JP2012086528A - Method and apparatus for manufacturing seamless belt - Google Patents

Method and apparatus for manufacturing seamless belt Download PDF

Info

Publication number
JP2012086528A
JP2012086528A JP2010237643A JP2010237643A JP2012086528A JP 2012086528 A JP2012086528 A JP 2012086528A JP 2010237643 A JP2010237643 A JP 2010237643A JP 2010237643 A JP2010237643 A JP 2010237643A JP 2012086528 A JP2012086528 A JP 2012086528A
Authority
JP
Japan
Prior art keywords
melt
resin composition
annular
cylinder
pellet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010237643A
Other languages
Japanese (ja)
Other versions
JP5147919B2 (en
Inventor
Yasuhiro Matsuo
康弘 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010237643A priority Critical patent/JP5147919B2/en
Publication of JP2012086528A publication Critical patent/JP2012086528A/en
Application granted granted Critical
Publication of JP5147919B2 publication Critical patent/JP5147919B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PROBLEM TO BE SOLVED: To inexpensively manufacture a high quality seamless belt by continuously and stably discharging a melted body while suppressing mixing of air bubbles into the melted body of a resin composition, backflow of the melted body during the extrusion, and attachment of the melted body to a piston.SOLUTION: A method for manufacturing the seamless belt includes steps of: throwing a pellet made of the resin composition in an annular flow path having the melted body of the resin composition; melting the pellet by pressing the pellet thrown in the annular flow path and pushing the pellet in the melted body by a pressing surface contacting with the resin composition in the annular flow path using a piston whose temperature is adjusted to a temperature less than a melting point of the resin composition, and discharging the melted body from an annular die in the radial direction; adhering the discharged melted body to a part of a cylinder; relatively moving the cylinder and the annular die in the axial direction and applying the melted body to a wall surface of the cylinder in a state with the melted body adhered to the part of the cylinder to form a cylindrical layer of the melted body; and solidifying the cylindrical layer.

Description

本発明は、シームレスベルトの製造方法及びその製造装置に関する。   The present invention relates to a seamless belt manufacturing method and a manufacturing apparatus thereof.

レーザービームプリンターや複写機等の電子写真画像形成装置において中間転写ベルトや転写搬送ベルト等に用いられるシームレスベルトの製造方法が、特許文献1に開示されている。特許文献1に開示された製造方法では、筒状金型に内接している押出筒金型から熱硬化性樹脂の樹脂溶液を筒状金型内壁の下部から順に上部まで押し出して筒状の樹脂溶液の層を形成する。このとき、樹脂溶液の層の内部に気体を注入して膨張させ、その後、樹脂溶液の層を硬化させることによってシームレスベルトが得られる。この製造方法によれば、筒状金型の内壁に短時間に樹脂溶液を塗布し、且つ塗布スジ、うねり、樹脂溶液残りの発生を抑えることが可能である旨が特許文献1に記載されている。   Patent Document 1 discloses a method for manufacturing a seamless belt used for an intermediate transfer belt, a transfer conveyance belt, and the like in an electrophotographic image forming apparatus such as a laser beam printer or a copying machine. In the manufacturing method disclosed in Patent Document 1, a thermosetting resin resin solution is extruded from the bottom of the inner wall of the cylindrical mold to the upper part in order from the extruded cylindrical mold inscribed in the cylindrical mold. Form a layer of solution. At this time, a seamless belt can be obtained by injecting gas into the resin solution layer to expand the resin solution layer and then curing the resin solution layer. Patent Document 1 describes that according to this manufacturing method, it is possible to apply a resin solution to the inner wall of a cylindrical mold in a short time, and to suppress the occurrence of application stripes, undulations, and resin solution residue. Yes.

特開2004−237695号公報JP 2004-237695 A

近年、電子写真画像装置は高画質化かつ低価格化が進んでおり、シームレスベルトの品質および価格に対する要求が益々高まっている。そこで、本発明者らは、特許文献1に記載の製造方法を、硬化反応プロセスが不要で、熱硬化性樹脂よりも安価な熱可塑性樹脂を主成分とするシームレスベルトの製造に適用することについて検討した。その結果、次のような課題を見出すに至った。すなわち、特許文献1に記載の製造方法では、樹脂溶液を筒状金型の底面に流下させて樹脂溶液の層を形成している。このとき、筒状金型の温度が熱可塑性樹脂の融点よりも低いと、熱可塑性樹脂を含む樹脂熔融体は、筒状金型の内壁に触れた時点で固化し始める。そのため、樹脂熔融体と筒状金型の底面との密着性が不十分となることがあった。そのため、筒状金型の底面に設けられた注入口より気体が注入されたとき、筒状金型の底面と樹脂熔融体の層との隙間から気体が入り込むことがある。この場合、樹脂熔融体の層の筒状金型の内壁への密着が妨げられ、筒状金型の内壁の表面粗さを樹脂熔融体の層の外面に確実に転写できなくなることがあった。そこで、本発明は、熱可塑性樹脂を主成分とする、高品位なシームレスベルトを低コストで製造することのできるシームレスベルトの製造方法および製造装置を提供することを対象とする。   In recent years, electrophotographic image apparatuses have been improved in image quality and price, and demands for the quality and price of seamless belts are increasing. Therefore, the present inventors apply the production method described in Patent Document 1 to the production of a seamless belt mainly composed of a thermoplastic resin that does not require a curing reaction process and is cheaper than a thermosetting resin. investigated. As a result, the following issues were found. That is, in the manufacturing method described in Patent Document 1, a resin solution layer is formed by allowing a resin solution to flow down to the bottom surface of a cylindrical mold. At this time, if the temperature of the cylindrical mold is lower than the melting point of the thermoplastic resin, the resin melt containing the thermoplastic resin starts to solidify when it touches the inner wall of the cylindrical mold. Therefore, the adhesiveness between the resin melt and the bottom surface of the cylindrical mold may be insufficient. Therefore, when gas is injected from the injection port provided on the bottom surface of the cylindrical mold, the gas may enter from the gap between the bottom surface of the cylindrical mold and the resin melt layer. In this case, the adhesion of the resin melt layer to the inner wall of the cylindrical mold may be prevented, and the surface roughness of the inner wall of the cylindrical mold may not be reliably transferred to the outer surface of the resin melt layer. . Therefore, the present invention is intended to provide a seamless belt manufacturing method and a manufacturing apparatus capable of manufacturing a high-quality seamless belt mainly composed of a thermoplastic resin at a low cost.

本発明によれば、円筒と、該円筒と同軸に配置され、該円筒の壁面に近接して軸方向に相対的に移動可能であり、且つ、熱可塑性樹脂を含む樹脂組成物の熔融体を半径方向に吐出可能な環状ダイと、を具備するシームレスベルトの製造装置を用いてシームレスベルトを製造する方法であって、
該環状ダイは、該樹脂組成物からなるペレットの投入口を備え、かつ、該投入口から投入された該ペレットを熔融する環状流路と、該環状流路において熔融された該樹脂組成物の熔融体に圧力を印加して該熔融体を該環状ダイから吐出させるための環状のピストンと、を備えており、該シームレスベルトの製造方法は、
(1)該樹脂組成物の熔融体を有している該環状流路に、該樹脂組成物からなるペレットを投入する工程と、
(2)該環状流路内の該樹脂組成物と接する押圧面が該樹脂組成物の融点未満に温調された該ピストンで、該環状流路に投入された該ペレットを押圧して該熔融体中に該ペレットを押し込むことにより該ペレットを熔融させると共に、該環状ダイから該熔融体を半径方向に吐出させる工程と、
(3)吐出された該熔融体を該円筒の一部に密着させる工程と、
(4)該熔融体を該円筒の一部に密着させた状態で、該円筒と該環状ダイとを軸方向に相対移動させて該円筒の壁面に該熔融体を塗布して該熔融体の筒状の層を形成する工程と、
(5)該筒状の層を固化させる工程と、を含むシームレスベルトの製造方法が提供される。
According to the present invention, a cylinder and a melt of a resin composition that is disposed coaxially with the cylinder, is relatively movable in the axial direction in the vicinity of the wall surface of the cylinder, and includes a thermoplastic resin. A method of manufacturing a seamless belt using a seamless belt manufacturing apparatus comprising an annular die capable of discharging in a radial direction,
The annular die has an inlet for pellets made of the resin composition, and an annular channel for melting the pellets introduced from the inlet, and the resin composition melted in the annular channel An annular piston for applying pressure to the melt and discharging the melt from the annular die, and the method for producing the seamless belt includes:
(1) charging the pellet made of the resin composition into the annular channel having the melt of the resin composition;
(2) The pressure of the pressure surface in contact with the resin composition in the annular channel is adjusted to a temperature lower than the melting point of the resin composition, and the pellet put in the annular channel is pressed to melt Melting the pellet by pushing the pellet into the body, and discharging the melt from the annular die in a radial direction;
(3) a step of bringing the discharged melt into close contact with a part of the cylinder;
(4) With the melt in close contact with a part of the cylinder, the cylinder and the annular die are moved relative to each other in the axial direction, and the melt is applied to the wall surface of the cylinder. Forming a cylindrical layer;
(5) A method for producing a seamless belt comprising the step of solidifying the cylindrical layer.

また、本発明によれば、円筒と、該円筒と同軸に配置され、該円筒の壁面に近接して軸方向に相対的に移動可能であり、且つ、熱可塑性樹脂を含む樹脂組成物の熔融体を半径方向に吐出可能な環状ダイと、を具備するシームレスベルトの製造装置であって、
該環状ダイは、該樹脂組成物からなるペレットの投入口を有し、該投入口から投入された該ペレットを熔融する環状流路と、該環状流路において熔融された該樹脂組成物の熔融体に圧力を印加して該熔融体を該環状ダイから吐出させるための環状のピストンと、を備えているシームレスベルトの製造装置が提供される。
In addition, according to the present invention, a cylinder and a resin composition that is disposed coaxially with the cylinder, is relatively movable in the axial direction near the wall surface of the cylinder, and includes a thermoplastic resin. An apparatus for producing a seamless belt comprising an annular die capable of discharging a body in a radial direction,
The annular die has an inlet for pellets made of the resin composition, an annular channel for melting the pellets introduced from the inlet, and melting of the resin composition melted in the annular channel An apparatus for manufacturing a seamless belt is provided that includes an annular piston for applying pressure to a body to discharge the melt from the annular die.

本発明によれば、熱可塑性樹脂を主成分とする、高品位なシームレスベルトを低コストで製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the high quality seamless belt which has a thermoplastic resin as a main component can be manufactured at low cost.

本発明に係るシームレスベルトの製造装置の断面図である。It is sectional drawing of the manufacturing apparatus of the seamless belt which concerns on this invention. 本発明に係るシームレスベルトの製造方法における各工程の説明図である。It is explanatory drawing of each process in the manufacturing method of the seamless belt which concerns on this invention. 本発明のシームレスベルトの製造装置の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the manufacturing apparatus of the seamless belt of this invention. 本発明に係るシームレスベルトの製造方法における各工程の説明図である。It is explanatory drawing of each process in the manufacturing method of the seamless belt which concerns on this invention.

本発明に係るシームレスベルトの製造装置は、円筒と、該円筒と同軸に配置され、該円筒の壁面に近接して軸方向に相対的に移動可能であり、且つ、熱可塑性樹脂を含む樹脂組成物の熔融体を半径方向に吐出可能な環状ダイと、を具備する。該環状ダイは、該樹脂組成物からなるペレットの投入口と、投入された該樹脂組成物からなるペレットを熔融する環状流路と、該環状流路において熔融された該樹脂組成物の熔融体に圧力を印加して該熔融体を該環状ダイから吐出させる環状のピストンとを備える。該装置は、更に該環状ダイから吐出される該熔融体を該円筒の一部に密着させる密着手段を具備してもよい。該製造装置によれば、高品位なシームレスベルトを安定して製造することができる。   A seamless belt manufacturing apparatus according to the present invention includes a cylinder, a resin composition that is disposed coaxially with the cylinder, is movable in the axial direction in the vicinity of the wall surface of the cylinder, and includes a thermoplastic resin. An annular die capable of discharging a melt of the object in the radial direction. The annular die includes a pellet inlet made of the resin composition, an annular flow channel for melting the charged pellet made of the resin composition, and a melt of the resin composition melted in the annular flow channel And an annular piston that discharges the melt from the annular die. The apparatus may further include an adhesion means for bringing the melt discharged from the annular die into close contact with a part of the cylinder. According to this manufacturing apparatus, a high-quality seamless belt can be manufactured stably.

図1は、本発明に係るシームレスベルトの製造装置の一実施形態(第一の実施形態)を示す断面図である。本実施形態の製造装置100は、筒状金型4(円筒)と、把持部材7(密着手段)と、環状ダイ2とを有している。筒状金型4は、上端部が開口し、下端はステージ6に支持されている。ステージ6は、鉛直方向に延びるガイド5に支持されている。ステージ6はガイド5に沿って移動する。それによって、筒状金型4は昇降可能である。筒状金型4の上方には、把持部材7がガイド5に支持された状態で配置されており、筒状金型4の上端開口と対向している。把持部材7は、ガイド5に沿って昇降可能である。   FIG. 1 is a cross-sectional view showing an embodiment (first embodiment) of a seamless belt manufacturing apparatus according to the present invention. The manufacturing apparatus 100 of this embodiment includes a cylindrical mold 4 (cylinder), a gripping member 7 (contacting means), and an annular die 2. The cylindrical mold 4 has an upper end opened and a lower end supported by the stage 6. The stage 6 is supported by a guide 5 that extends in the vertical direction. The stage 6 moves along the guide 5. Thereby, the cylindrical mold 4 can be moved up and down. Above the cylindrical mold 4, the gripping member 7 is disposed in a state supported by the guide 5, and is opposed to the upper end opening of the cylindrical mold 4. The holding member 7 can be moved up and down along the guide 5.

環状ダイ2は筒状金型4の同軸上外側に断熱ベース9に支持された状態で配置されている。環状ダイ2は、不図示のヒータにより熱可塑性樹脂を含む樹脂組成物を熔融可能である。また、環状ダイ2は該樹脂組成物の熔融体30を半径方向内側に吐出可能な環状の吐出口2bを有する。吐出口2bの上流にはペレットと熔融体30とが混合される環状流路2aが備えられている。更に上流にはペレットの投入口2cが配置されている。ピストン3は一端に環状の押圧面3aを有し、環状ダイ2の環状流路2a内に組み込まれている。他端は環状ダイ2の上部へ突き出してガイド5に支持されており、環状流路2a内で上下動可能となっている。ピストン3を押し込むことで、環状流路2aに投入されたペレットを押圧して熔融体30中にペレットを押し込むことによりペレットを熔融させると共に、吐出口2bから熔融体30を半径方向に吐出することができる。また、ピストン3の押圧面3aは不図示の冷却手段により樹脂組成物の融点未満に温調可能である。なお、半径方向とは、円周上のある一点から中心に向かう方向(半径方向内側)、中心から円周上のある一点に向かう方向(半径方向外側)の両方を含む。本発明における環状ダイは、半径方向内側及び外側の少なくとも一方に熔融体30を吐出できる。   The annular die 2 is arranged on the coaxial outer side of the cylindrical mold 4 while being supported by the heat insulating base 9. The annular die 2 can melt a resin composition containing a thermoplastic resin with a heater (not shown). The annular die 2 has an annular discharge port 2b through which the melt 30 of the resin composition can be discharged radially inward. An annular channel 2a in which the pellet and the melt 30 are mixed is provided upstream of the discharge port 2b. Further, a pellet inlet 2c is arranged upstream. The piston 3 has an annular pressing surface 3 a at one end and is incorporated in the annular flow path 2 a of the annular die 2. The other end protrudes to the upper part of the annular die 2 and is supported by the guide 5, and can move up and down in the annular flow path 2a. By pushing the piston 3, the pellets injected into the annular flow path 2 a are pressed and the pellets are pushed into the melt 30 to melt the pellets, and the melt 30 is discharged in the radial direction from the discharge port 2 b. Can do. The pressure surface 3a of the piston 3 can be adjusted to a temperature below the melting point of the resin composition by a cooling means (not shown). The radial direction includes both a direction from a certain point on the circumference toward the center (inside in the radial direction) and a direction from the center toward a certain point on the circumference (outside in the radial direction). The annular die in the present invention can discharge the melt 30 to at least one of the radially inner side and the outer side.

本発明に係るシームレスベルトの製造方法は、前記シームレスベルトの製造装置を用いてシームレスベルトを製造する方法であって、以下の工程(1)から(5)の工程を含む。
(1)該樹脂組成物の熔融体を有している該環状流路に、該樹脂組成物からなるペレットを投入する工程。
(2)該環状流路内の該樹脂組成物と接する押圧面が該樹脂組成物の融点未満に温調された該ピストンで、該環状流路に投入された該ペレットを押圧して該熔融体中に該ペレットを押し込むことにより該ペレットを熔融させる。これと共に、該環状ダイから該熔融体を半径方向に吐出させる工程。
(3)吐出された該熔融体を該円筒の一部に密着させる工程。
(4)該熔融体を該円筒の一部に密着させた状態で、該円筒と該環状ダイとを軸方向に相対移動させて該円筒の壁面に該熔融体を塗布して該熔融体の筒状の層を形成する工程。
(5)該筒状の層を固化させる工程。
The seamless belt manufacturing method according to the present invention is a method for manufacturing a seamless belt using the seamless belt manufacturing apparatus, and includes the following steps (1) to (5).
(1) A step of introducing pellets made of the resin composition into the annular flow path having the melt of the resin composition.
(2) The pressure of the pressure surface in contact with the resin composition in the annular channel is adjusted to a temperature lower than the melting point of the resin composition, and the pellet put in the annular channel is pressed to melt The pellet is melted by pushing it into the body. At the same time, a step of discharging the melt from the annular die in the radial direction.
(3) A step of bringing the discharged melt into close contact with a part of the cylinder.
(4) With the melt in close contact with a part of the cylinder, the cylinder and the annular die are moved relative to each other in the axial direction, and the melt is applied to the wall surface of the cylinder. A step of forming a cylindrical layer.
(5) A step of solidifying the cylindrical layer.

以下、図2を用いて本発明に係るシームレスベルトの製造方法の一実施形態(第一の実施形態)を説明する。本実施形態では前述した図1に示す製造装置100を用いる。   Hereinafter, an embodiment (first embodiment) of a method for producing a seamless belt according to the present invention will be described with reference to FIG. In the present embodiment, the above-described manufacturing apparatus 100 shown in FIG. 1 is used.

工程(1)では、ピストン3を環状流路2aと投入口2cとが連通するまで押し上げ、投入口2cから熱可塑性樹脂を含む樹脂組成物からなるペレットを投入する(図2(a)参照)。流路2aには環状の押圧面3aの下降端より下流に該樹脂組成物の熔融体30が残留している。投入口2cから投入されたペレットは、一旦、流路2aに残留した熔融体30の上に堆積する。   In step (1), the piston 3 is pushed up until the annular flow path 2a and the inlet 2c communicate with each other, and pellets made of a resin composition containing a thermoplastic resin are introduced from the inlet 2c (see FIG. 2 (a)). . In the flow path 2a, the melt 30 of the resin composition remains downstream from the descending end of the annular pressing surface 3a. The pellets input from the input port 2c are temporarily deposited on the melt 30 remaining in the flow path 2a.

本発明においては、製造装置100がペレットの質量を計量する計量手段を備え、該計量手段にて一定質量に計量したペレットを投入口2cより投入することが好ましい。特に、一連の工程の中で吐出する質量分だけのペレットを計量して投入することがより好ましい。一連の工程を繰り返し行う際にペレットの投入量を一定にすることで、吐出される熔融体30の量及び特性を安定化させることができ、シームレスベルトをより安価に製造できる。   In the present invention, it is preferable that the manufacturing apparatus 100 includes a weighing unit that measures the mass of the pellets, and the pellets weighed to a constant mass by the weighing unit are loaded from the loading port 2c. In particular, it is more preferable to measure and throw in as many pellets as the mass to be discharged in a series of steps. By making the amount of pellets charged constant when the series of steps is repeated, the amount and characteristics of the discharged melt 30 can be stabilized, and the seamless belt can be manufactured at a lower cost.

工程(2)では、ピストン3にて投入されたペレットを押圧する。ペレットが投入された時点では、ペレットとペレット間には空隙が存在するが、ピストン3にてペレットを押圧することで、環状の押圧面3aの下降端側から順にペレットを熔融体30に埋没させる。これによりペレット間の空隙を排除し、ペレットを熔融体30中に押し込む。この状態において、不図示のヒータによる熱が環状ダイ2及び熔融体30を通してペレットに伝わるため、ペレットを熔融させることができる。ペレットを熔融体30に埋没させつつ更に圧力を印加すると、熔融体30が逆流し、ピストン3と流路2aとの隙間に流入しようとする。本実施形態では、ピストン3の押圧面3aは不図示の冷却手段にて該樹脂組成物の融点未満に温調されている。これにより、押圧面3aに触れた熔融体30は固化し始め、ピストン3と流路2aとの隙間への熔融体30の流入、押圧面3aへの熔融体30の貼り付きを阻止することができ、ペレットと熔融体との混合物40を安定して加圧することが可能となる。   In step (2), the pellets charged in the piston 3 are pressed. At the time when the pellets are charged, there is a gap between the pellets, but by pressing the pellets with the piston 3, the pellets are buried in the melt 30 in order from the descending end side of the annular pressing surface 3a. . This eliminates voids between the pellets and pushes the pellets into the melt 30. In this state, heat from a heater (not shown) is transmitted to the pellet through the annular die 2 and the melt 30, so that the pellet can be melted. When pressure is further applied while the pellets are buried in the melt 30, the melt 30 flows backward and tends to flow into the gap between the piston 3 and the flow path 2a. In the present embodiment, the pressure surface 3a of the piston 3 is adjusted to a temperature below the melting point of the resin composition by a cooling means (not shown). As a result, the melt 30 touching the pressing surface 3a starts to solidify, preventing the melt 30 from flowing into the gap between the piston 3 and the flow path 2a, and preventing the melt 30 from sticking to the pressing surface 3a. It is possible to stably pressurize the mixture 40 of pellets and melt.

流路2aの内圧が高まると、筒状金型4の上端開口部と把持部材7との間に設けられた間隙20(図2(a)参照)に対し、環状ダイ2の吐出口2bから熔融体30が半径方向内側に吐出される。図2(a)に示すように、環状ダイ2の吐出口2bと間隙20とが同等の高さになる位置に、筒状金型4及び把持部材7は配置されている。環状ダイ2の流路2aには流れの分岐点及び合流点がなく、ピストン3が環状の押圧面3aを具備するため、筒状の層1を形成する際に流れの不連続により発生する線、いわゆるウェルドラインの発生を避けることが可能となる。更に、流路2aが軸対称形状をとることが可能なため、全周にわたって圧力及び流速分布が均一になる。これにより、吐出口2bから熔融体30が均一に吐出され、強度と厚みが均一なシームレスベルトの製造が可能になる。なお、熔融体30の吐出方向は、水平方向であることが望ましいが、仰角方向又は俯角方向であってもよい。   When the internal pressure of the flow path 2a is increased, the discharge port 2b of the annular die 2 with respect to the gap 20 (see FIG. 2A) provided between the upper end opening of the cylindrical mold 4 and the gripping member 7 is used. The melt 30 is discharged radially inward. As shown in FIG. 2A, the cylindrical mold 4 and the gripping member 7 are disposed at a position where the discharge port 2b of the annular die 2 and the gap 20 have the same height. Since the flow path 2a of the annular die 2 has no flow branching and joining points, and the piston 3 has an annular pressing surface 3a, a line generated by discontinuity of the flow when the cylindrical layer 1 is formed. It is possible to avoid the occurrence of so-called weld lines. Furthermore, since the flow path 2a can have an axisymmetric shape, the pressure and flow velocity distribution are uniform over the entire circumference. As a result, the melt 30 is uniformly discharged from the discharge port 2b, and a seamless belt with uniform strength and thickness can be manufactured. The discharge direction of the melt 30 is preferably a horizontal direction, but may be an elevation angle direction or a depression angle direction.

工程(3)では、図2(b)に示すように、把持部材7を下降させて間隙20に押し出された熔融体30を筒状金型4と把持部材7とで挟持する。これにより、筒状金型4の上端面に熔融体30を密着させる。本工程では、熔融体30を筒状金型4と把持部材7とで挟持する際には、筒状金型4を上昇させてもよい。又は、筒状金型4を上昇させ、把持部材7を下降させてもよい。即ち、筒状金型4及び把持部材7から選ばれる少なくとも一方を互いに近づく方向に移動させて熔融体30を筒状金型4と把持部材7とで挟持する。なお、本実施形態では熔融体30を筒状金型4と把持部材7とで挟持することにより熔融体30を筒状金型4の一部に密着させているが、把持部材7を用いない方法により、熔融体30を筒状金型4の一部に密着させてもよい。例えば、筒状金型4の一部で熔融体30を吸引して密着させる方法でもよいし、筒状金型4の一部に空間を設けて熔融体30を注入し密着させる方法でもよい。いずれにしろ、後述する工程(4)にて層を形成する際に、熔融体30を筒状金型4の一部に密着できればよい。   In step (3), as shown in FIG. 2 (b), the holding member 7 is lowered and the melt 30 pushed into the gap 20 is sandwiched between the cylindrical mold 4 and the holding member 7. As a result, the melt 30 is brought into close contact with the upper end surface of the cylindrical mold 4. In this step, when the melt 30 is sandwiched between the cylindrical mold 4 and the gripping member 7, the cylindrical mold 4 may be raised. Alternatively, the cylindrical mold 4 may be raised and the gripping member 7 may be lowered. That is, at least one selected from the cylindrical mold 4 and the gripping member 7 is moved in a direction approaching each other, and the melt 30 is sandwiched between the cylindrical mold 4 and the gripping member 7. In this embodiment, the melt 30 is held in close contact with a part of the cylindrical mold 4 by sandwiching the melt 30 between the cylindrical mold 4 and the gripping member 7, but the gripping member 7 is not used. The melt 30 may be adhered to a part of the cylindrical mold 4 by a method. For example, a method of sucking and adhering the melt 30 with a part of the cylindrical mold 4 may be used, or a method of providing a space in a part of the cylindrical mold 4 and injecting and adhering the melt 30 may be used. In any case, it is sufficient that the melt 30 can be in close contact with a part of the cylindrical mold 4 when the layer is formed in the step (4) described later.

工程(4)では、筒状金型4と把持部材7とで熔融体30を挟持した状態、即ち、筒状金型4の一部に熔融体30を密着させた状態を維持する。その状態から更に、ピストン3を所望の速度で押し下げて環状ダイ2から熔融体30を半径方向内側に連続して吐出させつつ、環状ダイ2に対して、筒状金型4及び把持部材7を上昇させる。これにより、熔融体30を筒状金型4の外壁面に連続して塗布し、筒状の層1を筒状金型4の外壁面に形成する(図2(c)参照)。ピストン3を押し下げる速度は吐出口2bからの熔融体30の流出速度に対応しており、該流出速度と筒状金型4の上昇速度とを制御することによって筒状の層1の厚みを制御することができる。更に、筒状の層1を形成する際、筒状金型4及び把持部材7に対して、環状ダイ2を下降させてもよい。又は、筒状金型4及び把持部材7を上昇させるとともに、環状ダイ2を下降させてもよい。即ち、筒状金型4及び把持部材7と環状ダイ2とを軸方向に相対移動させることによって、筒状の層1を筒状金型4の外壁面に形成すればよい。   In the step (4), the state in which the melt 30 is sandwiched between the cylindrical mold 4 and the gripping member 7, that is, the state in which the melt 30 is in close contact with a part of the cylindrical mold 4 is maintained. In this state, the piston 3 is further pushed down at a desired speed to continuously discharge the melt 30 from the annular die 2 radially inward, while the cylindrical die 4 and the gripping member 7 are moved against the annular die 2. Raise. Thus, the melt 30 is continuously applied to the outer wall surface of the cylindrical mold 4 to form the cylindrical layer 1 on the outer wall surface of the cylindrical mold 4 (see FIG. 2C). The speed at which the piston 3 is pushed down corresponds to the outflow speed of the melt 30 from the discharge port 2b, and the thickness of the cylindrical layer 1 is controlled by controlling the outflow speed and the rising speed of the cylindrical mold 4. can do. Furthermore, when forming the cylindrical layer 1, the annular die 2 may be lowered with respect to the cylindrical mold 4 and the holding member 7. Alternatively, the cylindrical die 4 and the holding member 7 may be raised and the annular die 2 may be lowered. That is, the cylindrical layer 1 may be formed on the outer wall surface of the cylindrical mold 4 by relatively moving the cylindrical mold 4 and the gripping member 7 and the annular die 2 in the axial direction.

工程(5)では、筒状の層1を筒状金型4の外壁面に形成した状態で固化させる。この時、筒状金型4の温度を樹脂組成物のガラス転移点以上、樹脂組成物の融点未満の範囲に調整することが好ましい。筒状金型4の温度を該温度範囲内とすることで、筒状の層1は筒状金型4の外壁面に接したまま徐々に冷却されるため、結晶化度が高くなり、強度を高めることができる。或いは、筒状金型4を樹脂組成物のガラス転移点未満の温度とすることも可能である。この場合、筒状の層1は筒状金型4に付着すると直ちに固化し始める。筒状の層1は急速に冷却されるため、結晶化が進行することなく固化し、柔軟性の高いシームレスベルトが得られる。なお、筒状金型4の温度制御は、不図示の温度センサ、該温度センサの検出結果に基づいて制御可能な不図示のヒータ及び冷却器によって行うことができる。   In the step (5), the cylindrical layer 1 is solidified in a state where it is formed on the outer wall surface of the cylindrical mold 4. At this time, it is preferable to adjust the temperature of the cylindrical mold 4 to a range not lower than the glass transition point of the resin composition and lower than the melting point of the resin composition. By setting the temperature of the cylindrical mold 4 within the temperature range, the cylindrical layer 1 is gradually cooled while being in contact with the outer wall surface of the cylindrical mold 4, so that the degree of crystallinity is increased and the strength is increased. Can be increased. Alternatively, the cylindrical mold 4 can be set to a temperature lower than the glass transition point of the resin composition. In this case, the cylindrical layer 1 starts to solidify as soon as it adheres to the cylindrical mold 4. Since the cylindrical layer 1 is rapidly cooled, it solidifies without progressing crystallization, and a highly flexible seamless belt is obtained. The temperature control of the cylindrical mold 4 can be performed by a temperature sensor (not shown), a heater and a cooler (not shown) that can be controlled based on the detection result of the temperature sensor.

その後、筒状金型4の外壁面に形成された筒状の層1の固化物を取り出す。具体的には、把持部材7を筒状金型4に対して上昇させ、把持部材7と筒状金型4とを離間させる。筒状の層1が十分固化した後に、不図示の取り出し手段を用いて筒状の層1の固化物を筒状金型4から取り出す。その後、取り出した筒状の層1の固化物の両端を切断することでシームレスベルトが得られる。該実施形態に係る方法では、気泡の混入がなく、肉厚精度及び形状精度の高いシームレスベルトを低コストで製造できる。   Thereafter, the solidified product of the cylindrical layer 1 formed on the outer wall surface of the cylindrical mold 4 is taken out. Specifically, the holding member 7 is raised with respect to the cylindrical mold 4, and the holding member 7 and the cylindrical mold 4 are separated. After the cylindrical layer 1 is sufficiently solidified, the solidified product of the cylindrical layer 1 is taken out from the cylindrical mold 4 by using unillustrated taking-out means. Then, a seamless belt is obtained by cutting off both ends of the solidified product of the cylindrical layer 1 taken out. In the method according to the embodiment, it is possible to manufacture a seamless belt with no wall bubbles and high thickness accuracy and shape accuracy at low cost.

なお、本実施形態では筒状の層1は筒状金型4の外壁面に形成されるが、筒状の層1は筒状金型4の内壁面に形成されてもよい。この場合、環状ダイ2は筒状金型4の同軸上内側に配置され、熔融体30は環状ダイ2の吐出口2bから半径方向外側に押し出され、筒状金型4の内壁面に筒状の層1が連続して形成される。   In this embodiment, the cylindrical layer 1 is formed on the outer wall surface of the cylindrical mold 4, but the cylindrical layer 1 may be formed on the inner wall surface of the cylindrical mold 4. In this case, the annular die 2 is disposed on the coaxially inner side of the cylindrical mold 4, and the melt 30 is extruded radially outward from the discharge port 2 b of the annular die 2, and is cylindrical on the inner wall surface of the cylindrical mold 4. Layer 1 is formed continuously.

図3は、本発明に係るシームレスベルトの製造装置の一実施形態(第二の実施形態)を示す断面図である。本実施形態の製造装置101は、筒状金型4(円筒)と、把持部材7(密着手段)と、環状ダイ2とを有している。筒状金型4は、上端部が開口し、下端はステージ6に支持されている。ステージ6は、鉛直方向に延びるガイド5に支持されている。ステージ6はガイド5に沿って移動する。それによって、筒状金型4は昇降可能である。筒状金型4の上方には、把持部材7がガイド5に支持された状態で配置されており、筒状金型4の上端開口と対向している。把持部材7は、ガイド5に沿って昇降可能である。把持部材7の上底部には注入口8が設けられている。注入口8は、不図示の気体注入手段に連結されており、注入口8を通じて気体を把持部材7の内部に導入可能である。   FIG. 3 is a cross-sectional view showing an embodiment (second embodiment) of a seamless belt manufacturing apparatus according to the present invention. The manufacturing apparatus 101 of the present embodiment includes a cylindrical mold 4 (cylinder), a gripping member 7 (contacting means), and an annular die 2. The cylindrical mold 4 has an upper end opened and a lower end supported by the stage 6. The stage 6 is supported by a guide 5 that extends in the vertical direction. The stage 6 moves along the guide 5. Thereby, the cylindrical mold 4 can be moved up and down. Above the cylindrical mold 4, the gripping member 7 is disposed in a state supported by the guide 5, and is opposed to the upper end opening of the cylindrical mold 4. The holding member 7 can be moved up and down along the guide 5. An inlet 8 is provided on the upper bottom of the gripping member 7. The injection port 8 is connected to a gas injection means (not shown), and gas can be introduced into the gripping member 7 through the injection port 8.

環状ダイ2は筒状金型4の同軸上内側に断熱ベース9に支持された状態で配置されている。環状ダイ2は、不図示のヒータにより熱可塑性樹脂を含む樹脂組成物を熔融可能である。また、環状ダイ2は該樹脂組成物の熔融体30を放射方向に吐出可能な環状の吐出口2bを有する。吐出口2bの上流にはペレットと熔融体30とが混合される環状流路2aが備えられている。更に上流にはペレットの投入口2cが配置されている。ピストン3は一端に環状の押圧面3aを有し、環状ダイ2の環状流路2a内に組み込まれている。他端は環状ダイ2の上部へ突き出してガイド5に指示されており、不図示のアクチュエータにて環状流路2a内で上下動可能となっている。また、ピストン3の押圧面3aは不図示の冷却手段により樹脂組成物の融点未満に温調可能である。なお、放射方向とは中心から円周上のある一点に向かう方向(半径方向外側)を示す。   The annular die 2 is disposed on the coaxial inner side of the cylindrical mold 4 while being supported by the heat insulating base 9. The annular die 2 can melt a resin composition containing a thermoplastic resin with a heater (not shown). Further, the annular die 2 has an annular discharge port 2b through which the melt 30 of the resin composition can be discharged in the radial direction. An annular channel 2a in which the pellet and the melt 30 are mixed is provided upstream of the discharge port 2b. Further, a pellet inlet 2c is arranged upstream. The piston 3 has an annular pressing surface 3 a at one end and is incorporated in the annular flow path 2 a of the annular die 2. The other end protrudes to the upper part of the annular die 2 and is directed to the guide 5, and can be moved up and down in the annular flow path 2a by an actuator (not shown). The pressure surface 3a of the piston 3 can be adjusted to a temperature below the melting point of the resin composition by a cooling means (not shown). The radial direction indicates a direction from the center toward a certain point on the circumference (outside in the radial direction).

本発明に係るシームレスベルトの製造方法は、前記シームレスベルトの製造装置を用いてシームレスベルトを製造する方法であって、以下の(1)から(6)の工程を含む。
(1)該樹脂組成物の熔融体を有している該環状流路に、該樹脂組成物からなるペレットを投入する工程。
(2)該環状流路内の該樹脂組成物と接する押圧面が該樹脂組成物の融点未満に温調された該ピストンで、該環状流路に投入された該ペレットを押圧して該熔融体中に該ペレットを押し込むことにより該ペレットを熔融させる。これと共に、該環状ダイから該熔融体を放射方向に吐出させる工程。
(3)吐出された該熔融体を密着手段により該円筒の一部に密着させ、密着部における気体の連通を遮断する工程。
(4)該熔融体を該密着手段により該円筒の一部に密着させた状態で、該円筒及び該密着手段と該環状ダイとを軸方向に相対移動させて該円筒の内壁面に該熔融体を塗布して該熔融体の筒状の層を形成する工程。
(5)該密着手段と該筒状の層と該環状ダイとで形成される空間内に気体を導入し、該気体の圧力で該筒状の層を該円筒の内壁面に密着させる工程。
(6)該筒状の層を固化させる工程。
The seamless belt manufacturing method according to the present invention is a method for manufacturing a seamless belt using the seamless belt manufacturing apparatus, and includes the following steps (1) to (6).
(1) A step of introducing pellets made of the resin composition into the annular flow path having the melt of the resin composition.
(2) The pressure of the pressure surface in contact with the resin composition in the annular channel is adjusted to a temperature lower than the melting point of the resin composition, and the pellet put in the annular channel is pressed to melt The pellet is melted by pushing it into the body. At the same time, a step of discharging the melt from the annular die in the radial direction.
(3) A step of bringing the discharged melt into close contact with a part of the cylinder by close contact means and blocking communication of gas at the close contact portion.
(4) In a state where the melt is brought into close contact with a part of the cylinder by the contact means, the cylinder, the contact means and the annular die are moved relative to each other in the axial direction to melt the melt onto the inner wall surface of the cylinder. Applying a body to form a cylindrical layer of the melt.
(5) A step of introducing a gas into a space formed by the contact means, the cylindrical layer, and the annular die, and bringing the cylindrical layer into close contact with the inner wall surface of the cylinder by the pressure of the gas.
(6) A step of solidifying the cylindrical layer.

以下、図4を用いて本発明に係るシームレスベルトの製造方法の一実施形態(第二の実施形態)を説明する。本実施形態では前述した図3に示す製造装置101を用いる。   Hereinafter, an embodiment (second embodiment) of a method for producing a seamless belt according to the present invention will be described with reference to FIG. In the present embodiment, the above-described manufacturing apparatus 101 shown in FIG. 3 is used.

工程(1)、(2)については、熔融体30が吐出される方向が放射方向であること以外は、それぞれ第一の実施形態の工程(1)、(2)と同様に行うことができる(図4(a)参照)。   Steps (1) and (2) can be performed in the same manner as steps (1) and (2) of the first embodiment, respectively, except that the direction in which the melt 30 is discharged is the radial direction. (See FIG. 4 (a)).

工程(3)では、図4(b)に示すように、把持部材7を下降させて間隙20に吐出された熔融体30を筒状金型4と把持部材7とで挟持する。これにより、筒状金型4の上端面に熔融体30を密着させ、密着部における気体の連通を遮断する。熔融体30を十分に密着させ密着部における気体の連通を遮断することで、後述する工程(5)において把持部材7と筒状の層1と環状ダイ2とで形成される空間を密閉空間とすることができ、該空間内に気体を導入した際内圧を上げることができる。なお、密着部とは、筒状金型4と熔融体30との接触部分及び把持部材7と熔融体30との接触部分を示す。熔融体30を筒状金型4と把持部材7で挟持する際には、第一の実施形態の工程(3)と同様に、筒状金型4及び把持部材7から選ばれる少なくとも一方を互いに近づく方向に移動させて熔融体30を筒状金型4と把持部材7とで挟持することができる。   In step (3), as shown in FIG. 4B, the holding member 7 is lowered and the melt 30 discharged into the gap 20 is sandwiched between the cylindrical mold 4 and the holding member 7. As a result, the melt 30 is brought into close contact with the upper end surface of the cylindrical mold 4, and gas communication at the close contact portion is blocked. The space formed by the gripping member 7, the cylindrical layer 1, and the annular die 2 in the step (5) to be described later is made a sealed space by sufficiently bringing the melt 30 into close contact and shutting off the gas communication in the contact portion. When the gas is introduced into the space, the internal pressure can be increased. The close contact portion indicates a contact portion between the cylindrical mold 4 and the melt 30 and a contact portion between the gripping member 7 and the melt 30. When the melt 30 is sandwiched between the cylindrical mold 4 and the gripping member 7, at least one selected from the cylindrical mold 4 and the gripping member 7 is attached to each other as in step (3) of the first embodiment. The melt 30 can be sandwiched between the cylindrical mold 4 and the gripping member 7 by moving in the approaching direction.

工程(4)では、筒状金型4と把持部材7とで熔融体30を挟持し密着させ、密着部における気体の連通を遮断した状態を維持する。その状態から更に、ピストン3を所望の速度で押し下げて環状ダイ2から熔融体30を放射方向に連続して吐出させつつ、環状ダイ2に対して、筒状金型4及び把持部材7を上昇させる。これにより、熔融体30を筒状金型4の内壁面に連続して塗布し、筒状の層1を筒状金型4の内壁面に形成する(図4(c)参照)。なお、筒状の層1の厚みの制御方法、筒状金型4及び把持部材7と環状ダイ2の移動については、第一の実施形態の工程(4)と同様である。   In the step (4), the molten metal 30 is sandwiched and brought into close contact with the cylindrical mold 4 and the gripping member 7, and the state where the gas communication at the contact portion is blocked is maintained. From this state, the cylindrical die 4 and the gripping member 7 are raised with respect to the annular die 2 while the piston 3 is pushed down at a desired speed to continuously discharge the melt 30 from the annular die 2 in the radial direction. Let Thus, the melt 30 is continuously applied to the inner wall surface of the cylindrical mold 4 to form the cylindrical layer 1 on the inner wall surface of the cylindrical mold 4 (see FIG. 4C). In addition, about the control method of the thickness of the cylindrical layer 1, and the movement of the cylindrical die 4, the holding member 7, and the cyclic | annular die | dye 2, it is the same as that of the process (4) of 1st embodiment.

工程(5)では、把持部材7と筒状の層1と環状ダイ2とで形成される空間50内に気体を導入し、該気体の圧力で筒状の層1を筒状金型4の内壁面に密着させる(図4(c)参照)。具体的には、工程(4)に引き続いて、又は工程(4)と並行して、不図示の気体注入手段から注入口8を通じて空間50内に気体を注入する。この時、密着部では気体の連通が遮断されているため、図4(c)に示すように、把持部材7と筒状の層1と環状ダイ2とで仕切られる空間50は密閉空間であり、気体の注入により空間50の内部のみが加圧される。その結果、筒状の層1は筒状金型4の内壁面に密着させられることとなる。注入口8から注入される気体は、空気又は窒素ガスに代表される不活性ガスが好ましい。   In the step (5), gas is introduced into a space 50 formed by the gripping member 7, the cylindrical layer 1 and the annular die 2, and the cylindrical layer 1 is removed from the cylindrical mold 4 by the pressure of the gas. Close contact with the inner wall surface (see FIG. 4C). Specifically, following the step (4) or in parallel with the step (4), gas is injected into the space 50 from the gas injection means (not shown) through the injection port 8. At this time, since gas communication is blocked at the close contact portion, as shown in FIG. 4C, the space 50 partitioned by the gripping member 7, the cylindrical layer 1, and the annular die 2 is a sealed space. Only the inside of the space 50 is pressurized by gas injection. As a result, the cylindrical layer 1 is brought into close contact with the inner wall surface of the cylindrical mold 4. The gas injected from the inlet 8 is preferably an inert gas typified by air or nitrogen gas.

工程(6)については、筒状の層1を筒状金型4の内壁面に形成した状態で固化させること以外は、第一の実施形態の工程(5)と同様に行うことができる。   About a process (6), it can carry out similarly to the process (5) of 1st embodiment except solidifying in the state which formed the cylindrical layer 1 in the inner wall face of the cylindrical metal mold | die 4. FIG.

その後、筒状金型4の内壁面に形成された筒状の層1の固化物を取り出す。具体的には、筒状の層1が十分に固化した後、注入口8からの気体の注入を停止する。続いて、把持部材7を筒状金型4に対して上昇させ、把持部材7と筒状金型4とを離間させる。その後、不図示の取り出し手段を用いて筒状の層1の固化物を筒状金型4から取り出す。その後、取り出した筒状の層1の固化物の両端を切断することでシームレスベルトが得られる。   Thereafter, the solidified product of the cylindrical layer 1 formed on the inner wall surface of the cylindrical mold 4 is taken out. Specifically, after the cylindrical layer 1 is sufficiently solidified, the gas injection from the injection port 8 is stopped. Subsequently, the gripping member 7 is raised with respect to the cylindrical mold 4, and the gripping member 7 and the cylindrical mold 4 are separated. Thereafter, the solidified product of the cylindrical layer 1 is taken out from the cylindrical mold 4 using a taking-out means (not shown). Then, a seamless belt is obtained by cutting off both ends of the solidified product of the cylindrical layer 1 taken out.

本実施形態では、工程(3)において密着部における気体の連通が遮断され、工程(4)において筒状の層1は密着部から連続して形成される。更に、工程(5)において空間50の内部のみが加圧される。そのため、工程(5)において筒状金型4の内壁面と筒状の層1との隙間に気体が入り込まない。したがって、筒状の層1を筒状金型4の内壁面に密着させたまま、工程(6)で筒状の層1を固化させることができる。その結果、筒状金型4の内壁の表面が、筒状の層1の外面に確実に転写される。更に、筒状金型4の内壁面に形成される、筒状の層1の固化物の外径精度を筒状金型4の内径精度と同じレベルに安定させることができる。このように、本実施形態に係る方法ではシームレスベルトの表面に筒状金型4の内壁の表面が正確に転写されるため、表面形状が均一でムラが少ないシームレスベルトを低コストで製造できる。   In the present embodiment, the gas communication in the close contact portion is blocked in the step (3), and the cylindrical layer 1 is continuously formed from the close contact portion in the step (4). Furthermore, only the inside of the space 50 is pressurized in the step (5). Therefore, gas does not enter the gap between the inner wall surface of the cylindrical mold 4 and the cylindrical layer 1 in the step (5). Therefore, the cylindrical layer 1 can be solidified in the step (6) while the cylindrical layer 1 is kept in close contact with the inner wall surface of the cylindrical mold 4. As a result, the surface of the inner wall of the cylindrical mold 4 is reliably transferred to the outer surface of the cylindrical layer 1. Furthermore, the outer diameter accuracy of the solidified product of the cylindrical layer 1 formed on the inner wall surface of the cylindrical mold 4 can be stabilized at the same level as the inner diameter accuracy of the cylindrical mold 4. As described above, in the method according to this embodiment, the surface of the inner wall of the cylindrical mold 4 is accurately transferred onto the surface of the seamless belt, and therefore a seamless belt with a uniform surface shape and less unevenness can be manufactured at low cost.

本発明では、熱可塑性樹脂を含む樹脂組成物は特に限定されない。しかし、シームレスベルトの用途が電子写真装置の場合、熱可塑性樹脂としては、以下の樹脂が好ましい。ポリプロピレン、ポリエチレン(高密度、中密度、低密度、直鎖状低密度)、プロピレンエチレンブロック又はランダム共重合体、ゴム又はラテックス成分、エチレン・プロピレン共重合体ゴム、スチレン・ブタジエンゴム、スチレン・ブタジエン・スチレンブロック共重合体又は、その水素添加誘導体、ポリブタジエン、ポリイソブチレン、ポリアミド、ポリアミドイミド、ポリアセタール、ポリアリレート、ポリカーボネート、ポリフェニレンエーテル、変性ポリフェニレンエーテル、ポリイミド、液晶性ポリエステル、ポリエチレンテレフタレート、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンサルファイド、ポリビスアミドトリアゾール、ポリブチレンテレフタレート、ポリエーテルイミド、ポリエーテルエーテルケトン、アクリル、ポリフッ化ビニリデン、ポリフッ化ビニル、エチレンテトラフロロエチレン共重合体、クロロトリフルオロエチレン共重合体、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル共重合体、アクリル、アクリル酸アルキルエステル共重合体、ポリエステルエステル共重合体、ポリエーテルエステル共重合体、ポリエーテルアミド共重合体、ポリウレタン共重合体。これらは一種のみを用いてもよく、二種以上を併用してもよい。また、耐久性を考慮すると、熱可塑性樹脂としては、エンジニアリングプラスチック、スーパーエンジニアリングプラスチックに分類されるものが好ましい。具体的には、ポリエーテルエーテルケトン、ポリエチレンサルファイド、ポリカーボネート、ポリフッ化ビニリデン、ポリエチレンテレフタレート、ポリエチレンナフタレートがより好ましい。   In the present invention, the resin composition containing a thermoplastic resin is not particularly limited. However, when the use of the seamless belt is an electrophotographic apparatus, the following resins are preferable as the thermoplastic resin. Polypropylene, polyethylene (high density, medium density, low density, linear low density), propylene ethylene block or random copolymer, rubber or latex component, ethylene / propylene copolymer rubber, styrene / butadiene rubber, styrene / butadiene・ Styrene block copolymer or its hydrogenated derivatives, polybutadiene, polyisobutylene, polyamide, polyamideimide, polyacetal, polyarylate, polycarbonate, polyphenylene ether, modified polyphenylene ether, polyimide, liquid crystalline polyester, polyethylene terephthalate, polysulfone, poly Ether sulfone, polyphenylene sulfide, polybisamide triazole, polybutylene terephthalate, polyether imide, polyether ether ketone , Acrylic, polyvinylidene fluoride, polyvinyl fluoride, ethylene tetrafluoroethylene copolymer, chlorotrifluoroethylene copolymer, hexafluoropropylene, perfluoroalkyl vinyl ether copolymer, acrylic, alkyl acrylate ester copolymer, Polyester ester copolymer, polyether ester copolymer, polyether amide copolymer, polyurethane copolymer. These may use only 1 type and may use 2 or more types together. In view of durability, the thermoplastic resins are preferably those classified into engineering plastics and super engineering plastics. Specifically, polyether ether ketone, polyethylene sulfide, polycarbonate, polyvinylidene fluoride, polyethylene terephthalate, and polyethylene naphthalate are more preferable.

また、シームレスベルトの用途が電子写真装置の場合、その用途に応じて様々な添加剤をシームレスベルト内に分散させて機能を付与することが好ましい。例えば、転写搬送ベルトや中間転写ベルト等に使用する場合には、特に抵抗率制御を目的として無機添加剤を分散させることが好ましい。無機添加剤としては、カーボンブラック、黒鉛、金属、金属酸化物の微粉末が挙げられる。該金属としては、銅、スズ、アルミニウム、インジウムが挙げられる。また、金属酸化物としては、酸化スズ、酸化亜鉛、酸化チタン、酸化インジウム、酸化アンチモン、酸化ビスマス、アンチモンをドープした酸化スズ、スズをドープした酸化インジウムが挙げられる。無機添加剤としては、カーボンブラックが好ましい。カーボンブラックとしては、アセチレンブラック、「ケッチェンブラック」(商品名、ライオン(株)製)、ファーネスブラック、チャンネルブラックが挙げられる。また、滑り性の付与を目的として二硫化モリブデン等の潤滑性粒子を添加してもよく、硬度向上を目的として二酸化ケイ素、酸化チタンを添加してもよい。   Further, when the use of the seamless belt is an electrophotographic apparatus, it is preferable to impart functions by dispersing various additives in the seamless belt according to the use. For example, when used for a transfer conveyance belt, an intermediate transfer belt or the like, it is preferable to disperse an inorganic additive particularly for the purpose of controlling resistivity. Examples of the inorganic additive include fine powders of carbon black, graphite, metal, and metal oxide. Examples of the metal include copper, tin, aluminum, and indium. Examples of the metal oxide include tin oxide, zinc oxide, titanium oxide, indium oxide, antimony oxide, bismuth oxide, tin oxide doped with antimony, and indium oxide doped with tin. As the inorganic additive, carbon black is preferable. Examples of the carbon black include acetylene black, “Ketjen black” (trade name, manufactured by Lion Corporation), furnace black, and channel black. Further, lubricating particles such as molybdenum disulfide may be added for the purpose of imparting slipperiness, and silicon dioxide and titanium oxide may be added for the purpose of improving the hardness.

本発明に係る方法により製造されるシームレスベルトは、電子写真画像形成装置(レーザービームプリンタ、複写機等)の中間転写ベルト、転写搬送ベルト、感光ベルト、定着ベルト等に用いることができる。   The seamless belt produced by the method according to the present invention can be used for an intermediate transfer belt, a transfer conveyance belt, a photosensitive belt, a fixing belt, and the like of an electrophotographic image forming apparatus (laser beam printer, copying machine, etc.).

(実施例1)
図1に示す構成を有するシームレスベルトの製造装置を用い、前記第一の実施形態に示す工程(1)〜(5)(図2(a)〜(c))に沿って電子写真用シームレスベルトを製造した。
Example 1
A seamless belt manufacturing apparatus having the configuration shown in FIG. 1 is used, and the electrophotographic seamless belt is taken along steps (1) to (5) (FIGS. 2 (a) to (c)) shown in the first embodiment. Manufactured.

図1に示される製造装置において、筒状金型4の外径は290mm、軸方向の長さは420mmであった。また、筒状金型4は不図示の温調手段により120℃に制御した。把持部材7の外径は290mm、軸方向の長さは250mmであった。環状ダイ2の吐出口2bの内径は295mmであった。環状ダイ2の流路2aと投入口2cとは、ピストン3が上昇端に達した際に開通するようにした。また、環状ダイ2は不図示の温調手段により380℃に制御した。   In the manufacturing apparatus shown in FIG. 1, the cylindrical mold 4 has an outer diameter of 290 mm and an axial length of 420 mm. The cylindrical mold 4 was controlled at 120 ° C. by a temperature control means (not shown). The holding member 7 had an outer diameter of 290 mm and an axial length of 250 mm. The inner diameter of the discharge port 2b of the annular die 2 was 295 mm. The flow path 2a and the inlet 2c of the annular die 2 are opened when the piston 3 reaches the rising end. The annular die 2 was controlled at 380 ° C. by a temperature control means (not shown).

前準備として、ポリエーテルエーテルケトン(商品名:VICTREX PEEK、ビクトレックス(Victrex)社製)にアセチレンブラック(電気化学工業(株)製)を混合した。これを2軸成形機にて均一に混練して樹脂組成物を製造した。該樹脂組成物を成形して樹脂ペレットとした。該樹脂ペレットの体積抵抗率は1×1010〜5×1010Ωcmであった。該樹脂組成物のガラス転移点は約150℃、融点は約340℃であった。 As a preparation, acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) was mixed with polyether ether ketone (trade name: VICTREX PEEK, manufactured by Victrex). This was uniformly kneaded with a biaxial molding machine to produce a resin composition. The resin composition was molded into resin pellets. The volume resistivity of the resin pellet was 1 × 10 10 to 5 × 10 10 Ωcm. The resin composition had a glass transition point of about 150 ° C. and a melting point of about 340 ° C.

まず図2(a)に示すように、流路2a内のピストン3の下降端より下流に該樹脂組成物の熔融体が存在する状態で、ピストン3を上昇端まで上昇させ流路2aと投入口2cとを開通させ、投入口2cより流路2aに常温のペレットを適量投入した(工程(1))。   First, as shown in FIG. 2 (a), in the state where the melt of the resin composition exists downstream from the descending end of the piston 3 in the flow path 2a, the piston 3 is raised to the rising end, and the flow path 2a is inserted. The opening 2c was opened, and an appropriate amount of normal temperature pellets was charged into the flow path 2a from the charging port 2c (step (1)).

次いで、図2(b)に示すように、ピストン3を下降させ、ペレットを熔融体に埋没、熔融させることで、ペレットと熔融体との混合物40とした。この時、筒状金型4と把持部材7とは、筒状金型4及び把持部材7の両端部の間に10mmの間隙20が存在するように配置されている。また、間隙20の位置と、環状ダイ2の吐出口2bの位置とが概略一致するように高さが調整されている。更にピストン3を押し下げることにより混合物40を加圧し、熔融体30を吐出口2bより間隙20に向けて吐出した(工程(2))。その後、把持部材7を下降させて、間隙20に吐出された熔融体30を筒状金型4と把持部材7とで挟持した(工程(3))。   Next, as shown in FIG. 2 (b), the piston 3 was lowered, and the pellet was buried in the melt and melted to obtain a mixture 40 of the pellet and the melt. At this time, the cylindrical mold 4 and the gripping member 7 are arranged such that a gap 20 of 10 mm exists between both ends of the cylindrical mold 4 and the gripping member 7. Further, the height is adjusted so that the position of the gap 20 and the position of the discharge port 2b of the annular die 2 substantially coincide. Further, the mixture 40 was pressurized by pushing down the piston 3, and the melt 30 was discharged from the discharge port 2b toward the gap 20 (step (2)). Thereafter, the gripping member 7 was lowered, and the melt 30 discharged into the gap 20 was sandwiched between the cylindrical mold 4 and the gripping member 7 (step (3)).

次いで、図2(c)に示すように、熔融体30を筒状金型4と把持部材7とで挟持した状態で、ピストン3を0.2mm/秒で下降させつつ、筒状金型4及び把持部材7を15mm/秒で上昇させた(工程(4))。これにより筒状金型4の外壁面に筒状の層1を形成した。このとき、筒状金型4は該樹脂組成物のガラス転移点以下である120℃に温調されていたため、熔融体30は筒状金型4の外壁面に押し出された際に急速に熱を奪われ、結晶化が進行することなく固化して筒状の層1となった(工程(5))。約400mmにわたり筒状の層1を形成した後、ピストン3の下降を停止させ、筒状の層1を形成した筒状金型4及び把持部材7を更に上昇させて吐出口2bから連続していた筒状の層1を切断した。次いで、把持部材7を筒状金型4から離間させ、筒状の層1を筒状金型4の外壁面から剥離した。剥離した筒状の層1の両端を切断することで、シームレスベルトを得た。   Next, as shown in FIG. 2 (c), the cylindrical mold 4 is moved down at a rate of 0.2 mm / second while the melt 30 is sandwiched between the cylindrical mold 4 and the gripping member 7. And the holding member 7 was raised at 15 mm / sec (process (4)). Thereby, the cylindrical layer 1 was formed on the outer wall surface of the cylindrical mold 4. At this time, the temperature of the cylindrical mold 4 was adjusted to 120 ° C., which is lower than the glass transition point of the resin composition, so that the melt 30 rapidly heated when pushed out onto the outer wall surface of the cylindrical mold 4. Was solidified without progressing crystallization to form a cylindrical layer 1 (step (5)). After the cylindrical layer 1 is formed over about 400 mm, the lowering of the piston 3 is stopped, and the cylindrical mold 4 and the gripping member 7 on which the cylindrical layer 1 is formed are further raised to continue from the discharge port 2b. The cylindrical layer 1 was cut. Next, the holding member 7 was separated from the cylindrical mold 4, and the cylindrical layer 1 was peeled off from the outer wall surface of the cylindrical mold 4. A seamless belt was obtained by cutting both ends of the peeled cylindrical layer 1.

該シームレスベルトは2本の平行ローラに張架しても歪みが観察されず、肉厚100μmの安定した形状を維持した。また、流路2aに分岐及び合流点がないためウェルドラインの発生がなく、シームレスベルトの全面において均一な強度を示した。また、表面に斑がなく成形できた。更に、筒状金型4をガラス転移点以下に温度制御したため、柔軟性の高いシームレスベルトが得られた。   Even when the seamless belt was stretched between two parallel rollers, no distortion was observed, and a stable shape having a thickness of 100 μm was maintained. Further, since there is no branching or confluence in the flow path 2a, no weld line was generated, and uniform strength was exhibited over the entire surface of the seamless belt. In addition, the surface could be molded without any spots. Furthermore, since the temperature of the cylindrical mold 4 was controlled below the glass transition point, a highly flexible seamless belt was obtained.

(実施例2)
図3に示す構成を有するシームレスベルトの製造装置を用い、前記第二の実施形態に示す工程(1)〜(6)(図4(a)〜(c))に沿って電子写真用シームレスベルトを製造した。
(Example 2)
A seamless belt manufacturing apparatus having the configuration shown in FIG. 3 is used, and the electrophotographic seamless belt is taken along steps (1) to (6) (FIGS. 4A to 4C) shown in the second embodiment. Manufactured.

図3に示される製造装置において、筒状金型4の内径は290mm、軸方向の長さは420mmであった。また、筒状金型4の内壁面には、シームレスベルトの表面が所定の表面粗さ[十点平均粗さ(Rzjis、JIS K0601−2001):0.4μm]を有するように、表面処理が施されていた。また、筒状金型4は不図示の温調手段により250℃に制御した。把持手段7の内径は290mm、軸方向の長さは250mmであった。環状ダイ2の吐出口2bの外径は282mmであった。環状ダイ2の流路2aと投入口2cとは、ピストン3が上昇端に達した際に開通するようにした。また、環状ダイ2は不図示の温調手段により380℃に制御した。   In the manufacturing apparatus shown in FIG. 3, the cylindrical mold 4 has an inner diameter of 290 mm and an axial length of 420 mm. Further, the inner wall surface of the cylindrical mold 4 is subjected to a surface treatment so that the surface of the seamless belt has a predetermined surface roughness [ten-point average roughness (Rzjis, JIS K0601-2001): 0.4 μm]. It was given. The cylindrical mold 4 was controlled at 250 ° C. by a temperature control means (not shown). The inner diameter of the gripping means 7 was 290 mm, and the length in the axial direction was 250 mm. The outer diameter of the discharge port 2b of the annular die 2 was 282 mm. The flow path 2a and the inlet 2c of the annular die 2 are opened when the piston 3 reaches the rising end. The annular die 2 was controlled at 380 ° C. by a temperature control means (not shown).

ペレットは実施例1と同様に調製した。図4(a)に示すように、流路2a内のピストン3の下降端より下流に樹脂組成物の熔融体が存在する状態で、ピストン3を上昇端まで上昇させて流路2aと投入口2cとを開通させ、投入口2cより常温のペレットを流路2aに投入した(工程(1))。なお、該ペレットは不図示の計量手段により1回の吐出質量分だけを計量して投入した。   Pellets were prepared as in Example 1. As shown in FIG. 4A, in the state where the melt of the resin composition exists downstream from the descending end of the piston 3 in the channel 2a, the piston 3 is raised to the ascending end, and the channel 2a and the inlet are 2c was opened, and normal temperature pellets were introduced into the flow path 2a from the inlet 2c (step (1)). Note that the pellets were weighed and fed only for one discharge mass by a weighing means (not shown).

その後、ピストン3を下降させ、ペレットを熔融体に埋没、熔融させることで、ペレットと熔融体との混合物40とした。この時、筒状金型4と把持部材7とは、筒状金型4及び把持部材7の両端部の間に10mmの間隙20が存在するように配置されている。また、間隙20の位置と、環状ダイ2の吐出口2bの位置とが概略一致するように高さが調整されている。次いで、図4(b)に示すように、更にピストン3を押し下げることにより混合物40を加圧し、熔融体30を吐出口2bより間隙20に向けて吐出した(工程(2))。その後、把持部材7を下降させて、間隙20に吐出された熔融体30を筒状金型4と把持部材7とで挟持した(工程(3))。なお、密着部において気体の流通は遮断されている。   Thereafter, the piston 3 was lowered, and the pellet was buried and melted in the melt, whereby a mixture 40 of the pellet and the melt was obtained. At this time, the cylindrical mold 4 and the gripping member 7 are arranged such that a gap 20 of 10 mm exists between both ends of the cylindrical mold 4 and the gripping member 7. Further, the height is adjusted so that the position of the gap 20 and the position of the discharge port 2b of the annular die 2 substantially coincide. Next, as shown in FIG. 4B, the mixture 40 was further pressurized by further pushing down the piston 3, and the melt 30 was discharged from the discharge port 2b toward the gap 20 (step (2)). Thereafter, the gripping member 7 was lowered, and the melt 30 discharged into the gap 20 was sandwiched between the cylindrical mold 4 and the gripping member 7 (step (3)). It should be noted that the gas flow is blocked at the close contact portion.

次いで、図4(c)に示すように、熔融体30を筒状金型4と把持部材7とで挟持した状態で、ピストン3を0.2mm/秒で下降させつつ、筒状金型4及び把持部材7を15mm/秒で上昇させた(工程(4))。それと同時に、把持部材7の注入口8から空間50に圧縮空気を注入した(工程(5))。空間50は、把持部材7と、熔融体30(筒状の層1)と、環状ダイ2とで形成される。これにより筒状金型4の内壁面に筒状の層1を形成し、且つ、筒状の層1を筒状金型4の内壁面に密着させた。このとき、筒状金型4は樹脂組成物の融点以下である250℃に温調されていたため、熔融体30は筒状金型4の内壁面に押し出された際に徐々に熱を奪われ、固化して筒状の層1となった(工程(6))。約400mmにわたり筒状の層1を形成した後、ピストン3の下降を停止させ、筒状の層1を形成した筒状金型4及び把持部材7を更に上昇させて吐出口2bから連続していた筒状の層1を切断した。次いで、圧縮空気の注入を止め、把持部材7を筒状金型4から離間させ、筒状の層1を筒状金型4の内壁面から剥離した。剥離した筒状の層1の両端を切断することで、シームレスベルトを得た。   Next, as shown in FIG. 4 (c), the cylindrical mold 4 is moved down at a rate of 0.2 mm / second while the melt 30 is sandwiched between the cylindrical mold 4 and the gripping member 7. And the holding member 7 was raised at 15 mm / sec (process (4)). At the same time, compressed air was injected into the space 50 from the inlet 8 of the gripping member 7 (step (5)). The space 50 is formed by the gripping member 7, the melt 30 (cylindrical layer 1), and the annular die 2. Thereby, the cylindrical layer 1 was formed on the inner wall surface of the cylindrical mold 4, and the cylindrical layer 1 was brought into close contact with the inner wall surface of the cylindrical mold 4. At this time, since the temperature of the cylindrical mold 4 was adjusted to 250 ° C., which is lower than the melting point of the resin composition, the melt 30 was gradually deprived of heat when it was extruded onto the inner wall surface of the cylindrical mold 4. Solidified into a cylindrical layer 1 (step (6)). After the cylindrical layer 1 is formed over about 400 mm, the lowering of the piston 3 is stopped, and the cylindrical mold 4 and the gripping member 7 on which the cylindrical layer 1 is formed are further raised to continue from the discharge port 2b. The cylindrical layer 1 was cut. Next, injection of compressed air was stopped, the gripping member 7 was separated from the cylindrical mold 4, and the cylindrical layer 1 was peeled from the inner wall surface of the cylindrical mold 4. A seamless belt was obtained by cutting both ends of the peeled cylindrical layer 1.

該シームレスベルトは2本の平行ローラに張架しても歪みが観察されず、肉厚100μmの安定した形状を維持した。また、流路2aに分岐及び合流点がないためウェルドラインの発生がなく、シームレスベルトの全面において均一な強度を示した。また、表面に斑がなく成形できた。筒状金型4をガラス転移点以上、融点以下に温度制御したため、結晶化度が20%以上で、引張り強度、表面硬度の高いシームレスベルトが得られた。更に、シームレスベルトの外面は筒状金型4の内壁面の表面粗さを転写しており、十点平均粗さは0.4μmであった。   Even when the seamless belt was stretched between two parallel rollers, no distortion was observed, and a stable shape having a thickness of 100 μm was maintained. Further, since there is no branching or confluence in the flow path 2a, no weld line was generated, and uniform strength was exhibited over the entire surface of the seamless belt. In addition, the surface could be molded without any spots. Since the temperature of the cylindrical mold 4 was controlled to the glass transition point or more and the melting point or less, a seamless belt having a crystallinity of 20% or more, high tensile strength, and high surface hardness was obtained. Furthermore, the outer surface of the seamless belt transferred the surface roughness of the inner wall surface of the cylindrical mold 4, and the ten-point average roughness was 0.4 μm.

1 筒状の層
2 環状ダイ
4 筒状金型
7 把持部材
20 間隙
30 熔融体
40 混合物
50 空間
DESCRIPTION OF SYMBOLS 1 Cylindrical layer 2 Annular die 4 Cylindrical metal mold 7 Gripping member 20 Gap 30 Melt 40 Mixture 50 Space

Claims (2)

円筒と、
該円筒と同軸に配置され、該円筒の壁面に近接して軸方向に相対的に移動可能であり、且つ、熱可塑性樹脂を含む樹脂組成物の熔融体を半径方向に吐出可能な環状ダイと、を具備するシームレスベルトの製造装置を用いてシームレスベルトを製造する方法であって、
該環状ダイは、
該樹脂組成物からなるペレットの投入口を有し、該投入口から投入された該ペレットを熔融する環状流路と、
該環状流路において熔融された該樹脂組成物の熔融体に圧力を印加して該熔融体を該環状ダイから吐出させるための環状のピストンと、を備えており、
該シームレスベルトの製造方法は、
(1)該樹脂組成物の熔融体を有している該環状流路に、該樹脂組成物からなるペレットを投入する工程と、
(2)該環状流路内の該樹脂組成物と接する押圧面が該樹脂組成物の融点未満に温調された該ピストンで、該環状流路に投入された該ペレットを押圧して該熔融体中に該ペレットを押し込むことにより該ペレットを熔融させると共に、該環状ダイから該熔融体を半径方向に吐出させる工程と、
(3)吐出された該熔融体を該円筒の一部に密着させる工程と、
(4)該熔融体を該円筒の一部に密着させた状態で、該円筒と該環状ダイとを軸方向に相対移動させて該円筒の壁面に該熔融体を塗布して該熔融体の筒状の層を形成する工程と、
(5)該筒状の層を固化させる工程と、を含むことを特徴とするシームレスベルトの製造方法。
A cylinder,
An annular die that is arranged coaxially with the cylinder, is relatively movable in the axial direction in the vicinity of the wall surface of the cylinder, and can discharge a melt of a resin composition containing a thermoplastic resin in a radial direction; A method for producing a seamless belt using a seamless belt production apparatus comprising:
The annular die is
An annular channel having a pellet inlet made of the resin composition, and melting the pellet charged from the inlet;
An annular piston for applying a pressure to the melt of the resin composition melted in the annular channel and discharging the melt from the annular die,
The method for producing the seamless belt is as follows:
(1) charging the pellet made of the resin composition into the annular channel having the melt of the resin composition;
(2) The pressure of the pressure surface in contact with the resin composition in the annular channel is adjusted to a temperature lower than the melting point of the resin composition, and the pellet put in the annular channel is pressed to melt Melting the pellet by pushing the pellet into the body, and discharging the melt from the annular die in a radial direction;
(3) a step of bringing the discharged melt into close contact with a part of the cylinder;
(4) With the melt in close contact with a part of the cylinder, the cylinder and the annular die are moved relative to each other in the axial direction, and the melt is applied to the wall surface of the cylinder. Forming a cylindrical layer;
(5) A method for producing a seamless belt, comprising: solidifying the cylindrical layer.
円筒と、
該円筒と同軸に配置され、該円筒の壁面に近接して軸方向に相対的に移動可能であり、且つ、熱可塑性樹脂を含む樹脂組成物の熔融体を半径方向に吐出可能な環状ダイと、を具備するシームレスベルトの製造装置であって、
該環状ダイは、
該樹脂組成物からなるペレットの投入口を有し、該投入口から投入された該ペレットを熔融する環状流路と、
該環状流路において熔融された該樹脂組成物の熔融体に圧力を印加して該熔融体を該環状ダイから吐出させるための環状のピストンと、を備えていることを特徴とするシームレスベルトの製造装置。
A cylinder,
An annular die that is arranged coaxially with the cylinder, is relatively movable in the axial direction in the vicinity of the wall surface of the cylinder, and can discharge a melt of a resin composition containing a thermoplastic resin in a radial direction; A seamless belt manufacturing apparatus comprising:
The annular die is
An annular channel having a pellet inlet made of the resin composition, and melting the pellet charged from the inlet;
An annular piston for applying a pressure to the melt of the resin composition melted in the annular flow path and discharging the melt from the annular die. manufacturing device.
JP2010237643A 2010-10-22 2010-10-22 Seamless belt manufacturing method and manufacturing apparatus Expired - Fee Related JP5147919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010237643A JP5147919B2 (en) 2010-10-22 2010-10-22 Seamless belt manufacturing method and manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010237643A JP5147919B2 (en) 2010-10-22 2010-10-22 Seamless belt manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2012086528A true JP2012086528A (en) 2012-05-10
JP5147919B2 JP5147919B2 (en) 2013-02-20

Family

ID=46258670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010237643A Expired - Fee Related JP5147919B2 (en) 2010-10-22 2010-10-22 Seamless belt manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP5147919B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012179793A (en) * 2011-03-01 2012-09-20 Canon Inc Method of manufacturing belt for electrophotography

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0330919A (en) * 1989-06-28 1991-02-08 Kyoraku Co Ltd Manufacture of tubular body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0330919A (en) * 1989-06-28 1991-02-08 Kyoraku Co Ltd Manufacture of tubular body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012179793A (en) * 2011-03-01 2012-09-20 Canon Inc Method of manufacturing belt for electrophotography

Also Published As

Publication number Publication date
JP5147919B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
US9005500B2 (en) Method of manufacturing film for film capacitor and film for film capacitor
CN100377014C (en) Method of manufacturing laminated seamless belt and laminated seamless belt
JP5147919B2 (en) Seamless belt manufacturing method and manufacturing apparatus
JP4873758B2 (en) Seamless belt manufacturing method and manufacturing apparatus
JP5230764B2 (en) Electrophotographic belt manufacturing method
JP4975126B2 (en) Seamless belt manufacturing method
JP2012183663A (en) Method and device for manufacturing seamless belt
JP2012139870A (en) Method and apparatus for manufacturing seamless belt
JP2012171321A (en) Method for manufacturing seamless belt and device for manufacturing the same
JP2012183667A (en) Method and apparatus for manufacturing seamless belt
JP2011059466A (en) Manufacturing method and manufacturing device of seamless belt
JP6365177B2 (en) Extrusion mold, extrusion molding apparatus, and extrusion molding method
JP5863429B2 (en) Method for producing elastic roller
JP2012171129A (en) Method and device for manufacturing seamless belt
JP2012051340A (en) Method and device for manufacturing seamless belt
JP2013119193A (en) Method of manufacturing multilayer seamless belt
KR20040073470A (en) Method of applying a resin-rich skin on the surface of reinforced material gear or other wear surface
JP6183420B2 (en) Pick-up device
JP6215610B2 (en) Injection molded body, injection molding method, and injection mold
US11981055B2 (en) Injection mold, injection molding machine including injection mold, and method for manufacturing injection-molded product using injection molding machine
JP2013163349A (en) Extrusion molding apparatus and method for manufacturing conductive resin molded article
JP6191439B2 (en) Cooling apparatus and tubular body manufacturing apparatus
JP2017035801A (en) Extruder
JP3178787B2 (en) Manufacturing method of conductive belt
JPH07108585A (en) Production of synthetic resin cylindrical member and extrusion molding die device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121127

R151 Written notification of patent or utility model registration

Ref document number: 5147919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees