JP2012086423A - Injection molding machine and method of manufacturing molding - Google Patents

Injection molding machine and method of manufacturing molding Download PDF

Info

Publication number
JP2012086423A
JP2012086423A JP2010234191A JP2010234191A JP2012086423A JP 2012086423 A JP2012086423 A JP 2012086423A JP 2010234191 A JP2010234191 A JP 2010234191A JP 2010234191 A JP2010234191 A JP 2010234191A JP 2012086423 A JP2012086423 A JP 2012086423A
Authority
JP
Japan
Prior art keywords
flow path
nozzle
injection
molding material
molding machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010234191A
Other languages
Japanese (ja)
Inventor
Nobuo Inoue
伸夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2010234191A priority Critical patent/JP2012086423A/en
Publication of JP2012086423A publication Critical patent/JP2012086423A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To precisely control the temperature of a molding material injected into the mold from a flow passage of a nozzle by easily changing the cross-section of the flow passage of the nozzle.SOLUTION: An injection molding machine 1 is provided with the nozzle 30 having a throttle part 32 formed in the flow passage 31 and the molding material S is injected into the mold 10 through the flow passage 31 to manufacture the molding. In the injection of the molding material S, the nozzle 30 in the injection molding machine 1 is abutted to the mold 10, the distance between a flow passage adjusting member 50 arranged in the flow passage 31 and the throttle part 32 is changed to control the cross-section area of the flow passage 31 between the throttle part 32 and the flow passage adjusting member 50. In the injection molding machine 1, the molding material S is injected into the mold 10 through the flow passage 31 between the throttle part 32 and the flow passage adjusting member 50.

Description

本発明は、成形材料をノズルから成形型内に射出する射出成形機と、射出した成形材料を成形型内で成形して成形品を製造する製造方法に関する。   The present invention relates to an injection molding machine that injects a molding material from a nozzle into a molding die, and a manufacturing method for producing a molded product by molding the injected molding material in a molding die.

未加硫のゴムや樹脂等の成形材料からなる成形品は、金型等の成形型内で成形材料を所定形状に成形して製造される。この成形品を製造する装置として、従来、成形材料を成形型内のキャビティに射出して成形品を成形する射出成形機が知られている(特許文献1参照)。   A molded product made of a molding material such as unvulcanized rubber or resin is manufactured by molding the molding material into a predetermined shape in a molding die such as a mold. As an apparatus for manufacturing this molded product, an injection molding machine for molding a molded product by injecting a molding material into a cavity in a mold has been known (see Patent Document 1).

図4は、従来の射出成形機の例を示す要部断面図である。
従来の射出成形機100は、図示のように、成形材料S(ここでは、ゴム)を射出するノズル110と、成形型120とを備えている。射出成形機100は、ノズル110を成形型120に当接させて、成形材料Sを、ノズル110から成形型120のキャビティ121内に向けて射出し、キャビティ121内で成形品Pを成形する。その際、射出成形機100は、ノズル110に形成された所定径(例えば、4〜10mm)の流路(射出孔)111から、成形材料Sであるゴムを射出する。
FIG. 4 is a cross-sectional view of an essential part showing an example of a conventional injection molding machine.
A conventional injection molding machine 100 includes a nozzle 110 for injecting a molding material S (here, rubber) and a molding die 120 as shown in the figure. The injection molding machine 100 brings the nozzle 110 into contact with the molding die 120, injects the molding material S from the nozzle 110 into the cavity 121 of the molding die 120, and molds the molded product P in the cavity 121. In that case, the injection molding machine 100 injects the rubber | gum which is the molding material S from the flow path (injection hole) 111 of the predetermined diameter (for example, 4-10 mm) formed in the nozzle 110. FIG.

ここで、ゴムは、ノズル110の流路111を通過するときに、摩擦や抵抗等に伴う熱で加熱されて成形型120内に射出される。従って、ノズル110は、成形品Pやゴムの種類等に応じて、流路111の直径を種々変化させて射出試験を行い、ゴムを適宜加熱できる最適な口径を選択する必要がある。ところが、射出成形機100の周囲の温度が変化すると、ノズル110の口径や、射出前のゴムの温度及び特性が変化して、射出するゴムの温度が変動することがある。これにより、ゴムの温度が上昇して、いわゆるゴム焼けが発生し、或いは、流路111からゴムが射出され難くなって、所定時間内にゴムを射出しきれないトラブルが発生する虞がある。そのため、従来の射出成形機100では、気温の変化に応じて、例えば、夏と冬に、射出試験とノズル110の選択を、手間や時間をかけて行う必要がある。   Here, when the rubber passes through the flow path 111 of the nozzle 110, the rubber is heated by heat accompanying friction, resistance, and the like and injected into the mold 120. Therefore, it is necessary for the nozzle 110 to perform an injection test with various changes in the diameter of the flow path 111 in accordance with the molded product P, the type of rubber, and the like, and to select an optimum diameter that can heat the rubber appropriately. However, when the temperature around the injection molding machine 100 changes, the diameter of the nozzle 110 and the temperature and characteristics of the rubber before injection may change, and the temperature of the injected rubber may fluctuate. As a result, the temperature of the rubber rises, so-called rubber scorch occurs, or it becomes difficult for the rubber to be injected from the flow path 111, and there is a possibility that a trouble that the rubber cannot be injected within a predetermined time may occur. Therefore, in the conventional injection molding machine 100, it is necessary to take time and effort to select the injection test and the nozzle 110 in summer and winter, for example, according to changes in the temperature.

また、選択したノズル110を使用しても、ゴムの射出速度や温度の変動により、射出したゴムの温度が一定にならずに、成形品Pを成形型120内で加熱して加硫するときに、成形品Pの加硫度にバラツキが発生する虞がある。このバラツキに関しては、口径が大きめのノズル110を使用することで、ゴムの温度が高くなり過ぎるのを防止して、成形品Pに過加硫が発生するのを抑制できる。併せて、成形品Pの加硫時間を長めにすることで、成形品Pの加硫度不足も回避できる。ただし、このようにすると、成形品Pの製造に要する時間が長くなるため、成形品Pの生産性が低くなる。以上の各問題は、ノズル110を交換せずに、その口径や流路111の断面積を容易に変更できれば解消できる。しかし、射出時のゴムは高圧(例えば、200MPa以上)になるため、そのような機能を有するノズル110を実現するのには困難が伴う。   Further, even when the selected nozzle 110 is used, when the molded product P is heated and vulcanized in the mold 120 without the temperature of the injected rubber becoming constant due to the variation in the injection speed and temperature of the rubber. In addition, there is a risk that the degree of vulcanization of the molded product P may vary. Regarding this variation, by using the nozzle 110 having a large diameter, it is possible to prevent the rubber temperature from becoming too high, and to suppress the occurrence of overvulcanization in the molded product P. In addition, the vulcanization time of the molded product P can be avoided by extending the vulcanization time of the molded product P. However, if it does in this way, since the time which manufactures the molded article P becomes long, productivity of the molded article P will become low. Each of the above problems can be solved if the diameter of the nozzle 110 and the cross-sectional area of the flow path 111 can be easily changed without replacing the nozzle 110. However, since the rubber at the time of injection becomes high pressure (for example, 200 MPa or more), it is difficult to realize the nozzle 110 having such a function.

これに対し、従来、溶融ゴム材料の射出経路に回転式バルブを設け、バルブにより経路の絞りを制御することで、溶融ゴム材料の温度を制御する射出成形機が知られている(特許文献2参照)。   On the other hand, conventionally, an injection molding machine that controls the temperature of the molten rubber material by providing a rotary valve in the injection path of the molten rubber material and controlling the throttle of the path by the valve is known (Patent Document 2). reference).

しかしながら、この従来の射出成形機は、回転バルブを、先端のノズルから比較的離れた上流側に設けている。そのため、溶融ゴム材料の温度が、回転バルブの絞りを通過した後、ノズルから射出されるまでに変動し易い傾向がある。また、回転バルブで経路を絞り過ぎて、溶融ゴム材料の温度が高くなると、溶融ゴム材料にゴム焼けが生じて、回転バルブとノズルとの間にゴムが詰まる虞もある。この場合には、回転バルブやノズルを分解して清掃しなければならず、困難な作業が必要で、手間や時間を浪費するという問題も生じる。従って、この従来の射出成形機では、射出する溶融ゴム材料の温度を、より精度よく制御することが求められている。   However, in this conventional injection molding machine, the rotary valve is provided on the upstream side relatively far from the nozzle at the tip. For this reason, the temperature of the molten rubber material tends to fluctuate after passing through the throttle of the rotary valve and before being injected from the nozzle. Further, when the temperature of the molten rubber material becomes too high due to the narrowing of the path with the rotary valve, there is a possibility that the molten rubber material will be burned with rubber and the rubber will be clogged between the rotary valve and the nozzle. In this case, it is necessary to disassemble and clean the rotary valve and nozzle, which requires difficult work, and there is a problem that labor and time are wasted. Therefore, in this conventional injection molding machine, it is required to control the temperature of the molten rubber material to be injected with higher accuracy.

特開2008−55614号公報JP 2008-55614 A 特開2000−117777号公報JP 2000-117777 A

本発明は、このような従来の問題に鑑みなされたもので、その目的は、ノズルの流路の断面積を容易に変更できるようにし、ノズルの流路から成形型内に射出する成形材料の温度を精度よく制御することである。   The present invention has been made in view of such a conventional problem, and an object of the present invention is to make it possible to easily change the cross-sectional area of the flow path of the nozzle and to provide a molding material to be injected into the mold from the flow path of the nozzle. It is to control the temperature accurately.

本発明は、成形材料の流路を有するノズルを備え、ノズルの流路から成形材料を成形型内に射出する射出成形機であって、ノズルの流路に形成された絞り部と、ノズルの流路内に配置され、絞り部との間の距離の変化に伴い絞り部との間の流路の断面積を変更する流路調節部材と、絞り部と流路調節部材との間の距離を変化させる距離変化手段と、を備えた射出成形機である。
また、本発明は、ノズルに設けられた流路から成形材料を成形型内に射出して成形品を製造する成形品の製造方法であって、流路に絞り部が形成されたノズルを成形型に当接させる工程と、ノズルの流路内に配置された流路調節部材と絞り部との間の距離を変化させて、絞り部と流路調節部材との間の流路の断面積を調節する工程と、ノズルの絞り部と流路調節部材との間の流路を通して成形材料を成形型内に射出する工程と、を有する成形品の製造方法である。
The present invention is an injection molding machine that includes a nozzle having a flow passage for a molding material, and injects the molding material into the mold from the flow passage of the nozzle. A flow path adjusting member that is disposed in the flow path and changes the cross-sectional area of the flow path with the throttle portion in accordance with a change in the distance between the throttle portion and the distance between the throttle portion and the flow path adjusting member And a distance changing means for changing.
The present invention also relates to a method of manufacturing a molded product by manufacturing a molded product by injecting a molding material into a mold from a flow path provided in the nozzle, and molding the nozzle having a throttle portion formed in the flow path. The cross-sectional area of the flow path between the throttle portion and the flow path adjusting member by changing the distance between the flow path adjusting member and the throttle portion disposed in the flow path of the nozzle, and the step of contacting the mold And a step of injecting a molding material into a molding die through a flow path between a throttle part of the nozzle and a flow path adjusting member.

本発明によれば、ノズルの流路の断面積を容易に変更でき、ノズルの流路から成形型内に射出する成形材料の温度を精度よく制御することができる。   ADVANTAGE OF THE INVENTION According to this invention, the cross-sectional area of the flow path of a nozzle can be changed easily, and the temperature of the molding material injected into a shaping | molding die from the flow path of a nozzle can be controlled accurately.

本実施形態の射出成形機を示す要部断面図である。It is principal part sectional drawing which shows the injection molding machine of this embodiment. 射出成形機の射出ヘッドを拡大して示す断面図である。It is sectional drawing which expands and shows the injection head of an injection molding machine. 他の実施形態の射出ヘッドを示す断面図である。It is sectional drawing which shows the injection head of other embodiment. 従来の射出成形機の例を示す要部断面図である。It is principal part sectional drawing which shows the example of the conventional injection molding machine.

以下、本発明の射出成形機と成形品の製造方法の一実施形態について、図面を参照して説明する。
本実施形態の射出成形機は、成形品(射出成形品)の製造装置であり、成形材料の流路を有するノズルを備え、ノズルの流路から成形材料を成形型内に射出して成形品を成形する。なお、成形材料は、成形品の原料を溶融や可塑化して射出成形可能な状態にした材料(射出材)であり、例えば、未加硫のゴムや樹脂からなる。以下では、成形材料として未加硫のゴム(以下、単にゴムという)を例に採り説明する。即ち、射出成形機は、ゴムである成形材料を成形型内に射出して成形し、ゴムを所定の加硫温度に加熱(加硫)してゴム成形品を製造する。
Hereinafter, an embodiment of an injection molding machine and a method of manufacturing a molded product according to the present invention will be described with reference to the drawings.
The injection molding machine according to the present embodiment is an apparatus for manufacturing a molded product (injection molded product), and includes a nozzle having a flow passage for the molding material, and the molding material is injected into the molding die from the flow passage of the nozzle. Is molded. The molding material is a material (injection material) obtained by melting or plasticizing a raw material of a molded product so as to be injection-molded, and is made of, for example, unvulcanized rubber or resin. In the following description, an unvulcanized rubber (hereinafter simply referred to as rubber) is taken as an example of the molding material. That is, the injection molding machine injects a molding material, which is rubber, into a molding die and molds it, and heats (vulcanizes) the rubber to a predetermined vulcanization temperature to produce a rubber molded product.

図1は、本実施形態の射出成形機を示す要部断面図である。また、図1では、射出成形機の一部を切断せずに示している。
射出成形機1は、図示のように、成形材料Sを射出する射出装置2と、射出装置2を移動させる移動装置3(図1では、二点鎖線で模式的に示す)と、成形材料Sを成形する成形型10と、全体を制御する制御装置4とを備えている。
FIG. 1 is a cross-sectional view of an essential part showing an injection molding machine of the present embodiment. In FIG. 1, a part of the injection molding machine is shown without being cut.
As illustrated, the injection molding machine 1 includes an injection device 2 for injecting a molding material S, a moving device 3 for moving the injection device 2 (schematically shown in FIG. 1 by a two-dot chain line), and a molding material S. And a control device 4 for controlling the whole.

射出装置2は、成形材料Sの計量空間5Aが形成されたシリンダ5と、計量空間5A内で上下動するプランジャ6と、シリンダ5の側面に取り付けられた押出機7(図1では先端部のみ示す)とを有する。また、射出装置2は、シリンダ5の先端(図1では下端)に固定された射出ヘッド20と、射出ヘッド20の先端に設けられたノズル30とを有し、ノズル30が成形型10に向けて配置されている。射出装置2は、成形材料Sを押出機7からシリンダ5内に押し出して、計量空間5Aに所定量の成形材料Sを充填し、プランジャ6を駆動装置(図示せず)により計量空間5A内に押し込む。射出装置2は、このプランジャ6による圧力で、計量空間5A内の成形材料Sを、射出ヘッド20の射出経路21を通過させてノズル30の先端(図1では下端)から射出する。   The injection device 2 includes a cylinder 5 in which a metering space 5A for the molding material S is formed, a plunger 6 that moves up and down in the metering space 5A, and an extruder 7 attached to a side surface of the cylinder 5 (only the tip in FIG. 1). Show). The injection device 2 includes an injection head 20 fixed to the tip of the cylinder 5 (the lower end in FIG. 1) and a nozzle 30 provided at the tip of the injection head 20, and the nozzle 30 faces the mold 10. Are arranged. The injection device 2 pushes the molding material S from the extruder 7 into the cylinder 5, fills the metering space 5A with a predetermined amount of the molding material S, and moves the plunger 6 into the metering space 5A by a driving device (not shown). Push in. The injection device 2 injects the molding material S in the measurement space 5 </ b> A from the tip (lower end in FIG. 1) of the nozzle 30 through the injection path 21 of the injection head 20 with the pressure of the plunger 6.

移動装置3は、射出装置2に取り付けられたサーボ機構(図示せず)を有し、サーボ機構を駆動して、射出装置2を成形型10に接近及び離間する方向(図1では上下方向)に移動させる。サーボ機構は、例えば、射出装置2に取り付けられたボールネジ機構と、ボールネジ機構を駆動するサーボモータからなり、サーボモータの回転を制御して、射出装置2の移動方向、移動速度、及び、移動距離(移動量)を制御する。移動装置3は、サーボ機構により射出装置2を移動させて、ノズル30の先端を成形型10の上面に接触及び離間させる。その際、移動装置3は、サーボ機構により射出装置2とノズル30の移動量を制御して、射出装置2とノズル30を、連続して又は所定距離ずつ移動させる。また、移動装置3は、サーボ機構により、射出装置2とノズル30を、所定距離単位(ここでは、0.01mm単位)で移動させる。   The moving device 3 has a servo mechanism (not shown) attached to the injection device 2, and drives the servo mechanism to bring the injection device 2 closer to and away from the mold 10 (up and down direction in FIG. 1). Move to. The servo mechanism includes, for example, a ball screw mechanism attached to the injection device 2 and a servo motor that drives the ball screw mechanism, and controls the rotation of the servo motor to move the injection device 2 in the moving direction, moving speed, and moving distance. Control (movement amount). The moving device 3 moves the injection device 2 by a servo mechanism to bring the tip of the nozzle 30 into contact with and away from the upper surface of the mold 10. At that time, the moving device 3 controls the amount of movement of the injection device 2 and the nozzle 30 by a servo mechanism, and moves the injection device 2 and the nozzle 30 continuously or by a predetermined distance. Further, the moving device 3 moves the injection device 2 and the nozzle 30 by a predetermined distance unit (in this case, 0.01 mm unit) by a servo mechanism.

成形型10は、分離可能に組み合わされたランナ部材11、上型12、及び、下型13を有し、それらが上下方向に順に重ね合わせて配置されている。上型12と下型13は、当接した状態で、互いの当接面側に所定形状のキャビティ14を区画して、成形型10内に複数のキャビティ14を形成する。ランナ部材11は、成形材料Sの注入孔15が、ノズル30と対向する位置に形成されている。また、ランナ部材11は、上型12とともに、注入孔15から各キャビティ14まで延びる成形材料Sの通路16を区画する。成形型10は、注入孔15から注入される成形材料Sが、通路16を通過してキャビティ14に充填され、キャビティ14内で成形材料Sからなる成形品Pを成形する。   The molding die 10 has a runner member 11, an upper die 12, and a lower die 13 which are combined in a separable manner, and these are arranged in an overlapping manner in the vertical direction. In a state where the upper mold 12 and the lower mold 13 are in contact with each other, a cavity 14 having a predetermined shape is defined on the contact surface side of each other, and a plurality of cavities 14 are formed in the mold 10. In the runner member 11, the injection hole 15 for the molding material S is formed at a position facing the nozzle 30. The runner member 11 defines a passage 16 of the molding material S extending from the injection hole 15 to each cavity 14 together with the upper mold 12. In the molding die 10, the molding material S injected from the injection hole 15 passes through the passage 16 and is filled into the cavity 14, and the molded product P made of the molding material S is molded in the cavity 14.

射出成形機1は、射出装置2を移動装置3により移動させて、ノズル30を成形型10の注入孔15が形成された部分(注入口)に当接させる。続いて、射出成形機1は、射出装置2により、成形材料Sをノズル30から成形型10の注入孔15に射出する。これにより、射出成形機1は、成形材料Sを、ノズル30から成形型10内のキャビティ14に向けて射出して、キャビティ14内で成形品Pを成形する。また、射出成形機1は、加熱装置(図示せず)により成形型10を加熱して、キャビティ14内の成形品Pを加熱して加硫し、所定形状及び性能の成形品Pを製造する。その後、ノズル30を成形型10から離間させて、成形型10を分解し、キャビティ14から成形品Pを取り出す。   In the injection molding machine 1, the injection device 2 is moved by the moving device 3, and the nozzle 30 is brought into contact with the portion (injection port) where the injection hole 15 of the mold 10 is formed. Subsequently, the injection molding machine 1 uses the injection device 2 to inject the molding material S from the nozzle 30 into the injection hole 15 of the molding die 10. Thereby, the injection molding machine 1 injects the molding material S from the nozzle 30 toward the cavity 14 in the molding die 10, and molds the molded product P in the cavity 14. Further, the injection molding machine 1 heats the molding die 10 with a heating device (not shown), heats and vulcanizes the molded product P in the cavity 14, and manufactures the molded product P having a predetermined shape and performance. . Thereafter, the nozzle 30 is separated from the mold 10, the mold 10 is disassembled, and the molded product P is taken out from the cavity 14.

射出成形機1は、成形型10の組み立てと分解、及び、成形材料Sの射出を繰り返して、成形品Pを連続して製造する。その際、射出成形機1は、ノズル30に形成された成形材料Sの流路31から、成形材料Sを成形型10内に射出して、複数の成形品Pを同時に製造する。また、射出成形機1は、射出ヘッド20に、ノズル30の流路31の断面積を変更するための構成を備え、成形材料Sの射出前や射出中に、流路31を所定の断面積に設定する。   The injection molding machine 1 continuously manufactures the molded product P by repeatedly assembling and disassembling the molding die 10 and injecting the molding material S. At that time, the injection molding machine 1 injects the molding material S into the molding die 10 from the flow path 31 of the molding material S formed in the nozzle 30 to manufacture a plurality of molded products P simultaneously. In addition, the injection molding machine 1 is provided with a configuration for changing the cross-sectional area of the flow path 31 of the nozzle 30 in the injection head 20, and the flow path 31 has a predetermined cross-sectional area before or during injection of the molding material S. Set to.

図2は、射出成形機1の射出ヘッド20を拡大して示す断面図であり、ノズル30が当接する成形型10の一部も示している。
射出成形機1は、図示のように、射出ヘッド20に、成形材料Sの射出先端部に設けられたノズル30と、シリンダ5に固定されたベース22と、ノズル30を変位させるノズル変位機構40とを備えている。また、射出成形機1は、ノズル30の流路31に形成された絞り部32と、絞り部32付近でノズル30の流路31を調節する流路調節部材50と、成形型10との間の距離を測定する距離測定手段8とを備えている。距離測定手段8は、測定対象との間の距離を精密に測定できるセンサ(例えば、距離センサや変位センサ)からなり、成形型10の上面に向けて、ベース22に取り付けられている。距離測定手段8は、成形型10との間の距離を測定して、測定結果(測定距離)を制御装置4に出力する。
FIG. 2 is an enlarged cross-sectional view showing the injection head 20 of the injection molding machine 1 and also shows a part of the molding die 10 against which the nozzle 30 abuts.
The injection molding machine 1 includes a nozzle 30 provided at an injection tip of the molding material S, a base 22 fixed to the cylinder 5, and a nozzle displacement mechanism 40 that displaces the nozzle 30 as shown in the figure. And. In addition, the injection molding machine 1 is provided between the molding die 10 and the throttle part 32 formed in the channel 31 of the nozzle 30, the channel adjusting member 50 that adjusts the channel 31 of the nozzle 30 near the throttle part 32, and the mold 10. Distance measuring means 8 for measuring the distance. The distance measuring unit 8 includes a sensor (for example, a distance sensor or a displacement sensor) that can accurately measure the distance to the measurement target, and is attached to the base 22 toward the upper surface of the mold 10. The distance measuring means 8 measures the distance to the mold 10 and outputs the measurement result (measurement distance) to the control device 4.

ベース22は、円柱状をなし、成形材料Sの射出経路21が、中心を貫通して直線状に形成されている。また、ベース22の先端部には、円筒状の凹部23が、射出経路21を中心に形成されている。射出経路21は、シリンダ5の計量空間5Aと位置を合わせて、かつ、計量空間5Aの端部に連続して配置され、計量空間5Aから供給される成形材料Sを、ノズル30に向かって通過させる。凹部23は、流路調節部材50と一体をなす固定部材55と、ノズル変位機構40の一部とを収容するとともに、内周面に形成された雌ネジ部により、ノズル変位機構40が取り付けられている。   The base 22 has a cylindrical shape, and the injection path 21 of the molding material S is formed in a straight line through the center. A cylindrical recess 23 is formed at the tip of the base 22 around the injection path 21. The injection path 21 is aligned with the measurement space 5A of the cylinder 5 and is continuously arranged at the end of the measurement space 5A, and passes through the molding material S supplied from the measurement space 5A toward the nozzle 30. Let The recess 23 accommodates the fixing member 55 integrated with the flow path adjusting member 50 and a part of the nozzle displacement mechanism 40, and the nozzle displacement mechanism 40 is attached by a female screw portion formed on the inner peripheral surface. ing.

ノズル30は、円筒状をなし、成形材料Sの流路31が、中心を直線的に貫通して、所定径の断面円形状に形成されている。また、ノズル30は、外周面に、環状の突出部33が形成され、突出部33を挟んで、成形型10側と逆側が異なる直径に形成されている。ここでは、成形型10側の先端部34よりも、逆側のスライド部35が小径に形成されている。先端部34は、端面が成形型10に当接する当接面であり、当接面に流路31が開口する。ノズル30は、この流路31の開口部において、流路31が部分的に絞られて絞り部32が形成される。絞り部32は、流路31の他の部分よりも小径な小孔部であり、流路31内に突出した環状に形成されて、流路31の断面積を部分的に小さくする。また、絞り部32は、先端に向かって次第に薄くなる形状(先細り状)をなし、流路調節部材50と対向する面が、傾斜した環状(テーパ状)に形成されている。   The nozzle 30 has a cylindrical shape, and the flow path 31 of the molding material S linearly passes through the center and is formed in a circular cross section having a predetermined diameter. Further, the nozzle 30 has an annular protrusion 33 formed on the outer peripheral surface, and is formed to have a different diameter on the opposite side to the mold 10 with the protrusion 33 interposed therebetween. Here, the slide part 35 on the opposite side is formed with a smaller diameter than the tip part 34 on the mold 10 side. The distal end portion 34 is an abutting surface with which the end surface abuts on the mold 10, and the flow path 31 opens on the abutting surface. In the nozzle 30, the flow path 31 is partially throttled at the opening of the flow path 31 to form a throttle portion 32. The throttle portion 32 is a small hole portion having a smaller diameter than other portions of the flow channel 31 and is formed in an annular shape protruding into the flow channel 31 to partially reduce the cross-sectional area of the flow channel 31. In addition, the narrowed portion 32 has a shape (tapered shape) that becomes gradually thinner toward the tip, and a surface facing the flow path adjusting member 50 is formed in an inclined annular shape (tapered shape).

ノズル変位機構40は、ベース22に連結される連結部材41と、ノズル30を変位可能に保持する保持部材42と、ノズル30を基準位置に復帰させる復帰手段43とを有する。連結部材41は、円筒状をなし、一端部の外周に形成された雄ネジ部が、上記した凹部23の雌ネジ部にネジ込まれて凹部23に固定され、ノズル変位機構40をベース22に連結する。また、連結部材41は、内周が射出経路21よりも大径に形成されている。保持部材42は、円筒状をなし、連結部材41の外周に装着されて、ネジ44により、連結部材41に互いのフランジ部において固定される。また、保持部材42は、環状の内周壁42Aが先端内周に形成され、内周壁42Aと連結部材41の端面との間に収容部45を区画して、収容部45に、ノズル30の突出部33を変位可能に収容する。   The nozzle displacement mechanism 40 includes a connecting member 41 connected to the base 22, a holding member 42 that holds the nozzle 30 in a displaceable manner, and a return means 43 that returns the nozzle 30 to a reference position. The connecting member 41 has a cylindrical shape, and a male screw portion formed on the outer periphery of one end is screwed into the female screw portion of the concave portion 23 and fixed to the concave portion 23, and the nozzle displacement mechanism 40 is attached to the base 22. Link. Further, the connecting member 41 has an inner circumference that is larger in diameter than the injection path 21. The holding member 42 has a cylindrical shape, is attached to the outer periphery of the connecting member 41, and is fixed to the connecting member 41 at the flange portion by screws 44. In addition, the holding member 42 has an annular inner peripheral wall 42A formed at the inner periphery of the tip, and a storage portion 45 is defined between the inner peripheral wall 42A and the end surface of the connecting member 41 so that the nozzle 30 protrudes into the storage portion 45. The part 33 is accommodated in a displaceable manner.

ノズル30は、突出部33と連結部材41との間に隙間を開けた状態で、突出部33が内周壁42Aに当接して保持部材42に保持される。ノズル30は、先端部34が押されると、保持部材42内に押し込まれて次第に変位し、先端部34を押す力が弱くなる(又は、消滅する)と、復帰手段43により、保持部材42内から押し出されて、変位前の位置(基準位置)に復帰する。ここでは、復帰手段43は、皿バネからなり、突出部33と連結部材41との間に配置されて、突出部33に、内周壁42Aに押し付ける方向の力を常に作用させる。また、復帰手段43は、ノズル30が保持部材42内に押し込まれると変形し、押し込む力が弱くなると、変形から復元して、ノズル30を保持部材42から押し出す。即ち、復帰手段43は、ノズル30に基準位置に復帰させる力を作用させる手段であり、ノズル30に付加される力に応じてノズル30を変位させる。   The nozzle 30 is held by the holding member 42 in contact with the inner peripheral wall 42 </ b> A in a state where a gap is opened between the protruding portion 33 and the connecting member 41. When the tip portion 34 is pushed, the nozzle 30 is pushed into the holding member 42 and gradually displaces. When the force pushing the tip portion 34 becomes weak (or disappears), the return means 43 causes the inside of the holding member 42 to move. Is pushed out to return to the position before displacement (reference position). Here, the return means 43 is made of a disc spring, and is disposed between the protruding portion 33 and the connecting member 41, and always exerts a force in a direction of pressing the protruding portion 33 against the inner peripheral wall 42A. The return means 43 is deformed when the nozzle 30 is pushed into the holding member 42, and is restored from the deformation and pushes the nozzle 30 out of the holding member 42 when the pushing force is weakened. That is, the return means 43 is means for applying a force for returning the nozzle 30 to the reference position, and displaces the nozzle 30 according to the force applied to the nozzle 30.

ノズル変位機構40は、ノズル30が成形型10に押し付けられたときに、ノズル30を内部(射出ヘッド20内)に変位させ、ノズル30の押し付けの解除に応じて、ノズル30を外部に向かって変位させる。その際、ノズル変位機構40は、ノズル30を、成形材料Sの流れる方向に沿って両方向に徐々に変位させ、射出ヘッド20の先端部にノズル30を出し入れする。これに伴い、ノズル30は、スライド部35と突出部33が、それぞれ連結部材41と保持部材42の内周面をスライドして、成形材料Sの流れる方向と平行に変位する。また、ノズル30が変位すると、流路31内で、流路調節部材50が流路31に沿って相対的に変位する。   The nozzle displacement mechanism 40 displaces the nozzle 30 to the inside (inside the injection head 20) when the nozzle 30 is pressed against the molding die 10, and moves the nozzle 30 to the outside according to the release of the pressing of the nozzle 30. Displace. At that time, the nozzle displacement mechanism 40 gradually displaces the nozzle 30 in both directions along the flow direction of the molding material S, and moves the nozzle 30 in and out of the tip portion of the injection head 20. Accordingly, the nozzle 30 is displaced in parallel with the flow direction of the molding material S, with the slide portion 35 and the protruding portion 33 sliding on the inner peripheral surfaces of the connecting member 41 and the holding member 42, respectively. When the nozzle 30 is displaced, the flow path adjusting member 50 is relatively displaced along the flow path 31 in the flow path 31.

流路調節部材50は、ノズル30の流路31の断面積を調節する部材であり、ノズル30の流路31内に配置されている。この流路調節部材50は、所定形状の棒状部材(ここでは、丸棒状部材)からなり、流路31の内面との間に隙間を開けて、流路31の中心に配置されている。即ち、流路調節部材50は、ノズル30の流路31内に、成形材料Sを流通可能に挿入され、射出する成形材料Sを、外面と流路31の内面との間を通過させる。また、流路調節部材50は、上記した固定部材55からノズル30の流路31に沿って延び、先端面がノズル30の絞り部32に近接して配置される。この流路調節部材50の先端面は、流路31の断面積を調節するための調節面51であり、絞り部32の傾斜面に合わせて傾斜したテーパ状に形成され、絞り部32と対向して配置される。   The flow path adjusting member 50 is a member that adjusts the cross-sectional area of the flow path 31 of the nozzle 30, and is disposed in the flow path 31 of the nozzle 30. The flow path adjusting member 50 is made of a rod-shaped member having a predetermined shape (here, a round bar-shaped member), and is disposed at the center of the flow path 31 with a gap between the inner surface of the flow path 31. That is, the flow path adjusting member 50 is inserted into the flow path 31 of the nozzle 30 so that the molding material S can be circulated, and allows the injected molding material S to pass between the outer surface and the inner surface of the flow path 31. Further, the flow path adjusting member 50 extends from the above-described fixing member 55 along the flow path 31 of the nozzle 30, and the distal end surface thereof is disposed close to the throttle portion 32 of the nozzle 30. The front end surface of the flow path adjustment member 50 is an adjustment surface 51 for adjusting the cross-sectional area of the flow path 31, and is formed in a tapered shape that is inclined according to the inclined surface of the throttle portion 32, and faces the throttle portion 32. Arranged.

流路調節部材50は、ノズル30が上記のように変位すると、絞り部32が調節面51に接近及び離間して、調節面51と絞り部32のエッジとの間の隙間、及び、それらの間の流路31の断面積が次第に変化する。また、流路調節部材50は、調節面51に絞り部32が押し付けられると、調節面51が絞り部32の孔に嵌まり込み、ノズル30の開口部を塞いで流路31を封鎖する。このように、流路調節部材50は、ノズル30の流路31内に配置され、絞り部32と接近及び離間して、絞り部32との間の距離(隙間)が変化する。流路調節部材50は、絞り部32との間の距離の変化に伴い、絞り部32との間の流路31の断面積を変更して、成形材料Sが射出される流路31の断面積を調節する。   When the nozzle 30 is displaced as described above, the flow path adjusting member 50 moves toward and away from the adjustment surface 51, and the gap between the adjustment surface 51 and the edge of the restriction portion 32, and their The cross-sectional area of the flow path 31 in between changes gradually. Further, in the flow path adjustment member 50, when the throttle portion 32 is pressed against the adjustment surface 51, the adjustment surface 51 fits into the hole of the throttle portion 32, and closes the opening of the nozzle 30 to block the flow path 31. As described above, the flow path adjusting member 50 is disposed in the flow path 31 of the nozzle 30, approaches and separates from the throttle portion 32, and the distance (gap) between the throttle portion 32 changes. The flow path adjusting member 50 changes the cross-sectional area of the flow path 31 between the flow path 31 and the throttle section 32 in accordance with the change in the distance to the throttle section 32, and cuts off the flow path 31 from which the molding material S is injected. Adjust the area.

なお、流路調節部材50は、成形材料Sがノズル30の流路31を円滑に通過できるように、流路31の直径に応じた所定径(ここでは、6〜12mm程度の直径)に形成される。固定部材55は、凹部23内で、端部のフランジ56が、ベース22と連結部材41の間に挟み込まれて固定される。また、固定部材55は、ベース22から続く射出経路21と、射出経路21が分岐した複数の分岐流路57とを有する。分岐流路57は、射出経路21からノズル30の流路31に向かって斜めに延び、成形材料Sを、射出経路21から流路31まで通過させる。   The flow path adjusting member 50 is formed to have a predetermined diameter (here, a diameter of about 6 to 12 mm) according to the diameter of the flow path 31 so that the molding material S can smoothly pass through the flow path 31 of the nozzle 30. Is done. In the recess 23, the fixing member 55 is fixed with an end flange 56 sandwiched between the base 22 and the connecting member 41. Further, the fixing member 55 includes an injection path 21 continuing from the base 22 and a plurality of branch flow paths 57 from which the injection path 21 branches. The branch flow path 57 extends obliquely from the injection path 21 toward the flow path 31 of the nozzle 30 and allows the molding material S to pass from the injection path 21 to the flow path 31.

射出成形機1は、上記した移動装置3により射出装置2を移動させて、ノズル変位機構40によりノズル30を変位させ、流路31内で流路調節部材50を相対的に変位させる。具体的には、射出成形機1は、移動装置3により、射出装置2を下降させてノズル30を成形型10に当接させ、さらに射出装置2を下降させてノズル30を射出ヘッド20内に変位させる。これにより、射出成形機1は、流路31内で、流路調節部材50の調節面51と絞り部32とを接近させて、それらの間の流路31の断面積を小さくする。   The injection molding machine 1 moves the injection device 2 by the moving device 3 described above, displaces the nozzle 30 by the nozzle displacement mechanism 40, and relatively displaces the flow path adjustment member 50 in the flow path 31. Specifically, the injection molding machine 1 uses the moving device 3 to lower the injection device 2 to bring the nozzle 30 into contact with the mold 10, and further lower the injection device 2 to place the nozzle 30 into the injection head 20. Displace. Thereby, the injection molding machine 1 makes the adjustment surface 51 of the flow path adjustment member 50 and the throttle part 32 approach in the flow path 31, and reduces the cross-sectional area of the flow path 31 between them.

また、射出成形機1は、移動装置3により射出装置2を上昇させて、復帰手段43である複数の皿バネの復元力により、ノズル30を射出ヘッド20外に変位させる。これにより、射出成形機1は、流路31内で、流路調節部材50の調節面51と絞り部32とを離間させて、それらの間の流路31の断面積を大きくする。成形材料Sの射出中においては、ノズル30は、射出装置2の上昇に伴い、射出される成形材料Sの圧力も作用して、成形型10に当接した状態で、射出ヘッド20外に円滑に変位する。   Further, the injection molding machine 1 raises the injection device 2 by the moving device 3 and displaces the nozzle 30 to the outside of the injection head 20 by the restoring force of a plurality of disc springs as the return means 43. Thereby, the injection molding machine 1 increases the cross-sectional area of the flow path 31 between them by separating the adjustment surface 51 of the flow path adjustment member 50 and the throttle part 32 in the flow path 31. During the injection of the molding material S, the nozzle 30 smoothly moves outside the injection head 20 in contact with the molding die 10 due to the pressure of the molding material S to be injected as the injection device 2 is raised. It is displaced to.

このように、本実施形態の射出成形機1は、移動装置3とノズル変位機構40により、絞り部32と流路調節部材50との間の距離(隙間)を変化させて、流路31の断面積を変更する。従って、移動装置3とノズル変位機構40は、絞り部32と流路調節部材50との間の距離を変化させる距離変化手段、及び、絞り部32と流路調節部材50との間の流路31の断面積を変更する断面積変更手段を構成する。射出成形機1は、この距離変化手段(断面積変更手段)により、絞り部32と流路調節部材50との間の距離、及び、流路31の断面積を調節して、設定された断面積に変更する。その際、距離変化手段が有するノズル変位機構40が、流路調節部材50に対して、成形型10に当接するノズル30を相対的に変位させて、絞り部32を流路調節部材50に接近、離間させる。これにより、ノズル変位機構40は、流路31内における流路調節部材50の相対位置を変更して、絞り部32と流路31内の流路調節部材50との間の距離を変化させる。   As described above, the injection molding machine 1 according to the present embodiment changes the distance (gap) between the throttle portion 32 and the flow path adjusting member 50 by the moving device 3 and the nozzle displacement mechanism 40, Change the cross-sectional area. Therefore, the moving device 3 and the nozzle displacement mechanism 40 include distance changing means for changing the distance between the throttle portion 32 and the flow path adjusting member 50, and the flow path between the throttle portion 32 and the flow path adjusting member 50. The cross-sectional area changing means for changing the cross-sectional area of 31 is constituted. The injection molding machine 1 adjusts the distance between the narrowed portion 32 and the flow path adjusting member 50 and the cross-sectional area of the flow path 31 by using this distance changing means (cross-sectional area changing means). Change to area. At this time, the nozzle displacement mechanism 40 included in the distance changing unit displaces the nozzle 30 in contact with the molding die 10 relative to the flow path adjustment member 50, so that the throttle portion 32 approaches the flow path adjustment member 50. , Make them separate. Thereby, the nozzle displacement mechanism 40 changes the relative position of the flow path adjustment member 50 in the flow path 31 to change the distance between the throttle portion 32 and the flow path adjustment member 50 in the flow path 31.

次に、射出成形機1により成形品Pを成形する手順や、成形品Pの製造方法について説明する。以下の手順や動作は、コンピュータ等を備えた制御装置4(図1参照)により制御されて実行される。
射出成形機1は、まず、移動装置3により射出装置2を移動させて、流路31に絞り部32が形成されたノズル30を成形型10に当接させる(図2参照)。また、ノズル30を成形型10の上面に所定の力で押し付けて、絞り部32と流路調節部材50(調節面51)を接触させ、或いは、最小設定距離に配置する。その状態で、射出成形機1は、距離測定手段8により、成形型10との間の距離を測定し、測定距離を制御装置4が備えるメモリに記憶する。
Next, a procedure for molding the molded product P by the injection molding machine 1 and a method for manufacturing the molded product P will be described. The following procedures and operations are controlled and executed by the control device 4 (see FIG. 1) including a computer or the like.
First, the injection molding machine 1 moves the injection device 2 by the moving device 3 to bring the nozzle 30 in which the throttle portion 32 is formed in the flow path 31 into contact with the molding die 10 (see FIG. 2). Further, the nozzle 30 is pressed against the upper surface of the mold 10 with a predetermined force so that the throttle portion 32 and the flow path adjustment member 50 (adjustment surface 51) are brought into contact with each other or arranged at a minimum set distance. In this state, the injection molding machine 1 measures the distance to the mold 10 by the distance measuring unit 8 and stores the measured distance in a memory provided in the control device 4.

制御装置4は、メモリに記憶した測定距離を基準距離として、射出装置2の移動、及び、上記した距離変化手段を制御する。本実施形態では、制御装置4は、測定距離を零点として、ノズル30の相対変位量、及び、絞り部32と流路調節部材50との間の距離を算出しつつ、距離変化手段により、絞り部32と流路調節部材50との間の距離を変化させる。これにより、制御装置4は、流路31の断面積を変更して断面積を制御する。射出成形機1は、距離測定手段8により、成形型10との間の距離を成形材料Sの射出前に都度測定し、測定距離に基づいて、制御装置4により上記した各制御を実行させる。これにより、射出成形機1は、動作の変動や温度変化による膨張等が起きても、制御誤差が発生するのを防止して、精度よく流路31の断面積を制御する。   The control device 4 controls the movement of the injection device 2 and the distance changing means described above using the measurement distance stored in the memory as a reference distance. In the present embodiment, the control device 4 calculates the relative displacement amount of the nozzle 30 and the distance between the throttle portion 32 and the flow path adjusting member 50 with the measurement distance as the zero point, and the aperture changing means by the distance changing means. The distance between the part 32 and the flow path adjusting member 50 is changed. Thereby, the control apparatus 4 changes the cross-sectional area of the flow path 31, and controls a cross-sectional area. The injection molding machine 1 measures the distance from the mold 10 by the distance measuring means 8 before each injection of the molding material S, and causes the control device 4 to execute each control described above based on the measured distance. As a result, the injection molding machine 1 prevents a control error from occurring even when expansion or the like occurs due to a change in operation or a temperature change, and accurately controls the cross-sectional area of the flow path 31.

続いて、射出成形機1は、ノズル30に設けられた流路31から、成形材料Sを成形型10内に射出して成形品Pを製造する。その際、まず、ノズル30が成形型10に当接した状態で、ノズル30の流路31内に配置された流路調節部材50と絞り部32との間の距離を変化させて、絞り部32と流路調節部材50との間の流路31の断面積を調節する。射出成形機1は、この断面積の調節を、距離測定手段8の測定距離に基づいて精度よく行い、流路31の断面積を予め設定された断面積に調節する。ここでは、主に、流路31の内面と流路調節部材50の外面との間の隙間に比べて、流路調節部材50の調節面51と絞り部32との間の隙間が狭くなるように、流路31の断面積を設定する。次に、射出成形機1は、ノズル30の絞り部と流路調節部材50との間の流路31を通して、成形材料Sを成形型10内に射出し、キャビティ14内で成形品Pを成形する。また、射出成形機1は、成形品Pを成形型10内で加硫して、成形品Pを製造する。   Subsequently, the injection molding machine 1 manufactures a molded product P by injecting the molding material S into the molding die 10 from the flow path 31 provided in the nozzle 30. In that case, first, in a state where the nozzle 30 is in contact with the mold 10, the distance between the flow path adjusting member 50 disposed in the flow path 31 of the nozzle 30 and the throttle portion 32 is changed to thereby reduce the throttle portion. The cross-sectional area of the flow path 31 between 32 and the flow path adjustment member 50 is adjusted. The injection molding machine 1 accurately adjusts the cross-sectional area based on the measurement distance of the distance measuring unit 8 and adjusts the cross-sectional area of the flow path 31 to a preset cross-sectional area. Here, the gap between the adjustment surface 51 of the flow path adjustment member 50 and the throttle portion 32 is mainly smaller than the gap between the inner surface of the flow path 31 and the outer surface of the flow path adjustment member 50. In addition, the cross-sectional area of the flow path 31 is set. Next, the injection molding machine 1 injects the molding material S into the molding die 10 through the flow path 31 between the throttle portion of the nozzle 30 and the flow path adjusting member 50, and molds the molded product P in the cavity 14. To do. In addition, the injection molding machine 1 manufactures the molded product P by vulcanizing the molded product P in the molding die 10.

以上説明したように、射出成形機1は、ノズル30の流路31内で、絞り部32と流路調節部材50の距離を変化させて、それらの間の流路31の断面積を変更する。そのため、流路31の断面積の変更に要する手間や時間を削減して、流路31の断面積を容易に変更できるとともに、流路31の断面積を簡単かつ精度よく調節できる。これに伴い、流路31の断面積を随時変更させて、ノズル30の流路31を常に最適な断面積にすることができる。また、ノズル30を交換することなく、成形材料Sや成形品Pの種類、季節や気温の変化に対応して、流路31の断面積を適宜設定できるため、ノズル30の交換に必要な手間や時間を削減できる。更に、流路31の断面積を調節することで、成形材料Sの射出条件を、射出時の状況に応じた条件に簡単かつ正確に変更できる。その結果、流路31からの射出時に、成形材料Sを適切に加熱できるため、成形材料Sの温度を精度よく制御して、射出する成形材料Sの温度の変動を抑制できる。   As described above, the injection molding machine 1 changes the cross-sectional area of the flow path 31 between them by changing the distance between the throttle portion 32 and the flow path adjusting member 50 in the flow path 31 of the nozzle 30. . Therefore, the labor and time required for changing the cross-sectional area of the flow path 31 can be reduced, the cross-sectional area of the flow path 31 can be easily changed, and the cross-sectional area of the flow path 31 can be adjusted easily and accurately. Along with this, the cross-sectional area of the flow path 31 can be changed at any time, so that the flow path 31 of the nozzle 30 can always have an optimal cross-sectional area. In addition, since the cross-sectional area of the flow path 31 can be set as appropriate in accordance with changes in the type of molding material S and molded product P, the season, and the temperature without replacing the nozzle 30, it is necessary to replace the nozzle 30. And save time. Furthermore, by adjusting the cross-sectional area of the flow path 31, the injection condition of the molding material S can be easily and accurately changed to a condition corresponding to the situation at the time of injection. As a result, since the molding material S can be appropriately heated at the time of injection from the flow path 31, it is possible to control the temperature of the molding material S with high accuracy and to suppress fluctuations in the temperature of the molding material S to be injected.

従って、本実施形態によれば、ノズル30の流路31の断面積を容易に変更でき、ノズル30の流路31から成形型10内に射出する成形材料Sの温度を精度よく制御することができる。また、射出時に、成形材料Sの目標温度に対する温度差を低減できるため、成形品Pの品質を安定させることもできる。これにより、ゴムからなる成形品Pを製造するときでも、過加硫や加硫度不足が生じるのを防止して、加硫度のバラツキを低減できる。同時に、成形品Pを予め適切な温度に加熱できるため、加硫時間を従来よりも短縮(例えば、従来の1/4〜1/2)できる。このように、成形品Pの製造に要する時間を短縮できるため、成形品Pの生産性も向上できる。   Therefore, according to the present embodiment, the cross-sectional area of the flow path 31 of the nozzle 30 can be easily changed, and the temperature of the molding material S injected from the flow path 31 of the nozzle 30 into the molding die 10 can be accurately controlled. it can. Moreover, since the temperature difference with respect to the target temperature of the molding material S can be reduced at the time of injection, the quality of the molded product P can also be stabilized. As a result, even when the molded product P made of rubber is produced, it is possible to prevent over-vulcanization or insufficient vulcanization, thereby reducing variations in vulcanization. At the same time, since the molded product P can be heated to an appropriate temperature in advance, the vulcanization time can be shortened (for example, conventional 1/4 to 1/2). Thus, since the time required for manufacturing the molded product P can be shortened, the productivity of the molded product P can also be improved.

この射出成形機1では、絞り部32をノズル30の流路31内に形成したため、絞り部32で加熱された成形材料Sを、温度の変動を抑制しつつ流路31から射出できる。また、流路31内において、成形材料Sに焼け(ゴム焼け)や詰まりが発生し難くなり、成形材料Sを流路31から所定時間内に確実に射出することもできる。更に、流路31内で成形材料Sの焼けや詰まりが発生したときでも、ネジ44を外して、保持部材42とノズル30を分解し、ノズル30の流路31や流路調節部材50を清掃すればよい。このように、射出装置2や射出ヘッド20の全体を分解することなく、ノズル30を容易に分解して流路31等を清掃できるため、成形材料Sの焼けや詰まりを簡便に解消できる。   In this injection molding machine 1, since the throttle part 32 is formed in the flow path 31 of the nozzle 30, the molding material S heated by the throttle part 32 can be injected from the flow path 31 while suppressing temperature fluctuations. In addition, the molding material S is less likely to be burned (rubber burnt) or clogged in the flow path 31, and the molding material S can be reliably injected from the flow path 31 within a predetermined time. Further, even when the molding material S is burned or clogged in the flow path 31, the screw 44 is removed, the holding member 42 and the nozzle 30 are disassembled, and the flow path 31 of the nozzle 30 and the flow path adjustment member 50 are cleaned. do it. As described above, the nozzle 30 can be easily disassembled and the flow path 31 and the like can be cleaned without disassembling the entire injection device 2 and the injection head 20, so that burning and clogging of the molding material S can be easily eliminated.

ここで、ノズル30の流路31が単純な断面円形状であるときには、流路31を通過する成形材料Sの温度は、流路31の内面に接する外側が高くなり、中央部で低くなる。これに対し、本実施形態では、流路調節部材50がノズル30の流路31内に挿入された棒状部材からなるため、流路31の断面形状がリング状になり、成形材料Sが接する面が増加する。そのため、成形材料Sは、流路31を通過する間に内外から加熱されて、内側でも温度が上昇し、内外間での温度差が低減して全体の温度がより均一になる。その際、流路調節部材50を丸棒状部材にすると、流路調節部材50の周囲の成形材料Sが均等に加熱されて、成形材料Sの温度がより均一になる。従って、流路調節部材50は、丸棒状部材から構成するのがより好ましい。   Here, when the flow path 31 of the nozzle 30 has a simple circular cross-section, the temperature of the molding material S passing through the flow path 31 is higher on the outer side in contact with the inner surface of the flow path 31 and lower at the center. On the other hand, in this embodiment, since the flow path adjusting member 50 is composed of a rod-shaped member inserted into the flow path 31 of the nozzle 30, the cross-sectional shape of the flow path 31 is a ring shape, and the surface on which the molding material S contacts Will increase. Therefore, the molding material S is heated from the inside and outside while passing through the flow path 31, and the temperature rises also on the inside, and the temperature difference between the inside and outside is reduced and the overall temperature becomes more uniform. At this time, if the flow path adjustment member 50 is a round bar-like member, the molding material S around the flow path adjustment member 50 is heated uniformly, and the temperature of the molding material S becomes more uniform. Therefore, it is more preferable that the flow path adjusting member 50 is composed of a round bar member.

成形品Pを製造するときには、流路31の断面積を変更せずに、ノズル30から成形材料Sを成形型10内に射出するようにしてもよい。また、成形材料Sを成形型10内に射出中に、流路31の断面積を変更するようにしてもよい。断面積を変更するときには、制御手段である制御装置4により距離変化手段を制御して、射出の開始から終了までの1サイクル内において、絞り部32と流路調節部材50との間の距離を変化させる。これにより、流路31の断面積を所定のパターンで変更する。このようにすると、成形材料Sの温度を射出中にも制御できるため、成形材料Sの温度を、射出の各段階に応じた温度に調節できる。或いは、1回の射出中に成形材料Sの温度が変化するときでも、成形材料Sの温度を調節して温度変化を抑制できるため、成形材料Sの温度を一定範囲内に維持できる。   When the molded product P is manufactured, the molding material S may be injected from the nozzle 30 into the molding die 10 without changing the cross-sectional area of the flow path 31. Further, the cross-sectional area of the flow path 31 may be changed while the molding material S is being injected into the mold 10. When changing the cross-sectional area, the distance change means is controlled by the control device 4 which is a control means, and the distance between the throttle portion 32 and the flow path adjusting member 50 is set within one cycle from the start to the end of injection. Change. Thereby, the cross-sectional area of the flow path 31 is changed in a predetermined pattern. In this way, since the temperature of the molding material S can be controlled even during injection, the temperature of the molding material S can be adjusted to a temperature corresponding to each stage of injection. Alternatively, even when the temperature of the molding material S changes during one injection, the temperature of the molding material S can be controlled by adjusting the temperature of the molding material S, so that the temperature of the molding material S can be maintained within a certain range.

成形材料Sの温度は、射出開始時は低く、射出の初期段階で次第に上昇した後に、射出の中期段階で変化が小さくなり、射出の終期段階で次第に下降する傾向がある。そのため、流路31の断面積は、例えば、成形材料Sの温度変化に対応して、射出開始時には小さくしておき、射出の初期段階で次第に大きくした後に、射出の中期段階で一定に維持し、射出の終期段階で次第に小さくする。これにより、成形材料Sの温度は、射出の初期段階と終期段階で温度が上昇し、射出の中期段階で温度が低下する。その結果、成形材料Sは、1回の射出中を通して温度変化が小さくなり、一定範囲の温度で射出される。また、成形材料Sの射出が終了するときに、流路31の断面積を僅かに広くすると、最後に射出される成形材料Sに焼けが生じ難くなるため、ノズル30の詰まりが防止される。   The temperature of the molding material S is low at the start of injection, and gradually increases at the initial stage of injection, then decreases at the middle stage of injection, and gradually decreases at the final stage of injection. Therefore, for example, the cross-sectional area of the flow path 31 is reduced at the start of injection in response to the temperature change of the molding material S, gradually increased at the initial stage of injection, and then kept constant at the middle stage of injection. In the final stage of injection, gradually reduce it. As a result, the temperature of the molding material S increases at the initial stage and the final stage of injection, and decreases at the middle stage of injection. As a result, the molding material S has a small temperature change during one injection and is injected at a temperature within a certain range. Further, when the injection of the molding material S is completed, if the cross-sectional area of the flow path 31 is slightly widened, the molding material S to be injected last is unlikely to be burned, and the clogging of the nozzle 30 is prevented.

次に、射出成形機1の他の実施形態について説明する。ここでは、射出成形機1は、上記した射出ヘッド20と一部の構成が異なる射出ヘッド20Aを備える。
図3は、他の実施形態の射出ヘッド20Aを示す断面図である。
射出ヘッド20Aは、図示のように、射出経路21と、ベース22と、ノズル変位機構40と、ノズル60と、流路調節部材70とを有する。なお、射出ヘッド20Aは、ノズル60と流路調節部材70以外は、上記した射出ヘッド20と同様に構成されている。そのため、以下では、ノズル60と流路調節部材70について説明し、射出ヘッド20(図2参照)と同じ番号を付した他の構成の説明は省略する。なお、ノズル60と流路調節部材70も、基本的には、既に説明したノズル30と流路調節部材50と同様に構成されている。
Next, another embodiment of the injection molding machine 1 will be described. Here, the injection molding machine 1 includes an injection head 20 </ b> A that is partially different from the above-described injection head 20.
FIG. 3 is a cross-sectional view showing an ejection head 20A according to another embodiment.
The injection head 20A includes an injection path 21, a base 22, a nozzle displacement mechanism 40, a nozzle 60, and a flow path adjustment member 70 as illustrated. The injection head 20 </ b> A is configured in the same manner as the above-described injection head 20 except for the nozzle 60 and the flow path adjusting member 70. Therefore, in the following description, the nozzle 60 and the flow path adjusting member 70 will be described, and description of other components assigned the same numbers as those of the injection head 20 (see FIG. 2) will be omitted. The nozzle 60 and the flow path adjusting member 70 are basically configured similarly to the nozzle 30 and the flow path adjusting member 50 described above.

ノズル60は、ノズル30と同様に、流路61と、流路61に形成された絞り部62と、外周面の突出部63と、先端部64と、スライド部65とを有する。ただし、このノズル60は、流路61の開口部から離れた途中位置で、流路61が部分的に絞られて絞り部62が形成されている。また、絞り部62は、先端を挟んだ両側の面が、逆方向に傾斜したテーパ状に形成されている。   Similarly to the nozzle 30, the nozzle 60 includes a flow path 61, a throttle part 62 formed in the flow path 61, a protruding part 63 on the outer peripheral surface, a tip part 64, and a slide part 65. However, in this nozzle 60, the flow path 61 is partially throttled at a midway position away from the opening of the flow path 61 to form a throttle portion 62. Further, the diaphragm portion 62 is formed in a tapered shape in which both surfaces sandwiching the tip end are inclined in the opposite direction.

流路調節部材70は、ノズル60の流路61内に配置された棒状部材からなり、一体に形成された固定部材75がベース22の凹部23に固定されている。固定部材75は、上記した固定部材55と同様に構成され、フランジ76と、分岐流路77とを有する。また、流路調節部材70は、ノズル60の絞り部62に近接して、他の部分よりも小径な括れ部72と、括れ部72に続く先端部73とを有する。括れ部72は、絞り部62よりも小径に形成され、絞り部62との間に隙間を開けて、絞り部62を貫通して配置されている。先端部73は、括れ部72及び絞り部62よりも大径な円盤状をなし、ノズル60の流路61内で、流路61の開口部と絞り部62との間に配置されている。また、先端部73は、絞り部62に対向する面が、流路61の断面積を調節する調節面71になっている。調節面71は、絞り部62の傾斜面に合わせて傾斜したテーパ状に形成され、絞り部62の下面と対向して配置されている。   The flow path adjusting member 70 is a rod-shaped member disposed in the flow path 61 of the nozzle 60, and an integrally formed fixing member 75 is fixed to the concave portion 23 of the base 22. The fixing member 75 is configured in the same manner as the above-described fixing member 55, and includes a flange 76 and a branch channel 77. Further, the flow path adjusting member 70 has a constricted portion 72 having a smaller diameter than other portions and a distal end portion 73 following the constricted portion 72 in the vicinity of the throttle portion 62 of the nozzle 60. The constricted portion 72 is formed to have a smaller diameter than the throttle portion 62, and is disposed through the throttle portion 62 with a gap between the narrow portion 72 and the throttle portion 62. The distal end portion 73 has a disk shape larger in diameter than the constricted portion 72 and the throttle portion 62, and is disposed between the opening portion of the flow channel 61 and the throttle portion 62 in the flow channel 61 of the nozzle 60. Further, the tip 73 has an adjustment surface 71 that adjusts the cross-sectional area of the flow path 61 at the surface facing the throttle portion 62. The adjustment surface 71 is formed in a tapered shape that is inclined in accordance with the inclined surface of the diaphragm portion 62, and is disposed to face the lower surface of the diaphragm portion 62.

流路調節部材70は、調節面71がノズル60の絞り部62に接触し、調節面71で絞り部62を塞いで、流路61を封鎖する。その状態から、ノズル60が成形型10に押し付けられて、射出ヘッド20内にノズル60が変位すると、絞り部62が調節面71から離れて、それらの間の隙間と流路61の断面積が大きくなる。また、ノズル60が射出ヘッド20外に変位すると、絞り部62が調節面71に接近して、それらの間の流路61の断面積が小さくなる。即ち、この射出ヘッド20Aでは、上記した射出ヘッド20とは逆に、射出装置2が下降すると、流路61の断面積が大きくなり、射出装置2が上昇すると、流路61の断面積が小さくなる。   In the flow path adjusting member 70, the adjustment surface 71 comes into contact with the throttle portion 62 of the nozzle 60, and the throttle surface 62 is blocked by the adjustment surface 71 to block the flow channel 61. From this state, when the nozzle 60 is pressed against the molding die 10 and the nozzle 60 is displaced into the injection head 20, the throttle portion 62 moves away from the adjustment surface 71, and the gap between them and the cross-sectional area of the flow path 61 are increased. growing. Further, when the nozzle 60 is displaced outside the ejection head 20, the throttle portion 62 approaches the adjustment surface 71, and the cross-sectional area of the flow path 61 between them becomes small. That is, in the injection head 20A, contrary to the above-described injection head 20, when the injection device 2 descends, the cross-sectional area of the flow path 61 increases, and when the injection apparatus 2 rises, the cross-sectional area of the flow path 61 decreases. Become.

射出成形機1は、距離変化手段により、絞り部62と流路調節部材70との間の距離を変化させて、流路61の断面積を、ノズル60の変位に応じて変更する。これにより、射出成形機1は、流路61内の絞り部62において流路61の断面積を調節した後、絞り部62と流路調節部材70との間の流路61を通して、成形材料Sを成形型10内に射出する。従って、この射出ヘッド20Aでも、上記した各効果が得られる。また、ここでは、ノズル60が成形型10に接触する前と成形型10から離れた後は、流路調節部材70により流路61が塞がれる。そのため、成形材料Sを計量空間5Aに充填している間や、成形材料Sの射出前後に、ノズル60から成形材料Sが漏れるのを防止できる。   The injection molding machine 1 changes the cross-sectional area of the flow path 61 according to the displacement of the nozzle 60 by changing the distance between the throttle portion 62 and the flow path adjusting member 70 by the distance changing means. Thereby, the injection molding machine 1 adjusts the cross-sectional area of the flow path 61 in the throttle part 62 in the flow path 61, and then passes through the flow path 61 between the throttle part 62 and the flow path adjustment member 70. Is injected into the mold 10. Therefore, each of the above-described effects can be obtained with this ejection head 20A. In addition, here, the flow path 61 is blocked by the flow path adjusting member 70 before the nozzle 60 contacts the mold 10 and after the nozzle 60 is separated from the mold 10. Therefore, it is possible to prevent the molding material S from leaking from the nozzle 60 while the molding material S is filled in the measuring space 5A or before and after the molding material S is injected.

なお、ノズル変位機構40の復帰手段43は、例えば、皿バネを収容する空間に、油圧でノズル30、60を変位させる機構を設けて、ノズル30、60の変位を制御するようにしてもよい。或いは、復帰手段43は、皿バネ以外に、コイルバネ等の弾性部材を使用して、ノズル30、60を復帰させてもよい。また、ノズル30、60の絞り部32、62と流路調節部材50、70を最も接近させたときには、それらが接触していてもよく、それらの間に所定距離の隙間ができていてもよい。   The return means 43 of the nozzle displacement mechanism 40 may control the displacement of the nozzles 30 and 60 by providing, for example, a mechanism for displacing the nozzles 30 and 60 with hydraulic pressure in a space that accommodates the disc spring. . Alternatively, the return means 43 may return the nozzles 30 and 60 using an elastic member such as a coil spring in addition to the disc spring. Further, when the throttle portions 32 and 62 of the nozzles 30 and 60 and the flow path adjusting members 50 and 70 are brought closest, they may be in contact with each other, and a gap of a predetermined distance may be formed between them. .

以上説明した射出成形機1は、成形材料Sとして、射出時間が比較的長いゴムを射出するゴム用射出成形機に好適であるが、樹脂を射出して樹脂成形品を成形する樹脂用射出成形機にも適用できる。また、射出成形機1は、成形材料Sのみからなる成形品Pも製造できるが、予めキャビティ14内に部品を挿入しておくことで、成形材料Sと部品からなる成形品Pを製造することもできる。   The injection molding machine 1 described above is suitable for a rubber injection molding machine that injects a rubber having a relatively long injection time as the molding material S. However, the injection molding machine for resin molding a resin molded product by injecting a resin. It can also be applied to machines. The injection molding machine 1 can also manufacture a molded product P made of only the molding material S. By inserting a part into the cavity 14 in advance, the injection molding machine 1 can manufacture the molded product P made of the molding material S and the part. You can also.

1・・・射出成形機、2・・・射出装置、3・・・移動装置、4・・・制御装置、5・・・シリンダ、5A・・・計量空間、6・・・プランジャ、7・・・押出機、8・・・距離測定手段、10・・・成形型、11・・・ランナ部材、12・・・上型、13・・・下型、14・・・キャビティ、15・・・注入孔、16・・・通路、20、20A・・・射出ヘッド、21・・・射出経路、22・・・ベース、23・・・凹部、30・・・ノズル、31・・・流路、32・・・絞り部、33・・・突出部、34・・・先端部、35・・・スライド部、40・・・ノズル変位機構、41・・・連結部材、42・・・保持部材、42A・・・内周壁、43・・・復帰手段、44・・・ネジ、45・・・収容部、50・・・流路調節部材、51・・・調節面、55・・・固定部材、56・・・フランジ、57・・・分岐流路、60・・・ノズル、61・・・流路、62・・・絞り部、63・・・突出部、64・・・先端部、65・・・スライド部、70・・・流路調節部材、71・・・調節面、72・・・括れ部、73・・・先端部、75・・・固定部材、76・・・フランジ、77・・・分岐流路、P・・・成形品、S・・・成形材料。   DESCRIPTION OF SYMBOLS 1 ... Injection molding machine, 2 ... Injection apparatus, 3 ... Moving apparatus, 4 ... Control apparatus, 5 ... Cylinder, 5A ... Measuring space, 6 ... Plunger, 7 * .... Extruder, 8 ... Distance measuring means, 10 ... Mold, 11 ... Runner member, 12 ... Upper mold, 13 ... Lower mold, 14 ... Cavity, 15 ... -Injection hole, 16 ... passage, 20, 20A ... injection head, 21 ... injection path, 22 ... base, 23 ... recess, 30 ... nozzle, 31 ... flow path , 32 ... throttle part, 33 ... projecting part, 34 ... tip part, 35 ... slide part, 40 ... nozzle displacement mechanism, 41 ... connecting member, 42 ... holding member 42A ... inner peripheral wall, 43 ... return means, 44 ... screw, 45 ... housing part, 50 ... flow path adjusting member, 51 ... Nodal surface, 55 ... fixing member, 56 ... flange, 57 ... branch channel, 60 ... nozzle, 61 ... channel, 62 ... throttle part, 63 ... projection part 64 ... tip part, 65 ... slide part, 70 ... flow path adjustment member, 71 ... adjustment surface, 72 ... constricted part, 73 ... tip part, 75 ... fixed Member, 76 ... flange, 77 ... branch channel, P ... molded product, S ... molding material.

Claims (6)

成形材料の流路を有するノズルを備え、ノズルの流路から成形材料を成形型内に射出する射出成形機であって、
ノズルの流路に形成された絞り部と、
ノズルの流路内に配置され、絞り部との間の距離の変化に伴い絞り部との間の流路の断面積を変更する流路調節部材と、
絞り部と流路調節部材との間の距離を変化させる距離変化手段と、
を備えた射出成形機。
An injection molding machine comprising a nozzle having a flow passage for a molding material, and injecting the molding material into the mold from the flow passage of the nozzle,
A throttle formed in the flow path of the nozzle;
A flow path adjusting member that is arranged in the flow path of the nozzle and changes a cross-sectional area of the flow path with the throttle portion in accordance with a change in the distance to the throttle portion;
Distance changing means for changing the distance between the throttle portion and the flow path adjusting member;
Injection molding machine equipped with.
請求項1に記載された射出成形機において、
距離変化手段が、流路調節部材に対してノズルを変位させて、絞り部と流路調節部材との間の距離を変化させるノズル変位機構を有する射出成形機。
In the injection molding machine according to claim 1,
An injection molding machine having a nozzle displacement mechanism in which the distance changing means displaces the nozzle with respect to the flow path adjusting member to change the distance between the throttle portion and the flow path adjusting member.
請求項1又は2に記載された射出成形機において、
距離変化手段を制御して、成形材料を成形型内に射出中に流路の断面積を変更させる制御手段を備えた射出成形機。
In the injection molding machine according to claim 1 or 2,
An injection molding machine comprising control means for controlling a distance changing means to change a cross-sectional area of a flow path during injection of a molding material into a mold.
請求項1ないし3のいずれかに記載された射出成形機において、
流路調節部材が、ノズルの流路内に挿入された棒状部材からなる射出成形機。
In the injection molding machine according to any one of claims 1 to 3,
An injection molding machine in which the flow path adjusting member is a rod-shaped member inserted into the flow path of the nozzle.
ノズルに設けられた流路から成形材料を成形型内に射出して成形品を製造する成形品の製造方法であって、
流路に絞り部が形成されたノズルを成形型に当接させる工程と、
ノズルの流路内に配置された流路調節部材と絞り部との間の距離を変化させて、絞り部と流路調節部材との間の流路の断面積を調節する工程と、
ノズルの絞り部と流路調節部材との間の流路を通して成形材料を成形型内に射出する工程と、
を有する成形品の製造方法。
A method for manufacturing a molded product, in which a molding material is manufactured by injecting a molding material from a flow path provided in a nozzle into a mold,
A step of bringing a nozzle having a throttle portion formed in the flow path into contact with a mold;
Changing the distance between the flow path adjustment member disposed in the flow path of the nozzle and the throttle part, and adjusting the cross-sectional area of the flow path between the throttle part and the flow path adjustment member;
Injecting a molding material into a molding die through a flow path between a nozzle narrowing portion and a flow path adjusting member;
The manufacturing method of the molded article which has this.
請求項5に記載された成形品の製造方法において、
成形材料を成形型内に射出中に、絞り部と流路調節部材との間の距離を変化させて流路の断面積を変更する工程を有する成形品の製造方法。
In the manufacturing method of the molded article according to claim 5,
A method for producing a molded product, comprising a step of changing a cross-sectional area of a flow path by changing a distance between a throttle portion and a flow path adjusting member during injection of the molding material into a mold.
JP2010234191A 2010-10-19 2010-10-19 Injection molding machine and method of manufacturing molding Pending JP2012086423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010234191A JP2012086423A (en) 2010-10-19 2010-10-19 Injection molding machine and method of manufacturing molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010234191A JP2012086423A (en) 2010-10-19 2010-10-19 Injection molding machine and method of manufacturing molding

Publications (1)

Publication Number Publication Date
JP2012086423A true JP2012086423A (en) 2012-05-10

Family

ID=46258588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010234191A Pending JP2012086423A (en) 2010-10-19 2010-10-19 Injection molding machine and method of manufacturing molding

Country Status (1)

Country Link
JP (1) JP2012086423A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106774215A (en) * 2016-12-31 2017-05-31 重庆市搏润模具有限公司 A kind of long-range mould control system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106774215A (en) * 2016-12-31 2017-05-31 重庆市搏润模具有限公司 A kind of long-range mould control system
CN106774215B (en) * 2016-12-31 2019-03-22 重庆市搏润模具有限公司 A kind of long-range mold control system

Similar Documents

Publication Publication Date Title
JP7205225B2 (en) Molding condition determination support device and injection molding machine
JP4593572B2 (en) Injection molding apparatus, injection molding method and injection mold
EP3317074B1 (en) Sequential coining
JP5101158B2 (en) Nozzle gate opening / closing timing adjustment mechanism and multi-point gate injection molding method in multi-point gate injection molding machine
US20200094461A1 (en) Device for assisting molding condition determination and injection molding apparatus
JP2006082300A (en) Rubber injection molding machine and rubber product manufacturing method
JP6230692B2 (en) Molding die and manufacturing method using the molding die
US20100102465A1 (en) Plastic lens molding method
JP2012086423A (en) Injection molding machine and method of manufacturing molding
JP7128071B2 (en) Injection molding machine, injection molding system and injection control method
JP6389821B2 (en) Injection molding method and injection mold
JP2023133753A (en) Injection nozzle, injection apparatus, and injection molding machine
JP2010214765A (en) Injection molding mold and method of manufacturing molding
JP6429923B2 (en) Method of operating an injection device comprising a plasticizing device and a plunger type injection device
JP2012218264A (en) Injection molding machine and method for manufacturing molded article
JP2008238687A (en) Mold device, injection molding method, and optical element
JPH0839606A (en) Insert molding method and metallic mold apparatus therefor
JP4267990B2 (en) Injection molding machine
CN106061701B (en) Glass lens molding die, the manufacturing method of glass lens and plastic lens for eyeglass
JP7141609B2 (en) injection mold
JPH11105146A (en) Injection compression molding of lens
JP5531814B2 (en) Injection molding method
JP6656780B1 (en) Injection nozzle temperature control method
JPH09262880A (en) High pressure injection molding method and high pressure injection mold apparatus therefor
JP5793015B2 (en) Manufacturing method of molded products