JP2012084627A - Semiconductor light-emitting element, and optical pulse tester using the same - Google Patents

Semiconductor light-emitting element, and optical pulse tester using the same Download PDF

Info

Publication number
JP2012084627A
JP2012084627A JP2010228266A JP2010228266A JP2012084627A JP 2012084627 A JP2012084627 A JP 2012084627A JP 2010228266 A JP2010228266 A JP 2010228266A JP 2010228266 A JP2010228266 A JP 2010228266A JP 2012084627 A JP2012084627 A JP 2012084627A
Authority
JP
Japan
Prior art keywords
light emitting
light
electrode
active layer
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010228266A
Other languages
Japanese (ja)
Inventor
Shintaro Morimoto
慎太郎 森本
Hiroshi Mori
浩 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2010228266A priority Critical patent/JP2012084627A/en
Publication of JP2012084627A publication Critical patent/JP2012084627A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor light-emitting element and an optical pulse tester using the same that can emit light having a plurality of wavelength bands, especially that can oscillate light having a plurality of different wavelength bands in a plurality of longitudinal modes respectively, that is high output, and that can be manufactured with high yield.SOLUTION: A first MQW (Multiple Quantum Well) active layer having an opening on a first light emission end surface, and having a first gain wavelength, a second MQW active layer having an opening on a second light emission end surface, and having a second gain wavelength, and a coupling waveguide layer coupling those optically, are coupled in a waveguide direction of light. An electrode above the coupling waveguide layer and a lower electrode are short-circuited. The first gain wavelength is longer than the second gain wavelength. A diffraction grating having a Bragg wavelength corresponding to the second gain wavelength is formed in the vicinity of the coupled waveguide layer. Light generated at the first MQW active layer is oscillated by a resonator consisting of the first light emission end surface and the second light emission end surface. Light generated at the second MQW active layer is oscillated by a resonator consisting of the diffraction grating and the second light emission end surface. Both are output from the second light emission end surface.

Description

本発明は、半導体発光素子およびそれを用いた光パルス試験器に関する。   The present invention relates to a semiconductor light emitting device and an optical pulse tester using the same.

光通信の分野において、複数波長の光を出力するシステムが用いられている。そして、例えば2波長のレーザ光を出力するシステムの場合には、各波長用に製作された2つの半導体レーザを用意し、各半導体レーザからの出力光を合波して出力する構成としていた(例えば、特許文献1参照)。   In the field of optical communication, a system that outputs light of a plurality of wavelengths is used. For example, in the case of a system that outputs laser light of two wavelengths, two semiconductor lasers manufactured for each wavelength are prepared, and the output light from each semiconductor laser is combined and output ( For example, see Patent Document 1).

これに対し本願出願人は、このような複雑な光学系を要さずに構成される2波長レーザ光源として、利得波長の大きく異なる複数の活性層を結合導波層を介して直列につなぎ、かつ結合導波層近傍に回折格子を配置して各波長が独立に発振を実現することで単体のチップから複数波長のレーザ光を出射できる半導体発光素子を提案している(特許文献2参照)。   In contrast, the applicant of the present application, as a two-wavelength laser light source configured without the need for such a complicated optical system, connected a plurality of active layers having greatly different gain wavelengths in series via a coupling waveguide layer, In addition, a semiconductor light-emitting element capable of emitting laser beams of a plurality of wavelengths from a single chip by arranging a diffraction grating in the vicinity of the coupling waveguide layer and realizing oscillation independently at each wavelength has been proposed (see Patent Document 2). .

特開2008−209266号公報JP 2008-209266 A 特願2010−58610Japanese Patent Application No. 2010-58610

しかしながら、特許文献2に開示された構成においては、長波側の活性層に電流を注入して発振させた際に、隣接する結合導波路層へ漏れキャリアが流入し、これが自由キャリア吸収を惹き起おこして出力が低下するという問題があった。   However, in the configuration disclosed in Patent Document 2, when a current is injected into the active layer on the long wave side and oscillated, leaked carriers flow into the adjacent coupled waveguide layer, which causes free carrier absorption. As a result, there was a problem that the output decreased.

本発明は、このような課題を解決するためになされたものであって、複数の互いに異なる利得波長を有する活性層を結合導波路層を介して直列に接続した半導体発光素子において、長波の活性層で放出及び増幅された光が結合導波路層を通過する際に長波の活性層から漏れてくるキャリアによって吸収され光出力が低下することを抑制するものである。   The present invention has been made to solve such a problem, and in a semiconductor light-emitting device in which a plurality of active layers having different gain wavelengths are connected in series via a coupling waveguide layer, long-wave activity is achieved. The light emitted and amplified in the layer is suppressed from being absorbed by carriers leaking from the long wave active layer when passing through the coupling waveguide layer, and the light output is reduced.

本発明の半導体発光素子は、半導体基板上に、劈開によって形成された第1の光出射端面と第2の光出射端面とを有し、前記第1の光出射端面に開口し第1の利得波長を有する第1の多重量子井戸型活性層と前記第2の光出射端面に開口し第2の利得波長を有する第2の多重量子井戸型活性層とそれらを光学的に結合させる結合導波路層とが光の導波方向に結合され、前記第1の多重量子井戸型活性層の上方に第1の電極を、前記第2の多重量子井戸型活性層の上方に第2の電極を、前記結合導波路層の上方に第3の電極を、前記半導体基板の底面に前記第3の電極と短絡される第4の電極を備えている半導体発光素子であって、前記第1の利得波長は前記第2の利得波長より長く、前記結合導波路層近傍に、前記第2の利得波長に相当するブラッグ波長を有する回折格子が形成され、前記第1の電極と前記第4の電極との通電によって前記第1の多重量子井戸型活性層で生成された光が、前記第1の光出射端面と前記第2の光出射端面とで構成される共振器で発振し、前記第2の電極と前記第4の電極との通電によって前記第2の多重量子井戸型活性層で生成された光が、前記回折格子と前記第2の光出射端面とで構成される共振器で発振し、ともに前記第2の光出射端面から出射される構成を有している。   The semiconductor light emitting device of the present invention has a first light emitting end face and a second light emitting end face formed by cleaving on a semiconductor substrate, and is open to the first light emitting end face and has a first gain. A first multiple quantum well active layer having a wavelength, a second multiple quantum well active layer having an opening at the second light emitting end face and having a second gain wavelength, and a coupled waveguide for optically coupling them A first electrode above the first multiple quantum well active layer, a second electrode above the second multiple quantum well active layer, A semiconductor light emitting device comprising a third electrode above the coupling waveguide layer and a fourth electrode short-circuited to the third electrode on a bottom surface of the semiconductor substrate, wherein the first gain wavelength Is longer than the second gain wavelength and corresponds to the second gain wavelength in the vicinity of the coupling waveguide layer. A diffraction grating having a lag wavelength is formed, and light generated in the first multiple quantum well active layer by energization between the first electrode and the fourth electrode is reflected on the first light emitting end face. The light generated in the second multiple quantum well active layer by oscillating in a resonator composed of the second light emitting end face and energized between the second electrode and the fourth electrode is Oscillation is caused by a resonator composed of the diffraction grating and the second light emitting end face, and both are emitted from the second light emitting end face.

この構成により、長波側の活性層へ注入した電流の一部が隣接する結合導波路層へ漏れだし、長波側の活性層が放出する光を吸収して発振出力を低下させることを防ぐことが出来る。   With this configuration, it is possible to prevent a part of current injected into the active layer on the long wave side from leaking to the adjacent coupled waveguide layer and absorbing the light emitted by the active layer on the long wave side to reduce the oscillation output. I can do it.

さらに本発明の半導体発光素子は、前記結合導波路層が前記第2の利得波長と同じかまたはより短い組成波長を有するバルク型構造であってもよい。   Furthermore, the semiconductor light emitting device of the present invention may have a bulk structure in which the coupled waveguide layer has a composition wavelength that is the same as or shorter than the second gain wavelength.

この構成により、高い製造歩留まりで製造できる。   With this configuration, it can be manufactured with a high manufacturing yield.

本発明の光パルス試験器は上記いずれかの半導体発光素子と、該半導体発光素子の前記第1の電極または前記第2の電極のいずれか一方と前記第4の電極との間に光パルスを発するためのパルス状の駆動電流を印加する発光素子駆動回路とを含み、該半導体発光素子の前記第2の光出射端面から出射された前記光パルスを被測定光ファイバに出力する発光部と、前記被測定光ファイバからの前記光パルスの戻り光を電気信号に変換する受光部と、前記受光部によって変換された電気信号に基づいて前記被測定光ファイバの損失分布特性を解析する信号処理部と、を備えている。   An optical pulse tester according to the present invention provides an optical pulse between any one of the semiconductor light emitting devices described above and either the first electrode or the second electrode of the semiconductor light emitting device and the fourth electrode. A light emitting element driving circuit that applies a pulsed driving current for emitting, and a light emitting unit that outputs the light pulse emitted from the second light emitting end face of the semiconductor light emitting element to the optical fiber to be measured; A light receiving unit that converts return light of the optical pulse from the optical fiber to be measured into an electric signal, and a signal processing unit that analyzes loss distribution characteristics of the optical fiber to be measured based on the electric signal converted by the light receiving unit And.

この構成により、複数の波長帯の光を複数の縦モードで高光出力で発振可能な半導体発光素子を備えるため、小型且つ高性能な光パルス試験器を実現できる。   With this configuration, the semiconductor light emitting device capable of oscillating light of a plurality of wavelength bands in a plurality of longitudinal modes with a high light output is provided, so that a small and high performance optical pulse tester can be realized.

本発明は、複数の波長帯の光を発光可能な半導体発光素子を高光出力で動作させることが出来る半導体発光素子、およびそれを用いた小型且つ高性能な光パルス試験器を提供するものである。   The present invention provides a semiconductor light emitting device capable of operating a semiconductor light emitting device capable of emitting light in a plurality of wavelength bands with high light output, and a small and high performance optical pulse tester using the semiconductor light emitting device. .

本発明の第1の実施形態の半導体発光素子を示す断面図Sectional drawing which shows the semiconductor light-emitting device of the 1st Embodiment of this invention. 本発明の第2の実施形態の光パルス試験器の構成を示すブロック図The block diagram which shows the structure of the optical pulse tester of the 2nd Embodiment of this invention. 本発明の第1の実施形態の半導体発光素子の特性を示す図The figure which shows the characteristic of the semiconductor light-emitting device of the 1st Embodiment of this invention.

以下、本発明に係る半導体発光素子およびそれを用いた光パルス試験器の実施形態について、図面を用いて説明する。   Embodiments of a semiconductor light emitting device and an optical pulse tester using the same according to the present invention will be described below with reference to the drawings.

(第1の実施形態)
本発明に係る半導体発光素子の第1の実施形態を図1に示す。この図は第1の実施形態の半導体発光素子10を光の伝搬方向に沿って切断した断面図である。
(First embodiment)
FIG. 1 shows a first embodiment of a semiconductor light emitting device according to the present invention. This figure is a cross-sectional view of the semiconductor light emitting device 10 of the first embodiment cut along the light propagation direction.

半導体発光素子10は、図1に示すように、例えば、n型InP(インジウム・リン)からなるn型半導体基板11と、n型InPクラッド層12と、利得波長λ1を有するInGaAsP(インジウム・ガリウム・砒素・リン)からなる第1の多重量子井戸型の活性層13aを有する第1の利得領域Iと、利得波長λ2(<λ1)を有するInGaAsPからなる第2の多重量子井戸型の活性層13bを有する第2の利得領域IIと、λ2よりさらに短い組成波長を有するInGaAsPからなるバルク型結合導波路層19を有する結合導波路領域IIIを備える。 As shown in FIG. 1, the semiconductor light emitting device 10 includes, for example, an n-type semiconductor substrate 11 made of n-type InP (indium / phosphorus), an n-type InP cladding layer 12, and an InGaAsP (indium / Pb) having a gain wavelength λ 1. A first gain region I having a first multiple quantum well type active layer 13a made of gallium, arsenic and phosphorus, and a second multiple quantum well type made of InGaAsP having a gain wavelength λ 2 (<λ 1 ). A second gain region II having an active layer 13b and a coupled waveguide region III having a bulk-type coupled waveguide layer 19 made of InGaAsP having a composition wavelength shorter than λ 2 .

ここで、利得波長とは、後述する複数の縦モードの発振波長のうち所望の縦モードのピーク波長を示すものとする。本実施形態では、利得波長λ1、λ2として光パルス試験器で用いる波長1.55μm、1.3μmを例にして説明する。なお、利得波長λ1、λ2は、それぞれ1.52≦λ1≦1.58、1.28≦λ2≦1.34の範囲内の値であってもよい。 Here, the gain wavelength indicates a peak wavelength of a desired longitudinal mode among a plurality of longitudinal mode oscillation wavelengths described later. In this embodiment, gain wavelengths λ 1 and λ 2 will be described by taking wavelengths 1.55 μm and 1.3 μm used in an optical pulse tester as an example. The gain wavelengths λ 1 and λ 2 may be values within the ranges of 1.52 ≦ λ 1 ≦ 1.58 and 1.28 ≦ λ 2 ≦ 1.34, respectively.

あるいは1.28〜1.34、1.47〜1.50、1.52〜1.55、1.60〜1.65の各波長範囲からの任意の組み合わせであってもよい(ただしλ1>λ2として選択する。単位はμm、以下同じ)。 Alternatively, any combination from each wavelength range of 1.28 to 1.34, 1.47 to 1.50, 1.52 to 1.55, 1.60 to 1.65 may be used (provided that λ 1 > Λ 2 , unit is μm, and so on)

またその時の結合導波路層19の組成波長λjは1.05≦λj≦1.27であっても良い。なお組成波長とは、半導体混晶のバンドギャップエネルギーを光の波長で表したもので、混晶組成の表現方法の一つである。   Further, the composition wavelength λj of the coupled waveguide layer 19 at that time may be 1.05 ≦ λj ≦ 1.27. The composition wavelength represents the band gap energy of the semiconductor mixed crystal in terms of the wavelength of light, and is one of the methods for expressing the mixed crystal composition.

第1の多重量子井戸型の活性層13a、結合導波路層19および第2の多重量子井戸型の活性層13bは、光の導波方向に沿って配置され、バットジョイント手法により光学的に結合されている。なお、ここで言う第1の多重量子井戸型の活性層13aおよび第2の多重量子井戸型の活性層13bは、多重量子井戸(MQW:Multiple Quantum Well)構造とそれを挟む光分離閉じ込め(SCH:Separate Confinement Heterostructure)層を含んでいる。   The first multiple quantum well type active layer 13a, the coupling waveguide layer 19 and the second multiple quantum well type active layer 13b are arranged along the light guiding direction and are optically coupled by a butt joint technique. Has been. The first multiple quantum well type active layer 13a and the second multiple quantum well type active layer 13b referred to here have a multiple quantum well (MQW) structure and an optical separation confinement (SCH) sandwiching them. : Separate Confinement Heterostructure) layer.

また、第1の多重量子井戸型の活性層13a、結合導波路層19および第2の多重量子井戸型の活性層13bの上面にはp型InPクラッド層14、p型InGaAs(インジウム・ガリウム・砒素)からなるコンタクト層15がこの順に積層されている。   In addition, a p-type InP cladding layer 14 and a p-type InGaAs (indium gallium. A contact layer 15 made of arsenic is laminated in this order.

また、コンタクト層上には第1の利得領域I用の第1の上部電極17a、第2の利得領域II用の第2の上部電極17b、結合導波路領域III用の第3の上部電極17c、およびn型半導体基板11の下面には下部電極(または第4の電極)16が蒸着形成されている。   Further, on the contact layer, a first upper electrode 17a for the first gain region I, a second upper electrode 17b for the second gain region II, and a third upper electrode 17c for the coupling waveguide region III. The lower electrode (or fourth electrode) 16 is formed on the lower surface of the n-type semiconductor substrate 11 by vapor deposition.

なおこの図1では、各上部電極間の分離抵抗を改善するため、コンタクト層は各上部電極の下方部分を残してエッチングにより除去し、第1の上部電極17aの下方に第1のコンタクト層15aが、第2の上部電極17bの下方に第2のコンタクト層15bが、第3の上部電極の下方に第3のコンタクト層15cが、それぞれ独立して形成された構成を表している。   In FIG. 1, in order to improve the separation resistance between the upper electrodes, the contact layer is removed by etching leaving a lower portion of each upper electrode, and the first contact layer 15a is formed below the first upper electrode 17a. However, the second contact layer 15b is formed below the second upper electrode 17b, and the third contact layer 15c is formed below the third upper electrode, respectively.

さらに、第1の多重量子井戸型の活性層13aおよび第2の多重量子井戸型の活性層13bは、劈開によって形成された第1の光出射端面10aおよび第2の光出射端面10bをそれぞれ有する。第1の光出射端面10aには高反射(HR)コート18aが、第2の光出射端面10bには低反射(LR)コート18bがそれぞれ施されており、第2の光出射端面10bから出射される光に対する反射率が、第1の光出射端面10aから出射される光に対する反射率より低くなっている。   Further, the first multiple quantum well type active layer 13a and the second multiple quantum well type active layer 13b respectively have a first light emission end face 10a and a second light emission end face 10b formed by cleavage. . The first light exit end face 10a is provided with a high reflection (HR) coat 18a, and the second light exit end face 10b is provided with a low reflection (LR) coat 18b, and the light exits from the second light exit end face 10b. The reflectance with respect to the emitted light is lower than the reflectance with respect to the light emitted from the first light emitting end face 10a.

ここで、HRコート18aが施された第1の光出射端面10a側の反射率は90%以上、LRコート18bが施された第2の光出射端面10b側の反射率は1〜10%程度とすることが好ましい。   Here, the reflectance on the first light emitting end face 10a side provided with the HR coat 18a is 90% or more, and the reflectance on the second light emitting end face 10b side provided with the LR coat 18b is about 1 to 10%. It is preferable that

さらに、n型InPクラッド層12の結合導波路領域IIIにおいて、結合導波路層19近傍に、1.3μmのブラッグ波長λgおよび100cm-1以上の結合係数κを有する回折格子20が形成されている。 Further, in the coupled waveguide region III of the n-type InP cladding layer 12, a diffraction grating 20 having a Bragg wavelength λ g of 1.3 μm and a coupling coefficient κ of 100 cm −1 or more is formed in the vicinity of the coupled waveguide layer 19. Yes.

なお、回折格子20が形成される位置は、図1に示したように結合導波路層19の下方であってもよく、あるいは結合導波路層19の上方のp型InPクラッド層14内であってもよい(図示せず)。また、第1の利得領域Iの第1の光出射端面10a近傍に1.55μmのブラッグ波長を有する回折格子が同時に形成されていてもよい。   The position where the diffraction grating 20 is formed may be below the coupled waveguide layer 19 as shown in FIG. 1, or within the p-type InP cladding layer 14 above the coupled waveguide layer 19. (Not shown). Further, a diffraction grating having a Bragg wavelength of 1.55 μm may be simultaneously formed in the vicinity of the first light emitting end face 10a of the first gain region I.

このような構造を有する半導体発光素子の製造方法については、特許文献2に詳細に述べられている。   A method for manufacturing a semiconductor light emitting device having such a structure is described in detail in Patent Document 2.

さらに、第3の上部電極17cはAuワイヤの配線により下部電極16と電気的に短絡される。なお、両電極を共に接地した構成としてもよい。   Further, the third upper electrode 17c is electrically short-circuited with the lower electrode 16 by the wiring of the Au wire. Note that both electrodes may be grounded.

次に、以上のように構成された本実施形態の半導体発光素子10の動作について説明する。   Next, the operation of the semiconductor light emitting device 10 of the present embodiment configured as described above will be described.

第1の利得領域I用の第1の上部電極17aと下部電極16との間に電流が印加された場合には、第1の多重量子井戸型の活性層13aの内部が発光状態となる。しかし第1の上部電極17aと第3の上部電極17cの間の分離抵抗が有限であるため、電流の一部は結合導波路領域IIIへと漏れてくる。   When a current is applied between the first upper electrode 17a and the lower electrode 16 for the first gain region I, the inside of the first multiple quantum well type active layer 13a enters a light emitting state. However, since the separation resistance between the first upper electrode 17a and the third upper electrode 17c is finite, part of the current leaks into the coupled waveguide region III.

しかし本発明では結合導波路領域IIIの第3の上部電極17cが下部電極16と電気的に短絡しているため、漏れ電流は結合導波路層19へは流入せず、第3の上部電極17cへと流れる。これにより第1の利得領域Iからの漏れ電流が結合導波路領域IIIおよび第2の利得領域IIを流れることで生じるキャリアによる光吸収が抑制され、第1の利得領域Iの発光によるレーザ光出力が向上する。   However, in the present invention, since the third upper electrode 17c in the coupled waveguide region III is electrically short-circuited with the lower electrode 16, the leakage current does not flow into the coupled waveguide layer 19, and the third upper electrode 17c. It flows to. As a result, light absorption by carriers caused by leakage current from the first gain region I flowing through the coupling waveguide region III and the second gain region II is suppressed, and laser light output by light emission from the first gain region I is suppressed. Will improve.

これにより図3に示すように、特に高電流時における1.55μm光出力の飽和が大きく改善され、高出力動作が実現される。チップ出力が200mW以上得られているので、光パルス試験器の代表例である光タイムドメインリフレクトメータ(Optical Time Domain Reflectometer)に用いた場合、ダイナミックレンジとして35dB以上の高性能が得られる。   As a result, as shown in FIG. 3, the saturation of the 1.55 μm light output is greatly improved especially at high currents, and a high output operation is realized. Since a chip output of 200 mW or more is obtained, when used in an optical time domain reflectometer, which is a typical example of an optical pulse tester, a high performance of 35 dB or more is obtained as a dynamic range.

一方、第2の利得領域II用の第2の上部電極17bと下部電極16との間に電流が印加された場合には、第2の多重量子井戸型の活性層13bの内部が発光状態となる。   On the other hand, when a current is applied between the second upper electrode 17b and the lower electrode 16 for the second gain region II, the inside of the second multiple quantum well active layer 13b is in a light emitting state. Become.

第2の多重量子井戸型の活性層13bで生成された1.3μm帯の光は、第2の活性層13bに沿って伝搬する。この1.3μmの光は、1.3μmのブラッグ波長λgを有する回折格子20で90%以上反射されるため、利得波長が1.55μmの第1の多重量子井戸型の活性層13aにおける光吸収は抑制されている。 The 1.3 μm band light generated in the second multiple quantum well active layer 13b propagates along the second active layer 13b. Since the 1.3 μm light is reflected by 90% or more by the diffraction grating 20 having a Bragg wavelength λ g of 1.3 μm, the light in the first multiple quantum well active layer 13a having a gain wavelength of 1.55 μm. Absorption is suppressed.

この場合には第2の多重量子井戸型の活性層13bで生成された1.3μm帯の光はほとんど第1の多重量子井戸型の活性層13aへ侵入しないため、図3に示すように第3の上部電極17cをショートした効果は前記の場合に比べて小さくなる。   In this case, since the light in the 1.3 μm band generated by the second multiple quantum well active layer 13b hardly penetrates into the first multiple quantum well active layer 13a, as shown in FIG. The effect of shorting the upper electrode 17c of 3 is smaller than in the above case.

以上説明したように、本実施形態の半導体発光素子は、結合導波路層領域の上部電極を下部電極にショートすることで光出力の飽和を抑制し高光出力化を実現する。特に長波側の光を発振させる時に大きな効果が得られる。   As described above, in the semiconductor light emitting device of this embodiment, the upper electrode in the coupled waveguide layer region is short-circuited to the lower electrode, thereby suppressing the saturation of the light output and realizing a high light output. In particular, a great effect can be obtained when long-wave light is oscillated.

(第2の実施形態)
複数の異なる波長帯の光を複数の縦モードで発振可能な第1の実施形態の半導体発光素子10は、光パルス試験器の光源として用いることができる。以下、半導体発光素子10を備えた光パルス試験器の実施形態について図面を用いて説明する。
(Second Embodiment)
The semiconductor light emitting device 10 of the first embodiment capable of oscillating a plurality of light in different wavelength bands in a plurality of longitudinal modes can be used as a light source of an optical pulse tester. Hereinafter, an embodiment of an optical pulse tester including the semiconductor light emitting element 10 will be described with reference to the drawings.

図2に示すように、第2の実施形態の光パルス試験器は、半導体発光素子10および半導体発光素子10に光パルスを発するためのパルス状の駆動電流を印加する発光素子駆動回路2を有し、半導体発光素子10の第2の光出射端面10bから出射された光パルスを被測定光ファイバ3に出力する発光部1と、被測定光ファイバ3からの光パルスの戻り光を電気信号に変換する受光部4と、受光部4によって変換された電気信号に基づいて被測定光ファイバ3の損失分布特性を解析する信号処理部5と、を備える。   As shown in FIG. 2, the optical pulse tester according to the second embodiment has a semiconductor light emitting element 10 and a light emitting element driving circuit 2 that applies a pulsed driving current for emitting a light pulse to the semiconductor light emitting element 10. The light emitting unit 1 that outputs the light pulse emitted from the second light emitting end face 10b of the semiconductor light emitting element 10 to the optical fiber to be measured 3, and the return light of the light pulse from the optical fiber to be measured 3 as an electrical signal The light-receiving part 4 to convert and the signal processing part 5 which analyzes the loss distribution characteristic of the to-be-measured optical fiber 3 based on the electric signal converted by the light-receiving part 4 are provided.

なお、信号処理部5は、発光素子駆動回路2が半導体発光素子10に駆動電流を印加するタイミングを制御する。   The signal processing unit 5 controls the timing at which the light emitting element driving circuit 2 applies a driving current to the semiconductor light emitting element 10.

さらに、本実施形態の光パルス試験器は、発光部1からの光パルスをバンドパスフィルタ(BPF)6に出力するとともに、被測定光ファイバ3からの戻り光を受光部4に出力する光カプラ7と、被測定光ファイバ3と光結合する光コネクタ8と、信号処理部5の処理結果を表示する表示部9と、を備える。   Furthermore, the optical pulse tester of the present embodiment outputs an optical pulse from the light emitting unit 1 to the bandpass filter (BPF) 6 and outputs an optical beam returned from the optical fiber 3 to be measured to the light receiving unit 4. 7, an optical connector 8 that is optically coupled to the optical fiber 3 to be measured, and a display unit 9 that displays a processing result of the signal processing unit 5.

次に、以上のように構成された本実施形態の光パルス試験器の動作を説明する。なお、以下の説明においては、本実施形態の光パルス試験器は半導体発光素子10を備えているものとする。   Next, the operation of the optical pulse tester of the present embodiment configured as described above will be described. In the following description, it is assumed that the optical pulse tester of this embodiment includes the semiconductor light emitting element 10.

まず、発光素子駆動回路2によって、半導体発光素子10の第1の利得領域I(または第2の利得領域II)にパルス状の駆動電流が印加され、第3の上部電極17cは下部電極16とショートされていることにより、発光部1から1.55μm帯(または1.3μm帯)の光パルスが出力される。   First, a pulsed driving current is applied to the first gain region I (or the second gain region II) of the semiconductor light emitting device 10 by the light emitting device driving circuit 2, and the third upper electrode 17 c is connected to the lower electrode 16. By being short-circuited, a light pulse of 1.55 μm band (or 1.3 μm band) is output from the light emitting unit 1.

そして、発光部1から出力された光パルスが、光カプラ7、BPF6、光コネクタ8を経て、被測定光ファイバ3に入射される。被測定光ファイバ3に入射された光パルスは、戻り光となって光カプラ7を介して受光部4に受光される。   The optical pulse output from the light emitting unit 1 is incident on the measured optical fiber 3 through the optical coupler 7, the BPF 6, and the optical connector 8. The light pulse incident on the optical fiber 3 to be measured becomes return light and is received by the light receiving unit 4 through the optical coupler 7.

戻り光は、受光部4によって電気信号に変換され、信号処理部5に入力される。そして、信号処理部5によって、被測定光ファイバ3の損失分布特性が算出される。算出された損失分布特性は表示部9に表示される。   The return light is converted into an electric signal by the light receiving unit 4 and input to the signal processing unit 5. Then, the loss distribution characteristic of the measured optical fiber 3 is calculated by the signal processing unit 5. The calculated loss distribution characteristic is displayed on the display unit 9.

以上説明したように、本実施形態の光パルス試験器は、1つの素子で複数の異なる波長帯の光を高光出力で発振可能な半導体発光素子を備えるため、小型化および高性能化を実現できる。   As described above, the optical pulse tester according to the present embodiment includes a semiconductor light emitting device capable of oscillating a plurality of light beams having different wavelength bands with a high optical output by using a single device, so that downsizing and high performance can be realized. .

1 発光部
2 発光素子駆動回路
3 被測定光ファイバ
4 受光部
5 信号処理部
10 半導体発光素子
10a 第1の光出射端面
10b 第2の光出射端面
13a 第1の活性層
13b 第2の活性層
19 結合導波路層
20 回折格子
17a 第1の上部電極(または第1の電極)
17b 第2の上部電極(または第2の電極)
17c 第3の上部電極(または第3の電極)
16 下部電極(または第4の電極)
18a 高反射(HR)コート
18b 低反射(LR)コート
20 回折格子
DESCRIPTION OF SYMBOLS 1 Light emission part 2 Light emitting element drive circuit 3 Optical fiber to be measured 4 Light receiving part 5 Signal processing part 10 Semiconductor light emitting element 10a 1st light emission end surface 10b 2nd light emission end surface 13a 1st active layer 13b 2nd active layer 19 Coupling waveguide layer 20 Diffraction grating 17a First upper electrode (or first electrode)
17b Second upper electrode (or second electrode)
17c Third upper electrode (or third electrode)
16 Lower electrode (or fourth electrode)
18a High reflection (HR) coating 18b Low reflection (LR) coating 20 Diffraction grating

Claims (3)

半導体基板上に、
劈開によって形成された第1の光出射端面と第2の光出射端面とを有し、前記第1の光出射端面に開口し第1の利得波長を有する第1の多重量子井戸型活性層と前記第2の光出射端面に開口し第2の利得波長を有する第2の多重量子井戸型活性層とそれらを光学的に結合させる結合導波路層とが光の導波方向に結合され、前記第1の多重量子井戸型活性層の上方に第1の電極を、前記第2の多重量子井戸型活性層の上方に第2の電極を、前記結合導波路層の上方に第3の電極を、前記半導体基板の底面に前記第3の電極と短絡される第4の電極を備えている半導体発光素子であって、
前記第1の利得波長は前記第2の利得波長より長く、
前記結合導波路層近傍に、前記第2の利得波長に相当するブラッグ波長を有する回折格子が形成され、
前記第1の電極と前記第4の電極との通電によって前記第1の多重量子井戸型活性層で生成された光が、前記第1の光出射端面と前記第2の光出射端面とで構成される共振器で発振し、前記第2の電極と前記第4の電極との通電によって前記第2の多重量子井戸型活性層で生成された光が、前記回折格子と前記第2の光出射端面とで構成される共振器で発振し、ともに前記第2の光出射端面から出射されることを特徴とする半導体発光素子。
On the semiconductor substrate,
A first multiple quantum well active layer having a first light emitting end face and a second light emitting end face formed by cleaving, having an opening at the first light emitting end face and having a first gain wavelength; A second multiple quantum well active layer having an opening at the second light emitting end face and having a second gain wavelength and a coupling waveguide layer for optically coupling them are coupled in a light guiding direction; A first electrode above the first multiple quantum well active layer, a second electrode above the second multiple quantum well active layer, and a third electrode above the coupled waveguide layer A semiconductor light emitting device comprising a fourth electrode short-circuited with the third electrode on the bottom surface of the semiconductor substrate,
The first gain wavelength is longer than the second gain wavelength;
A diffraction grating having a Bragg wavelength corresponding to the second gain wavelength is formed in the vicinity of the coupling waveguide layer,
The light generated in the first multiple quantum well active layer by energization between the first electrode and the fourth electrode is constituted by the first light emitting end face and the second light emitting end face. Light generated in the second multiple quantum well active layer by energization between the second electrode and the fourth electrode is emitted from the diffraction grating and the second light emission. A semiconductor light emitting device characterized in that it oscillates in a resonator composed of an end face and is emitted from the second light exit end face.
前記結合導波路層は、前記第2の利得波長と同じかまたはより短い組成波長を有するバルク型構造であることを特徴とする請求項1に記載の半導体発光素子。   2. The semiconductor light emitting device according to claim 1, wherein the coupled waveguide layer has a bulk structure having a composition wavelength equal to or shorter than the second gain wavelength. 請求項1または2に記載の半導体発光素子と、該半導体発光素子の前記第1の電極または前記第2の電極のいずれか一方と前記第4の電極との間に光パルスを発するためのパルス状の駆動電流を印加する発光素子駆動回路とを含み、該半導体発光素子の前記第2の光出射端面から出射された前記光パルスを被測定光ファイバに出力する発光部と、
前記被測定光ファイバからの前記光パルスの戻り光を電気信号に変換する受光部と、
前記受光部によって変換された電気信号に基づいて前記被測定光ファイバの損失分布特性を解析する信号処理部と、を備えた光パルス試験器。
3. The semiconductor light emitting device according to claim 1 or 2, and a pulse for emitting a light pulse between any one of the first electrode or the second electrode of the semiconductor light emitting device and the fourth electrode. A light emitting element driving circuit for applying a driving current in the form of a light, and a light emitting unit for outputting the light pulse emitted from the second light emitting end face of the semiconductor light emitting element to the optical fiber to be measured;
A light receiving unit that converts the return light of the optical pulse from the optical fiber to be measured into an electrical signal;
An optical pulse tester comprising: a signal processing unit that analyzes a loss distribution characteristic of the optical fiber to be measured based on an electrical signal converted by the light receiving unit.
JP2010228266A 2010-10-08 2010-10-08 Semiconductor light-emitting element, and optical pulse tester using the same Pending JP2012084627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010228266A JP2012084627A (en) 2010-10-08 2010-10-08 Semiconductor light-emitting element, and optical pulse tester using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010228266A JP2012084627A (en) 2010-10-08 2010-10-08 Semiconductor light-emitting element, and optical pulse tester using the same

Publications (1)

Publication Number Publication Date
JP2012084627A true JP2012084627A (en) 2012-04-26

Family

ID=46243220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010228266A Pending JP2012084627A (en) 2010-10-08 2010-10-08 Semiconductor light-emitting element, and optical pulse tester using the same

Country Status (1)

Country Link
JP (1) JP2012084627A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575093A (en) * 1991-09-13 1993-03-26 Nippon Telegr & Teleph Corp <Ntt> Integrated optical circuit
JPH0758310A (en) * 1993-08-09 1995-03-03 Hitachi Ltd Optical integrated circuit
JP2001352129A (en) * 2000-02-18 2001-12-21 Matsushita Electric Ind Co Ltd Semiconductor laser device and its manufacturing method
JP2002511979A (en) * 1996-09-04 2002-04-16 テレフオンアクチーボラゲツト エル エム エリクソン(パブル) Generation of laser light of different wavelengths
JP2002324936A (en) * 2001-04-26 2002-11-08 Hitachi Ltd Optical element, waveguide optical element, and optical module
JP2010192601A (en) * 2009-02-17 2010-09-02 Anritsu Corp Semiconductor light emitting element and optical pulse tester using same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575093A (en) * 1991-09-13 1993-03-26 Nippon Telegr & Teleph Corp <Ntt> Integrated optical circuit
JPH0758310A (en) * 1993-08-09 1995-03-03 Hitachi Ltd Optical integrated circuit
JP2002511979A (en) * 1996-09-04 2002-04-16 テレフオンアクチーボラゲツト エル エム エリクソン(パブル) Generation of laser light of different wavelengths
JP2001352129A (en) * 2000-02-18 2001-12-21 Matsushita Electric Ind Co Ltd Semiconductor laser device and its manufacturing method
JP2002324936A (en) * 2001-04-26 2002-11-08 Hitachi Ltd Optical element, waveguide optical element, and optical module
JP2010192601A (en) * 2009-02-17 2010-09-02 Anritsu Corp Semiconductor light emitting element and optical pulse tester using same

Similar Documents

Publication Publication Date Title
JP2007005594A (en) Semiconductor optical element and module using same
JP6425631B2 (en) Semiconductor laser and optical integrated light source having the same
WO2013115179A1 (en) Semiconductor optical element, integrated semiconductor optical element and semiconductor optical element module
WO2013151145A1 (en) Optical semiconductor device, semiconductor laser module and optical fiber amplifier
JP6717733B2 (en) Semiconductor optical integrated circuit
JP2010192601A (en) Semiconductor light emitting element and optical pulse tester using same
JP3647656B2 (en) Optical functional element and optical communication device
TW201826650A (en) Semiconductor laser, light source unit, communication system, and wavelength division multiplexing optical communication system
JP5784364B2 (en) Semiconductor light emitting element driving method, light emitting device, and optical pulse tester using the light emitting device
US20130308665A1 (en) Tunable semiconductor laser device and method for operating a tunable semiconductor laser device
JP2004266095A (en) Semiconductor optical amplifier
JP6034681B2 (en) Semiconductor light emitting device, semiconductor light emitting device module, and optical pulse tester
US20030072342A1 (en) Semiconductor laser device, semiconductor laser module, and optical fiber amplifer
JP5530229B2 (en) Semiconductor light emitting device and optical pulse tester using the same
JP6761391B2 (en) Semiconductor optical integrated device
CN111819743B (en) Semiconductor optical integrated element and manufacturing method thereof
JP2012084627A (en) Semiconductor light-emitting element, and optical pulse tester using the same
JP6761390B2 (en) Semiconductor optical integrated device
JP2002374037A (en) Semiconductor laser module, fiber-optic amplifier using the same and optical communication system
JP2012002929A (en) Method for manufacturing semiconductor optical element, laser module, and optical transmission apparatus
JP2004037485A (en) Semiconductor optical modulator and semiconductor optical device
CN114825050B (en) Cascade multi-wavelength integrated semiconductor laser and application thereof
JP2003163396A (en) Optical amplifier
JP2018060973A (en) Semiconductor optical integrated element and optical transmission/reception module mounted with the same
JPH11317564A (en) Distributed feedback semiconductor laser and single mode light source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140812

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141209