JP2012087012A - Operation method of psa device for producing high purity hydrogen gas - Google Patents

Operation method of psa device for producing high purity hydrogen gas Download PDF

Info

Publication number
JP2012087012A
JP2012087012A JP2010235443A JP2010235443A JP2012087012A JP 2012087012 A JP2012087012 A JP 2012087012A JP 2010235443 A JP2010235443 A JP 2010235443A JP 2010235443 A JP2010235443 A JP 2010235443A JP 2012087012 A JP2012087012 A JP 2012087012A
Authority
JP
Japan
Prior art keywords
gas
adsorption
hydrogen
pressure
adsorption tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010235443A
Other languages
Japanese (ja)
Other versions
JP5462763B2 (en
Inventor
Daisuke Nishikawa
大介 西川
Shinichi Miura
真一 三浦
Noboru Nakao
昇 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010235443A priority Critical patent/JP5462763B2/en
Publication of JP2012087012A publication Critical patent/JP2012087012A/en
Application granted granted Critical
Publication of JP5462763B2 publication Critical patent/JP5462763B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide an operation method of a PSA device for producing high purity hydrogen gas capable of reducing impurities (especially CO) in produced hydrogen gas even when being restarted next time after stopping continuous production of the high purity hydrogen gas, and reducing loss of product hydrogen gas.SOLUTION: In this method, the operation is stopped in the state where each adsorption tower 1a, 1b, 1c has higher pressure than the atmospheric pressure, and in the state in which at least one adsorption tower 1b in each adsorption tower 1a, 1b, 1c has pressure for adsorbing unnecessary gas from hydrogen-containing gas.

Description

本発明は、燃料電池用の高純度水素ガスを製造するPSA装置(以下、単に「PSA装置」とも言う)の運転方法に関するものである。   The present invention relates to a method for operating a PSA apparatus (hereinafter also simply referred to as “PSA apparatus”) that produces high-purity hydrogen gas for fuel cells.

近年、地球温暖化防止対策とも相俟って、エネルギーの原油依存体質からの脱却が世界的規模で重要課題となっており、水素ガスをエネルギー源とする燃料電池の実用化に向けての取組みが活発化している。   In recent years, in conjunction with global warming prevention measures, the departure of energy from crude oil dependence has become an important issue on a global scale, and efforts toward the practical application of fuel cells using hydrogen gas as an energy source Has become active.

このような状況に鑑みて、燃料電池用の高純度水素ガスを製造するPSA装置が開発されている(例えば、特許文献1を参照)。   In view of such a situation, a PSA apparatus for producing high-purity hydrogen gas for fuel cells has been developed (see, for example, Patent Document 1).

また、水素インフラが整備され、燃料電池自動車が普及する初期段階では、水素製造装置の稼働時間はまだ少ないものと予想される。したがって、水素製造装置の起動、停止も頻繁に行なわれるものと思われる。このような背景から高純度水素ガスを連続的に製造する水素製造装置を停止し、次回再起動させた際にも製造された水素ガス中の不純物を低減可能な技術が開発されている(例えば、特許文献2を参照)。   In addition, at the initial stage where hydrogen infrastructure is established and fuel cell vehicles are widely used, the operation time of hydrogen production equipment is expected to be still short. Therefore, it is considered that the hydrogen production apparatus is frequently started and stopped. Under such circumstances, a technology capable of reducing impurities in the produced hydrogen gas even when the hydrogen production apparatus for continuously producing high-purity hydrogen gas is stopped and restarted next time has been developed (for example, , See Patent Document 2).

特開2008−63152号公報JP 2008-63152 A 特開2009−154079号公報JP 2009-154079 A

上記特許文献1に開示されたPSA装置は、燃料電池用の高純度水素ガスを連続的に製造する技術としては非常に優れているが、PSA装置を一時停止させた後、次回再起動させた際に起こり得る問題点{すなわち、製造された水素ガス中へ不純物(特に、CO)が混入する問題}への対策が講じられていないという課題があった。   The PSA device disclosed in Patent Document 1 is very excellent as a technique for continuously producing high-purity hydrogen gas for fuel cells, but after the PSA device was temporarily stopped, it was restarted next time. There has been a problem that no countermeasure has been taken against problems that may occur at the time {that is, problems in which impurities (particularly CO) are mixed into the produced hydrogen gas}.

また、特許文献2に開示された水素製造装置では、停止信号が入力された後、2つ以上の吸着塔において均圧と脱圧を繰り返しながら、吸着剤中の吸着物を除去させるため、製造された水素ガス(製品水素ガス)を多量にロスしてしまうという課題があった。   Moreover, in the hydrogen production apparatus disclosed in Patent Document 2, after the stop signal is input, the adsorbate in the adsorbent is removed while repeating equalization and depressurization in two or more adsorption towers. There was a problem that a large amount of hydrogen gas (product hydrogen gas) was lost.

本発明の目的は、高純度水素ガスの連続的な製造を停止した後、次回再起動させた際にも製造された水素ガス中の不純物(特に、CO)を低減可能で、かつ、製品水素ガスのロスを少なくすることが可能な高純度水素ガス製造用PSA装置の運転方法を提供することにある。   The object of the present invention is to reduce impurities (especially CO) in the produced hydrogen gas even after the next restart after stopping the continuous production of high-purity hydrogen gas, and to produce product hydrogen. An object of the present invention is to provide a method of operating a PSA apparatus for producing high-purity hydrogen gas that can reduce gas loss.

この目的を達成するために、本発明の請求項1に記載の発明は、
3つ以上の吸着塔と、この3つ以上の吸着塔の各吸着塔内にCO吸着剤層、COを吸着するための炭素系吸着剤層の順序で積層して設けられた吸着剤床とを有し、少なくとも前記各吸着塔のCO吸着剤層側から吸着塔内へ水素含有ガスを供給することにより前記水素含有ガスからCOガスを含む不要ガスを吸着除去して高純度水素ガスを製造する工程と、前記各吸着塔のCO吸着剤層側から吸着塔内を大気圧未満まで減圧することにより前記吸着剤床に吸着された前記不要ガスを脱着させる工程とを有した高純度水素ガス製造用PSA装置の運転方法であって、
前記各吸着塔の全ての吸着塔内が大気圧以上の状態で、かつ、前記各吸着塔の内の少なくとも1つの吸着塔が前記水素含有ガスから前記不要ガスの吸着圧力の状態でPSA装置の運転を停止させることを特徴とする高純度水素ガス製造用PSA装置の運転方法である。
In order to achieve this object, the invention according to claim 1 of the present invention provides:
Adsorbent bed provided by laminating three or more adsorption towers and a carbon-based adsorbent layer for adsorbing CO 2 in the respective adsorption towers of the three or more adsorption towers. High-purity hydrogen gas is obtained by adsorbing and removing unnecessary gas including CO gas from the hydrogen-containing gas by supplying a hydrogen-containing gas from at least the CO adsorbent layer side of each adsorption tower into the adsorption tower. A high-purity hydrogen comprising: a step of producing; and a step of desorbing the unnecessary gas adsorbed on the adsorbent bed by reducing the inside of the adsorption tower to less than atmospheric pressure from the CO adsorbent layer side of each adsorption tower A method for operating a PSA device for gas production,
In the PSA apparatus, all the adsorption towers in each of the adsorption towers are at atmospheric pressure or higher, and at least one of the adsorption towers is in the state of the adsorption pressure of the unnecessary gas from the hydrogen-containing gas. An operation method of the PSA apparatus for producing high purity hydrogen gas, characterized in that the operation is stopped.

請求項2に記載の発明は、請求項1に記載の発明において、
前記CO吸着剤が、シリカ、アルミナ、およびポリスチレン系樹脂よりなる群から選択される1種以上の担体に、ハロゲン化銅(I)および/もしくはハロゲン化銅(II)を担持させた材料、またはこの材料を還元処理した吸着剤である。
The invention according to claim 2 is the invention according to claim 1,
The CO adsorbent is a material in which copper (I) halide and / or copper (II) halide is supported on one or more carriers selected from the group consisting of silica, alumina, and polystyrene resin, or An adsorbent obtained by reducing this material.

請求項3に記載の発明は、請求項1または2に記載の発明において、
前記各吸着塔の全ての吸着塔内が大気圧以上の状態で、かつ、前記各吸着塔の内の少なくとも1つの吸着塔が前記水素含有ガスから前記不要ガスの吸着圧力の状態で停止させる前に、前記水素含有ガスの吸着塔内への供給を止め、前記各吸着塔の前記炭素系吸着剤層側から洗浄ガスを供給しながら前記吸着剤床を再生することを特徴とする。
The invention according to claim 3 is the invention according to claim 1 or 2,
Before all the adsorption towers in each of the adsorption towers are at atmospheric pressure or higher and at least one of the adsorption towers is stopped from the hydrogen-containing gas at the adsorption pressure of the unnecessary gas. Further, the supply of the hydrogen-containing gas into the adsorption tower is stopped, and the adsorbent bed is regenerated while supplying a cleaning gas from the carbon-based adsorbent layer side of each adsorption tower.

以上のように、本発明に係る高純度水素ガス製造用PSA装置の運転方法によれば、
各吸着塔の全ての吸着塔内が大気圧以上の状態で、かつ、前記各吸着塔の内の少なくとも1つの吸着塔が前記水素含有ガスから前記不要ガスの吸着圧力の状態でPSA装置の運転を停止させるように構成されているため、高純度水素ガスの連続的な製造を停止した後、次回再起動させた際にも製造された水素ガス中の不純物(特に、CO)を低減可能で、かつ、製品水素ガスのロスを少なくすることが可能である。
As described above, according to the operation method of the high purity hydrogen gas production PSA apparatus according to the present invention,
The operation of the PSA apparatus is performed in a state where all the adsorption towers of each adsorption tower are at atmospheric pressure or higher, and at least one of the adsorption towers is at the adsorption pressure of the unnecessary gas from the hydrogen-containing gas. Therefore, it is possible to reduce impurities (especially CO) in the produced hydrogen gas even after restarting the next time after continuous production of high-purity hydrogen gas is stopped. In addition, loss of product hydrogen gas can be reduced.

本発明の一実施形態に係るPSA装置の吸着塔の概略説明図である。It is a schematic explanatory drawing of the adsorption tower of the PSA apparatus which concerns on one Embodiment of this invention. 図1に示す吸着塔が採用されたPSA装置の構成の概要を模式的に説明する説明図である。It is explanatory drawing which illustrates typically the outline | summary of a structure of the PSA apparatus by which the adsorption tower shown in FIG. 1 was employ | adopted. 図2に示すPSA装置を用いた実施例1における起動後の経過時間に対する不純物濃度と水素濃度の推移を示す特性図である。It is a characteristic view which shows transition of the impurity concentration and hydrogen concentration with respect to the elapsed time after starting in Example 1 using the PSA apparatus shown in FIG. 図2に示すPSA装置を用いた実施例2における起動後の経過時間に対する不純物濃度と水素濃度の推移を示す特性図である。It is a characteristic view which shows transition of the impurity concentration and hydrogen concentration with respect to the elapsed time after starting in Example 2 using the PSA apparatus shown in FIG. 図2に示すPSA装置を用いた比較例1における起動後の経過時間に対する不純物濃度と水素濃度の推移を示す特性図である。It is a characteristic view which shows transition of the impurity concentration and hydrogen concentration with respect to the elapsed time after starting in the comparative example 1 using the PSA apparatus shown in FIG. 図2に示すPSA装置を用いた実施例3における起動後の経過時間に対する不純物濃度と水素濃度の推移を示す特性図である。It is a characteristic view which shows transition of the impurity concentration and hydrogen concentration with respect to the elapsed time after starting in Example 3 using the PSA apparatus shown in FIG.

以下、本発明の実施の形態について、添付図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

(実施の形態1)
図1は本発明の一実施形態に係るPSA装置の吸着塔の概略説明図、図2は図1に示す吸着塔が採用されたPSA装置の構成の概要を模式的に説明する説明図である。
(Embodiment 1)
FIG. 1 is a schematic explanatory view of an adsorption tower of a PSA apparatus according to an embodiment of the present invention, and FIG. 2 is an explanatory view schematically explaining the outline of the configuration of the PSA apparatus employing the adsorption tower shown in FIG. .

図1(a)において、1は下部に原料ガス供給流路6、上部に処理ガス排出流路7を接続した吸着塔であり、その内部に下部から上部に向かって(すなわち、原料ガスとしての水素含有ガスAの流通方向の上流側から下流側に向かって)、CO吸着剤層3、炭素系吸着剤層4の順序で積層した吸着剤床2が設けられている。そして、図1(b)に示すように、吸着剤床2の再生時には、水素含有ガスAの流通方向とは逆に、洗浄ガスCを炭素系吸着剤層4、CO吸着剤層3の順に流通させるように構成されている。   In FIG. 1 (a), reference numeral 1 denotes an adsorption tower in which a raw material gas supply channel 6 is connected to the lower part and a processing gas discharge channel 7 is connected to the upper part. An adsorbent bed 2 is provided in which a CO adsorbent layer 3 and a carbon-based adsorbent layer 4 are laminated in this order (from the upstream side toward the downstream side in the flow direction of the hydrogen-containing gas A). Then, as shown in FIG. 1B, when the adsorbent bed 2 is regenerated, the cleaning gas C is reversed in the order of the carbon-based adsorbent layer 4 and the CO adsorbent layer 3 in the reverse direction of the flow of the hydrogen-containing gas A. It is configured to be distributed.

このような構成を採用することにより、吸着操作時には水素含有ガスA中のCOのみがCO吸着剤に吸着し、CO吸着剤をスルーしたCO、CHは後段の炭素系吸着剤に吸着し、再生操作時には炭素系吸着剤に吸着した不要ガス成分(CO、CH)が脱離し、この脱離成分がCO吸着剤の洗浄ガスとして作用することで、CO吸着剤の再生に必要な洗浄ガス(製品水素ガス)の使用量を減らし、水素回収率を上昇させ、水素精製コストを低減することが可能となる。 By adopting such a configuration, only CO in the hydrogen-containing gas A is adsorbed to the CO adsorbent during the adsorption operation, and CO 2 and CH 4 that have passed through the CO adsorbent are adsorbed to the subsequent carbon-based adsorbent. In the regeneration operation, unnecessary gas components (CO 2 , CH 4 ) adsorbed on the carbon-based adsorbent are desorbed, and this desorbed component acts as a cleaning gas for the CO adsorbent, which is necessary for the regeneration of the CO adsorbent. It is possible to reduce the amount of cleaning gas (product hydrogen gas) used, increase the hydrogen recovery rate, and reduce the hydrogen purification cost.

上記CO吸着剤としては、実質的にCOを吸着しない、多孔質シリカ、多孔質アルミナ、およびポリスチレン系樹脂よりなる群から選択される1種以上の担体に、ハロゲン化銅(I)および/もしくはハロゲン化銅 (II)を担持させた材料、またはこの材料を還元処理したものを用いるとよい。 Examples of the CO adsorbent include copper (I) halide and / or one or more carriers selected from the group consisting of porous silica, porous alumina, and polystyrene-based resin that do not substantially adsorb CO 2. Alternatively, a material supporting copper (II) halide, or a material obtained by reducing this material may be used.

これにより、吸着剤床2の再生時において、炭素系吸着剤層4から脱離した不要ガス成分(CO、CH)がCO吸着剤層3に再吸着されることが防止されるうえ、これらの不要ガス成分が洗浄ガスの一部としても有効に利用されるので、上記水素回収率の上昇効果が得られる。 This prevents unnecessary gas components (CO 2 , CH 4 ) desorbed from the carbon-based adsorbent layer 4 from being re-adsorbed to the CO adsorbent layer 3 during regeneration of the adsorbent bed 2. Since these unnecessary gas components are also effectively used as part of the cleaning gas, the effect of increasing the hydrogen recovery rate can be obtained.

また、炭素系吸着剤としては活性炭やCMS(カーボンモレキュラーシーブ)が利用できる。   Moreover, activated carbon and CMS (carbon molecular sieve) can be used as the carbon-based adsorbent.

また、原料ガスとして用いられる通常の改質ガス(水素含有ガスA)にはCO、CH、COと併せてHOも不純物として混入するため、CO吸着剤層3および炭素系吸着剤層4を水分の影響から保護するために、吸着剤床2の前段に水分除去用の活性アルミナ等の吸着剤層を同一吸着塔内または別の吸着塔として設けることもできる。 In addition, since CO 2 , CH 4 , CO, and H 2 O are also mixed as impurities in the normal reformed gas (hydrogen-containing gas A) used as the raw material gas, the CO adsorbent layer 3 and the carbon-based adsorbent In order to protect the layer 4 from the influence of moisture, an adsorbent layer such as activated alumina for removing water can be provided in the same adsorption tower or as a separate adsorption tower in the previous stage of the adsorbent bed 2.

吸着剤床2の再生は大気圧よりも低い真空側(負圧側)で行うことが望ましい。高圧で吸着操作を行い、大気圧まで減圧して洗浄ガスC(製品水素ガス)を流して吸着剤を再生することも可能であるが、真空ポンプを用いてより低圧の真空側まで減圧することでCO吸着剤に強く化学吸着していたCOガス分子が容易に脱離し、洗浄に必要な製品水素ガス使用量をさらに低減することができ、水素回収率がより向上する。真空度は50kPa(絶対圧)以下が好ましく、20kPa(絶対圧)以下がより好ましい。真空度は高くすればするほど洗浄ガス量を低減できるが、一方必要となる真空ポンプの動力が大きくなるため、トータルのランニングコストを勘案すると1kPa(絶対圧)以上の真空度が望ましい。   It is desirable to regenerate the adsorbent bed 2 on the vacuum side (negative pressure side) lower than the atmospheric pressure. It is possible to regenerate the adsorbent by performing the adsorption operation at high pressure, reducing the pressure to atmospheric pressure and flowing the cleaning gas C (product hydrogen gas), but using a vacuum pump to reduce the pressure to the lower vacuum side. Thus, the CO gas molecules that are strongly chemically adsorbed to the CO adsorbent are easily desorbed, and the amount of product hydrogen gas used for cleaning can be further reduced, and the hydrogen recovery rate is further improved. The degree of vacuum is preferably 50 kPa (absolute pressure) or less, and more preferably 20 kPa (absolute pressure) or less. The higher the degree of vacuum is, the more the amount of cleaning gas can be reduced. On the other hand, the required vacuum pump power increases, so that a degree of vacuum of 1 kPa (absolute pressure) or more is desirable considering the total running cost.

以下、上記吸着塔が採用されたPSA装置の構成の一例の概要を図2に示す模式的な説明図を用いて詳述する。本例のPSA装置は、3つの吸着塔1a,1b,1cを有し、各吸着塔1a〜1c内には上記吸着剤床2がそれぞれ設けられている。ライン101は水素含有ガスAの導入ラインである。ライン101と各吸着塔1a〜1cとはそれぞれ弁A1、弁B1、弁C1を介して接続されている。   Hereinafter, an outline of an example of the configuration of the PSA apparatus in which the adsorption tower is employed will be described in detail with reference to a schematic explanatory diagram shown in FIG. The PSA apparatus of this example has three adsorption towers 1a, 1b, and 1c, and the adsorbent bed 2 is provided in each of the adsorption towers 1a to 1c. Line 101 is an introduction line for hydrogen-containing gas A. The line 101 and the adsorption towers 1a to 1c are connected to each other through a valve A1, a valve B1, and a valve C1, respectively.

ライン102は吸着塔内を減圧するために用いるラインで、均圧(後述の均圧ステップ参照)の終了した吸着塔の圧力をさらに大気圧付近まで減圧する(後述の第1減圧ステップ参照)ために使用される。ライン102は弁A2、弁B2、弁C2を介して吸着塔1a〜1cとそれぞれ接続されている。   The line 102 is a line used for depressurizing the inside of the adsorption tower. In order to further depressurize the pressure of the adsorption tower after completion of pressure equalization (see the pressure equalization step described later) to near atmospheric pressure (refer to the first pressure reduction step described later). Used for. The line 102 is connected to the adsorption towers 1a to 1c through the valve A2, the valve B2, and the valve C2, respectively.

ライン103は大気圧付近までの減圧(第1減圧ステップ)が終了した吸着塔をさらに大気圧未満{50kPa(絶対圧)以下}の負圧まで減圧(後述の第2減圧ステップ参照)するラインであり、真空ポンプ10と吸着塔1a〜1cとがそれぞれ弁A3、弁B3、弁C3を介して接続されている。ライン102およびライン103の真空ポンプ10の排気ガスはバッファタンク8に一時的に貯蔵される。バッファタンク8に貯蔵されたガスはカロリーガスとして、例えば水素含有ガスAを製造する際の改質器の燃料などとして有効利用することが可能である。   The line 103 is a line for depressurizing the adsorption tower that has been depressurized to near atmospheric pressure (first depressurizing step) to a negative pressure below atmospheric pressure {less than 50 kPa (absolute pressure)} (see the second depressurizing step described later). Yes, the vacuum pump 10 and the adsorption towers 1a to 1c are connected via a valve A3, a valve B3, and a valve C3, respectively. The exhaust gas of the vacuum pump 10 in the lines 102 and 103 is temporarily stored in the buffer tank 8. The gas stored in the buffer tank 8 can be effectively used as a calorie gas, for example, as a fuel for a reformer when the hydrogen-containing gas A is produced.

ライン104は吸着塔にて水素含有ガスAより不要ガスを除去して得た高純度水素ガスBの回収ラインであり、吸着塔1a〜1cとはそれぞれ弁A5、弁B5、弁C5を介して接続されており、回収した高純度水素ガスBはバッファタンク9に一時的に貯蔵される。   A line 104 is a recovery line for high-purity hydrogen gas B obtained by removing unnecessary gas from the hydrogen-containing gas A in the adsorption tower, and the adsorption towers 1a to 1c are respectively connected via a valve A5, a valve B5, and a valve C5. The collected high purity hydrogen gas B is temporarily stored in the buffer tank 9.

ライン105は水素含有ガスAからの不要ガス吸着ステップが終了し、負圧(真空側)までの減圧(後述の第2減圧ステップ参照)後に吸着塔を洗浄して再生するためのラインである。吸着塔1a〜1cとバッファタンク9とは弁D1および弁A6、弁B6、弁C6を介して接続されており、吸着剤の再生用洗浄ガスとしては回収した高純度水素ガスBの一部(洗浄ガスC)を使用する。   The line 105 is a line for cleaning and regenerating the adsorption tower after the unnecessary gas adsorption step from the hydrogen-containing gas A is completed and the pressure is reduced to the negative pressure (vacuum side) (see the second pressure reduction step described later). The adsorption towers 1a to 1c and the buffer tank 9 are connected via a valve D1, a valve A6, a valve B6, and a valve C6, and a part of the recovered high-purity hydrogen gas B is used as a cleaning gas for regeneration of the adsorbent ( Use cleaning gas C).

ライン106は均圧(均圧ステップ)を行うためのラインであり、不要ガス吸着ステップの終了した吸着塔と吸着剤再生ステップ(後述)の終了した吸着塔との間でガスの均圧を行うために用いられる。具体的には弁A4、弁B4、弁C4のうち、均圧を行う2つの塔に接続された弁2個を開放し、他の弁を閉じることにより2つの吸着塔の均圧が可能となる。   The line 106 is a line for performing pressure equalization (pressure equalization step), and performs gas pressure equalization between the adsorption tower after the unnecessary gas adsorption step and the adsorption tower after the adsorbent regeneration step (described later). Used for. Specifically, among the valves A4, B4, and C4, two valves connected to the two towers that perform pressure equalization are opened, and the other valves are closed, so that the pressure in the two adsorption towers can be equalized. Become.

最初に、不要ガス吸着除去、吸着塔間の均圧、減圧による不要ガスの脱着、吸着剤再生および吸着塔の昇圧(不要ガス吸着除去のための待機状態)の連続的な操作手順を具体的に説明する。なお、以下においては吸着塔1aの操作手順のみについて説明するが、運転は表1のタイムテーブルに示すように、吸着塔1a,1b,1cの3塔を用いてサイクリックに行う。これにより、高純度水素ガスBの連続的な製造が可能になる。   First, specific procedures for continuous operation of unnecessary gas adsorption removal, equalization between adsorption towers, desorption of unwanted gas by decompression, regeneration of adsorbent and pressure increase of adsorption tower (standby state for removal of unwanted gas adsorption) Explained. Although only the operation procedure of the adsorption tower 1a will be described below, the operation is cyclically performed using three towers of the adsorption towers 1a, 1b and 1c as shown in the time table of Table 1. Thereby, continuous manufacture of the high purity hydrogen gas B is attained.

1)[不要ガス吸着ステップ]:1.0MPa(絶対圧)程度に高圧化した水素含有ガスAを原料ガス供給流路6a側(吸着塔1aのCO吸着剤層(図示せず)側)から導入し、不要ガスを吸着剤により除去し、高純度水素ガスBを回収する(弁A2,A3,A4,A6:閉、弁A1,A5:開)。 1) [Unnecessary gas adsorption step]: Hydrogen-containing gas A whose pressure has been increased to about 1.0 MPa (absolute pressure) is supplied from the source gas supply channel 6a side (the CO adsorbent layer (not shown) side of the adsorption tower 1a). Then, unnecessary gas is removed by an adsorbent, and high purity hydrogen gas B is recovered (valves A2, A3, A4, A6: closed, valves A1, A5: open).

2)[均圧ステップ]:上記不要ガス吸着操作(不要ガス吸着ステップ)を終了し、吸着塔1aのガスの一部を再生操作(吸着剤再生ステップ)の終了した吸着塔1cに移送する。ここで、例えば、吸着塔1aを1.0MPa(絶対圧)で不要ガス吸着操作を行った場合、吸着塔1cの吸着剤は減圧下で再生するため、本ステップで吸着塔1a,1cの内圧はいずれも約0.5MPa(絶対圧)となる(弁A1,A2,A3,A5,A6,弁C1,C2,C3,C5,C6:閉、弁A4,弁C4:開)。 2) [Pressure equalizing step]: The unnecessary gas adsorption operation (unnecessary gas adsorption step) is completed, and a part of the gas in the adsorption tower 1a is transferred to the adsorption tower 1c after the regeneration operation (adsorbent regeneration step). Here, for example, when an unnecessary gas adsorption operation is performed at 1.0 MPa (absolute pressure) in the adsorption tower 1a, the adsorbent in the adsorption tower 1c is regenerated under reduced pressure, so that the internal pressures of the adsorption towers 1a and 1c in this step. Are about 0.5 MPa (absolute pressure) (valves A1, A2, A3, A5, A6, valves C1, C2, C3, C5, C6: closed, valve A4, valve C4: opened).

3)[第1減圧ステップ]:均圧操作(減圧ステップ)の終了した吸着塔1aの内圧を大気圧まで減圧する(弁A1,A3,A4,A5,A6:閉、弁A2:開)。 3) [First decompression step]: The internal pressure of the adsorption tower 1a after the pressure equalization operation (decompression step) is reduced to atmospheric pressure (valves A1, A3, A4, A5, A6: closed, valve A2: opened).

4)[第2減圧ステップ]:大気圧まで減圧した吸着塔1aをさらに真空ポンプ10を用いて負圧(大気圧未満)まで減圧し(弁A1,A2,A4,A5,A6:閉、弁A3:開)、不要ガスを脱着する。 4) [Second depressurization step]: The adsorption tower 1a depressurized to atmospheric pressure is further depressurized to a negative pressure (less than atmospheric pressure) using the vacuum pump 10 (valves A1, A2, A4, A5, A6: closed, valve A3: Open), unnecessary gas is desorbed.

5)[吸着剤再生ステップ]:減圧した状態で洗浄ガスC(高純度水素ガスBの一部)を流し、吸着剤を再生する(弁A1,A2,A4,A5:閉、弁A3,A6、弁D1:開)。 5) [Adsorbent regeneration step]: The cleaning gas C (a part of the high-purity hydrogen gas B) is supplied under reduced pressure to regenerate the adsorbent (valves A1, A2, A4, A5: closed, valves A3, A6). , Valve D1: open).

6)[均圧ステップ]:吸着剤の再生が終了した吸着塔1aに不要ガス吸着ステップの終了した吸着塔1b内のガスの一部移送する(弁A1,A2,A3,A5,A6,弁B1,B2,B3,B5,B6:閉、弁A4,弁B4:開)。 6) [Pressure equalization step]: Partial transfer of the gas in the adsorption tower 1b after completion of the unnecessary gas adsorption step to the adsorption tower 1a after regeneration of the adsorbent (valve A1, A2, A3, A5, A6, valve) B1, B2, B3, B5, B6: closed, valve A4, valve B4: open).

7)[昇圧ステップ]:吸着塔1a内にバッファタンク9より高純度水素ガスBを導入し、吸着塔1a内の圧力を不要ガス吸着操作を行う圧力まで昇圧する(弁A1,A2,A3,A4,A6:閉、弁A5:開)。 7) [Pressure increasing step]: High-purity hydrogen gas B is introduced into the adsorption tower 1a from the buffer tank 9, and the pressure in the adsorption tower 1a is increased to a pressure at which unnecessary gas adsorption operation is performed (valves A1, A2, A3). A4, A6: closed, valve A5: open).

8)上記1)から7)の操作ステップを繰り返し、不要ガス吸着除去、吸着塔間の均圧、減圧による不要ガスの脱着、吸着剤再生および吸着塔の昇圧(不要ガス吸着除去のための待機状態)の連続的な操作を繰り返す。 8) The operation steps 1) to 7) are repeated, and unnecessary gas adsorption removal, equalization pressure between adsorption towers, unnecessary gas desorption by decompression, adsorbent regeneration and adsorption tower pressure increase (standby for unnecessary gas adsorption removal) Repeat the continuous operation.

Figure 2012087012
Figure 2012087012

本実施形態に係るPSA装置は、大気圧よりさらに減圧した負圧下(真空側)で吸着剤を再生するとともに、高圧下で水素含有ガスBから不要ガスを吸着除去するプロセスであり、水素含有ガスBからの不要ガス除去をコンパクトな装置で実現することができ、かつ水素回収率も高くすることが可能である。   The PSA apparatus according to the present embodiment is a process for regenerating an adsorbent under a negative pressure (vacuum side) further reduced from atmospheric pressure, and adsorbing and removing an unnecessary gas from a hydrogen-containing gas B under a high pressure. Unnecessary gas removal from B can be realized with a compact apparatus, and the hydrogen recovery rate can be increased.

次に、本発明に係るPSA装置の運転方法においては、高純度水素ガスの連続的な製造をどのように停止させるのか、また、この停止状態から次回再起動させ、その再起動後の経過時間に対する高純度水素ガスB中の不純物(CO、CH、CO)濃度と水素濃度の推移について、実施例とともに以下に説明する。 Next, in the operation method of the PSA apparatus according to the present invention, how to stop the continuous production of high-purity hydrogen gas, the next restart from this stopped state, and the elapsed time after the restart The transition of the impurity (CO, CH 4 , CO 2 ) concentration and the hydrogen concentration in the high-purity hydrogen gas B with respect to the above will be described below together with examples.

(実施例1)
まず、水素含有ガスA(原料ガス)として、市販のボンベガスを混合してCO:19.7%,CH:2.8%,CO:0.4%,H:77.1%の模擬改質ガスを調製し、このガスをライン101を通じて0.8Nm/hの流量で上記PSA装置に導入し、上記実施形態で説明した操作手順に従ってPSA装置を運転し、高純度水素ガスBの連続的な精製試験を実施した。
<使用吸着剤>
炭素系吸着剤:活性炭(日本エンバイロケミカル製G2X)
CO吸着剤 :多孔質アルミナに塩化銅(I)を担持(当社と関西熱化学の共同開発品)
<吸着温度> 40℃
<吸着圧力> 1.0MPaG(絶対圧)
<再生圧力> 20kPa(絶対圧)
Example 1
First, as hydrogen-containing gas A (raw material gas), commercially available bomb gas is mixed and CO 2 : 19.7%, CH 4 : 2.8%, CO: 0.4%, H 2 : 77.1% A simulated reformed gas is prepared, this gas is introduced into the PSA apparatus through the line 101 at a flow rate of 0.8 Nm 3 / h, the PSA apparatus is operated according to the operation procedure described in the above embodiment, and the high-purity hydrogen gas B A continuous purification test was conducted.
<Used adsorbent>
Carbon-based adsorbent: activated carbon (G2X manufactured by Nippon Envirochemical)
CO adsorbent: Copper (I) chloride supported on porous alumina (co-developed by Kansai Thermal Chemical)
<Adsorption temperature> 40 ° C
<Adsorption pressure> 1.0 MPaG (absolute pressure)
<Regeneration pressure> 20 kPa (absolute pressure)

このような高純度水素ガスBの連続的な精製試験を実施している状態で、PSA装置内のコントローラ(図示せず)にその日の夕方、停止信号が入力された後、例えば、上記表1のタイムテーブルに示されたステップ番号5のような状態(吸着塔1aが均圧ステップ、吸着塔1bが不要ガス吸着ステップ、吸着塔1cが均圧ステップ)で停止させる。すなわち、各吸着塔1a、1b、1cの全ての吸着塔内が大気圧以上の状態で、かつ、各吸着塔1a、1b、1cの内の少なくとも1つの吸着塔1bが前記水素含有ガスAから前記不要ガスの吸着圧力の状態で停止させるように構成する。ここで、本発明の吸着圧力とは、不要ガスを吸着する際に用いる圧力を意味するが、再起動時に遅滞なく吸着が開始できる圧力であれば、実際に吸着操作を行う圧力から異なっていても良い。   After a stop signal is input to the controller (not shown) in the PSA apparatus in the state where such a high-purity hydrogen gas B is continuously purified, for example, the above-mentioned Table 1 In the state shown in the time table (adsorption tower 1a is a pressure equalization step, adsorption tower 1b is an unnecessary gas adsorption step, and adsorption tower 1c is a pressure equalization step). That is, all of the adsorption towers 1a, 1b, and 1c are in an atmospheric pressure or higher state, and at least one of the adsorption towers 1a, 1b, and 1c is replaced with the hydrogen-containing gas A. It is configured to stop in the state of the unnecessary gas adsorption pressure. Here, the adsorption pressure of the present invention means a pressure used when adsorbing unnecessary gas, but it is different from the pressure at which the adsorption operation is actually performed as long as the adsorption can be started without delay at the time of restart. Also good.

このような停止状態から一夜室温で放置して翌朝再起動させ、その再起動後の経過時間に対する不純物(CO、CH、CO)濃度と水素濃度の推移を調べた結果を図3の特性図に示す。 FIG. 3 shows the results of examining the transition of the impurity (CO, CH 4 , CO 2 ) concentration and the hydrogen concentration with respect to the elapsed time after the restart after being left at room temperature overnight from such a stop state. Shown in the figure.

図3に示すように、高純度水素ガスB中の水素濃度は、再起動直後からすでに所定の水素濃度99.99%以上を満足している。また、注目するCOは、再起動直後からすでに高純度水素ガスB中への混入がなく、燃料電池用の水素ガスとして要求されるCO≦1ppmを十分に満足している。また、CHとCOは、再起動直後から高純度水素ガスB中への混入が多少認められるが、これも燃料電池用の水素ガスが要求するレベルから考えると問題ない。このように、本発明に係るPSA装置の運転方法(実施例1)を採用した場合は、高純度水素ガスの連続的な製造を停止した後、次回再起動させた際にも製造された水素ガス中の不純物(特に、CO)を低減可能である。 As shown in FIG. 3, the hydrogen concentration in the high-purity hydrogen gas B already satisfies the predetermined hydrogen concentration of 99.99% or more immediately after the restart. In addition, the noted CO has not been mixed into the high-purity hydrogen gas B immediately after restarting, and sufficiently satisfies CO ≦ 1 ppm required as hydrogen gas for fuel cells. Further, CH 4 and CO 2 are somewhat mixed into the high-purity hydrogen gas B immediately after restarting, but there is no problem when considering the level required by the hydrogen gas for the fuel cell. As described above, when the operation method (Example 1) of the PSA device according to the present invention is adopted, the hydrogen produced when the continuous production of the high purity hydrogen gas is stopped and then restarted next time. Impurities (particularly CO) in the gas can be reduced.

上述したように、本発明に係るPSA装置の運転方法(実施例1)では、均圧と脱圧(減圧)を繰り返しながら、吸着剤中の吸着物を除去させてからPSA装置の連続運転を停止させることがないため、製造された水素ガス(製品水素ガス)を多量にロスしてしまうこともない。何故ならば、上記表1のタイムテーブルに示されたステップ番号5からステップ番号6に移行する際には、吸着塔1cが均圧ステップから昇圧ステップに移行するため、再起動する場合に別途製品水素を用いて昇圧する必要がなく、製造された水素ガス(製品水素ガス)のロスを少なくすることが可能である。   As described above, in the operation method (Example 1) of the PSA device according to the present invention, the adsorbate in the adsorbent is removed while repeating the pressure equalization and depressurization (decompression), and then the PSA device is continuously operated. Since it is not stopped, the produced hydrogen gas (product hydrogen gas) is not lost in large quantities. This is because when moving from step number 5 to step number 6 shown in the time table of Table 1 above, the adsorption tower 1c shifts from the pressure equalizing step to the pressure increasing step. There is no need to increase the pressure using hydrogen, and the loss of produced hydrogen gas (product hydrogen gas) can be reduced.

(実施例2)
実施例2が、実施例1に対して異なるのは、停止信号が入力された後の停止タイミングであるため、実施例1と同一構成要素には同一番号を付し、その説明を省略し、異なる部分についてのみ詳述する。すなわち、実施例2においては、停止信号が入力された後、例えば、上記表1のタイムテーブルに示されたステップ番号5からステップ番号6に切り替わるタイミングで停止するようにしている。したがって、このような場合にも、実施例1の場合と同様に、各吸着塔1a、1b、1cの全ての吸着塔内が大気圧以上の状態で、かつ、各吸着塔1a、1b、1cの内の少なくとも1つの吸着塔1bが前記水素含有ガスAから前記不要ガスの吸着圧力の状態で停止するように構成されていることになる。
(Example 2)
Since the second embodiment differs from the first embodiment in the stop timing after the stop signal is input, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. Only different parts will be described in detail. That is, in the second embodiment, after the stop signal is input, for example, the stop is performed at the timing of switching from step number 5 to step number 6 shown in the time table of Table 1 above. Therefore, also in such a case, as in the case of Example 1, all the adsorption towers of the adsorption towers 1a, 1b, and 1c are in the state of the atmospheric pressure or more, and the adsorption towers 1a, 1b, and 1c. The at least one adsorption tower 1b is configured to stop at the adsorption pressure of the unnecessary gas from the hydrogen-containing gas A.

このような停止状態から一夜室温で放置して翌朝再起動させ、その再起動後の経過時間に対する不純物(CO、CH、CO)濃度と水素濃度の推移を調べた結果を図4の特性図に示す。 FIG. 4 shows the results of examining the transition of the impurity (CO, CH 4 , CO 2 ) concentration and the hydrogen concentration with respect to the elapsed time after the restart after being left at room temperature overnight from such a stop state. Shown in the figure.

図4に示すように、高純度水素ガスB中の水素濃度は、上記実施例1の場合同様に、再起動直後からすでに所定の水素濃度99.99%以上を満足している。また、注目するCOも上記実施例1の場合同様に、再起動直後からすでに高純度水素ガスB中への混入がなく、燃料電池用の水素ガスとして要求されるCO≦1ppmを十分に満足している。また、CHとCOは、再起動直後から高純度水素ガスB中への混入が多少認められるが、これも燃料電池用の水素ガスが要求するレベルから考えると問題ない。このように、本発明に係るPSA装置の運転方法(実施例2)を採用した場合も、高純度水素ガスの連続的な製造を停止した後、次回再起動させた際にも製造された水素ガス中の不純物(特に、CO)を低減可能である。また、上記実施例1の場合同様に、製造された水素ガス(製品水素ガス)のロスを少なくすることが可能である。 As shown in FIG. 4, the hydrogen concentration in the high-purity hydrogen gas B already satisfies the predetermined hydrogen concentration of 99.99% or more immediately after the restart, as in the case of the first embodiment. Further, as in the case of Example 1, the noted CO is not mixed into the high-purity hydrogen gas B immediately after the restart and sufficiently satisfies CO ≦ 1 ppm required as the hydrogen gas for the fuel cell. ing. Further, CH 4 and CO 2 are somewhat mixed into the high-purity hydrogen gas B immediately after restarting, but there is no problem when considering the level required by the hydrogen gas for the fuel cell. As described above, even when the operation method of the PSA device according to the present invention (Example 2) is adopted, the hydrogen produced when the continuous production of high-purity hydrogen gas is stopped and then restarted next time. Impurities (particularly CO) in the gas can be reduced. Further, as in the case of Example 1 described above, it is possible to reduce the loss of the produced hydrogen gas (product hydrogen gas).

(比較例1)
比較例1が、実施例1に対して異なるのは、停止信号が入力された後の停止タイミングであるため、実施例1と同一構成要素には同一番号を付し、その説明を省略し、異なる部分についてのみ詳述する。すなわち、比較例1においては、停止信号が入力された後、例えば、上記表1のタイムテーブルに示されたステップ番号4のような状態(吸着塔1aが不要ガス吸着ステップ、吸着塔1bが昇圧ステップ、吸着塔1cが再生ステップ)で停止させる。すなわち、各吸着塔1a、1b、1cの内の吸着塔1aは前記水素含有ガスAから前記不要ガスの吸着圧力の状態であるが、吸着塔1cは負圧の状態であり、全ての吸着塔内が大気圧以上の状態とはなっていない。
(Comparative Example 1)
Since the comparative example 1 is different from the first embodiment in the stop timing after the stop signal is input, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. Only different parts will be described in detail. That is, in the first comparative example, after the stop signal is input, for example, the state as in step number 4 shown in the time table of Table 1 above (the adsorption tower 1a is the unnecessary gas adsorption step and the adsorption tower 1b is boosted) Step, the adsorption tower 1c is stopped at the regeneration step). That is, among the adsorption towers 1a, 1b, and 1c, the adsorption tower 1a is in the state of adsorption pressure of the unnecessary gas from the hydrogen-containing gas A, but the adsorption tower 1c is in a negative pressure state, and all the adsorption towers The inside is not over atmospheric pressure.

このような停止状態から一夜室温で放置して翌朝再起動させ、その再起動後の経過時間に対する不純物(CO、CH、CO)濃度と水素濃度の推移を調べた結果を図5の特性図に示す。 FIG. 5 shows the results of examining the transition of the impurity (CO, CH 4 , CO 2 ) concentration and the hydrogen concentration with respect to the elapsed time after the restart after being left at room temperature overnight from such a stop state. Shown in the figure.

図5に示すように、高純度水素ガスB中の水素濃度は、上記実施例1や実施例2のように再起動直後からすぐに所定の水素濃度99.99%以上を満足させることはできない。また、注目するCOも上記実施例1や実施例2のように、再起動直後から高純度水素ガスB中への混入をなくし、燃料電池用の水素ガスとして要求されるCO≦1ppmを満足させることはできない。また、CHとCOは、再起動直後から暫くの間は高純度水素ガスB中への混入が認められ、これは燃料電池用の水素ガスが要求するレベルから考えると問題である。特に、CHは再起動直後に3000ppm以上にもなる。これは、上記表1のタイムテーブルに示されたステップ番号4のような状態で停止させているため、不純物(CO、CH、CO)の吸着が非常に進んだ吸着塔1aでは一夜も室温で放置すると、吸着塔1aの下流側{活性炭(炭素系吸着剤)側}に拡散し、再起動後、製品水素ガス中に混入するためである。また、吸着塔1cは負圧状態で一夜保持され、再起動後には吸着塔1aから吸着塔1cに向かって均圧操作が行われるため、吸着塔1aの下流側{活性炭(炭素系吸着剤)側}に拡散した不純物(CO、CH、CO)が吸着塔1cにも及び、製品水素ガス中への混入も多くなる。さらに、吸着塔1cは負圧状態で一夜保持されるため、時間が経つにつれて圧力が上がり、吸着塔1cの外部からの気体の混入があるものと思われる。また、再起動後、吸着塔1bは昇圧ステップから不要ガス吸着ステップに切り替わり、この切り替わり時の僅かな時間ではあるが、吸着塔1bは不要ガス吸着ステップ中であった吸着塔1aとの連絡もあるため、製品水素ガス中への不純物(CO、CH、CO)の混入がある。 As shown in FIG. 5, the hydrogen concentration in the high-purity hydrogen gas B cannot satisfy the predetermined hydrogen concentration of 99.99% or more immediately after the restart as in the first and second embodiments. . In addition, as noted in the first and second embodiments, the focused CO eliminates mixing into the high-purity hydrogen gas B immediately after restarting, and satisfies CO ≦ 1 ppm required as hydrogen gas for fuel cells. It is not possible. Further, CH 4 and CO 2 are mixed into the high-purity hydrogen gas B for a while after the restart, and this is a problem when considered from the level required by the fuel cell hydrogen gas. In particular, CH 4 becomes 3000 ppm or more immediately after restarting. This is stopped in a state like Step No. 4 shown in the time table of Table 1 above, so in the adsorption tower 1a in which the adsorption of impurities (CO, CH 4 , CO 2 ) has progressed very much, overnight. This is because if left at room temperature, it diffuses to the downstream side {activated carbon (carbon adsorbent) side} of the adsorption tower 1a and is mixed into the product hydrogen gas after restarting. Further, the adsorption tower 1c is kept overnight in a negative pressure state, and after restarting, a pressure equalizing operation is performed from the adsorption tower 1a toward the adsorption tower 1c, so that the downstream side of the adsorption tower 1a {activated carbon (carbon-based adsorbent) Impurities (CO, CH 4 , CO 2 ) diffused to the side} also reach the adsorption tower 1c and increase in the amount of product hydrogen gas. Furthermore, since the adsorption tower 1c is kept overnight in a negative pressure state, the pressure rises with time, and it seems that there is gas mixing from the outside of the adsorption tower 1c. In addition, after restarting, the adsorption tower 1b is switched from the pressure increasing step to the unnecessary gas adsorption step, and the adsorption tower 1b is also in communication with the adsorption tower 1a that was in the unnecessary gas adsorption step for a short time. Therefore, impurities (CO, CH 4 , CO 2 ) are mixed into the product hydrogen gas.

(実施例3)
実施例3が、実施例1に対して異なる点は、停止信号が入力された後の停止させるまでの前処理操作であるため、実施例1と同一構成要素には同一番号を付し、その説明を省略し、異なる部分についてのみ詳述する。すなわち、実施例3においては、停止信号が入力された後、例えば、上記表1のタイムテーブルに示されたステップ番号5のような状態で停止させる前に、水素含有ガスA(原料ガス)の吸着塔1a内への供給を止め、洗浄ガスCを処理ガス排出流路7a、7b、7c側(各吸着塔1a、1b、1cの炭素系吸着剤層(図示せず)側)から供給しながら各吸着剤床を再生させることにある。
(Example 3)
The difference between the third embodiment and the first embodiment is the pre-processing operation until the stop after the stop signal is input. Therefore, the same components as those of the first embodiment are denoted by the same reference numerals, The description is omitted, and only different parts are described in detail. That is, in the third embodiment, after the stop signal is input, for example, before stopping in the state of step number 5 shown in the time table of Table 1, the hydrogen-containing gas A (source gas) The supply to the adsorption tower 1a is stopped, and the cleaning gas C is supplied from the processing gas discharge channels 7a, 7b, 7c side (carbon adsorbent layer (not shown) side of the respective adsorption towers 1a, 1b, 1c). The purpose is to regenerate each adsorbent bed.

このような停止状態から一夜室温で放置して翌朝再起動させ、その再起動後の経過時間に対する不純物(CO、CH、CO)濃度と水素濃度の推移を調べた結果を図6の特性図に示す。 FIG. 6 shows the results of examining the transition of the impurity (CO, CH 4 , CO 2 ) concentration and the hydrogen concentration with respect to the elapsed time after the restart after being left at room temperature overnight from such a stopped state. Shown in the figure.

図6に示すように、高純度水素ガスB中の水素濃度、不純物(CO、CH、CO)濃度はともに、上記実施例1や実施例2よりさらに好成績が得られた。 As shown in FIG. 6, the hydrogen concentration and impurity (CO, CH 4 , CO 2 ) concentration in the high-purity hydrogen gas B were both better than those of Example 1 and Example 2.

本実施の形態1においては、本発明に係るPSA装置の運転方法の好適な例として、3つの吸着塔を有した実施例1、実施例2や実施例3についてのみ説明したが、必ずしもこれに限定されるものではなく、停止信号が入力された後、各吸着塔の全ての吸着塔内が大気圧以上の状態で、かつ、前記各吸着塔の内の少なくとも1つの吸着塔が水素含有ガスA(原料ガス)から不要ガス(CO、CH、CO)の吸着圧力の状態で停止させるように構成されていればよい。例えば、上記表1のタイムテーブルに示されたステップ番号6のような状態で停止させることも可能である。このような構成であれば、高純度水素ガスの連続的な製造を停止した後、次回再起動させた際にも製造された水素ガス中の不純物(特に、CO)を低減可能で、かつ、製品水素ガスのロスを少なくすることが可能である。 In the first embodiment, only the first example, the second example, and the third example having three adsorption towers have been described as suitable examples of the operation method of the PSA apparatus according to the present invention. Without being limited thereto, after the stop signal is input, all the adsorption towers of each adsorption tower are in a state of atmospheric pressure or higher, and at least one of the adsorption towers is a hydrogen-containing gas. a (raw material gas) from unwanted gas (CO, CH 4, CO 2 ) in the state of adsorption pressure may be composed so as to stop. For example, it is possible to stop in a state such as step number 6 shown in the time table of Table 1 above. With such a configuration, after stopping the continuous production of high-purity hydrogen gas, it is possible to reduce impurities (particularly CO) in the produced hydrogen gas even when restarted next time, and It is possible to reduce the loss of product hydrogen gas.

(実施の形態2)
本実施の形態2におけるPSA装置の基本構成要素が上記実施の形態1におけるPSA装置の基本構成要素に対して異なるのは、吸着塔を1つ追加した点にあるため、上記実施の形態1と同一構成要素には同一番号を付し、その説明を省略し、異なる部分についてのみ詳述する。特に、この吸着塔を1つ追加(図示せず)したことにより、下記表2のタイムテーブルに示されたような操作ステップの工夫が施されているため、この工夫された操作ステップを中心に詳述する。
(Embodiment 2)
The basic component of the PSA apparatus in the second embodiment is different from the basic component of the PSA apparatus in the first embodiment in that one adsorption tower is added. The same number is attached | subjected to the same component, the description is abbreviate | omitted, and only a different part is explained in full detail. In particular, by adding one adsorption tower (not shown), the operation steps as shown in the time table of Table 2 below have been devised. Detailed description.

Figure 2012087012
Figure 2012087012

上記表2のタイムテーブルに示す操作手順に従って、吸着塔1a、1b、1c、1dを用いてサイクリックに行うことにより、高純度水素ガスBの連続的な製造が可能になる。したがって、吸着塔1aの操作手順のみについて下記に説明する。   By performing cyclically using the adsorption towers 1a, 1b, 1c, and 1d according to the operation procedure shown in the time table of Table 2, high-purity hydrogen gas B can be continuously produced. Therefore, only the operation procedure of the adsorption tower 1a will be described below.

上記表2のタイムテーブル示されたステップ番号4(均圧)とステップ番号10(均圧)の間に「第1減圧」、「第2減圧」、「再生」の順番に各操作ステップが設けられて点が、上記実施の形態1と異なる。このように、4塔式とすることで、減圧操作ステップを長く設けることが可能になり、吸着剤床の再生が促進される。   Each operation step is provided in the order of “first decompression”, “second decompression”, and “regeneration” between step number 4 (equal pressure) and step number 10 (equal pressure) shown in the time table of Table 2 above. Thus, the point differs from the first embodiment. As described above, by using the four-column type, it is possible to provide a long decompression operation step, and the regeneration of the adsorbent bed is promoted.

上記表2のタイムテーブル示された操作ステップにより、高純度水素ガスBの連続的な製造が行なわれている状態で、停止信号が入力された後、例えば、上記表2のタイムテーブルに示されたステップ番号4のような状態(吸着塔1aが均圧ステップ、吸着塔1bが不要ガス吸着ステップ、吸着塔1cが均圧ステップ、吸着塔1dが第1減圧ステップ)で停止させる。このようにして停止することで、上記実施の形態1の場合同様に、各吸着塔1a、1b、1c、1dの全ての吸着塔内が大気圧以上の状態で、かつ、各吸着塔1a、1b、1c、1dの内の吸着塔1bが前記水素含有ガスAから前記不要ガスの吸着圧力の状態で停止する構成となる。よって、このような構成の場合にも、高純度水素ガスの連続的な製造を停止した後、次回再起動させた際にも製造された水素ガス中の不純物(特に、CO)を低減可能で、かつ、製品水素ガスのロスを少なくすることが可能である。   After the stop signal is input in the state where the high-purity hydrogen gas B is continuously produced by the operation steps shown in the time table of Table 2, for example, it is shown in the time table of Table 2 above. In step 4 (the adsorption tower 1a is a pressure equalization step, the adsorption tower 1b is an unnecessary gas adsorption step, the adsorption tower 1c is a pressure equalization step, and the adsorption tower 1d is a first pressure reduction step). By stopping in this way, as in the case of the first embodiment, all of the adsorption towers 1a, 1b, 1c, and 1d are in an atmospheric pressure or higher state, and each adsorption tower 1a, The adsorption tower 1b of 1b, 1c, and 1d is configured to stop at the adsorption pressure of the unnecessary gas from the hydrogen-containing gas A. Therefore, even in such a configuration, impurities (especially CO) in the produced hydrogen gas can be reduced when the continuous production of high-purity hydrogen gas is stopped and then restarted next time. In addition, loss of product hydrogen gas can be reduced.

(実施の形態3)
本実施の形態3におけるPSA装置の基本構成要素が上記実施の形態1におけるPSA装置の基本構成要素に対して異なるのは、上記実施の形態2の場合と同様に吸着塔を1つ追加した点にあるため、上記実施の形態1と同一構成要素には同一番号を付し、その説明を省略し、異なる部分についてのみ詳述する。特に、この吸着塔を1つ追加(図示せず)したことにより、下記表3のタイムテーブルに示されたような操作ステップの工夫が施されているため、この工夫された操作ステップを中心に詳述する。
(Embodiment 3)
The basic component of the PSA apparatus in the third embodiment is different from the basic component of the PSA apparatus in the first embodiment in that one adsorption tower is added as in the second embodiment. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and only different portions will be described in detail. In particular, by adding one adsorption tower (not shown), the operation steps as shown in the time table of Table 3 below have been devised. Detailed description.

Figure 2012087012
Figure 2012087012

上記表3のタイムテーブルに示す操作手順に従って、吸着塔1a、1b、1c、1dを用いてサイクリックに行うことにより、高純度水素ガスBの連続的な製造が可能になる。したがって、吸着塔1aの操作手順のみについて下記に説明する。   By performing cyclically using the adsorption towers 1a, 1b, 1c, and 1d according to the operation procedure shown in the time table of Table 3, the high-purity hydrogen gas B can be continuously produced. Therefore, only the operation procedure of the adsorption tower 1a will be described below.

上記表3のタイムテーブル示されたステップ番号4(吸着)とステップ番号14(昇圧)の間に「第1均圧」、「保持(第1均圧状態を保つ)」、「第2均圧」、「第1減圧」、「第2減圧」、「再生」、「第2均圧」、「第1均圧」の順番に各操作ステップが設けられて点が、上記実施の形態2と異なる。特に、均圧ステップに第1均圧(0.6MPaG)と第2均圧(0.2MPaG)という2つの均圧ステップが設けられたことが特徴的である。このように、2つの均圧ステップが設けられたことにより、均圧ステップで利用される製品水素ガスのロスを少なくすることが可能である。   Between the step number 4 (adsorption) and step number 14 (pressure increase) shown in the time table of Table 3, “first pressure equalization”, “hold (maintain first pressure equalization state)”, “second pressure equalization” ”,“ First pressure reduction ”,“ second pressure reduction ”,“ regeneration ”,“ second pressure equalization ”,“ first pressure equalization ”, and the operation steps are provided in the order described in the second embodiment. Different. In particular, the pressure equalizing step is characterized by the provision of two pressure equalizing steps, a first pressure equalizing (0.6 MPaG) and a second pressure equalizing (0.2 MPaG). Thus, by providing two pressure equalization steps, it is possible to reduce the loss of product hydrogen gas used in the pressure equalization step.

上記表3のタイムテーブル示された操作ステップにより、高純度水素ガスBの連続的な製造が行なわれている状態で、停止信号が入力された後、例えば、上記表3のタイムテーブルに示されたステップ番号1〜4における「不要ガス吸着ステップ」が「昇圧ステップ」に切り替わり、ステップ番号5のような状態(吸着塔1aが第1均圧ステップ、吸着塔1bが不要ガス吸着ステップ、吸着塔1cが第1均圧ステップ、吸着塔1dが第1減圧ステップ)で停止させる。このようにして停止することで、上記実施の形態1、2の場合同様に、各吸着塔1a、1b、1c、1dの全ての吸着塔内が大気圧以上の状態で、かつ、各吸着塔1a、1b、1c、1dの内の少なくとも1つの吸着塔1bが前記水素含有ガスAから前記不要ガスの吸着圧力の状態で停止する構成となる。よって、このような構成の場合にも、高純度水素ガスの連続的な製造を停止した後、次回再起動させた際にも製造された水素ガス中の不純物(特に、CO)を低減可能で、かつ、製品水素ガスのロスを少なくすることが可能である。   After the stop signal is input in a state where the high-purity hydrogen gas B is continuously produced by the operation steps shown in the time table of Table 3, for example, it is shown in the time table of Table 3 above. The “unnecessary gas adsorption step” in step numbers 1 to 4 is switched to the “pressure increase step”, and the state as in step number 5 (the adsorption tower 1a is the first pressure equalizing step, the adsorption tower 1b is the unnecessary gas adsorption step, the adsorption tower) 1c is stopped at the first pressure equalizing step, and the adsorption tower 1d is stopped at the first pressure reducing step). By stopping in this way, as in the case of the first and second embodiments, all of the adsorption towers 1a, 1b, 1c, and 1d are in an atmospheric pressure or higher state, and each adsorption tower At least one adsorption tower 1b among 1a, 1b, 1c, and 1d is configured to stop at the adsorption pressure of the unnecessary gas from the hydrogen-containing gas A. Therefore, even in such a configuration, impurities (especially CO) in the produced hydrogen gas can be reduced when the continuous production of high-purity hydrogen gas is stopped and then restarted next time. In addition, loss of product hydrogen gas can be reduced.

1、1a、1b、1c:吸着塔
2:吸着剤床
3:CO吸着剤層
4:炭素系吸着剤層
6、6a、6b、6c:原料ガス供給流路
7、7a、7b、7c:処理ガス排出流路
A:水素含有ガス(原料ガス)
B:高純度水素ガス(製品水素ガス)
C:洗浄ガス
D:排気ガス
1, 1a, 1b, 1c: adsorption tower 2: adsorbent bed 3: CO adsorbent layer 4: carbon-based adsorbent layers 6, 6a, 6b, 6c: raw material gas supply channels 7, 7a, 7b, 7c: treatment Gas discharge channel A: Hydrogen-containing gas (source gas)
B: High purity hydrogen gas (product hydrogen gas)
C: Cleaning gas D: Exhaust gas

Claims (3)

3つ以上の吸着塔と、この3つ以上の吸着塔の各吸着塔内にCO吸着剤層、COを吸着するための炭素系吸着剤層の順序で積層して設けられた吸着剤床とを有し、少なくとも前記各吸着塔のCO吸着剤層側から吸着塔内へ水素含有ガスを供給することにより前記水素含有ガスからCOガスを含む不要ガスを吸着除去して高純度水素ガスを製造する工程と、前記各吸着塔のCO吸着剤層側から吸着塔内を大気圧未満まで減圧することにより前記吸着剤床に吸着された前記不要ガスを脱着させる工程とを有した高純度水素ガス製造用PSA装置の運転方法であって、
前記各吸着塔の全ての吸着塔内が大気圧以上の状態で、かつ、前記各吸着塔の内の少なくとも1つの吸着塔が前記水素含有ガスから前記不要ガスの吸着圧力の状態でPSA装置の運転を停止させることを特徴とする高純度水素ガス製造用PSA装置の運転方法。
Adsorbent bed provided by laminating three or more adsorption towers and a carbon-based adsorbent layer for adsorbing CO 2 in the respective adsorption towers of the three or more adsorption towers. High-purity hydrogen gas is obtained by adsorbing and removing unnecessary gas including CO gas from the hydrogen-containing gas by supplying a hydrogen-containing gas from at least the CO adsorbent layer side of each adsorption tower into the adsorption tower. A high-purity hydrogen comprising: a step of producing; and a step of desorbing the unnecessary gas adsorbed on the adsorbent bed by reducing the inside of the adsorption tower to less than atmospheric pressure from the CO adsorbent layer side of each adsorption tower A method for operating a PSA device for gas production,
In the PSA apparatus, all the adsorption towers in each of the adsorption towers are at atmospheric pressure or higher, and at least one of the adsorption towers is in the state of the adsorption pressure of the unnecessary gas from the hydrogen-containing gas. A method for operating a PSA apparatus for producing high-purity hydrogen gas, characterized in that the operation is stopped.
前記CO吸着剤が、シリカ、アルミナ、およびポリスチレン系樹脂よりなる群から選択される1種以上の担体に、ハロゲン化銅(I)および/もしくはハロゲン化銅(II)を担持させた材料、またはこの材料を還元処理した吸着剤である請求項1に記載の高純度水素ガス製造用PSA装置の運転方法。   The CO adsorbent is a material in which copper (I) halide and / or copper (II) halide is supported on one or more carriers selected from the group consisting of silica, alumina, and polystyrene resin, or The operation method of the PSA apparatus for high-purity hydrogen gas production according to claim 1, wherein the adsorbent is obtained by reducing this material. 前記各吸着塔の全ての吸着塔内が大気圧以上の状態で、かつ、前記各吸着塔の内の少なくとも1つの吸着塔が前記水素含有ガスから前記不要ガスの吸着圧力の状態で停止させる前に、前記水素含有ガスの吸着塔内への供給を止め、前記各吸着塔の前記炭素系吸着剤層側から洗浄ガスを供給しながら前記吸着剤床を再生することを特徴とする請求項1または2に記載の高純度水素ガス製造用PSA装置の運転方法。   Before all the adsorption towers in each of the adsorption towers are at atmospheric pressure or higher and at least one of the adsorption towers is stopped from the hydrogen-containing gas at the adsorption pressure of the unnecessary gas. Further, the supply of the hydrogen-containing gas into the adsorption tower is stopped, and the adsorbent bed is regenerated while supplying a cleaning gas from the carbon-based adsorbent layer side of each adsorption tower. Or the operating method of the PSA apparatus for high-purity hydrogen gas production of 2.
JP2010235443A 2010-10-20 2010-10-20 Operation method of PSA equipment for high purity hydrogen gas production Active JP5462763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010235443A JP5462763B2 (en) 2010-10-20 2010-10-20 Operation method of PSA equipment for high purity hydrogen gas production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010235443A JP5462763B2 (en) 2010-10-20 2010-10-20 Operation method of PSA equipment for high purity hydrogen gas production

Publications (2)

Publication Number Publication Date
JP2012087012A true JP2012087012A (en) 2012-05-10
JP5462763B2 JP5462763B2 (en) 2014-04-02

Family

ID=46259058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010235443A Active JP5462763B2 (en) 2010-10-20 2010-10-20 Operation method of PSA equipment for high purity hydrogen gas production

Country Status (1)

Country Link
JP (1) JP5462763B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156467A1 (en) * 2013-03-28 2014-10-02 住友精化株式会社 Method for purifying hydrogen gas and purification apparatus
KR20190056807A (en) * 2017-11-17 2019-05-27 한국에너지기술연구원 Pressure swing adsorption method and pressure swing adsorption apparatus
JP2021030135A (en) * 2019-08-21 2021-03-01 東京瓦斯株式会社 Gas purification apparatus, control method for the same, and hydrogen production apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0494715A (en) * 1990-08-10 1992-03-26 Nippon Steel Corp Method for stopping pressure swing adsorbing apparatus
JP2005220283A (en) * 2004-02-09 2005-08-18 Honda Motor Co Ltd Method for stopping fuel gas production apparatus
JP2008063152A (en) * 2006-09-04 2008-03-21 Kobe Steel Ltd Psa apparatus for producing high purity hydrogen gas
WO2008056579A1 (en) * 2006-11-08 2008-05-15 Sumitomo Seika Chemicals Co., Ltd. Hydrogen gas separation method and separation apparatus
JP2009154079A (en) * 2007-12-26 2009-07-16 Honda Motor Co Ltd Stopping method of gas production apparatus
JP2009179487A (en) * 2008-01-29 2009-08-13 Honda Motor Co Ltd Hydrogen production system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0494715A (en) * 1990-08-10 1992-03-26 Nippon Steel Corp Method for stopping pressure swing adsorbing apparatus
JP2005220283A (en) * 2004-02-09 2005-08-18 Honda Motor Co Ltd Method for stopping fuel gas production apparatus
JP2008063152A (en) * 2006-09-04 2008-03-21 Kobe Steel Ltd Psa apparatus for producing high purity hydrogen gas
WO2008056579A1 (en) * 2006-11-08 2008-05-15 Sumitomo Seika Chemicals Co., Ltd. Hydrogen gas separation method and separation apparatus
JP2009154079A (en) * 2007-12-26 2009-07-16 Honda Motor Co Ltd Stopping method of gas production apparatus
JP2009179487A (en) * 2008-01-29 2009-08-13 Honda Motor Co Ltd Hydrogen production system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156467A1 (en) * 2013-03-28 2014-10-02 住友精化株式会社 Method for purifying hydrogen gas and purification apparatus
KR20190056807A (en) * 2017-11-17 2019-05-27 한국에너지기술연구원 Pressure swing adsorption method and pressure swing adsorption apparatus
KR101987804B1 (en) 2017-11-17 2019-06-12 한국에너지기술연구원 Pressure swing adsorption method and pressure swing adsorption apparatus
JP2021030135A (en) * 2019-08-21 2021-03-01 東京瓦斯株式会社 Gas purification apparatus, control method for the same, and hydrogen production apparatus

Also Published As

Publication number Publication date
JP5462763B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
JP5314408B2 (en) PSA equipment for high-purity hydrogen gas production
KR101681543B1 (en) Nitrogen-enriched gas manufacturing method, gas separation method and nitrogen-enriched gas manufacturing apparatus
US9944575B2 (en) Methane gas concentration method
JP6523134B2 (en) Hydrogen gas production method and hydrogen gas production apparatus
JPH02281096A (en) Carbon dioxide and moisture remover for methane-enriched mixed gas
JP4814024B2 (en) PSA equipment for high-purity hydrogen gas production
JPWO2008047828A1 (en) Method and apparatus for separating hydrogen gas
JP6571588B2 (en) Hydrogen gas production method and hydrogen gas production apparatus
JP5690165B2 (en) PSA high purity hydrogen production method
JP3947752B2 (en) High purity hydrogen production method
JP6667382B2 (en) Hydrogen gas production method and hydrogen gas production device
JP5462763B2 (en) Operation method of PSA equipment for high purity hydrogen gas production
JP2007015909A (en) Method for production of high-purity hydrogen
JP2004066125A (en) Method of separating target gas
JP6502921B2 (en) Purification method of target gas
JP6619687B2 (en) Hydrogen gas production method and hydrogen gas production apparatus
JP6695375B2 (en) Purified gas manufacturing apparatus and purified gas manufacturing method
JP2004337745A (en) Gas purification apparatus
JP4236500B2 (en) Hydrogen production apparatus and hydrogen production method
JP6275562B2 (en) PSA apparatus and adsorption removal method using PSA apparatus
JP6646526B2 (en) Hydrogen gas production method and hydrogen gas production device
JP5561815B2 (en) Operation method of pressure swing type gas generator
JP6640660B2 (en) Hydrogen gas production method and hydrogen gas production device
JP6965198B2 (en) Gas purification equipment and gas purification method
JP6667381B2 (en) Hydrogen gas production method and hydrogen gas production device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140117

R150 Certificate of patent or registration of utility model

Ref document number: 5462763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150