air curtain L ... Light W ... Steel bar (circular cross section)

Claims (3)

断面円形材の外径を測定する外径測定装置であって、
前記断面円形材の軸方向に垂直な方向から該断面円形材の側面に向けて光を投光する投光部と、該断面円形材を挟んで前記投光部の反対側に設けられ該投光部が投光した光を受光する受光部とを具備する外径測定器と、
前記断面円形材が挿通する挿通口を有する挿通部材とを備え、
前記挿通部材は、前記挿通口が前記投光部から前記受光部への光路に対向するように設けられ、
前記挿通部材は、前記挿通口を囲繞する環状の送風口を有し、
前記送風口は、前記断面円形材の径方向外方の周囲を該断面円形材の軸方向にエアーを送風して環状のエアーカーテンを形成し、
前記投光部及び受光部は、前記挿通口を挿通する前記断面円形材と離間し、前記環状のエアーカーテンよりも前記断面円形材の径方向外方に設けられ、
前記エアーの送風方向に遮蔽物を有さないことを特徴とする外径測定装置。
An outer diameter measuring device for measuring the outer diameter of a circular cross-section material,
A light projecting portion for projecting light from a direction perpendicular to the axial direction of the cross-sectional circular material toward a side surface of the circular cross-sectional material; and a light projecting portion provided on the opposite side of the light projecting unit with the circular cross-sectional material interposed therebetween. An outer diameter measuring instrument comprising a light receiving part for receiving the light projected by the light part;
An insertion member having an insertion port through which the circular cross-sectional material is inserted;
The insertion member is provided so that the insertion port faces an optical path from the light projecting unit to the light receiving unit,
The insertion member has an annular air outlet that surrounds the insertion opening,
The blower port blows air in the axial direction of the circular cross-sectional material around the radially outer periphery of the circular cross-sectional material to form an annular air curtain,
The light projecting portion and the light receiving portion are spaced apart from the circular cross-sectional material that is inserted through the insertion port, and are provided radially outward of the circular cross-sectional material from the annular air curtain.
An outer diameter measuring apparatus having no shielding object in the air blowing direction.
前記投光部及び受光部を覆い、前記環状のエアーカーテンに対向する開口部を有するカバー部と、
前記カバー部に設けられ該カバー部の内部と外部とを連通する連通口とを備え、
前記カバー部は、前記送風口よりも前記エアーの送風方向下流側に設けられ、
前記開口部は、前記環状のエアーカーテンの近傍に位置することを特徴とする請求項1に記載の外径測定装置。
A cover portion that covers the light projecting portion and the light receiving portion and has an opening facing the annular air curtain;
A communication port provided in the cover portion and communicating with the inside and the outside of the cover portion;
The cover part is provided on the downstream side of the air blowing direction from the air blowing port,
The outer diameter measuring device according to claim 1, wherein the opening is located in the vicinity of the annular air curtain.
前記カバー部は、前記投光部及び受光部に対して前記エアーの送風方向上流側に、前記断面円形材の径方向外方の周囲に環状に設けられた第1カバー部材と、
前記投光部及び受光部に対して前記エアーの送風方向下流側に、前記断面円形材の径方向外方の周囲に環状に設けられた第2カバー部材と、
前記投光部及び受光部に対して前記断面円形材の径方向外方の周囲に環状に設けられ前記第1カバー部材及び第2カバー部材の間に介在し該第1カバー部材及び第2カバー部材を接続する第3カバー部材とを有することを特徴とする請求項2に記載の外径測定装置。
The cover portion is provided on the upstream side in the air blowing direction with respect to the light projecting portion and the light receiving portion, and a first cover member provided annularly around the radially outer side of the circular cross-section member;
A second cover member provided annularly around the radially outer side of the circular cross-sectional material on the downstream side in the air blowing direction with respect to the light projecting unit and the light receiving unit;
The first cover member and the second cover are provided between the first cover member and the second cover member, and are annularly provided around the radially outer portion of the circular section member with respect to the light projecting unit and the light receiving unit. The outer diameter measuring apparatus according to claim 2, further comprising a third cover member that connects the members.
JP2010234353A 2010-10-19 2010-10-19 Outside diameter measuring device Expired - Fee Related JP5333947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010234353A JP5333947B2 (en) 2010-10-19 2010-10-19 Outside diameter measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010234353A JP5333947B2 (en) 2010-10-19 2010-10-19 Outside diameter measuring device

Publications (2)

Publication Number Publication Date
JP2012088138A true JP2012088138A (en) 2012-05-10
JP5333947B2 JP5333947B2 (en) 2013-11-06

Family

ID=46259912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010234353A Expired - Fee Related JP5333947B2 (en) 2010-10-19 2010-10-19 Outside diameter measuring device

Country Status (1)

Country Link
JP (1) JP5333947B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103852019A (en) * 2012-11-30 2014-06-11 昆山允可精密工业技术有限公司 Automatic diameter detection method for grinding rod
CN103852021A (en) * 2012-11-30 2014-06-11 昆山允可精密工业技术有限公司 Non-contact grinding rod diameter measuring platform
CN105203037A (en) * 2015-09-21 2015-12-30 长飞光纤光缆股份有限公司 Device for on-line measurement of diameter of prefabricated rod
CN106382892A (en) * 2016-08-19 2017-02-08 广东省自动化研究所 Method and device for measuring tape winding diameter of tape winding and unwinding system based on trigonometric function
DE102016000219A1 (en) * 2016-01-09 2017-07-13 Hmptechnologie Gmbh Air-density gradient minimization in the optical measurement of hot workpieces by means of air cross-flow
CN106989682A (en) * 2017-06-12 2017-07-28 重庆科技学院 A kind of light veil type axial workpiece measuring instrument gauge head unit and its measuring method
CN108151808A (en) * 2018-01-09 2018-06-12 湖北汽车工业学院 A kind of steel pipe measuring device and method based on image procossing
WO2019097747A1 (en) * 2017-11-14 2019-05-23 株式会社ホタニ Strip end detection device and brushing device
CN110411325A (en) * 2019-08-14 2019-11-05 广西财经学院 A kind of civil engineering reinforcing bar deformation measuring device
CN110455206A (en) * 2018-05-07 2019-11-15 中铁一局集团有限公司 A kind of structure reinforcing bars spacing detection system and its progress control method
CN111536884A (en) * 2020-03-24 2020-08-14 南方电网科学研究院有限责任公司 Wire coating thickness measuring device and control method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102495103B1 (en) * 2017-08-30 2023-02-02 주식회사 포스코 Measuring apparatus and method for bar

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54118848U (en) * 1978-02-08 1979-08-20
JPS54123856U (en) * 1978-02-17 1979-08-30
JPH0269672A (en) * 1988-09-05 1990-03-08 Tokyo Electric Power Co Inc:The Optical current transformer
JPH03192537A (en) * 1989-12-21 1991-08-22 Canon Inc Optical head device
JPH085338A (en) * 1994-06-22 1996-01-12 Daido Steel Co Ltd Measurement part protection device of optical dimension measuring instrument
JPH09320089A (en) * 1996-05-29 1997-12-12 Olympus Optical Co Ltd Optical pickup
JP2002156335A (en) * 2000-11-15 2002-05-31 Nkk Corp Surface inspection device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54118848U (en) * 1978-02-08 1979-08-20
JPS54123856U (en) * 1978-02-17 1979-08-30
JPH0269672A (en) * 1988-09-05 1990-03-08 Tokyo Electric Power Co Inc:The Optical current transformer
JPH03192537A (en) * 1989-12-21 1991-08-22 Canon Inc Optical head device
JPH085338A (en) * 1994-06-22 1996-01-12 Daido Steel Co Ltd Measurement part protection device of optical dimension measuring instrument
JPH09320089A (en) * 1996-05-29 1997-12-12 Olympus Optical Co Ltd Optical pickup
JP2002156335A (en) * 2000-11-15 2002-05-31 Nkk Corp Surface inspection device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103852019A (en) * 2012-11-30 2014-06-11 昆山允可精密工业技术有限公司 Automatic diameter detection method for grinding rod
CN103852021A (en) * 2012-11-30 2014-06-11 昆山允可精密工业技术有限公司 Non-contact grinding rod diameter measuring platform
CN105203037A (en) * 2015-09-21 2015-12-30 长飞光纤光缆股份有限公司 Device for on-line measurement of diameter of prefabricated rod
DE102016000219A1 (en) * 2016-01-09 2017-07-13 Hmptechnologie Gmbh Air-density gradient minimization in the optical measurement of hot workpieces by means of air cross-flow
CN106382892A (en) * 2016-08-19 2017-02-08 广东省自动化研究所 Method and device for measuring tape winding diameter of tape winding and unwinding system based on trigonometric function
CN106989682A (en) * 2017-06-12 2017-07-28 重庆科技学院 A kind of light veil type axial workpiece measuring instrument gauge head unit and its measuring method
WO2019097747A1 (en) * 2017-11-14 2019-05-23 株式会社ホタニ Strip end detection device and brushing device
CN108151808A (en) * 2018-01-09 2018-06-12 湖北汽车工业学院 A kind of steel pipe measuring device and method based on image procossing
CN108151808B (en) * 2018-01-09 2019-10-08 湖北汽车工业学院 A kind of steel pipe measuring device and method based on image procossing
CN110455206A (en) * 2018-05-07 2019-11-15 中铁一局集团有限公司 A kind of structure reinforcing bars spacing detection system and its progress control method
CN110411325A (en) * 2019-08-14 2019-11-05 广西财经学院 A kind of civil engineering reinforcing bar deformation measuring device
CN111536884A (en) * 2020-03-24 2020-08-14 南方电网科学研究院有限责任公司 Wire coating thickness measuring device and control method thereof

Also Published As

Publication number Publication date
JP5333947B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
JP5333947B2 (en) Outside diameter measuring device
CN102192898B (en) Smoke detector
EP2014220B1 (en) Apparatus for obtaining geometrical data relating to a cavity
CN204177363U (en) A kind of minute surface ceramic tile flatness on-line measuring device
WO2010073926A1 (en) Eddy-current testing method and eddy-current testing device
US10060727B2 (en) Internal diameter measuring method for transparent tube
JP2011511280A5 (en)
JP2013506861A5 (en) Endoscope and surface topography measurement method
AU2012329324C1 (en) Container inspection apparatus and method
JP6596399B2 (en) Clearance measuring device and clearance control system
JP2008517283A (en) Improved measurement system
MX2015004934A (en) Facility for measuring the thickness of the wall of containers.
CN106053310B (en) A kind of dust investigating with foldable correcting mechanism
WO1999058967A1 (en) Method and device for displaying signal generated by measurement probe
US9211052B2 (en) Measuring endoscope
JP2006106011A (en) Method and device for inspecting honeycomb structure
US20220349835A1 (en) Cylindrical inner face inspection device
JP2013024754A (en) Object diameter measurement method
WO2007025350A1 (en) Fibre assessment apparatus and method
JPH06241064A (en) Shroud touch wear sensor of turbo machine
EP2430473B1 (en) Optical sensor
CN106124375A (en) A kind of dust investigating of low transmission loss
KR20160109120A (en) Transmission-Type Optical Dust Detecting Device
CN211402740U (en) Three-dimensional scanning device and laser radar based on sweep technique
JPH0227242A (en) Surface defect detector for cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130718

R151 Written notification of patent or utility model registration

Ref document number: 5333947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees