JP2012084449A - Light irradiation device, pseudo sunlight irradiation device, and inspection device for solar cell panel - Google Patents

Light irradiation device, pseudo sunlight irradiation device, and inspection device for solar cell panel Download PDF

Info

Publication number
JP2012084449A
JP2012084449A JP2010230940A JP2010230940A JP2012084449A JP 2012084449 A JP2012084449 A JP 2012084449A JP 2010230940 A JP2010230940 A JP 2010230940A JP 2010230940 A JP2010230940 A JP 2010230940A JP 2012084449 A JP2012084449 A JP 2012084449A
Authority
JP
Japan
Prior art keywords
light
irradiation device
irradiation
guide member
emitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010230940A
Other languages
Japanese (ja)
Other versions
JP5274530B2 (en
Inventor
Norihito Fujiwara
紀人 藤原
Koji Minami
功治 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2010230940A priority Critical patent/JP5274530B2/en
Priority to PCT/JP2011/004804 priority patent/WO2012049800A1/en
Publication of JP2012084449A publication Critical patent/JP2012084449A/en
Application granted granted Critical
Publication of JP5274530B2 publication Critical patent/JP5274530B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Planar Illumination Modules (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily adjust the quantity of irradiated light without changing the spectral distribution of light irradiated on an irradiated object.SOLUTION: A light shielding member 32, which adjusts the quantity of emitted light with spectrum adjusted as a light quantity adjustment member, is arranged between an opening plate 3b as an opening member arranged at a reflective front side of a reflecting member 3a for reflecting the light emitted from a xenon light source 2 and having openings 31 for extracting the emitting light of the xenon light source 2, and the reflecting member for reflecting the light emitted from the xenon light source 2. The light shielding member 32 is fixed by building on opposite sides of the reflecting member 3a. The quantity of the emitting light is adjusted according to a width dimension of the light shielding member 32.

Description

本発明は、被照射物に対して指向性の高い光を照射するための光照射装置および、この光照射装置を用いて被照射物に対して擬似太陽光を照射する擬似太陽光照射装置、この擬似太陽光照射装置を用いて太陽電池パネルの出力特性を測定して良否判定を行う太陽電池パネル用検査装置に関する。   The present invention relates to a light irradiating device for irradiating an object to be irradiated with highly directional light, and a pseudo sunlight irradiating device for irradiating an object to be irradiated with pseudo sunlight using the light irradiating device, The present invention relates to an inspection apparatus for a solar cell panel that performs pass / fail judgment by measuring output characteristics of the solar cell panel using the simulated solar light irradiation device.

従来、太陽光のスペクトル分布を高精度に再現するための光源装置としての従来の擬似太陽光照射装置では、所望のスペクトルを有する光を得るために、キセノンランプなどを点灯して光学フィルタ(エアマスフィルタ)を通過した擬似太陽光を、反射板で反射拡散させることによって被測定対象における照度分布を均一にする試みが為されてきた。   Conventionally, in a conventional pseudo-sunlight irradiation device as a light source device for reproducing the spectrum distribution of sunlight with high accuracy, an optical filter (air mass) is turned on by turning on a xenon lamp or the like in order to obtain light having a desired spectrum. Attempts have been made to make the illuminance distribution uniform in the object to be measured by reflecting and diffusing the simulated sunlight that has passed through the filter with a reflector.

図12は、従来の光照射装置の要部構成例を模式的に示す縦断面図であって、ランプ光源を反射箱内に収容し、反射箱の開口部から導光部材に光を導入する場合を示す縦断面図である。   FIG. 12 is a longitudinal sectional view schematically showing an example of a configuration of a main part of a conventional light irradiation apparatus, in which a lamp light source is accommodated in a reflection box, and light is introduced into the light guide member from the opening of the reflection box. It is a longitudinal cross-sectional view which shows a case.

図12に示すように、従来の光照射装置100において、例えばメタルハライドランプを用いた略点光源101が、内壁を例えば銀反射面で覆った反射箱102に内包されている。また、反射箱102の表面には、ピンホール状の開口部103が開口されている。このピンホール状の開口部103には、導光部材104がその入射端面105を反射箱102内の略点光源101に向けて設置されている。このとき、ピンホール状の開口部103の形状は、導光体104の入射端面105の形状と一致することが望ましい。   As shown in FIG. 12, in a conventional light irradiation apparatus 100, a substantially point light source 101 using, for example, a metal halide lamp is included in a reflection box 102 whose inner wall is covered with, for example, a silver reflection surface. A pinhole-shaped opening 103 is opened on the surface of the reflection box 102. In this pinhole-shaped opening 103, a light guide member 104 is installed with its incident end face 105 facing the substantially point light source 101 in the reflection box 102. At this time, it is desirable that the shape of the pinhole-shaped opening 103 matches the shape of the incident end face 105 of the light guide 104.

上記構成により、略点光源101から出射した光は、反射箱102の内壁の銀反射面で反射を繰り返した後、最終的にはピンホール状の開口部103から出射し、導光体104の入射端面105に入射する。導光体104内に入射した光は、既に説明したように、約±10パーセントの高い指向性を持つ指向性光として出射端面106から出射される。   With the above configuration, the light emitted from the substantially point light source 101 is repeatedly reflected by the silver reflecting surface of the inner wall of the reflection box 102 and finally emitted from the pinhole-shaped opening 103, The light enters the incident end face 105. As already described, the light incident on the light guide 104 is emitted from the emission end face 106 as directional light having a high directivity of about ± 10%.

このように、導光部材104を用いた光源装置において、導光部材104の入射端面103と略点光源101とをピンホール状の開口部103を介して光学的に結合することにより、高い指向性光を高効率で出射することが可能な光照射装置100を実現することができる。   As described above, in the light source device using the light guide member 104, the incident end face 103 of the light guide member 104 and the substantially point light source 101 are optically coupled through the pinhole-shaped opening 103, thereby achieving high directivity. It is possible to realize the light irradiation apparatus 100 that can emit the characteristic light with high efficiency.

従来の光照射装置100は、複数の開口部103を形成した反射箱102から光源出射光を取り出し、同じく複数個配置した指向性制御部材としての導光部材104の中を導光させて指向性を制御して照射面に放射するものである。   The conventional light irradiation apparatus 100 takes out light emitted from the light source from a reflection box 102 having a plurality of openings 103 and guides the light in a light guide member 104 as a directivity control member arranged in the same manner. Is controlled to radiate to the irradiated surface.

特開2003−98354号公報JP 2003-98354 A

上記従来の構成では、テーパ状の導光部材104に光を導入して内部を伝搬させ、光を取り出す光学系であるが、光学系の光量調整機能については何ら触れられていない。この光学系で光量を変化させるための選択肢としては、反射箱102から光を取り出す開口部103自体の大きさを変えることや、テーパ状の導光部材104から出射光を遮光するなど、いくつか可能性は残るものの、上記従来の構成のままでは、擬似太陽光のスペクトル分布にできるだけ悪影響を与えないように、擬似太陽光を被照射物に照射する際に、照射光量を調整するという構造上の問題を解決していない。   The conventional configuration is an optical system that introduces light into the tapered light guide member 104, propagates the light through the inside, and extracts the light. However, the light quantity adjustment function of the optical system is not mentioned at all. There are several options for changing the amount of light with this optical system, such as changing the size of the opening 103 itself for extracting light from the reflection box 102 and shielding the emitted light from the tapered light guide member 104. Although the possibility remains, the structure of adjusting the irradiation light quantity when irradiating the irradiated object with simulated sunlight so that the spectral distribution of simulated sunlight is not adversely affected as much as possible with the above-mentioned conventional configuration. Has not solved the problem.

本発明は、上記従来の問題を解決するもので、被照射物に照射する光のスペクトル分布を変えることなく、容易に照射光量を調整することができる光照射装置および、この光照射装置を用いて被照射物に対して擬似太陽光を照射する擬似太陽光照射装置、この擬似太陽光照射装置を用いて太陽電池パネルの出力特性を測定して良否判定を行う太陽電池パネル用検査装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and uses a light irradiation device capable of easily adjusting the amount of irradiation light without changing the spectral distribution of the light irradiated to the irradiated object, and the light irradiation device. Providing a simulated solar irradiation device for irradiating an object to be irradiated with simulated sunlight, and a solar cell panel inspection device for determining pass / fail by measuring the output characteristics of the solar cell panel using the simulated sunlight irradiation device The purpose is to do.

本発明の光照射装置は、第1光源と、該第1光源からの出射光を反射させる第1反射部材と、該第1反射部材の反射前方側に配設されて、該光源の出射光を取り出す開口部が形成された開口部材と、該開口部材の開口部からの出射光を一方端面から取り込んで指向性が高められた光を他方端面から出射する第1導光部材と、該第1導光部材の他方端面から出射される光のスペクトルを調整する第1光学フィルタとを有し、該開口部毎に光量調整部材が配置され、該光量調整部材によりスペクトル調整された光の出射光量調整が行われているものであり、そのことにより上記目的が達成される。   The light irradiation device of the present invention is provided with a first light source, a first reflecting member that reflects light emitted from the first light source, and a reflection front side of the first reflecting member, and the light emitted from the light source. An opening member in which an opening for taking out the light is formed, a first light guide member that takes out light emitted from the opening of the opening member from one end face and emits light having improved directivity from the other end face, and the first light guide member A first optical filter that adjusts the spectrum of the light emitted from the other end face of the one light guide member, and a light amount adjusting member is disposed for each of the openings, and the light whose spectrum is adjusted by the light amount adjusting member is emitted. The light quantity is adjusted, and the above object is achieved.

また、好ましくは、本発明の光照射装置における光量調整部材は、前記開口部材と、前記第1反射部材の間に配置されている。   Preferably, the light amount adjusting member in the light irradiation device of the present invention is disposed between the opening member and the first reflecting member.

さらに、好ましくは、本発明の光照射装置における光量調整部材は、前記第1反射部材の対向辺に掛け渡されて固定された所定幅の遮光部材であって、該所定幅の幅サイズに応じて前記出射光量調整が行われる。   Further preferably, the light amount adjusting member in the light irradiation apparatus of the present invention is a light shielding member having a predetermined width that is stretched over and opposed to the opposite side of the first reflecting member, and according to the width size of the predetermined width. The emitted light amount is adjusted.

さらに、好ましくは、本発明の光照射装置における光量調整部材は、波長依存性を持たない金属を黒色化した遮光部材である。   Further preferably, the light amount adjusting member in the light irradiation device of the present invention is a light shielding member obtained by blackening a metal having no wavelength dependency.

本発明の擬似太陽光照射装置は、本発明の上記光照射装置からの擬似太陽光を一方端面から取り込んでその内部を伝搬させて被照射物に対して光を平坦面から面照射する面照射用の導光部材を有するものであり、そのことにより上記目的が達成される。   The simulated sunlight irradiation device of the present invention is a surface irradiation that takes in the simulated sunlight from the light irradiation device of the present invention from one end surface and propagates the inside thereof to irradiate the irradiated object with light from a flat surface. For this purpose, the above object is achieved.

また、本発明の擬似太陽光照射装置は、本発明の上記光照射装置である第1光照射装置と、
第2光源と、該第2光源からの出射光を反射させる第2反射部材と、該第2反射部材からの出射光を一方端面から取り込んで指向性が高められた光を他方端面から出射する第2導光部材と、該第2導光部材の他方端面から出射される光のスペクトルを調整する第2光学フィルタとを有する第2光照射装置と、
該第1光照射装置からの光と該第2光照射装置からの光を混合して太陽光に類似した擬似太陽光を得る光混合部材と、該光混合部材からの擬似太陽光を一方端面から取り込んでその内部を伝搬させて被照射物に対して光を平坦面から均一に面照射する第3導光部材とを有する第3光照射装置とのセットが複数設けられている。
Moreover, the simulated sunlight irradiation apparatus of the present invention includes a first light irradiation apparatus that is the light irradiation apparatus of the present invention,
A second light source, a second reflecting member that reflects light emitted from the second light source, and light emitted from the second reflecting member from one end face to emit light having enhanced directivity from the other end face A second light irradiation device comprising: a second light guide member; and a second optical filter that adjusts a spectrum of light emitted from the other end surface of the second light guide member;
A light mixing member that obtains pseudo sunlight similar to sunlight by mixing light from the first light irradiation device and light from the second light irradiation device, and one end face of the pseudo sunlight from the light mixing member There are provided a plurality of sets of third light irradiating devices having a third light guide member that takes in the light from the surface and propagates the inside thereof to uniformly irradiate the irradiated object with light from a flat surface.

さらに、好ましくは、本発明の擬似太陽光照射装置において、前記第1光照射装置、前記第2光照射装置および前記第3光照射装置を有する前記光学系を1ユニットとし、該1ユニット同士を左右方向に対向配置して、該第3光照射装置の第3導光部材の他方端面同士を当接した2ユニットを、前記被照射物のサイズに応じて、前後方向に複数並べて配置されている。   Further preferably, in the simulated sunlight irradiation device of the present invention, the optical system having the first light irradiation device, the second light irradiation device, and the third light irradiation device is defined as one unit, and the units are A plurality of two units arranged opposite to each other in the left-right direction and contacting the other end surfaces of the third light guide member of the third light irradiation device are arranged in the front-rear direction according to the size of the irradiated object. Yes.

さらに、好ましくは、本発明の擬似太陽光照射装置において、前記第1光照射装置、前記第2光照射装置および前記光混合部を配置した左側セットと、該第1光照射装置、該第2光照射装置および該光混合部を配置した右側セットとの間に、左側の光混合部からの混合光を一方端面から取り込んでその内部を伝搬させると共に、右側の光混合部からの混合光を他方端面から取り込んでその内部を伝搬させて被照射物に対して光を平坦面から均一に面照射する第4導光部材が前記第3導光部材に代えて設けられ、これを1ユニットとし、被照射物のサイズに応じて、該1ユニットが前後方向に複数並べてられて配置されている。   Further preferably, in the simulated sunlight irradiation device of the present invention, the left set in which the first light irradiation device, the second light irradiation device, and the light mixing unit are disposed, the first light irradiation device, the second Between the light irradiation device and the right set on which the light mixing unit is disposed, the mixed light from the left light mixing unit is taken in from one end surface and propagated through the inside, and the mixed light from the right light mixing unit is transmitted. A fourth light guide member that takes in from the other end surface and propagates through the inside thereof to uniformly irradiate the object to be irradiated with light from a flat surface is provided in place of the third light guide member, and this is defined as one unit. Depending on the size of the irradiated object, a plurality of the units are arranged in the front-rear direction.

本発明の太陽電池パネル用検査装置は、本発明の上記擬似太陽光照射装置を用いて太陽電池パネルの出力特性を測定して良否判定を行うものであり、そのことにより上記目的が達成される。   The inspection apparatus for solar cell panels of the present invention measures the output characteristics of the solar cell panel by using the simulated solar light irradiation apparatus of the present invention and makes a pass / fail judgment, thereby achieving the above object. .

上記構成により、以下、本発明の作用を説明する。   With the above configuration, the operation of the present invention will be described below.

本発明においては、第1光源と、第1光源からの出射光を反射させる第1反射部材と、第1反射部材の反射前方側に配設されて、第1光源の出射光を取り出す開口部が形成された開口部材と、開口部材の開口部からの出射光を一方端面から取り込んで指向性が高められた光を他方端面から出射する第1導光部材と、第1導光部材の他方端面から出射される光のスペクトルを調整する第1光学フィルタとを有し、開口部毎に光量調整部材が配置され、光量調整部材によりスペクトル調整された光の出射光量調整が行われている。   In the present invention, the first light source, the first reflecting member that reflects the emitted light from the first light source, and the opening that is disposed on the reflection front side of the first reflecting member and extracts the emitted light from the first light source. A first light guide member that takes in light emitted from one end face and emits light with enhanced directivity from the other end face, and the other of the first light guide members. A first optical filter that adjusts the spectrum of the light emitted from the end face, and a light amount adjusting member is disposed for each opening, and the amount of emitted light of the spectrum adjusted by the light amount adjusting member is adjusted.

このように、第1光源の出射光を取り出す開口部毎に光量調整部材が配置され、光量調整部材により、スペクトル調整された光の出射光量調整が行われるため、面照射用の導光部材から被照射物への出射光の位置によるバランスを調整する際に、面照射用の導光部材に光を入射させるまでの途中の光学系の状態を変えないで、被照射物への照射光量だけを調整することが可能となる。つまり、擬似太陽光を被照射物に照射する際に、照射光のスペクトル分布を固定した後でも、そのスペクトル分布を変えることなく、照射光量だけを調整することが可能となる。   In this way, the light amount adjusting member is arranged for each opening from which the emitted light of the first light source is taken out, and the emitted light amount adjustment of the spectrum-adjusted light is performed by the light amount adjusting member. When adjusting the balance according to the position of the emitted light to the irradiated object, without changing the state of the optical system until the light is incident on the light guide member for surface irradiation, only the amount of light irradiated to the irradiated object Can be adjusted. That is, when irradiating the irradiated object with simulated sunlight, it is possible to adjust only the irradiation light amount without changing the spectrum distribution even after fixing the spectrum distribution of the irradiation light.

以上により、本発明によれば、第1光源の出射光を取り出す開口部毎に光量調整部材が配置され、光量調整部材により、スペクトル調整された光の出射光量調整が行われるため、面照射用の導光部材から被照射物への出射光の位置によるバランスを調整する際に、面照射用の導光部材に光を入射させるまでの途中の光学系の状態を変えないで、照射光量だけを調整することができる。つまり、擬似太陽光を被照射物に照射する際に、照射光のスペクトル分布を固定した後でも、そのスペクトル分布を変えることなく、照射光量だけを調整することができる。   As described above, according to the present invention, the light amount adjusting member is arranged for each opening from which the emitted light of the first light source is extracted, and the emitted light amount adjustment of the spectrum-adjusted light is performed by the light amount adjusting member. When adjusting the balance according to the position of the emitted light from the light guide member to the object to be irradiated, only the amount of irradiation light is applied without changing the state of the optical system halfway until the light is incident on the light guide member for surface irradiation. Can be adjusted. That is, when irradiating the object with simulated sunlight, only the amount of irradiation light can be adjusted without changing the spectrum distribution even after fixing the spectrum distribution of the irradiation light.

本発明の実施形態1における擬似太陽光照射装置の要部構成例を模式的に示す斜視図である。It is a perspective view which shows typically the principal part structural example of the pseudo | simulation sunlight irradiation apparatus in Embodiment 1 of this invention. 図1の擬似太陽光照射装置の要部構成例を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the principal part structural example of the simulated sunlight irradiation apparatus of FIG.


図1のキセノン光源、これが収容される反射部材およびその前方の開口板を示す斜視図である。It is a perspective view which shows the xenon light source of FIG. 1, the reflection member in which this is accommodated, and the opening board of the front. (a)は図1のキセノン光源、反射部材、開口板、遮光部材およびテーパ導光部材の縦断面図、(b)は図3の開口板の開口部を示す平面図である。(A) is a longitudinal cross-sectional view of the xenon light source, the reflecting member, the aperture plate, the light shielding member, and the tapered light guide member of FIG. 1, and (b) is a plan view showing the aperture of the aperture plate of FIG. (a)および(b)は、本実施形態1の擬似太陽光照射装置の光量調整についてさらに説明するための斜視図である。(A) And (b) is a perspective view for demonstrating further about light quantity adjustment of the pseudo | simulation sunlight irradiation apparatus of this Embodiment 1. FIG. 図1の擬似太陽光照射装置の平面図である。It is a top view of the pseudo | simulation sunlight irradiation apparatus of FIG. (a)は、キセノンランプの波長に対する照度を示す図、(b)は、ハロゲンランプの波長に対する照度を示す図である。(A) is a figure which shows the illumination intensity with respect to the wavelength of a xenon lamp, (b) is a figure which shows the illumination intensity with respect to the wavelength of a halogen lamp. 本発明の実施形態2における擬似太陽光照射装置の要部構成例を模式的に示す斜視図である。It is a perspective view which shows typically the principal part structural example of the simulated sunlight irradiation apparatus in Embodiment 2 of this invention. 図11の擬似太陽光照射装置の要部構成例を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the principal part structural example of the simulated sunlight irradiation apparatus of FIG. (a)および(b)は、本実施形態2の擬似太陽光照射装置の光量調整についてさらに説明するための斜視図である。(A) And (b) is a perspective view for demonstrating further about the light quantity adjustment of the pseudo | simulation sunlight irradiation apparatus of this Embodiment 2. FIG. 図18の擬似太陽光照射装置の平面図である。It is a top view of the simulated sunlight irradiation apparatus of FIG. 従来の光照射装置の要部構成例を模式的に示す縦断面図であって、ランプ光源を反射箱内に収容し、反射箱の開口部から導光部材に光を導入する場合を示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the example of a principal part structure of the conventional light irradiation apparatus, Comprising: A longitudinal section which shows the case where a lamp light source is accommodated in a reflection box and light is introduced into the light guide member from the opening part of a reflection box FIG.

以下に、本発明の光照射装置を擬似太陽光照射装置に適用すると共に、この擬似太陽光照射装置を太陽電池パネル用検査装置に適用した場合の実施形態1、2について図面を参照しながら詳細に説明する。なお、各図における構成部材のそれぞれの厚みや長さなどは図面作成上の観点から、図示する構成に限定されるものではない。   Below, while applying the light irradiation apparatus of this invention to a pseudo-sunlight irradiation apparatus, and this pseudo-sunlight irradiation apparatus when it applies to the inspection apparatus for solar cell panels, it demonstrates in detail, referring drawings. Explained. In addition, each thickness, length, etc. of the structural member in each figure are not limited to the structure to illustrate from a viewpoint on drawing preparation.

(実施形態1)
図1は、本発明の実施形態1における擬似太陽光照射装置の要部構成例を模式的に示す斜視図である。図2は、図1の擬似太陽光照射装置の要部構成例を模式的に示す縦断面図である。
(Embodiment 1)
FIG. 1 is a perspective view schematically showing a configuration example of a main part of a simulated solar light irradiation apparatus according to Embodiment 1 of the present invention. FIG. 2 is a longitudinal sectional view schematically showing an example of the configuration of the main part of the simulated solar light irradiation apparatus of FIG.

図1および図2において、本実施形態1の擬似太陽光照射装置1には、キセノンランプのキセノン光源2と、キセノン光源2を内部に収容する内面が反射面の反射部材3aおよびその前方部分を覆う開口板3bと、この開口板3bの開口部(図示せず)からのキセノン出射光をその下端面から取り込んで内部を伝搬させることにより指向性を良くするテーパカプラであるテーパ導光部材4と、このテーパ導光部材4からのキセノン光をフィルタリングして短波長側の擬似太陽光のスペクトルとする第1光学フィルタ(スペクトル調整用フィルタ)としてのエアマスフィルタ5とを有する第1光照射装置6が設けられている。このように、第1光照射装置6は、キセノン光源2からの出射光が反射部材3aによって反射され集光されて、開口板3bの開口部から出射され、このキセノン出射光を、テーパカプラと呼ばれるテーパ導光部材4の下端面から取り込んでその内部を伝搬させて指向性の高い平行光とし、テーパ導光部材4の上端面からエアマスフィルタ5を通して指向性の高いキセノン光を出射する。このエアマスフィルタ5からのキセノン光は擬似太陽光の短波長側のスペクトルに相当している。   1 and 2, the pseudo-sunlight irradiation device 1 according to the first embodiment includes a xenon light source 2 of a xenon lamp, a reflection member 3a having an inner surface that houses the xenon light source 2 and a front portion thereof. An opening plate 3b to be covered, and a tapered light guide member 4 that is a taper coupler that improves the directivity by taking in xenon light from an opening (not shown) of the opening plate 3b and propagating the light through the inside. The first light irradiating device 6 having an air mass filter 5 as a first optical filter (spectrum adjusting filter) that filters the xenon light from the tapered light guide member 4 to produce a pseudo-sunlight spectrum on the short wavelength side. Is provided. As described above, in the first light irradiation device 6, the emitted light from the xenon light source 2 is reflected and collected by the reflecting member 3a and emitted from the opening of the aperture plate 3b, and this xenon emitted light is called a taper coupler. It takes in from the lower end surface of the taper light guide member 4 and propagates through the inside to produce parallel light with high directivity, and emits xenon light with high directivity from the upper end surface of the taper light guide member 4 through the air mass filter 5. The xenon light from the air mass filter 5 corresponds to the spectrum on the short wavelength side of the pseudo-sunlight.

また、この擬似太陽光照射装置1には、ハロゲンランプなどのハロゲン光源7と、ハロゲン光源7を収容する内面が反射面の反射部材8と、この反射部材8の内面で反射したハロゲン出射光をその下端面から取り込んで内部を伝搬させることにより指向性を良くするテーパ導光部材9と、このテーパ導光部材9の端面からのハロゲン出射光をフィルタリングして長波長側の擬似太陽光とする第2光学フィルタ(スペクトル調整用フィルタ)としてのエアマスフィルタ10とを有する第2光照射装置11が設けられている。このように、第2光照射装置11は、ハロゲン光源7の出射光が反射部材8で反射し集光して出射され、このハロゲン出射光を、テーパカプラと呼ばれるテーパ導光部材9の一方端面から取り込んでその内部を伝搬させて指向性の高い平行光とし、テーパ導光部材9の他方端面からスペクトル調整用のエアマスフィルタ10を通して指向性の高いハロゲン出射光を出射する。このエアマスフィルタ10からのハロゲン光は擬似太陽光の長波長側のスペクトルに相当している。ハロゲン光源7は1フィラメントタイプでもよいが、パワーを稼ぐために、ここでは、ハロゲン光源7は2フィラメントタイプを用い、二つのハロゲンランプに対応してそれぞれテーパ導光部材9をそれぞれ用いている。   Further, the simulated solar light irradiation device 1 includes a halogen light source 7 such as a halogen lamp, a reflection member 8 whose inner surface that accommodates the halogen light source 7 is a reflection surface, and halogen emission light reflected by the inner surface of the reflection member 8. The tapered light guide member 9 that improves the directivity by taking in from the lower end surface and propagating the inside, and the halogen emitted light from the end surface of the tapered light guide member 9 is filtered to form pseudo-sunlight on the long wavelength side. A second light irradiation device 11 having an air mass filter 10 as a second optical filter (spectrum adjustment filter) is provided. Thus, in the second light irradiation device 11, the emitted light of the halogen light source 7 is reflected by the reflecting member 8 and condensed and emitted, and this halogen emitted light is emitted from one end face of the tapered light guide member 9 called a tapered coupler. The light is taken in and propagated through the inside to produce parallel light with high directivity, and halogen output light with high directivity is emitted from the other end face of the tapered light guide member 9 through the air mass filter 10 for spectrum adjustment. The halogen light from the air mass filter 10 corresponds to the long wavelength side spectrum of pseudo-sunlight. Although the halogen light source 7 may be a single filament type, in order to increase power, here, the halogen light source 7 uses a two-filament type and uses a tapered light guide member 9 corresponding to each of two halogen lamps.

さらに、この擬似太陽光照射装置1には、第1光照射装置6のスペクトル調整用のエアマスフィルタ5からの短波長のキセノン出射光を反射させると共に、第2光照射装置11のスペクトル調整用のエアマスフィルタ10からの長波長のハロゲン出射光を透過させることにより光混合して太陽光に類似した擬似太陽光を得る反射・透過手段としての波長選択ミラー(または波長混合ミラー)などの光混合部12と、この光混合部12からの拡散光である擬似太陽光を一方端面から取り込んでその内部を伝搬させて例えば太陽電池パネルなどの被照射物13に対して指向性の高い光Lを均一に面照射する導光部材14とを有する第3光照射装置15が設けられている。また、図2に示すように、第3光照射装置15が左右に配置されているが、導光部材14同士はお互いの端面を当接している。   Further, the pseudo-sunlight irradiation device 1 reflects the short wavelength xenon emission light from the air mass filter 5 for spectrum adjustment of the first light irradiation device 6 and also for spectrum adjustment of the second light irradiation device 11. Light mixing section such as a wavelength selection mirror (or wavelength mixing mirror) as a reflection / transmission means for obtaining pseudo-sunlight similar to sunlight by transmitting light having a long wavelength from the air mass filter 10 and transmitting it. 12 and pseudo-sunlight, which is diffused light from the light mixing unit 12, is taken from one end face and propagated through the inside thereof to uniformly distribute light L having high directivity to the irradiated object 13 such as a solar cell panel. A third light irradiation device 15 having a light guide member 14 for surface irradiation is provided. Moreover, as shown in FIG. 2, although the 3rd light irradiation apparatus 15 is arrange | positioned at right and left, light guide members 14 contact | abut each other's end surface.

図3は、図1のキセノン光源2、これが収容される反射部材3aおよびその前方の開口板3bを示す斜視図である。図4(a)は図1のキセノン光源2、反射部材3a、開口板3b、遮光部材32およびテーパ導光部材4の縦断面図、図4(b)は図3の開口板3bの開口部および遮光部材32を示す平面図である。   FIG. 3 is a perspective view showing the xenon light source 2 of FIG. 1, the reflecting member 3a in which it is accommodated, and the opening plate 3b in front of it. 4A is a longitudinal sectional view of the xenon light source 2, the reflecting member 3a, the aperture plate 3b, the light shielding member 32, and the tapered light guide member 4 in FIG. 1, and FIG. 4B is an aperture portion of the aperture plate 3b in FIG. 4 is a plan view showing a light shielding member 32. FIG.

図3、図4(a)および図4(b)に示すように、キセノン光源2からの出射光を反射して集光するための反射部材3aおよび、その反射方向前方に開口部材としての開口板3bが湾曲して設けられており、開口板3bに所定間隔を置いて複数の開口部31が形成されている。この開口部31から指向性のよいキセノン光を取り出して、テーパカプラであるテーパ導光部材4の下端面に入射させるように構成している。この開口部31の開口サイズを大きくすると、より多くの照射光量をテーパ導光部材4の下端面に入射させることができる。また、開口板3bの開口部31と反射部材3aの間に、光量調整部材として、所定幅dでライン状(短冊状)の遮光部材32が開口部31の一部と重なるように、反射部材3aの対向辺間に掛け渡されて固定されている。このように、遮光部材32は反射部材3aに取り付け可能とされており、遮光部材32を開口板3bの開口部31と反射部材3aの間に取り付けると、光が遮光される分だけ、より少ない照射光量をテーパ導光部材4の下端面に入射させることができる。この場合、開口部31の長手方向(横方向)に対して直角、図4(b)のように縦方向(横方向も斜め方向も好ましくない)に遮光部材32を用いる。また、キセノン光源2側であるため、遮光部材32を用いても温度特性にはそれほど悪影響しない。遮光部材32を用いて取り出す光量を減らす場合には、遮光部材32の幅寸法dに応じて取り出し光量を減らすことができる。このように、遮光部材32の幅寸法dを変えることにより、キセノン光源2からの出射光を取り出す光量を調整することができる。この遮光部材32は、光量調整部材であり、波長依存性を持たない金属を黒色化した部材を用いることにより、各波長帯を均等に調整することができる。また、光がテーパ導光部材4を出射した後に遮光して光量調整したり、スペクトル調整用のエアマスフィルタ5を出射した直後に光量調整部材を入れて光量調整してしまうと、スペクトルの状態が変わってしまうため、遮光部材32の位置は、スペクトルや指向性に影響が最も少ない位置、即ち、反射部材3aの前方の開口板3bと、反射部材3aの間に配置するのが望ましい。   As shown in FIGS. 3, 4 (a), and 4 (b), a reflecting member 3 a for reflecting and collecting the light emitted from the xenon light source 2, and an opening as an opening member in front of the reflecting direction. The plate 3b is provided in a curved shape, and a plurality of openings 31 are formed at predetermined intervals on the opening plate 3b. Xenon light having good directivity is extracted from the opening 31 and is incident on the lower end surface of the tapered light guide member 4 that is a tapered coupler. When the opening size of the opening 31 is increased, a larger amount of irradiation light can be incident on the lower end surface of the tapered light guide member 4. Further, the reflection member is arranged such that a line-shaped (strip-shaped) light-shielding member 32 having a predetermined width d overlaps a part of the opening 31 between the opening 31 of the opening plate 3b and the reflecting member 3a. It is spanned between the opposite sides of 3a and fixed. As described above, the light shielding member 32 can be attached to the reflecting member 3a. When the light shielding member 32 is attached between the opening 31 of the aperture plate 3b and the reflecting member 3a, the light shielding amount is reduced. The amount of irradiation light can be incident on the lower end surface of the tapered light guide member 4. In this case, the light shielding member 32 is used in a direction perpendicular to the longitudinal direction (lateral direction) of the opening 31 and in the vertical direction (both horizontal and oblique directions are not preferable) as shown in FIG. Further, since it is on the xenon light source 2 side, even if the light shielding member 32 is used, the temperature characteristics are not so badly affected. When the amount of light extracted using the light shielding member 32 is reduced, the amount of extracted light can be reduced according to the width dimension d of the light shielding member 32. In this way, by changing the width dimension d of the light shielding member 32, the amount of light extracted from the xenon light source 2 can be adjusted. The light shielding member 32 is a light amount adjusting member, and each wavelength band can be adjusted evenly by using a blackened metal having no wavelength dependency. Further, if the light is adjusted after the light exits from the tapered light guide member 4 by light shielding, or if the light amount adjustment member is inserted to adjust the light amount immediately after exiting the air mass filter 5 for spectrum adjustment, the state of the spectrum is changed. Therefore, it is desirable that the position of the light shielding member 32 be arranged between the reflection member 3a and the position having the least influence on the spectrum and directivity, that is, the opening plate 3b in front of the reflection member 3a.

これによって、後述する面照射の導光部材14,14からの出射光量のバランスを調整する際に、導光部材14に光を入射させるための途中の光学系の状態を変化させないで、光量だけを変化させることができる。つまり、擬似太陽光のスペクトル分布を固定した後でも、擬似太陽光のスペクトル分布を変化させることなく、導光部材14,14からの出射光量を調整することができる。   Thereby, when adjusting the balance of the amount of light emitted from the light guide members 14 and 14 for surface irradiation, which will be described later, only the light amount is obtained without changing the state of the optical system on the way for the light to enter the light guide member 14. Can be changed. That is, even after fixing the spectrum distribution of the artificial sunlight, the amount of light emitted from the light guide members 14 and 14 can be adjusted without changing the spectrum distribution of the artificial sunlight.

ここで、光量調整についてさらに説明する。   Here, the light amount adjustment will be further described.

キセノン光源2およびハロゲン光源7と導光部材14とを1対1に対応させ、キセノン光源2やハロゲン光源7をランプを交換したり、ランプに流れる電流を調整したりすることにより、キセノン光源2およびハロゲン光源7から出射される光量を制御して、導光部材14からの出力光量を個別に精度よく制御することができる。また同様に、エアマスフィルタ5およびエアマスフィルタ10と導光部材14とを1対1に対応させ、エアマスフィルタ5およびエアマスフィルタ10を、光透過率の異なるエアマスフィルタに取替えて各導光部材14に入射される光量を制御して、導光部材14からの出力光量を個別に精度よく制御することができる。   The xenon light source 2 and the halogen light source 7 and the light guide member 14 are in a one-to-one correspondence, and the xenon light source 2 and the halogen light source 7 are exchanged with each other and the current flowing through the lamp is adjusted. In addition, the amount of light output from the light guide member 14 can be individually and accurately controlled by controlling the amount of light emitted from the halogen light source 7. Similarly, the air mass filter 5, the air mass filter 10 and the light guide member 14 are made to correspond one-to-one, and the air mass filter 5 and the air mass filter 10 are replaced with air mass filters having different light transmittances. By controlling the amount of incident light, the amount of light output from the light guide member 14 can be individually and accurately controlled.

このように、キセノン光源2およびハロゲン光源7と導光部材14とを1対1に対応させ、かつ、エアマスフィルタ5およびエアマスフィルタ10と導光部材14とを1対1に対応させたため、従来のように、ランプ光源からの出射光を多数のミラーにより被照射物に照射する照度を面全体で均一に調整するものに比べて、照射面への照度の調整に時間を要することなく、被照射物13の照射面に対して精度のよい照度の調整が可能となって、被照射物13の照射面に対する均一な照度を得ることができる。   As described above, the xenon light source 2 and the halogen light source 7 and the light guide member 14 are made to correspond one-to-one, and the air mass filter 5, the air mass filter 10 and the light guide member 14 are made to correspond one-to-one. As described above, the illuminance applied to the irradiated surface can be adjusted without much time compared to the case where the illuminance emitted from the lamp light source is uniformly adjusted over the entire surface by irradiating the irradiated object with a large number of mirrors. It is possible to adjust the illuminance with high accuracy with respect to the irradiation surface of the irradiation object 13, and uniform illuminance with respect to the irradiation surface of the irradiation object 13 can be obtained.

次に、第1光照射装置6および第2光照射装置11のいずれか一方を用いるかまたは、別の一つの光照射装置を用いて、ランプ光源と導光部材14とを1対1に対応させ、かつ、エアマスフィルタと導光部材14とを1対1に対応させた方が、光照射装置が一つになった分だけ、光量調整がさらに容易になる。これを図5(a)および図5(b)に示している。   Next, either one of the first light irradiation device 6 and the second light irradiation device 11 is used, or another one of the light irradiation devices is used, and the lamp light source and the light guide member 14 are in a one-to-one correspondence. In addition, when the air mass filter and the light guide member 14 are in a one-to-one correspondence, the amount of light can be adjusted more easily because the number of light irradiation devices is one. This is shown in FIGS. 5 (a) and 5 (b).

図5(a)および図5(b)は、本実施形態1の擬似太陽光照射装置1の光量調整について説明するための斜視図である。図5(a)および図5(b)では、図1の上記第1光照射装置6や光混合部12(波長選択ミラー)は図示されていない。光量調整だけについて、図5(a)および図5(b)を用いた説明では、上記第1光照射装置6や光混合部12(波長選択ミラー)はなくてもよい。同様に、ランプ光源や反射部材についても各種構造を取り得る。   FIG. 5A and FIG. 5B are perspective views for explaining light amount adjustment of the simulated solar light irradiation device 1 of the first embodiment. 5 (a) and 5 (b), the first light irradiation device 6 and the light mixing unit 12 (wavelength selection mirror) of FIG. 1 are not shown. In the description using FIG. 5A and FIG. 5B only for the light amount adjustment, the first light irradiation device 6 and the light mixing unit 12 (wavelength selection mirror) may be omitted. Similarly, the lamp light source and the reflecting member can have various structures.

図5(a)に示すように各導光部材14と光源ランプ2Cとを一対一に対応させ、ランプを交換したり電流を調整することにより、光源ランプ2Cからの出力光量を個別に制御することができる。この場合、もちろん、光透過率の異なるエアマスフィルタ10C(スペクトル調整用フィルタ)に取替えて各導光部材14に入射される光量を調節することもできる。   As shown in FIG. 5 (a), each light guide member 14 and the light source lamp 2C are made to correspond one-to-one, and the output light amount from the light source lamp 2C is individually controlled by exchanging the lamps or adjusting the current. be able to. In this case, of course, the amount of light incident on each light guide member 14 can be adjusted by replacing the air mass filter 10C (spectrum adjusting filter) with a different light transmittance.

また、図5(b)に示すように各導光部材14に対して、分割せず光源ランプ2Dのように一括照射型とし、各導光部材14とエアマスフィルタ10Dとを一対一に対応させ、エアマスフィルタ10D(スペクトル調整用フィルタ)だけを取替えて各フィルタ透過率を個別に制御するようにしてもよく、または透過率制御用に補正用のフィルタを、エアマスフィルタ10D(スペクトル調整用フィルタ)とは別に光透過フィルタを追加することによっても、導光部材14に入射する光量を抑えて調整することができる。   Further, as shown in FIG. 5 (b), the light guide members 14 are not divided into a batch irradiation type like the light source lamp 2D, and the light guide members 14 and the air mass filters 10D are made to correspond one-to-one. Alternatively, only the air mass filter 10D (spectrum adjustment filter) may be replaced to control each filter transmittance individually, or a correction filter for the transmittance control may be used as an air mass filter 10D (spectrum adjustment filter). The light quantity incident on the light guide member 14 can also be suppressed and adjusted by adding a light transmission filter separately.

図5(a)のハロゲン光源2Cおよび反射部材3Cの代わりに、図2のキセノン光源2、反射部材3aおよび開口板3bを用いてもよい。また、図5(b)のハロゲン光源2Dおよび反射部材3Dの代わりに、キセノン光源、反射部材および開口板を用いてもよい。この場合にも、前述したように、開口板3bの開口部31と反射部材の間に、所定幅dでライン状(短冊状)の遮光部材32を取り付けることにより、照射光量を制御してテーパ導光部材4の下端面に入射させることができる。   Instead of the halogen light source 2C and the reflecting member 3C in FIG. 5A, the xenon light source 2, the reflecting member 3a, and the aperture plate 3b in FIG. 2 may be used. Further, a xenon light source, a reflecting member, and an aperture plate may be used instead of the halogen light source 2D and the reflecting member 3D in FIG. Also in this case, as described above, a linear (strip-shaped) light shielding member 32 with a predetermined width d is attached between the opening 31 of the opening plate 3b and the reflecting member, thereby controlling the amount of irradiation and taper. The light can be incident on the lower end surface of the light guide member 4.

また、図5(b)のように長い光源の場合に特に両端で光量が低下するが、光量調整の具体例として両端側の光量を増やして照射光量を照射面全体で均一にする場合について更に説明する。なお、これを、第1光照射装置6および第2光照射装置11のいずれか一方を用いるかまたは、別の一つの光照射装置を用いた図5(a)および図5(b)の場合にも、適用することができるが、ここでは、図1の擬似太陽光照射装置1の場合について説明する。   Further, although the light amount decreases particularly at both ends in the case of a long light source as shown in FIG. 5B, as a specific example of the light amount adjustment, the light amount at both ends is increased to make the irradiation light amount uniform over the entire irradiation surface. explain. In this case, either one of the first light irradiation device 6 and the second light irradiation device 11 is used, or another one of the light irradiation devices is used in the case of FIGS. 5A and 5B. Although it is applicable also here, the case of the simulated sunlight irradiation apparatus 1 of FIG. 1 is demonstrated.

図6は、図1の擬似太陽光照射装置1の平面図である。   FIG. 6 is a plan view of the simulated solar light irradiation device 1 of FIG.

第1光照射装置6、第2光照射装置11および第3光照射装置15の組を1ユニットとして、左右に2組設け、これを前後方向に8セット設けているが、前後方向の両端(最も手前と最も奥側)の照射光量が少なくなる傾向にあるので、図6の平面図に示すように、両端側の照射光量を、それ以外の中央部側の照射光量よりも、被照射物13への照射光量が均一になるようにここでは増やしている。ここでは、キセノン光およびハロゲン光の光量を共に両端側で増やしているが、ハロゲン光のみについて説明している。この前後方向の両端側において、上記ハロゲン光源7を少し大きい出力のハロゲン光源7Aを用いることができるようにしている。   The set of the first light irradiation device 6, the second light irradiation device 11, and the third light irradiation device 15 is provided as one unit, two sets on the left and right sides, and eight sets are provided in the front-rear direction. As shown in the plan view of FIG. 6, the irradiation light quantity at both ends is set to be smaller than the irradiation light quantity at the other central part side. 13 is increased here so that the amount of light irradiated to 13 becomes uniform. Here, both the light amounts of xenon light and halogen light are increased at both ends, but only halogen light is described. At both ends in the front-rear direction, the halogen light source 7 can be used with a slightly larger output halogen light source 7A.

この擬似太陽光照射装置1には、前後方向の両端側において、上記ハロゲン光源7よりも出力光量が高いハロゲン光源7Aと、ハロゲン光源7Aを収容する内面が反射面の反射部材8Aと、この反射部材8Aの内面で反射したハロゲン出射光をその一方端面から取り込んで内部を伝搬させることにより指向性を良くするテーパ導光部材9と、このテーパ導光部材9の他方端面からのハロゲン出射光をフィルタリングして長波長側の擬似太陽光とする第2光学フィルタとしてのエアマスフィルタ10とを有する第2光照射装置11Aを設けている。この場合、反射部材8A、テーパ導光部材9およびエアマスフィルタ10は、ハロゲン光源7Aの出力光量に適合したものとし、出力光量に適合していれば、反射部材8、8Aは同じものであってもよい。   The pseudo-sunlight irradiating device 1 includes a halogen light source 7A having a higher output light amount than the halogen light source 7 on both ends in the front-rear direction, a reflecting member 8A having an inner surface that accommodates the halogen light source 7A, and a reflection member. The tapered light guide member 9 that improves the directivity by taking in the halogen emitted light reflected by the inner surface of the member 8A from one end face and propagating the inside, and the halogen emitted light from the other end face of the tapered light guide member 9 There is provided a second light irradiation device 11A having an air mass filter 10 as a second optical filter that performs filtering to produce pseudo-sunlight on the long wavelength side. In this case, the reflecting member 8A, the tapered light guide member 9, and the air mass filter 10 are adapted to the output light amount of the halogen light source 7A, and the reflecting members 8, 8A are the same as long as they are adapted to the output light amount. Also good.

また、本実施形態1の擬似太陽光照射装置1において、上記第1光照射装置6、第2光照射装置11および第3光照射装置15の組がユニット化されて左右2組配設されたものが、例えば8セット(左右の2ユニットで1セット;全16ユニット)だけ前後方向に並べられて設けられているが、少なくともユニットは、照射強度(光量)が調整できるように、出力光量の異なるランプまたは、光透過率の異なるエアマスフィルタ5(スペクトル調整用フィルタ)を取替え可能としておくことにより、導光部材14に入射する照射強度(光量)を個別に調整可能とすることができる。前記した上記ハロゲン光源7とこれよりも出力光量が高いハロゲン光源7Aとの取り付け部(共通を含む)を設けることにより、出力光量の異なる光源を取替え自在にしておけばよい。   Further, in the simulated solar light irradiation device 1 of the first embodiment, the set of the first light irradiation device 6, the second light irradiation device 11, and the third light irradiation device 15 is unitized and arranged in two right and left sets. For example, 8 sets (one set of 2 units on the left and right; 16 units in total) are arranged in the front-rear direction, but at least the unit has an output light quantity so that the irradiation intensity (light quantity) can be adjusted. By making it possible to replace different lamps or air mass filters 5 (spectrum adjusting filters) having different light transmittances, it is possible to individually adjust the irradiation intensity (light quantity) incident on the light guide member 14. A light source having a different output light quantity may be exchanged by providing a mounting portion (including common) of the halogen light source 7 and the halogen light source 7A having a higher output light quantity than the above.

次に、光量調整の具体例として両端側以外の光量を減らして照射光量を照射面全体で均一にする場合について更に説明する。本具体例は、図5(b)の形態において特に有効である。   Next, as a specific example of the light amount adjustment, a case where the amount of light other than the both ends is reduced to make the amount of irradiated light uniform over the entire irradiated surface will be further described. This specific example is particularly effective in the embodiment of FIG.

前後方向の両端側以外において、開口板3bの開口部31と反射部材の間に、所定幅dでライン状(短冊状)の遮光部材32を取り付けることにより、照射光量を減らしてテーパ導光部材4の下端面に入射させることができる。これによって、両端側以外の中央部分の照射光量を、両端側の照射光量よりも減らして、被照射物13への照射光量が照射面全体で均一にすることができる。   A tapered light guide member that reduces the amount of irradiation light by attaching a light shielding member 32 in a line shape (strip shape) with a predetermined width d between the opening portion 31 of the opening plate 3b and the reflection member at both ends in the front-rear direction. 4 can be made incident on the lower end surface. Thereby, the irradiation light quantity of the center part other than the both end sides can be reduced more than the irradiation light quantity of both end sides, and the irradiation light quantity to the irradiated object 13 can be made uniform on the whole irradiation surface.

次に、照射面積変更自在なユニット化について説明する。   Next, the unitization in which the irradiation area can be changed will be described.

本実施形態1の擬似太陽光照射装置1は、図1に示すように、上記第1光照射装置6、第2光照射装置11および第3光照射装置15の組が左右2組配設され、この2組が、本実施形態1では前後方向に8セット(16ユニット)隙間なく並べられて設けられている。上記第1光照射装置6、第2光照射装置11および第3光照射装置15の組がユニット化されて精度よく製造することができ、上記第1光照射装置6、第2光照射装置11および第3光照射装置15のユニットが組み合わされて、所望の大きさの太陽電池パネルに対応した擬似太陽光の照射面の大きさとすることができる。したがって、上記第1光照射装置6、第2光照射装置11および第3光照射装置15の組の左右2組が、前後方向に8セット(16ユニット)に全く限ることはない。これによって、照射面積変更自在な光学系としてユニット化とすることができる。なお、この場合、第1光照射装置6において、キセノン光源2と、反射部材3aおよび開口板3bは一括照射型であるので、これらについては共通に用いることになる。これらのキセノン光源2と反射部材3aおよび開口板3bを、テーパ導光部材4毎に設けることもできる。   As shown in FIG. 1, the simulated solar light irradiation apparatus 1 of Embodiment 1 includes two sets of left and right sets of the first light irradiation apparatus 6, the second light irradiation apparatus 11, and the third light irradiation apparatus 15. In the first embodiment, these two sets are arranged side by side with 8 sets (16 units) in the front-rear direction. A set of the first light irradiation device 6, the second light irradiation device 11 and the third light irradiation device 15 can be unitized and manufactured with high accuracy, and the first light irradiation device 6 and the second light irradiation device 11 can be manufactured. And the unit of the 3rd light irradiation apparatus 15 is combined, and it can be set as the magnitude | size of the irradiation surface of the pseudo-sunlight corresponding to the solar cell panel of a desired magnitude | size. Therefore, the left and right two sets of the first light irradiation device 6, the second light irradiation device 11, and the third light irradiation device 15 are not limited to 8 sets (16 units) in the front-rear direction. As a result, it is possible to form a unit as an optical system whose irradiation area can be changed. In this case, in the first light irradiation device 6, the xenon light source 2, the reflecting member 3a, and the aperture plate 3b are of a collective irradiation type, and therefore, these are used in common. The xenon light source 2, the reflecting member 3 a, and the aperture plate 3 b can be provided for each tapered light guide member 4.

このように、上記第1光照射装置6、第2光照射装置11および第3光照射装置15の組を1単位としてユニット化すると、1単位の照射面の照射強度のばらつきを抑えて精度よく所望の照射強度(光量)とすることができて、ユニット化した1単位の照射面を組み合わせて大きい照射面とする場合にも、大きい照射面全体で照射強度のばらつきを抑えて均一な所望の照射強度(光量)とすることができる。要するに、大面積の照射面の照射強度を高精度で均一にすることは難しいが、大面積の照射面を複数に分割し、その小面積の照射面の照射強度を高精度に均一化すれば、それらを組み合わせるだけで、大面積の照射面の照射強度(光量)を高精度に均一化することができる。   Thus, when the set of the first light irradiation device 6, the second light irradiation device 11, and the third light irradiation device 15 is unitized as one unit, variation in irradiation intensity of the irradiation surface of one unit is suppressed with high accuracy. Even when a single irradiation surface (unitized unitized) can be combined to make a large irradiation surface, the desired irradiation intensity (light quantity) can be combined and a uniform desired light intensity can be suppressed over the entire large irradiation surface. It can be set as irradiation intensity (light quantity). In short, it is difficult to make the irradiation intensity of a large-area irradiation surface uniform with high accuracy, but if the large-area irradiation surface is divided into multiple parts and the irradiation intensity of the small-area irradiation surface is made uniform with high precision, By simply combining them, the irradiation intensity (light quantity) of the irradiation surface with a large area can be made uniform with high accuracy.

したがって、第1光照射装置6、第2光照射装置11および第3光照射装置15の組を1ユニットとして、1ユニットの照射強度(光量)を高精度に製造しておけば、太陽電池パネルのサイズに合わせて組み立てるだけで、従来、時間かけて行っていた照射強度(光量)の光量調整を不要とすることができる。即ち、従来は、太陽電池パネルのサイズに応じて、各要所に基準撮像セルが設けられた照射強度検査装置により、大面積の照射面全体のうちのどの部分の照射強度が低いかを測定し、その照射強度が低い部分の照射強度を上げるように照射強度の調整をする必要があったが、それも不要とすることができる。また、定期的なメンテナンス時にも、照射強度調整が不要である。ユニット化した1単位の光照射装置をばらつきなく精度よく製造しておけば、照射強度調整が不要であり、メンテナンス性に優れている。従来はこの照射面全体の照射強度調整(光量調整)に時間がかかっていた。   Accordingly, if the set of the first light irradiation device 6, the second light irradiation device 11, and the third light irradiation device 15 is taken as one unit and the irradiation intensity (light quantity) of one unit is manufactured with high accuracy, the solar cell panel The light intensity adjustment of the irradiation intensity (light intensity), which has been conventionally performed over time, can be made unnecessary by simply assembling it according to the size. That is, conventionally, according to the size of the solar cell panel, the irradiation intensity inspection device provided with the reference imaging cell at each important point measures which part of the entire irradiation area of the large area has low irradiation intensity. However, although it is necessary to adjust the irradiation intensity so as to increase the irradiation intensity in the portion where the irradiation intensity is low, it can also be made unnecessary. Further, it is not necessary to adjust the irradiation intensity during regular maintenance. If a unitized light irradiation device is manufactured with high accuracy and no variation, irradiation intensity adjustment is unnecessary and the maintenance is excellent. Conventionally, it took time to adjust the irradiation intensity (light amount adjustment) of the entire irradiation surface.

次に、擬似太陽光を均一に太陽電池パネルに面照射して得られる発電量の良否を精密に検査することができる太陽電池パネル検査装置について説明する。   Next, a solar cell panel inspection apparatus capable of precisely inspecting the quality of the power generation amount obtained by uniformly irradiating the solar cell panel with simulated sunlight will be described.

図7(a)は、キセノンランプの波長に対する照度を示す図、図7(b)は、ハロゲンランプの波長に対する照度を示す図である。   FIG. 7A shows the illuminance with respect to the wavelength of the xenon lamp, and FIG. 7B shows the illuminance with respect to the wavelength of the halogen lamp.

キセノンランプからの出射光は、図7(a)に示すように、温度上昇に寄与する熱線成分はハロゲン光よりも少なく太陽光の短波長側のスペクトルを有し、ハロゲンランプからの出射光は、図7(b)に示すように、温度上昇に寄与する熱線成分が多く、太陽光の長波長側のスペクトルを有している。キセノンランプとハロゲンランプとの各出射光を光混合部12を通して混合することにより、太陽光に類似した擬似太陽光を得ることができる。この擬似太陽光を波長選択ミラー(または波長混合ミラー)などの光混合部12から拡導光部材14,14内に導いて、擬似太陽光を伝搬させて被照射物13(太陽電池パネル)に対して指向性の高い光を均一に面照射することができる。   As shown in FIG. 7A, the emitted light from the xenon lamp has a heat ray component that contributes to the temperature rise, which is less than that of halogen light, and has a spectrum on the short wavelength side of sunlight, and the emitted light from the halogen lamp is As shown in FIG. 7B, there are many heat ray components that contribute to the temperature rise, and the solar light has a long wavelength spectrum. By mixing the emitted lights of the xenon lamp and the halogen lamp through the light mixing unit 12, pseudo-sunlight similar to sunlight can be obtained. The simulated sunlight is guided from the light mixing unit 12 such as a wavelength selection mirror (or wavelength mixing mirror) into the light guide members 14 and 14, and the simulated sunlight is propagated to the irradiated object 13 (solar cell panel). On the other hand, it is possible to uniformly irradiate light with high directivity.

これによって、被照射物13としての太陽電池パネルが規定以上の発電量を有するかどうかを発電量検出装置にて検出することにより、被照射物13(例えば太陽電池パネルなど)の良否検査を行うことができる。これらの擬似太陽光照射装置1および発電量検出装置により太陽電池パネル検査装置が得られる。   Thereby, the quality test of the irradiated object 13 (for example, a solar cell panel) is performed by detecting whether or not the solar cell panel as the irradiated object 13 has a power generation amount that exceeds a specified level by the power generation amount detection device. be able to. A solar cell panel inspection device can be obtained by the simulated solar light irradiation device 1 and the power generation amount detection device.

以上により、本実施形態1によれば、光量調整部材としての遮光部材32が開口部材としての開口板3bの開口部31と、反射部材3aの間に配置され、遮光部材32の幅サイズに応じて、スペクトル調整された光の出射光量調整を行うため、面照射用の導光部材14から被照射物13への出射光のバランスを調整する際に、面照射用の導光部材14に光を入射させるための途中の光学系の状態を変えないで、その光学系に入るまでの光量だけを調整して被照射物13への照射光量だけを調整することができる。つまり、擬似太陽光を被照射物13に照射する際に、照射光のスペクトル分布を固定した後でも、そのスペクトル分布を変えることなく、照射光量だけを調整することができる。   As described above, according to the first embodiment, the light shielding member 32 as the light amount adjusting member is disposed between the opening 31 of the opening plate 3b as the opening member and the reflecting member 3a, and according to the width size of the light shielding member 32. Therefore, when adjusting the balance of the emitted light from the light guide member 14 for surface irradiation to the irradiated object 13 in order to adjust the amount of emitted light of the spectrum-adjusted light, the light is applied to the light guide member 14 for surface irradiation. Without changing the state of the optical system in the middle of making the light incident, only the amount of light before entering the optical system can be adjusted to adjust only the amount of light applied to the object 13. That is, when irradiating the object 13 with simulated sunlight, only the amount of irradiation light can be adjusted without changing the spectrum distribution even after the spectrum distribution of the irradiation light is fixed.

(実施形態2)
上記実施形態1では、第3光照射装置15が左右に配置され、導光部材14同士がお互いの端面を当接している場合について説明したが、本実施形態2では、左右の導光部材14が一体となったことにより、上記実施形態1の左右の第3光照射装置15が一体化した場合について説明する。
(Embodiment 2)
In the first embodiment, the case where the third light irradiation devices 15 are arranged on the left and right sides and the light guide members 14 are in contact with each other's end surfaces has been described. However, in the second embodiment, the left and right light guide members 14 are arranged. The case where the right and left 3rd light irradiation apparatuses 15 of the said Embodiment 1 are integrated is demonstrated because they became united.

即ち、上記実施形態1では、擬似太陽光照射装置1として、第1光照射装置6、第2光照射装置11および第3光照射装置15を1セットとしてユニット化され、ユニット化された1セット同士を左右方向に対向配置して、第3光照射装置15の第3導光部材14、14の他方端面同士を当接した2ユニットを、被照射物13のサイズに応じて、前後方向に複数並べて配置された場合について説明したが、本実施形態2では、後述する擬似太陽光照射装置1Aとして、第1光照射装置6、第2光照射装置11および光混合部12をそれぞれ配置した左側セットと、第1光照射装置6、第2光照射装置11および光混合部12をそれぞれ配置した右側セットとの間に、左側の光混合部12からの混合光を一方端面から取り込んでその内部を伝搬させると共に、右側の光混合部12からの混合光を他方端面から取り込んでその内部を伝搬させて被照射物13に対して指向性の高い光を平坦面から均一に面照射する第4導光部材14Aが設けられ、これを1セットとしてユニット化され、被照射物のサイズに応じて、ユニット化された1セットが前後方向に複数並べてられて配置された場合について説明する。   That is, in Embodiment 1 described above, as the simulated solar light irradiation device 1, the first light irradiation device 6, the second light irradiation device 11, and the third light irradiation device 15 are unitized as one set, and one set is unitized. Two units that are arranged opposite each other in the left-right direction and abut the other end surfaces of the third light guide members 14, 14 of the third light irradiation device 15 are arranged in the front-rear direction according to the size of the irradiated object 13. In the second embodiment, the left side where the first light irradiation device 6, the second light irradiation device 11, and the light mixing unit 12 are respectively disposed as a pseudo-sunlight irradiation device 1 </ b> A described later has been described. Between the set and the right set in which the first light irradiation device 6, the second light irradiation device 11, and the light mixing unit 12 are respectively arranged, the mixed light from the left light mixing unit 12 is taken in from one end face and the inside Propagate A fourth light guide that takes in the mixed light from the right-side light mixing unit 12 from the other end surface and propagates it through the inside thereof to uniformly irradiate the irradiated object 13 with light having high directivity from the flat surface. A case will be described in which the member 14A is provided and unitized as a set, and a plurality of unitized sets are arranged in the front-rear direction according to the size of the irradiated object.

図8は、本発明の実施形態2における擬似太陽光照射装置の要部構成例を模式的に示す斜視図である。図9は、図8の擬似太陽光照射装置の要部構成例を模式的に示す縦断面図である。なお、図8および図9では、図1および図2の構成部材と同様の作用効果を奏する構成部材には同一の符号を付して説明する。   FIG. 8 is a perspective view schematically showing a configuration example of a main part of the simulated solar light irradiation apparatus according to the second embodiment of the present invention. FIG. 9 is a longitudinal cross-sectional view schematically showing an example of the configuration of the main part of the simulated solar light irradiation apparatus of FIG. In FIGS. 8 and 9, the same reference numerals are given to the structural members that have the same operational effects as the structural members of FIGS. 1 and 2.

図8および図9において、本実施形態2の擬似太陽光照射装置1Aでは、上記実施形態1の第1光照射装置6および第2光照射装置11(または11A)と同一の構成であるが、左側の第1光照射装置6および第2光照射装置11(または11A)と、右側の第1光照射装置6および第2光照射装置11(または11A)とを1ユニットとして用いる点で異なっている。また、上記実施形態1の第3光照射装置15の構成に代えて第4光照射装置15Aを用いる。要するに、本実施形態2の擬似太陽光照射装置1Aは、上記実施形態1の左右の導光部材14が一体となった導光部材14Aを用いる点が、上記実施形態1の擬似太陽光照射装置1の場合とは異なっている。したがって、左右の二つの第3光照射装置15が一体化した第4光照射装置15Aを用いる。   8 and 9, the simulated solar light irradiation device 1A according to the second embodiment has the same configuration as the first light irradiation device 6 and the second light irradiation device 11 (or 11A) according to the first embodiment. The difference is that the left first light irradiation device 6 and the second light irradiation device 11 (or 11A) and the right first light irradiation device 6 and the second light irradiation device 11 (or 11A) are used as one unit. Yes. Moreover, it replaces with the structure of the 3rd light irradiation apparatus 15 of the said Embodiment 1, and uses 15A of 4th light irradiation apparatuses. In short, the simulated sunlight irradiation apparatus 1A according to the second embodiment uses the light guide member 14A in which the left and right light guide members 14 according to the first embodiment are integrated. This is different from the case of 1. Accordingly, the fourth light irradiation device 15A in which the left and right third light irradiation devices 15 are integrated is used.

この第4光照射装置15Aには、左側の第1光照射装置6のスペクトル調整用のエアマスフィルタ5からの短波長のキセノン出射光を反射させると共に、左側の第2光照射装置11のスペクトル調整用のエアマスフィルタ10からの長波長のハロゲン出射光を透過させることにより光混合して太陽光に類似した擬似太陽光を得る反射・透過手段としての波長選択ミラー(または波長混合ミラー)などの左側の光混合部12と、右側の第1光照射装置6のスペクトル調整用のエアマスフィルタ5からの短波長のキセノン出射光を反射させると共に、右側の第2光照射装置11のスペクトル調整用のエアマスフィルタ10からの長波長のハロゲン出射光を透過させることにより光混合して太陽光に類似した擬似太陽光を得る反射・透過手段としての波長選択ミラー(または波長混合ミラー)などの右側の光混合部12と、左側の光混合部12からの拡散光である擬似太陽光を一方端面から取り込んでその内部を伝搬させると共に、右側の光混合部12からの拡散光である擬似太陽光を他方端面から取り込んでその内部を伝搬させて、例えば太陽電池パネルなどの被照射物13に対して指向性の高い光Lを均一に面照射する導光部材14Aとが設けられている。この場合、第4光照射装置15Aでは、導光部材14Aが一体化されている。   The fourth light irradiation device 15A reflects short wavelength xenon emission light from the air mass filter 5 for spectrum adjustment of the left first light irradiation device 6 and also adjusts the spectrum of the second light irradiation device 11 on the left side. The left side of a wavelength selection mirror (or wavelength mixing mirror) or the like as a reflection / transmission means for transmitting pseudo-sunlight similar to sunlight by transmitting long-wavelength halogen emission light from the air mass filter 10 for use The light mixing unit 12 and the right wavelength xenon emission light from the air mass filter 5 for spectrum adjustment of the first light irradiation device 6 on the right side are reflected, and the air mass for spectrum adjustment of the second light irradiation device 11 on the right side is reflected. As reflection / transmission means for obtaining pseudo-sunlight similar to sunlight by mixing light by transmitting the long-wavelength halogen emission light from the filter 10 The right-side light mixing unit 12 such as a wavelength selection mirror (or wavelength mixing mirror) and the pseudo-sunlight that is diffused light from the left-side light mixing unit 12 are taken in from one end surface and propagated through the inside, and the right-side light The pseudo-sunlight that is diffused light from the mixing unit 12 is taken in from the other end surface and propagated inside, and the surface of the irradiated object 13 such as a solar cell panel is uniformly irradiated with light L having high directivity. A light guide member 14A is provided. In this case, in the fourth light irradiation device 15A, the light guide member 14A is integrated.

導光部材14Aは、上記実施形態1の導光部材14、14のように二つに分かれていない方が、その間の端面での反射がないので、光を効率よく活用することができる。また、上記実施形態1のようにピアノの鍵盤方式であれば、他方端面で反射させる際に、反射鏡を使えばスペクトルに悪影響する。これに対して、導光部材14Aは、上記実施形態1の導光部材14、14のように左右二つに分ける必要がないため、真ん中の端面での光調整がなくなって、スペクトル特性を良好なものにすることができる。導光部材14Aは、面積が大きくなると、カラスであるため、製造上、作るのが困難になるが、面積がある程度小さいものに最適に適用することができる。   Since the light guide member 14A is not divided into two like the light guide members 14 and 14 of the first embodiment, there is no reflection at the end face between them, so that light can be used efficiently. Further, in the case of the piano keyboard system as in the first embodiment, the spectrum is adversely affected if a reflecting mirror is used when reflecting on the other end face. On the other hand, the light guide member 14A does not need to be divided into left and right like the light guide members 14 and 14 of the first embodiment, so that light adjustment at the center end face is eliminated, and the spectral characteristics are good. Can be made. When the area of the light guide member 14A is large, it is a crow. Therefore, it is difficult to manufacture the light guide member 14A in manufacturing.

この場合も、上記実施形態1の場合と同様に、図4(a)および(b)に示すように、キセノン光源2からの出射光を反射させる反射部材3aと、反射前方側に配設されて、キセノン光源2の出射光を取り出す開口部31が形成された開口部材としての開口板3bとの間に、スペクトル調整された光の出射光量調整を行う光量調整部材としての遮光部材32が設けられている。遮光部材32は、反射部材3aの対向辺に掛け渡されて固定される。遮光部材32の幅サイズに応じて出射光量調整が行われる。遮光部材32は波長依存性を持たない金属を黒色化した遮光部材である。   Also in this case, as in the case of the first embodiment, as shown in FIGS. 4A and 4B, the reflection member 3a for reflecting the emitted light from the xenon light source 2 and the reflection front side are provided. In addition, a light shielding member 32 as a light amount adjusting member for adjusting the emitted light amount of the spectrum-adjusted light is provided between the aperture plate 3b as the opening member in which the opening portion 31 for extracting the emitted light of the xenon light source 2 is formed. It has been. The light shielding member 32 is stretched over the opposite side of the reflecting member 3a and fixed. The amount of emitted light is adjusted according to the width size of the light shielding member 32. The light shielding member 32 is a light shielding member obtained by blackening a metal having no wavelength dependency.

次に、照射面積変更自在なユニット化について説明する。   Next, the unitization in which the irradiation area can be changed will be described.

本実施形態2の擬似太陽光照射装置1Aは、図8に示すように、左右の第1光照射装置6、左右の第2光照射装置11および第4光照射装置15Aが1ユニットで構成される。この1ユニットが、本実施形態2では前後方向に8セット隙間なく並べられて設けられている。上記左右の第1光照射装置6、左右の第2光照射装置11および第4光照射装置15Aが、1単位として、ユニット化されて精度よく製造することができ、上記左右の第1光照射装置6、左右の第2光照射装置11および第4光照射装置15Aが1ユニットとして前後方向に組み合わされて、所望の大きさの太陽電池パネルに対応した擬似太陽光の照射面の大きさとすることができる。したがって、上記左右の第1光照射装置6、左右の第2光照射装置11および第4光照射装置15Aの1ユニットが、前後方向に8ユニットに全く限ることはない。これによって、照射面積変更自在なユニット化とすることができる。なお、この場合も、第1光照射装置6において、キセノン光源2と、反射部材3aおよび開口板3bは一括照射型であるので、これらについては共通に用いることになる。これらのキセノン光源2と反射部材3aおよび開口板3bを、テーパ導光部材4毎に設けることもできる。   As shown in FIG. 8, the simulated solar light irradiation apparatus 1A according to the second embodiment includes the left and right first light irradiation apparatuses 6, the left and right second light irradiation apparatuses 11, and the fourth light irradiation apparatus 15A as one unit. The In the second embodiment, the one unit is provided in the front-rear direction so as to be arranged with no gaps in 8 sets. The left and right first light irradiation devices 6, the left and right second light irradiation devices 11 and the fourth light irradiation device 15A can be unitized and manufactured with high accuracy as one unit. The device 6, the left and right second light irradiating devices 11 and the fourth light irradiating device 15A are combined in the front-rear direction as one unit, and the size of the irradiation surface of the pseudo sunlight corresponding to the solar cell panel of a desired size is obtained. be able to. Therefore, one unit of the left and right first light irradiation devices 6, the left and right second light irradiation devices 11, and the fourth light irradiation device 15A is not limited to eight units in the front-rear direction. Thereby, it can be set as the unit which can change irradiation area freely. In this case as well, in the first light irradiation device 6, the xenon light source 2, the reflecting member 3a, and the aperture plate 3b are of a collective irradiation type, and these are used in common. The xenon light source 2, the reflecting member 3 a, and the aperture plate 3 b can be provided for each tapered light guide member 4.

このように、上記左右の第1光照射装置6、左右の第2光照射装置11および第4光照射装置15Aを1単位としてユニット化すると、1単位の照射面の照射強度のばらつきを抑えて精度よく所望の照射強度(光量)とすることができて、ユニット化した1単位の照射面を組み合わせて大きい照射面とする場合にも、大きい照射面全体で照射強度のばらつきを抑えて均一な所望の照射強度(光量)とすることができる。要するに、大面積の照射面の照射強度を高精度で均一にすることは難しいが、大面積の照射面を複数に分割し、その小面積の照射面の照射強度を高精度に均一化すれば、それらを組み合わせるだけで、大面積の照射面の照射強度(光量)を高精度に均一化することができる。   As described above, when the left and right first light irradiation devices 6, the left and right second light irradiation devices 11, and the fourth light irradiation device 15A are unitized as one unit, variation in irradiation intensity of the irradiation surface of one unit is suppressed. The desired irradiation intensity (light quantity) can be accurately obtained, and even when a unitized irradiation surface is combined into a large irradiation surface, variation in irradiation intensity is suppressed uniformly over the entire large irradiation surface. The desired irradiation intensity (light quantity) can be obtained. In short, it is difficult to make the irradiation intensity of a large-area irradiation surface uniform with high accuracy, but if the large-area irradiation surface is divided into multiple parts and the irradiation intensity of the small-area irradiation surface is made uniform with high precision, By simply combining them, the irradiation intensity (light quantity) of the irradiation surface with a large area can be made uniform with high accuracy.

したがって、左右の第1光照射装置6、左右の第2光照射装置11および第4光照射装置15Aを1ユニットとして、1ユニットの照射強度(光量)を高精度に製造しておけば、太陽電池パネルのサイズに合わせて組み立てるだけで、従来、時間かけて行っていた照射強度(光量)の光量調整を不要とすることができる。即ち、従来は、太陽電池パネルのサイズに応じて、各要所に基準撮像セルが設けられた照射強度検査装置により、大面積の照射面全体のうちのどの部分の照射強度が低いかを測定し、その照射強度が低い部分の照射強度を上げるように照射強度の調整をする必要があったが、それも不要とすることができる。また、定期的なメンテナンス時にも、照射強度調整が不要である。ユニット化した1単位の光照射装置をばらつきなく精度よく製造しておけば、照射強度調整が不要であり、メンテナンス性に優れている。従来はこの照射面全体の照射強度調整(光量調整)に時間がかかっていた。   Accordingly, if the left and right first light irradiation devices 6, the left and right second light irradiation devices 11 and the fourth light irradiation device 15A are set as one unit and the irradiation intensity (light quantity) of one unit is manufactured with high accuracy, By simply assembling according to the size of the battery panel, it is possible to eliminate the need for light intensity adjustment of irradiation intensity (light intensity), which has been conventionally performed over time. That is, conventionally, according to the size of the solar cell panel, the irradiation intensity inspection device provided with the reference imaging cell at each important point measures which part of the entire irradiation area of the large area has low irradiation intensity. However, although it is necessary to adjust the irradiation intensity so as to increase the irradiation intensity in the portion where the irradiation intensity is low, it can also be made unnecessary. Further, it is not necessary to adjust the irradiation intensity during regular maintenance. If a unitized light irradiation device is manufactured with high accuracy and no variation, irradiation intensity adjustment is unnecessary and the maintenance is excellent. Conventionally, it took time to adjust the irradiation intensity (light amount adjustment) of the entire irradiation surface.

次に、照射面全体の照射強度調整(光量調整)について更に説明する。   Next, the irradiation intensity adjustment (light quantity adjustment) of the entire irradiation surface will be further described.

左右両側のキセノン光源2およびハロゲン光源7と導光部材14Aとを1対1に対応させ、キセノン光源2やハロゲン光源7をランプを交換したり、ランプに流れる電流を調整したりすることにより、左右両側のキセノン光源2およびハロゲン光源7から出射される光量を制御して、導光部材14Aからの出力光量を個別に精度よく制御することができる。また同様に、左右両側のエアマスフィルタ5およびエアマスフィルタ10と導光部材14Aとを1対1に対応させ、左右両側のエアマスフィルタ5およびエアマスフィルタ10を、光透過率の異なるエアマスフィルタに取替えて、一体化した導光部材14Aに入射される光量を制御して、一体化した導光部材14Aからの出力光量を個別に精度よく制御することができる。   By matching the xenon light source 2 and the halogen light source 7 on the left and right sides with the light guide member 14A on a one-to-one basis, replacing the xenon light source 2 and the halogen light source 7 with each other, and adjusting the current flowing through the lamp, By controlling the amount of light emitted from the xenon light source 2 and the halogen light source 7 on both the left and right sides, the amount of light output from the light guide member 14A can be individually and accurately controlled. Similarly, the left and right air mass filters 5 and 10 and the light guide member 14A are in a one-to-one correspondence, and the left and right air mass filters 5 and 10 are replaced with air mass filters having different light transmittances. By controlling the amount of light incident on the integrated light guide member 14A, the amount of light output from the integrated light guide member 14A can be individually and accurately controlled.

このように、左右両側のキセノン光源2およびハロゲン光源7と導光部材14Aとを1対1に対応させ、かつ、左右両側のエアマスフィルタ5およびエアマスフィルタ10と導光部材14Aとを1対1に対応させたため、従来のように、ランプ光源からの出射光を多数のミラーにより被照射物に照射する照度を面全体で均一に調整するものに比べて、照射面への照度の調整に時間を要することなく、被照射物13の照射面に対して精度のよい照度の調整が可能となって、被照射物13の照射面に対する均一な照度を得ることができる。   In this manner, the xenon light source 2 and the halogen light source 7 on the left and right sides and the light guide member 14A are in a one-to-one correspondence, and the air mass filter 5, the air mass filter 10 and the light guide member 14A on the left and right sides are in a one-to-one relationship. Compared to the conventional method of adjusting the illuminance of the emitted light from the lamp light source to the irradiated object uniformly by the many mirrors over the entire surface as in the past, it takes time to adjust the illuminance on the irradiated surface. Therefore, it is possible to adjust the illuminance with high accuracy with respect to the irradiation surface of the irradiation object 13, and uniform illuminance with respect to the irradiation surface of the irradiation object 13 can be obtained.

次に、第1光照射装置6および第2光照射装置11のいずれか一方を用いるかまたは、別の一つの光照射装置を用いて、左右両側のランプ光源と導光部材14Aとを1対1に対応させ、かつ、左右両側のエアマスフィルタと導光部材14Aとを1対1に対応させた方が、光照射装置が一つになった分だけ光量調整がさらに容易になる。これを図10(a)および図10(b)に示している。   Next, using either one of the first light irradiation device 6 and the second light irradiation device 11 or another light irradiation device, a pair of lamp light sources on both the left and right sides and the light guide member 14A are paired. 1 and the air mass filters on both the left and right sides and the light guide member 14A are in a one-to-one correspondence, the light quantity adjustment is further facilitated by the amount of one light irradiation device. This is shown in FIGS. 10 (a) and 10 (b).

図10(a)に示すように導光部材14Aと左右両側の光源ランプ2Cとを一対一に対応させ、ランプを交換したり電流を調整することにより、左右両側の光源ランプ2Cからの出力光量を個別に制御することができる。この場合、もちろん、光透過率の異なるエアマスフィルタ10C(スペクトル調整用フィルタ)に取替えて導光部材14Aに入射される光量を調節することもできる。   As shown in FIG. 10 (a), the light guide member 14A and the light source lamps 2C on the left and right sides are in one-to-one correspondence, the lamps are exchanged, and the current is adjusted so that Can be controlled individually. In this case, of course, the amount of light incident on the light guide member 14A can be adjusted by replacing the air mass filter 10C (spectrum adjusting filter) with a different light transmittance.

また、図10(b)に示すように導光部材14Aに対して、分割せず光源ランプ2Dのように一括照射型とし、各導光部材14と左右両側のエアマスフィルタ10Dとを一対一に対応させ、左右両側のエアマスフィルタ10D(スペクトル調整用フィルタ)だけを取替えて左右両側の各フィルタ透過率を個別に制御するようにしてもよく、または透過率制御用に補正用のフィルタを、左右両側のエアマスフィルタ10D(スペクトル調整用フィルタ)とは別に各光透過フィルタを追加することによっても、導光部材14Aに両側から入射する光量を抑えて調整することができる。   Further, as shown in FIG. 10B, the light guide member 14A is not divided into a batch irradiation type like the light source lamp 2D, and the light guide members 14 and the right and left air mass filters 10D are in a one-to-one relationship. Correspondingly, only the air mass filters 10D (spectrum adjustment filters) on both the left and right sides may be replaced and the filter transmittances on both the left and right sides may be controlled individually, or a correction filter for transmittance control may be used. By adding each light transmission filter separately from the air mass filter 10D (spectrum adjustment filter) on both sides, the light quantity incident on the light guide member 14A from both sides can be suppressed and adjusted.

図10(a)のハロゲン光源2Cおよび反射部材3Cの代わりに、図2のキセノン光源2、反射部材3aおよび開口板3bを用いてもよい。また、図10(b)のハロゲン光源2Dおよび反射部材3Dの代わりに、キセノン光源、反射部材3aおよび開口板3bを用いてもよい。これらの場合にも、前述したように、反射部材3aに、所定幅dでライン状(短冊状)の遮光部材32を取り付けることにより、照射光量を制御してテーパ導光部材4の下端面に入射させることができる。   Instead of the halogen light source 2C and the reflecting member 3C in FIG. 10A, the xenon light source 2, the reflecting member 3a, and the aperture plate 3b in FIG. 2 may be used. Further, a xenon light source, a reflecting member 3a, and an aperture plate 3b may be used instead of the halogen light source 2D and the reflecting member 3D in FIG. Also in these cases, as described above, a linear (strip-shaped) light-shielding member 32 having a predetermined width d is attached to the reflecting member 3a, thereby controlling the amount of irradiation light on the lower end surface of the tapered light guide member 4. It can be made incident.

また、光量調整の具体例として平面視両端側の光量を増やして照射光量を照射面全体で均一にする場合について更に説明する。なお、これを、第1光照射装置6および第2光照射装置11のいずれか一方を用いるかまたは、別の一つの光照射装置を用いた図11(a)および図11(b)の場合にも、適用することができるが、ここでは、図1の擬似太陽光照射装置1の場合について説明する。   Further, as a specific example of the light amount adjustment, a case where the light amount on both ends of the plan view is increased to make the irradiation light amount uniform over the entire irradiation surface will be further described. In this case, either one of the first light irradiation device 6 and the second light irradiation device 11 is used, or another one of the light irradiation devices is used in the case of FIGS. 11A and 11B. Although it is applicable also here, the case of the simulated sunlight irradiation apparatus 1 of FIG. 1 is demonstrated.

図11は、図8の擬似太陽光照射装置1Aの平面図である。   FIG. 11 is a plan view of the simulated solar light irradiation apparatus 1A shown in FIG.

左右両側の第1光照射装置6、左右の第2光照射装置11および真ん中の第4光照射装置15Aを1ユニットとして、これを前後方向に8セット設けているが、前後方向の両端(最も手前と最も奥側)の照射光量が少なくなる傾向にあるので、図4の平面図の場合と同様、図11の平面図に示すように、両端側の照射光量をそれ以外の中央部側の照射光量よりも、被照射物13への照射光量が均一になるように、ここでは増やしている。ここでは、キセノン光およびハロゲン光を共に増やしているが、ハロゲン光のみについて説明する。この前後方向の両端側において、上記ハロゲン光源7を少し大きい出力のハロゲン光源7Aを用いることができるようにしている。   The left and right first light irradiation devices 6, the left and right second light irradiation devices 11 and the middle fourth light irradiation device 15A are provided as one unit, and eight sets are provided in the front-rear direction. As shown in the plan view of FIG. 11, as shown in the plan view of FIG. 11, the amount of irradiation light at both ends is set to the other central portion side. Here, the irradiation light amount is increased so that the irradiation light amount to the irradiated object 13 becomes more uniform than the irradiation light amount. Here, both xenon light and halogen light are increased, but only halogen light will be described. At both ends in the front-rear direction, the halogen light source 7 can be used with a slightly larger output halogen light source 7A.

この擬似太陽光照射装置1Aには、前後方向の両端側において、上記ハロゲン光源7よりも出力光量が高いハロゲン光源7Aと、ハロゲン光源7Aを収容する内面が反射面の反射部材8Aと、この反射部材8Aの内面で反射したハロゲン出射光をその一方端面から取り込んで内部を伝搬させることにより指向性を良くするテーパ導光部材9と、このテーパ導光部材9の他方端面からのハロゲン出射光をフィルタリングして長波長側の擬似太陽光とする第2光学フィルタとしてのエアマスフィルタ10とを有する左右二つの第2光照射装置11Aを設けた構成とする。この場合、反射部材8A、テーパ導光部材9およびエアマスフィルタ10は、ハロゲン光源7Aの出力光量に適合したものとし、出力光量に適合していれば、反射部材8、8Aは同じものであってもよい。   The pseudo-sunlight irradiation device 1A includes a halogen light source 7A having a higher output light amount than the halogen light source 7 on both ends in the front-rear direction, a reflecting member 8A having an inner surface that accommodates the halogen light source 7A, and a reflection member. The tapered light guide member 9 that improves the directivity by taking in the halogen emitted light reflected by the inner surface of the member 8A from one end face and propagating the inside, and the halogen emitted light from the other end face of the tapered light guide member 9 It is set as the structure which provided 11A of 2nd left and right 2nd light irradiation apparatus which has the air mass filter 10 as a 2nd optical filter which filters and uses the long wavelength side pseudo sunlight. In this case, the reflecting member 8A, the tapered light guide member 9, and the air mass filter 10 are adapted to the output light amount of the halogen light source 7A, and the reflecting members 8, 8A are the same as long as they are adapted to the output light amount. Also good.

また、本実施形態2の擬似太陽光照射装置1Aにおいて、上記左右の第2光照射装置11および第4光照射装置15Aがユニット化されて、例えば8ユニットが前後方向に並べられて設けられているが、少なくともユニットは、照射強度(光量)が調整できるように、出力光量の異なるランプまたは、光透過率の異なるエアマスフィルタ5(スペクトル調整用フィルタ)を取替え可能としておくことにより、導光部材14Aに入射する照射強度(光量)を個別に調整可能とすることができる。前記した上記ハロゲン光源7とこれよりも出力光量が高いハロゲン光源7Aとの取り付け部を設けることにより、出力光量の異なる光源を取替え自在にしておけばよい。   In the simulated solar light irradiation device 1A of the second embodiment, the left and right second light irradiation devices 11 and the fourth light irradiation device 15A are unitized, and, for example, 8 units are arranged in the front-rear direction. However, at least the unit can replace the lamp with different output light quantity or the air mass filter 5 (spectrum adjustment filter) with different light transmittance so that the irradiation intensity (light quantity) can be adjusted. The irradiation intensity (light quantity) incident on 14A can be individually adjusted. A light source having a different output light quantity may be freely changed by providing a mounting portion between the halogen light source 7 and the halogen light source 7A having a higher output light quantity than the above.

次に、光量調整の具体例として両端側以外の光量を減らして照射光量を照射面全体で均一にする場合について更に説明する。本具体例は、図10(b)の形態において特に有効である。   Next, as a specific example of the light amount adjustment, a case where the amount of light other than the both ends is reduced to make the amount of irradiated light uniform over the entire irradiated surface will be further described. This specific example is particularly effective in the form of FIG.

前後方向の両端側以外において、開口板3bの開口部31と反射部材の間に、所定幅dでライン状(短冊状)の遮光部材32を取り付けることにより、照射光量を減らしてテーパ導光部材4の下端面に入射させることができる。これによって、両端側以外の中央部分の照射光量を、両端側の照射光量よりも減らして、被照射物13への照射光量が照射面全体で均一にすることができる。   A tapered light guide member that reduces the amount of irradiation light by attaching a light shielding member 32 in a line shape (strip shape) with a predetermined width d between the opening portion 31 of the opening plate 3b and the reflection member at both ends in the front-rear direction. 4 can be made incident on the lower end surface. Thereby, the irradiation light quantity of the center part other than the both end sides can be reduced more than the irradiation light quantity of both end sides, and the irradiation light quantity to the to-be-irradiated object 13 can be made uniform on the whole irradiation surface.

以上により、本実施形態2によれば、上記実施形態1の場合と同様に、光量調整部材としての遮光部材32が、開口部材としての開口板3bの開口部31と、反射部材の間に配置され、遮光部材32の幅サイズに応じて、スペクトル調整された光の出射光量調整を行うため、面照射用の導光部材14Aから被照射物13への出射光の位置によるバランスを調整する際に、面照射用の導光部材14Aに光を入射させるまでの途中の光学系の状態を変えないで、途中の光学系に入る前の光量だけを調整して、被照射物13への照射光量を調整することができる。つまり、擬似太陽光を被照射物13に照射する際に、照射光のスペクトル分布を固定した後でも、そのスペクトル分布を変えることなく、照射光量だけを調整することができる。   As described above, according to the second embodiment, as in the first embodiment, the light shielding member 32 as the light amount adjusting member is disposed between the opening 31 of the opening plate 3b as the opening member and the reflecting member. When adjusting the balance according to the position of the emitted light from the surface irradiation light guide member 14 </ b> A to the irradiated object 13 in order to adjust the emitted light amount of the spectrum-adjusted light according to the width size of the light shielding member 32. Further, without changing the state of the intermediate optical system until the light is incident on the light guide member 14A for surface irradiation, only the light amount before entering the intermediate optical system is adjusted to irradiate the irradiated object 13 The amount of light can be adjusted. That is, when irradiating the object 13 with simulated sunlight, only the amount of irradiation light can be adjusted without changing the spectrum distribution even after the spectrum distribution of the irradiation light is fixed.

また、少なくとも一つの光源(キセノン光源2やハロゲン光源7など)および光学素子としての光学フィルタ(エアマスフィルタ5や10など)と導光体14または14Aとが一対一に対応し、面照射用の導光体14または14Aの照射領域と被照射物13への一部照射面(小照射面)とが対応しているため、面照射用の導光体14または14A内に入射する光量を変更することにより、被照射物13への一部照射面(小照射面)の照度調整を精度よく行うことができる。具体的には、光源としてのランプ毎の出力を調整したり、光学フィルタとして透過率の異なるエアフィルタに変更したりして、被照射物13への一部照射面(小照射面)の照度調整を精度よく行うことができる。また、前後方向両端の面照射用の導光体14または14Aに対応する光源出力を高くすることにより、被照射物13への照射面のうち照射領域端部の照度低下を防ぐことができる。したがって、被照射物13への照射面が広範囲になっても、従来のように被照射物13への照射面の照度の調整に時間を要することなく、被照射物13への照射面に対して精度のよい均一な照度を素早く得ることができる。   Further, at least one light source (such as xenon light source 2 or halogen light source 7) and an optical filter as an optical element (such as air mass filter 5 or 10) and the light guide 14 or 14A have a one-to-one correspondence, and are for surface irradiation. Since the irradiation region of the light guide 14 or 14A corresponds to the partial irradiation surface (small irradiation surface) to the irradiated object 13, the amount of light incident on the surface irradiation light guide 14 or 14A is changed. By doing so, the illuminance adjustment of the partial irradiation surface (small irradiation surface) to the irradiation object 13 can be accurately performed. Specifically, by adjusting the output of each lamp as a light source or changing to an air filter having a different transmittance as an optical filter, the illuminance of a partial irradiation surface (small irradiation surface) to the irradiated object 13 Adjustment can be performed with high accuracy. Further, by increasing the light source output corresponding to the light guides 14 or 14A for surface irradiation at both ends in the front-rear direction, it is possible to prevent a decrease in illuminance at the end of the irradiation region of the irradiation surface to the irradiation target 13. Therefore, even if the irradiation surface to the irradiation object 13 becomes wide, it does not take time to adjust the illuminance of the irradiation surface to the irradiation object 13 as in the past, and the irradiation surface to the irradiation object 13 is not affected. Accurate and uniform illuminance can be obtained quickly.

また、キセノン光とハロゲン光をスペクトル調整して混合して得られる擬似太陽光が入射される導光部材14,14Aのパターン(散乱体)により、導光14,14Aからは均一照度の光を照射することができるが、被照射物13としての太陽電池パネルに照射する照射面を複数に仮想分割して、その分割した小照射面に対応して各導光部材14,14Aがそれぞれ配置されているため、各導光部材14,14Aに対する小照射面の照射光量のみを調整することにより、複数の小照射面全体の照度の均一化が容易かつ確実に素早く実現できる。太陽電池パネルが大面積であれば、それに合わせて光学系を複数並べることにより、大面積であっても、均一照度の照射光を容易かつ確実に素早く作り出すことができる。また、ランプ交換時、ランプの個体差によるランプ単体での照度ムラがあっても、ユニット化した光学系毎の光量を調整するだけで、均一な照射光を得ることができるので、再調整は必要なくなる。   In addition, light of uniform illuminance is emitted from the light guides 14 and 14A by the pattern (scattering body) of the light guide members 14 and 14A to which pseudo sunlight obtained by spectrally adjusting and mixing xenon light and halogen light is incident. Although the irradiation surface which can irradiate, the irradiation surface irradiated to the solar cell panel as the to-be-irradiated object 13 is virtually divided | segmented into plurality, and each light guide member 14 and 14A is arrange | positioned corresponding to the divided | segmented small irradiation surface, respectively. Therefore, by adjusting only the amount of light emitted from the small irradiation surface to each of the light guide members 14 and 14A, it is possible to easily and reliably quickly and uniformly realize illuminance across the plurality of small irradiation surfaces. If the solar cell panel has a large area, by arranging a plurality of optical systems in accordance with it, irradiation light with uniform illuminance can be created quickly and easily even with a large area. In addition, when changing the lamp, even if there is uneven illuminance due to individual differences in the lamp, it is possible to obtain uniform irradiation light simply by adjusting the amount of light for each unitized optical system. No longer needed.

本実施形態1、2では、特に詳細には説明しなかったが、導光部材14、14Aには散乱体(パターン)が印刷されており、導光部材14、14Aに入射した光は散乱体で散乱され、被照射物13としての太陽電池パネルに均一に面照射される。この導光部材14、14Aの散乱体(パターン)は、照射面全体で照度が均一になるようなパターンを有して印刷されている。太陽電池パネルを設置する照射面上で左右に照度ムラが発生した場合には、ユニット化した左右の光源光学系(1ユニット)毎の出力光量を調整することによって、照度ムラを容易かつ確実に低減することができる。左右の光源光学系の導光体14、14が導光体14Aのように一体であると、照射面上で照度ムラが発生した場合には、一体化した光源光学系の導光体14Aからの照射光は照射面全体に照射されるので、光量調整のみでは、左右の光源光学系の導光体14、14に比べて、照射面上の照度を部分的に調整することが難しくなる。また、導光体14Aとして左右の導光体14、14が一体化すれば、より広い面積で均一な光を作り出し、更に導光体の両端から入射しても均一な光が照射されるような散乱体の印刷パターンが必要となるので、印刷パターンの設計も困難となるため、左右の導光体14、14の一体化は、均一光を作るのに支障のない程度の射射面積において行う必要がある。左右の導光体14、14の方がそれらを一体化したものよりも、照射面上での照度ムラ調整が容易になる。更に、太陽電池パネルが大型化すれば、本発明の光学系を多数並列するだけで、広範囲の均一光を作り出すだけでなく、各光学系にある光源光学系からの照射光量を調整するだけで、大面積であっても照射面上での照度を均一に調整することが可能となる。   Although not described in detail in the first and second embodiments, a light scattering member (pattern) is printed on the light guide members 14 and 14A, and light incident on the light guide members 14 and 14A is scattered. The surface of the solar cell panel as the irradiated object 13 is uniformly irradiated. The scatterers (patterns) of the light guide members 14 and 14A are printed with a pattern such that the illuminance is uniform over the entire irradiated surface. When uneven illuminance occurs on the left and right on the irradiation surface on which the solar cell panel is installed, the uneven illuminance can be easily and reliably adjusted by adjusting the output light quantity for each of the right and left light source optical systems (one unit). Can be reduced. When the light guides 14 and 14 of the left and right light source optical systems are integrated like the light guide 14A, when uneven illuminance occurs on the irradiation surface, the light guides 14A of the integrated light source optical system Therefore, it is difficult to partially adjust the illuminance on the irradiated surface by only adjusting the light amount, compared to the light guides 14 and 14 of the left and right light source optical systems. Further, if the left and right light guides 14 and 14 are integrated as the light guide 14A, uniform light is generated in a wider area, and even if the light enters from both ends of the light guide, uniform light is emitted. Since a printed pattern of a scatterer is required, it is difficult to design the printed pattern. Therefore, the integration of the left and right light guides 14 and 14 has a radiation area that does not hinder the creation of uniform light. There is a need to do. The left and right light guides 14 and 14 are easier to adjust the illuminance unevenness on the irradiated surface than those obtained by integrating them. Furthermore, if the solar cell panel is enlarged, not only a wide range of uniform light can be created by simply arranging a large number of optical systems of the present invention in parallel, but also the amount of light emitted from the light source optical system in each optical system can be adjusted. Even with a large area, the illuminance on the irradiation surface can be adjusted uniformly.

なお、上記実施形態1では、特に説明していないが、擬似太陽光照射装置1において、発光波長帯の異なる少なくとも一つの光源(キセノンランプ2またはハロゲンランプ7、それ以外のランプ)と、少なくとも一つの光源からの出射光に所定のスペクトル分布を与える光学素子としての光学フィルタ(エアマスフィルタ5またはエアマスフィルタ10、それ以外のエアマスフィルタ)と、この光学素子を介して得られた出射光を伝搬させて被照射物13に対して面照射する導光体14または14Aとを有した光学系が複数配設され、少なくとも一つの光源および光学素子と導光体14または14Aとが一対一に対応し、少なくとも一つの光源および光学素子のうちの少なくともいずれかを調整することにより導光体14または14Aに入射する光量を、光学系毎に個別に調整可能として、複数の光学系の各導光体14または14Aにより被照射物13の被照射面全体に照射されるようになっている。これによって、照射面が広範囲になっても、照射面の照度の調整に時間を要することなく、照射面に対して精度のよい均一な照度を得ることができる本発明の目的を達成することができる。   Although not specifically described in the first embodiment, at least one light source (xenon lamp 2 or halogen lamp 7 or other lamp) having a different emission wavelength band in the simulated sunlight irradiation device 1 and at least one light source. An optical filter (air mass filter 5 or air mass filter 10, other air mass filter) serving as an optical element that gives a predetermined spectral distribution to light emitted from two light sources, and light emitted through the optical element are propagated. A plurality of optical systems each having a light guide 14 or 14A that irradiates the irradiated object 13 with a surface is provided, and at least one light source and optical element and light guide 14 or 14A correspond one-to-one. Incident light guide 14 or 14A by adjusting at least one of at least one light source and optical element That the amount of light, as individually adjustable for each optical system, and is irradiated to the whole irradiated surface of the irradiated object 13 by the light guide body 14 or 14A of the plurality of optical systems. Thereby, even if the irradiation surface becomes wide, the object of the present invention capable of obtaining a uniform and accurate illuminance on the irradiation surface without requiring time for adjusting the illuminance on the irradiation surface can be achieved. it can.

上記実施形態1では、この光学系は、図2に示すように、第1光源(キセノンランプ2)と、第1光源からの出射光を一方端面から取り込んで指向性が高められた光を他方端面から出射する第1導光部材(テーパ導光部材4)と、第1導光部材の他方端面から出射される光のスペクトルを調整する第1光学フィルタ(エアマスフィルタ5)とを有する第1光照射装置6と、第2光源(ハロゲンランプ7)と、第2光源からの出射光を一方端面から取り込んで指向性が高められた光を他方端面から出射する第2導光部材(テーパ導光部材9)と、第2導光部材の他方端面から出射される光のスペクトルを調整する第2光学フィルタとを有する第2光照射装置11と、第1光照射装置6からの光と第2光照射装置11からの光を混合して太陽光に類似した擬似太陽光を得る光混合部材12と、光混合部材12からの擬似太陽光を一方端面から取り込んでその内部を伝搬させて被照射物13に対して指向性の高い光を平坦面から均一に面照射する第3導光部材(導光部材14)とを有する第3光照射装置15とが設けられている場合について説明した。これに限らず、光学系は、図9に示すように、第1光源(キセノンランプ2)と、第1光源から出射される光のスペクトルを調整する前記光学素子としての第1光学フィルタ(エアマスフィルタ5)とを有する第1光照射装置6と、第2光源(ハロゲンランプ7)と、第2光源から出射される光のスペクトルを調整する該光学素子としての第2光学フィルタ(エアマスフィルタ10)とを有する第2光照射装置11と、第1光照射装置6からの光と第2光照射装置11からの光を混合して太陽光に類似した擬似太陽光を得る光混合部材12と、光混合部材12からの擬似太陽光を一方端面から取り込んでその内部を伝搬させて被照射物13に対して指向性の高い光を平坦面から均一に面照射する第3導光部材14とを有する第3光照射装置15とが設けられていてもよい。ここでは、上記実施形態1の場合と比べて、第1導光部材(テーパ導光部材4)と第2導光部材(テーパ導光部材9)とがないだけである。   In the first embodiment, as shown in FIG. 2, the optical system includes a first light source (xenon lamp 2) and light having enhanced directivity by taking light emitted from the first light source from one end surface. A first light guide member (tapered light guide member 4) that emits from the end surface and a first optical filter (air mass filter 5) that adjusts the spectrum of light emitted from the other end surface of the first light guide member. A light irradiating device 6, a second light source (halogen lamp 7), and a second light guide member (taper guide) that takes out light emitted from the second light source from one end face and emits light with enhanced directivity from the other end face. A second light irradiating device 11 having a light member 9) and a second optical filter for adjusting the spectrum of light emitted from the other end face of the second light guide member; Mixing the light from the two-light irradiation device 11 into sunlight The light mixing member 12 that obtains similar simulated sunlight, and the simulated sunlight from the light mixing member 12 is taken in from one end surface and propagated through the inside, and light having high directivity with respect to the irradiated object 13 is obtained from a flat surface. The case where the 3rd light irradiation apparatus 15 which has the 3rd light guide member (light guide member 14) which uniformly irradiates a surface was provided was demonstrated. The optical system is not limited to this, and as shown in FIG. 9, the optical system includes a first light source (xenon lamp 2) and a first optical filter (air mass) as the optical element that adjusts the spectrum of light emitted from the first light source. A first light irradiation device 6 having a filter 5), a second light source (halogen lamp 7), and a second optical filter (air mass filter 10) as an optical element for adjusting the spectrum of light emitted from the second light source. ), A light mixing member 12 that obtains pseudo sunlight similar to sunlight by mixing the light from the first light irradiation device 6 and the light from the second light irradiation device 11, A third light guide member 14 that takes in the pseudo-sunlight from the light mixing member 12 from one end surface and propagates the interior thereof to uniformly irradiate the irradiated object 13 with light having high directivity from a flat surface; 3rd light irradiation apparatus 1 which has Door may be provided. Here, compared with the case of the said Embodiment 1, there is only a 1st light guide member (taper light guide member 4) and a 2nd light guide member (taper light guide member 9).

上記実施形態1では、第1光照射装置6、第2光照射装置11および第3光照射装置15を1ユニットとし、1ユニット同士を左右方向に対向配置して、第3光照射装置15の第3導光部材(導光部材14)の他方端面同士を当接した2ユニットを、被照射物13のサイズに応じて、前後方向に複数並べて配置する。これに対して、上記実施形態2では、第1光照射装置6、第2光照射装置11および光混合部12を配置した左側セットと、第1光照射装置6、第2光照射装置11および光混合部12を配置した右側セットとの間に、左側の光混合部12からの混合光を一方端面から取り込んでその内部を伝搬させると共に、右側の光混合部12からの混合光を他方端面から取り込んでその内部を伝搬させて被照射物13に対して指向性の高い光を平坦面から均一に面照射する第4導光部材(導光部材14A)が設けられ、これを1ユニットとし、被照射物13のサイズに応じて、1ユニットが前後方向に複数並べてられて配置されている。   In the first embodiment, the first light irradiation device 6, the second light irradiation device 11, and the third light irradiation device 15 are set as one unit, and the units are arranged to face each other in the left-right direction. A plurality of two units in which the other end surfaces of the third light guide member (light guide member 14) are in contact with each other are arranged in the front-rear direction according to the size of the irradiated object 13. On the other hand, in the said Embodiment 2, the left set which has arrange | positioned the 1st light irradiation apparatus 6, the 2nd light irradiation apparatus 11, and the light mixing part 12, the 1st light irradiation apparatus 6, the 2nd light irradiation apparatus 11, and The mixed light from the left light mixing unit 12 is taken in from one end face to propagate through the right side set where the light mixing unit 12 is arranged, and the mixed light from the right light mixing unit 12 is transmitted to the other end face. The fourth light guide member (light guide member 14A) is provided, which propagates the light from the inside and propagates the inside thereof to uniformly irradiate the irradiated object 13 with light having a high directivity from the flat surface. Depending on the size of the irradiated object 13, a plurality of one unit are arranged in the front-rear direction.

次に、上記光学系は、第1光源(キセノンランプ2またはハロゲンランプ7、その他のランプ)と、この第1光源からの出射光を一方端面から取り込んで指向性が高められた光を他方端面から出射する導光部材(テーパ導光部材4またはテーパ導光部材9、その他のテーパ導光部材)と、この導光部材の他方端面から出射される光のスペクトルを調整する光学フィルタ(エアマスフィルタ5またはエアマスフィルタ10、それ以外のエアマスフィルタ)とを有する光照射装置と、この光照射装置からの太陽光に類似した擬似太陽光を一方端面から取り込んでその内部を伝搬させて被照射物13に対して指向性の高い光を平坦面から均一に面照射する面照射用の導光部材14または14aとが設けられていてもよい。この導光部材(テーパ導光部材4またはテーパ導光部材9、その他のテーパ導光部材)を用いない場合であってもよい。即ち、上記光学系は、第1光源(キセノンランプ2またはハロゲンランプ7、その他のランプ)と、この第1光源から出射される光のスペクトルを調整する光学素子としての光学フィルタとを有する光照射装置と、この光照射装置からの太陽光に類似した擬似太陽光を一方端面から取り込んでその内部を伝搬させて被照射物に対して光を平坦面から均一に面照射する面照射用の導光部材とが設けられていてもよい。   Next, the optical system includes a first light source (xenon lamp 2 or halogen lamp 7 and other lamps) and light having enhanced directivity by taking light emitted from the first light source from one end surface. Light guide member (taper light guide member 4 or taper light guide member 9 or other taper light guide member) emitted from the light source, and an optical filter (air mass filter) for adjusting the spectrum of light emitted from the other end surface of the light guide member 5 or the air mass filter 10 and other air mass filters), and artificial sunlight similar to the sunlight from the light irradiation device is taken in from one end face and propagated through the inside thereof to be irradiated 13 In contrast, a light guide member 14 or 14a for surface irradiation that uniformly irradiates light with high directivity from a flat surface may be provided. This light guide member (taper light guide member 4 or taper light guide member 9, other taper light guide members) may not be used. That is, the optical system includes a first light source (xenon lamp 2 or halogen lamp 7 or other lamp) and an optical filter as an optical filter that adjusts the spectrum of light emitted from the first light source. The device and the surface irradiation guide that takes in the pseudo-sunlight similar to the sunlight from this light irradiation device from one end surface and propagates it inside the surface to uniformly irradiate the light from the flat surface to the object to be irradiated. An optical member may be provided.

以上の場合も、前述したように、上記実施形態1のように、上記光照射装置および上記面照射用の導光部材を有する光学系を1ユニットとし、1ユニット同士を左右方向に対向配置して、面照射用の導光部材の他方端面同士を当接した2ユニットを、被照射物13のサイズに応じて、前後方向に複数並べて配置されている。また、上記実施形態2のように、上記光照射装置を左右に配置し、左側の光学フィルタからの光を一方端面から取り込んでその内部を伝搬させると共に、右側の光学フィルタからの光を他方端面から取り込んでその内部を伝搬させて被照射物13に対して光を平坦面から均一に面照射する面照射用の導光部材14または14aが設けられ、これを1ユニットとし、被照射物13のサイズに応じて、1ユニットが前後方向に複数並べてられて配置されていてもよい。   Also in the above case, as described above, the optical system having the light irradiation device and the light guide member for surface irradiation is set as one unit as in the first embodiment, and the units are arranged to face each other in the left-right direction. Thus, a plurality of two units in which the other end faces of the light guide member for surface irradiation are in contact with each other are arranged in the front-rear direction according to the size of the irradiated object 13. Further, as in the second embodiment, the light irradiation devices are arranged on the left and right sides, and the light from the left optical filter is taken in from one end face and propagated through the inside, and the light from the right optical filter is sent to the other end face. Is provided with a surface irradiation light guide member 14 or 14a for uniformly irradiating the irradiated object 13 with light from a flat surface. Depending on the size, a plurality of one unit may be arranged in the front-rear direction.

なお、本実施形態2では、特に説明していないが、上記実施形態1の場合と同様、反射部材3aに、所定幅dでライン状(短冊状)の遮光部材32を取り付けたり、開口部31自体の大きさを変化させることにより、面照射の導光部材14Aからの出射光量のバランスを調整する際に、導光部材14Aに両側から光を入射させるための途中の光学系の状態を変化させないで、光量だけを変化させることができる。つまり、擬似太陽光のスペクトル分布を固定した後でも、擬似太陽光のスペクトル分布を変化させることなく、導光部材14Aからの出射光量を調整することができる。   Although not particularly described in the second embodiment, a line-shaped (strip-shaped) light-shielding member 32 with a predetermined width d is attached to the reflecting member 3a, or the opening 31 is provided, as in the first embodiment. By adjusting the size of itself, when adjusting the balance of the amount of light emitted from the light guide member 14A for surface irradiation, the state of the optical system in the middle for allowing light to enter the light guide member 14A from both sides is changed. Without changing it, only the amount of light can be changed. That is, even after the spectrum distribution of the pseudo sunlight is fixed, the amount of light emitted from the light guide member 14A can be adjusted without changing the spectrum distribution of the pseudo sunlight.

なお、本実施形態1、2では、第1光照射装置6と、第2光照射装置11と、第3光照射装置15または15Aとのセットが複数設けられ、第1テーパ導光部材4同士および第2テーパ導光部材9同士がそれぞれ隣接して並べられており、隣接した第1テーパ導光部材4間および/または、隣接した第2テーパ導光部材9間に遮光部材が配置されている擬似太陽光照射装置1または1Aについて説明したが、これに限らず、第1光照射装置6および第2光照射装置11のうちのいずれかからの擬似太陽光を一方端面から取り込んでその内部を伝搬させて被照射物3に対して指向性の高い光を平坦面から均一に面照射する面照射用の導光部材14または14Aを有する擬似太陽光照射装置としてもよい。   In the first and second embodiments, a plurality of sets of the first light irradiation device 6, the second light irradiation device 11, and the third light irradiation device 15 or 15 </ b> A are provided, and the first tapered light guide members 4 are connected to each other. And the second taper light guide members 9 are arranged adjacent to each other, and a light shielding member is disposed between the adjacent first taper light guide members 4 and / or between the adjacent second taper light guide members 9. However, the present invention is not limited to this, and artificial sunlight from either one of the first light irradiation device 6 and the second light irradiation device 11 is taken in from one end face and the inside It is good also as a pseudo-sunlight irradiation apparatus which has the light guide member 14 or 14A for surface irradiation which propagates the light and uniformly irradiates light with high directivity with respect to the to-be-irradiated object 3 from a flat surface.

以上のように、本発明の好ましい実施形態1、2を用いて本発明を例示してきたが、本発明は、この実施形態1、2に限定して解釈されるべきものではない。本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本発明の具体的な好ましい実施形態1、2の記載から、本発明の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。   As mentioned above, although this invention was illustrated using preferable Embodiment 1, 2 of this invention, this invention should not be limited and limited to this Embodiment 1,2. It is understood that the scope of the present invention should be construed only by the claims. It is understood that those skilled in the art can implement an equivalent range based on the description of the present invention and the common general technical knowledge, from the description of specific preferred embodiments 1 and 2 of the present invention. Patents, patent applications, and documents cited herein should be incorporated by reference in their entirety, as if the contents themselves were specifically described herein. Understood.

本発明は、被照射物に対して指向性の高い光を照射するための光照射装置および、この光照射装置を用いて被照射物に対して擬似太陽光を照射する擬似太陽光照射装置、この擬似太陽光照射装置を用いて太陽電池パネルの出力特性を測定して良否判定を行う太陽電池パネル用検査装置の分野において、第1光源の出射光を取り出す開口部毎に光量調整部材が配置され、光量調整部材により、スペクトル調整された光の出射光量調整が行われるため、面照射用の導光部材から被照射物への出射光の位置によるバランスを調整する際に、面照射用の導光部材に光を入射させるまでの途中の光学系の状態を変えないで、照射光量だけを調整することができる。つまり、擬似太陽光を被照射物に照射する際に、照射光のスペクトル分布を固定した後でも、そのスペクトル分布を変えることなく、照射光量だけを調整することができる。   The present invention relates to a light irradiating device for irradiating an object to be irradiated with highly directional light, and a pseudo sunlight irradiating device for irradiating an object to be irradiated with pseudo sunlight using the light irradiating device, In the field of the solar cell panel inspection apparatus that performs pass / fail determination by measuring the output characteristics of the solar battery panel using the simulated solar light irradiation device, a light amount adjusting member is arranged for each opening from which the emitted light of the first light source is extracted. Since the light emission adjustment of the spectrum-adjusted light is performed by the light quantity adjustment member, when adjusting the balance depending on the position of the outgoing light from the light guide member for surface irradiation to the irradiated object, Only the amount of irradiation light can be adjusted without changing the state of the optical system halfway until light is incident on the light guide member. That is, when irradiating the object with simulated sunlight, only the amount of irradiation light can be adjusted without changing the spectrum distribution even after fixing the spectrum distribution of the irradiation light.

1、1A 擬似太陽光照射装置
2 キセノン光源
3a 反射部材
3b 開口板
31 開口部
32 遮光部材
4 テーパ導光部材
5 エアマスフィルタ(第1光学フィルタ;スペクトル調整用フィルタ)
6 第1光照射装置
7,7A,2C,2D ハロゲン光源
8,8A,3C,3D 反射部材
9,9C,9D テーパ導光部材
10,10C,10D エアマスフィルタ(第2光学フィルタ;スペクトル調整用フィルタ)
11 第2光照射装置
12 光混合部(波長選択ミラー)
13 被照射物(太陽電池パネル)
14,14A 導光部材
15 第3光照射装置
15A 第4光照射装置
DESCRIPTION OF SYMBOLS 1, 1A Pseudo sunlight irradiation apparatus 2 Xenon light source 3a Reflective member 3b Opening plate 31 Opening part 32 Light shielding member 4 Tapered light guide member 5 Air mass filter (1st optical filter; Spectrum adjustment filter)
6 First light irradiation device 7, 7A, 2C, 2D Halogen light source 8, 8A, 3C, 3D Reflective member 9, 9C, 9D Tapered light guide member 10, 10C, 10D Air mass filter (second optical filter; spectrum adjustment filter) )
11 2nd light irradiation apparatus 12 Light mixing part (wavelength selection mirror)
13 Object to be irradiated (solar cell panel)
14, 14A Light guide member 15 3rd light irradiation apparatus 15A 4th light irradiation apparatus

Claims (9)

第1光源と、該第1光源からの出射光を反射させる第1反射部材と、該第1反射部材の反射前方側に配設されて、該光源の出射光を取り出す開口部が形成された開口部材と、該開口部材の開口部からの出射光を一方端面から取り込んで指向性が高められた光を他方端面から出射する第1導光部材と、該第1導光部材の他方端面から出射される光のスペクトルを調整する第1光学フィルタとを有し、該開口部毎に光量調整部材が配置され、該光量調整部材によりスペクトル調整された光の出射光量調整が行われている光照射装置。   A first light source, a first reflecting member for reflecting the light emitted from the first light source, and an opening for taking out the light emitted from the light source are formed on the reflection front side of the first reflecting member. An opening member, a first light guide member that takes in light emitted from the opening of the opening member from one end face, and emits light with enhanced directivity from the other end face, and from the other end face of the first light guide member A first optical filter that adjusts the spectrum of the emitted light, and a light amount adjusting member is disposed for each opening, and the emitted light amount of the light whose spectrum is adjusted by the light amount adjusting member is adjusted. Irradiation device. 前記光量調整部材は、前記開口部材の開口部と、前記反射部材の間に配置されている請求項1に記載の光照射装置。   The light irradiation device according to claim 1, wherein the light amount adjustment member is disposed between an opening of the opening member and the reflection member. 前記光量調整部材は、前記反射部材の対向辺に掛け渡されて固定された所定幅の遮光部材であって、該所定幅の幅サイズに応じて前記出射光量調整が行われる請求項2に記載の光照射装置。   The light amount adjusting member is a light shielding member having a predetermined width that is stretched over and fixed to the opposite side of the reflecting member, and the emitted light amount adjustment is performed according to a width size of the predetermined width. Light irradiation device. 前記光量調整部材は、波長依存性を持たない金属を黒色化した遮光部材である請求項2に記載の光照射装置。   The light irradiation apparatus according to claim 2, wherein the light amount adjustment member is a light shielding member obtained by blackening a metal having no wavelength dependency. 請求項1〜4のいずれかに記載の光照射装置からの擬似太陽光を一方端面から取り込んでその内部を伝搬させて被照射物に対して光を平坦面から面照射する面照射用の導光部材を有する擬似太陽光照射装置。   The artificial sunlight from the light irradiation device according to any one of claims 1 to 4 is taken in from one end surface and propagated in the inside thereof, so that light is irradiated from the flat surface to the irradiated object from the flat surface. A pseudo-sunlight irradiation device having a light member. 請求項1〜4のいずれかに記載の光照射装置である第1光照射装置と、
第2光源と、該第2光源からの出射光を反射させる第2反射部材と、該第2反射部材からの出射光を一方端面から取り込んで指向性が高められた光を他方端面から出射する第2導光部材と、該第2導光部材の他方端面から出射される光のスペクトルを調整する第2光学フィルタとを有する第2光照射装置と、
該第1光照射装置からの光と該第2光照射装置からの光を混合して太陽光に類似した擬似太陽光を得る光混合部材と、該光混合部材からの擬似太陽光を一方端面から取り込んでその内部を伝搬させて被照射物に対して光を平坦面から均一に面照射する第3導光部材とを有する第3光照射装置とのセットが複数設けられている擬似太陽光照射装置。
A first light irradiation device which is the light irradiation device according to claim 1;
A second light source, a second reflecting member that reflects light emitted from the second light source, and light emitted from the second reflecting member from one end face to emit light having enhanced directivity from the other end face A second light irradiation device comprising: a second light guide member; and a second optical filter that adjusts a spectrum of light emitted from the other end surface of the second light guide member;
A light mixing member that obtains pseudo sunlight similar to sunlight by mixing light from the first light irradiation device and light from the second light irradiation device, and one end face of the pseudo sunlight from the light mixing member Pseudo-sunlight provided with a plurality of sets of third light irradiation devices each having a third light guide member that takes in light from the light source and propagates through the inside thereof to uniformly irradiate the irradiated object with light from a flat surface. Irradiation device.
前記第1光照射装置、前記第2光照射装置および前記第3光照射装置を有する前記光学系を1ユニットとし、該1ユニット同士を左右方向に対向配置して、該第3光照射装置の第3導光部材の他方端面同士を当接した2ユニットを、前記被照射物のサイズに応じて、前後方向に複数並べて配置されている請求項6に記載の擬似太陽光照射装置。   The optical system having the first light irradiation device, the second light irradiation device, and the third light irradiation device is defined as one unit, and the one unit is disposed to face each other in the left-right direction, and the third light irradiation device The simulated solar light irradiation device according to claim 6, wherein a plurality of two units in which the other end surfaces of the third light guide member are in contact with each other are arranged in the front-rear direction according to the size of the irradiated object. 前記第1光照射装置、前記第2光照射装置および前記光混合部を配置した左側セットと、該第1光照射装置、該第2光照射装置および該光混合部を配置した右側セットとの間に、左側の光混合部からの混合光を一方端面から取り込んでその内部を伝搬させると共に、右側の光混合部からの混合光を他方端面から取り込んでその内部を伝搬させて被照射物に対して光を平坦面から均一に面照射する第4導光部材が前記第3導光部材に代えて設けられ、これを1ユニットとし、被照射物のサイズに応じて、該1ユニットが前後方向に複数並べてられて配置されている請求項6に記載の擬似太陽光照射装置。   A left set in which the first light irradiation device, the second light irradiation device, and the light mixing unit are disposed, and a right set in which the first light irradiation device, the second light irradiation device, and the light mixing unit are disposed. In between, the mixed light from the left light mixing part is taken in from one end face and propagated in the inside, and the mixed light from the right light mixing part is taken in from the other end face and propagated through the inside to the irradiated object On the other hand, a fourth light guide member that uniformly irradiates light from a flat surface is provided in place of the third light guide member, and this unit is set as one unit, and the one unit is arranged back and forth according to the size of the irradiated object. The simulated solar light irradiation device according to claim 6, wherein a plurality of the solar light irradiation devices are arranged in a direction. 請求項5〜8のいずれかに記載の擬似太陽光照射装置を用いて太陽電池パネルの出力特性を測定して良否判定を行う太陽電池パネル用検査装置。   The inspection apparatus for solar cell panels which performs the quality determination by measuring the output characteristic of a solar cell panel using the simulated solar light irradiation apparatus in any one of Claims 5-8.
JP2010230940A 2010-10-13 2010-10-13 Light irradiation device, simulated solar light irradiation device, solar cell panel inspection device Expired - Fee Related JP5274530B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010230940A JP5274530B2 (en) 2010-10-13 2010-10-13 Light irradiation device, simulated solar light irradiation device, solar cell panel inspection device
PCT/JP2011/004804 WO2012049800A1 (en) 2010-10-13 2011-08-29 Light irradiation device, sunlight imitating light irradiation device, and inspection device for solar cell panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010230940A JP5274530B2 (en) 2010-10-13 2010-10-13 Light irradiation device, simulated solar light irradiation device, solar cell panel inspection device

Publications (2)

Publication Number Publication Date
JP2012084449A true JP2012084449A (en) 2012-04-26
JP5274530B2 JP5274530B2 (en) 2013-08-28

Family

ID=45938043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010230940A Expired - Fee Related JP5274530B2 (en) 2010-10-13 2010-10-13 Light irradiation device, simulated solar light irradiation device, solar cell panel inspection device

Country Status (2)

Country Link
JP (1) JP5274530B2 (en)
WO (1) WO2012049800A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05342904A (en) * 1992-06-09 1993-12-24 Photonics:Kk Lighting method and lighting system
JPH11305222A (en) * 1998-04-17 1999-11-05 Ichikoh Ind Ltd Back light for color liquid crystal display device
JP2005197432A (en) * 2004-01-07 2005-07-21 Fuji Electric Holdings Co Ltd Method for measuring solar cell characteristics
WO2010004610A1 (en) * 2008-07-07 2010-01-14 桐生株式会社 Light guide plate unit and lighting apparatus using the light guide plate unit
JP2010102796A (en) * 2008-10-24 2010-05-06 Tdk Corp Optical head apparatus and optical recording and reproducing system
WO2010050489A1 (en) * 2008-10-30 2010-05-06 日本ゼオン株式会社 Light source device and liquid cristal display device
JP2010146824A (en) * 2008-12-18 2010-07-01 Ji Engineering:Kk Solar simulator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05342904A (en) * 1992-06-09 1993-12-24 Photonics:Kk Lighting method and lighting system
JPH11305222A (en) * 1998-04-17 1999-11-05 Ichikoh Ind Ltd Back light for color liquid crystal display device
JP2005197432A (en) * 2004-01-07 2005-07-21 Fuji Electric Holdings Co Ltd Method for measuring solar cell characteristics
WO2010004610A1 (en) * 2008-07-07 2010-01-14 桐生株式会社 Light guide plate unit and lighting apparatus using the light guide plate unit
JP2010102796A (en) * 2008-10-24 2010-05-06 Tdk Corp Optical head apparatus and optical recording and reproducing system
WO2010050489A1 (en) * 2008-10-30 2010-05-06 日本ゼオン株式会社 Light source device and liquid cristal display device
JP2010146824A (en) * 2008-12-18 2010-07-01 Ji Engineering:Kk Solar simulator

Also Published As

Publication number Publication date
JP5274530B2 (en) 2013-08-28
WO2012049800A1 (en) 2012-04-19

Similar Documents

Publication Publication Date Title
JP5314653B2 (en) Light irradiation device, simulated solar light irradiation device, solar cell panel inspection device
JP4570680B1 (en) Light irradiation device and inspection device
EP2554894A1 (en) Pseudo-sunlight irradiating apparatus
EP2442005A1 (en) Simulated solar light application device
JP5274528B2 (en) Pseudo-sunlight irradiation device and solar panel inspection device
JP5355525B2 (en) Pseudo-sunlight irradiation device and solar panel inspection device
JP5053448B1 (en) Simulated solar irradiation device
JP5274530B2 (en) Light irradiation device, simulated solar light irradiation device, solar cell panel inspection device
EP2662610A1 (en) Simulated solar radiation device
CN110873969A (en) Spatial light modulator and control method of laser energy attenuation
JP5214777B2 (en) Pseudo-sunlight irradiation device and spectrum adjustment method thereof
US20140176179A1 (en) Pseudo-solar radiation device
JP2010251002A (en) Light irradiation device
EP2623955A1 (en) Simulated solar light irradiation apparatus
US20140233206A1 (en) Light source device, artificial sunlight radiation apparatus, and method for maintaining light source device
JP5863392B2 (en) Simulated solar irradiation device
WO2013038769A1 (en) Artificial-sunlight projection device
JP5868660B2 (en) Simulated solar irradiation device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130514

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

LAPS Cancellation because of no payment of annual fees