JP2012083004A - Mechanism for releasing air in piping of solar water heating system, and method thereof - Google Patents

Mechanism for releasing air in piping of solar water heating system, and method thereof Download PDF

Info

Publication number
JP2012083004A
JP2012083004A JP2010228091A JP2010228091A JP2012083004A JP 2012083004 A JP2012083004 A JP 2012083004A JP 2010228091 A JP2010228091 A JP 2010228091A JP 2010228091 A JP2010228091 A JP 2010228091A JP 2012083004 A JP2012083004 A JP 2012083004A
Authority
JP
Japan
Prior art keywords
heat medium
pump
heat
path
piping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010228091A
Other languages
Japanese (ja)
Other versions
JP5388012B2 (en
Inventor
Toyo Kamegawa
東洋 亀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAMEKAWA KOGYO KK
Original Assignee
KAMEKAWA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAMEKAWA KOGYO KK filed Critical KAMEKAWA KOGYO KK
Priority to JP2010228091A priority Critical patent/JP5388012B2/en
Publication of JP2012083004A publication Critical patent/JP2012083004A/en
Application granted granted Critical
Publication of JP5388012B2 publication Critical patent/JP5388012B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Abstract

PROBLEM TO BE SOLVED: To surely release air in piping in a short time by improving a heating medium pressure feeding force during working on heating medium packing and on releasing air in piping, relating to a solar water heating system of a heating-medium forcedly-circulated type.SOLUTION: The mechanism for releasing air in piping which accompanies the packing of the heating medium in the piping of a solar water heating system includes a first pump which supplies the heating medium to the piping of a circulation path by discharging the heating medium from a heating reservoir tank at a constant quantity along only one direction, a second pump of a turbo type which is interposed in the piping of the circulation path, first and second opening/closing valves that are interposed in outward and homeward paths of the circulation path, respectively, for opening and closing the path, a direction switching valve provided at a piping connection part of the first bump, the heating medium reservoir tank, and a homeward path. An electromagnetic pump is connected by piping to a first branch connection part in a circulation path piping on the upper stream side in an outward path upward direction of the second pump. A direction switching valve is connected by piping to a second branch connection part on the lower stream side in homeward path upward direction of the second/closing valve on the homeward path side in homeward path.

Description

本発明は、建物屋根面等に設置させた集熱パネルと地上等に配置させた熱交換タンクとを循環する循環経路配管内に不凍液を充填させてその交換熱で供給水を温水に変換して取り出す太陽熱温水システムの配管内エアー抜き機構及び配管内エアー抜き方法に関する。   In the present invention, antifreezing liquid is filled in a circulation path pipe that circulates between a heat collecting panel installed on a building roof surface or the like and a heat exchange tank arranged on the ground or the like, and the supplied water is converted into warm water by the exchange heat. The present invention relates to an in-pipe air venting mechanism and an in-pipe air venting method of a solar hot water system to be taken out.

温室効果ガスを主因とする地球温暖化は、「地球上のあらゆる場所において発展を妨げる」(AR4:IPCC第4次評価報告書)ものと予測されており、これが化石燃料使用によるCO増加が原因であることがほぼ明らかになっている現在、化石代替エネルギーの開発、利用は喫緊の課題といえる。出願人は、特許文献1により集熱器と蓄熱槽の間を配管した循環(集熱)回路に不凍液などを熱媒として用いた密閉式あるいは強制循環式の太陽熱温水システム(ソーラーシステム)を提案し、特に利用時の循環回路内への熱媒の充填方法を示した。 Global warming, mainly caused by greenhouse gases, is predicted to “prevent development everywhere on the planet” (AR4: IPCC Fourth Assessment Report). This is an increase in CO 2 due to the use of fossil fuels. Now that the cause is almost clear, the development and use of fossil alternative energy can be said to be an urgent issue. The applicant proposed a sealed or forced circulation solar water heating system (solar system) using antifreeze or the like as a heat medium in a circulation (heat collection) circuit piping between the heat collector and the heat storage tank according to Patent Document 1. In particular, the method of filling the heat medium into the circulation circuit during use was shown.

特許第3234976号公報Japanese Patent No. 3234976

図4は、特許文献1の太陽熱温水システムの簡略構成説明図であり、特許文献1の太陽熱温水システムでは、建物の屋根上に設置した集熱パネル1と地上側に設置した蓄熱槽2とを循環経路3を形成するように配管接続し、循環経路3に熱媒を充填して該熱媒を循環経路に介設させた循環駆動機構4により循環駆動させる。図上、10は熱媒貯留タンク、12は電磁ポンプ、14は循環ポンプ、16は蓄熱槽2内に配置した熱交換器、18は熱媒貯留タンク10と電磁ポンプ12と循環経路との配管接続の方向切替バルブ、20は循環経路の往路側に介設した開閉弁、22は循環経路の復路側に介設した開閉弁、24は熱媒の供給レベルを管理するリザーブタンクである。蓄熱槽2には給水口26を介して給水される一方、温水取出し口28は、図示しない分配器等を介して暖房、浴湯、台所給湯設備などに接続されている。   FIG. 4 is a simplified configuration explanatory diagram of the solar hot water system of Patent Document 1. In the solar hot water system of Patent Document 1, a heat collecting panel 1 installed on the roof of a building and a heat storage tank 2 installed on the ground side are provided. Pipes are connected so as to form the circulation path 3, and the circulation path 3 is filled with a heat medium, and is circulated and driven by a circulation drive mechanism 4 interposed in the circulation path. In the figure, 10 is a heat medium storage tank, 12 is an electromagnetic pump, 14 is a circulation pump, 16 is a heat exchanger disposed in the heat storage tank 2, and 18 is a pipe between the heat medium storage tank 10, the electromagnetic pump 12, and the circulation path. A connection direction switching valve, 20 is an on-off valve provided on the forward side of the circulation path, 22 is an on-off valve provided on the return side of the circulation path, and 24 is a reserve tank for managing the supply level of the heat medium. Water is supplied to the heat storage tank 2 through a water supply port 26, while the hot water outlet 28 is connected to heating, bath water, kitchen hot water supply equipment, etc. via a distributor (not shown).

■特許文献1の太陽熱温水システムにおいて、熱媒を循環経路3の配管内に充填する場合、まず、電磁ポンプ12をスタートとして循環経路3で(1)矢印方向(図上時計回り)、すなわち復路3B側から熱媒がリザーブタンク24まで充填される。このとき、復路開閉弁22は開状態((1)−O)、往路開閉弁20は閉状態((1)−S)で方向切替バルブ18は熱媒貯留タンク10と電磁ポンプ12とのみを連通させるように設定されている。■次に、循環経路3で(2)矢印方向(図上反時計回り)、すなわち往路3A側から熱媒がリザーブタンク24まで充填される。このとき、往路開閉弁20は開状態((2)−O)、復路開閉弁22は閉状態((2)−S)で、方向切替バルブ18は上記時計回り充填の場合と同様に熱媒貯留タンク10と電磁ポンプ12とのみを連通させるように設定されている。■最後に、循環経路3で(3)太矢印方向(図上反時計回り)、すなわち往路側から熱媒がリザーブタンク24を通過経由し、復路を通流して循環ポンプ14に戻りさらに吐出される閉回路で熱媒が循環駆動される。このとき、往路開閉弁20、復路開閉弁22はともに開状態((3)−O)で、方向切替バルブ18は熱媒貯留タンク10から電磁ポンプ12への導入は遮断し、復路3Bと電磁ポンプ12とのみを連通させるように設定されている。   In the solar hot water system of Patent Document 1, when charging the heating medium into the piping of the circulation path 3, first, the electromagnetic pump 12 is started and (1) in the direction of the arrow (clockwise in the figure), that is, the return path. The heat medium is filled up to the reserve tank 24 from the 3B side. At this time, the return path on-off valve 22 is in the open state ((1) -O), the forward path on-off valve 20 is in the closed state ((1) -S), and the direction switching valve 18 is only connected to the heat medium storage tank 10 and the electromagnetic pump 12. It is set to communicate. (2) Next, in the circulation path 3, (2) the heat medium is filled up to the reserve tank 24 in the direction of the arrow (counterclockwise in the figure), that is, from the forward path 3A side. At this time, the forward opening / closing valve 20 is in an open state ((2) -O), the backward opening / closing valve 22 is in a closed state ((2) -S), and the direction switching valve 18 is a heating medium as in the case of the clockwise charging. Only the storage tank 10 and the electromagnetic pump 12 are set to communicate with each other. (3) Finally, in the circulation path 3 (3) in the direction of the thick arrow (counterclockwise in the figure), that is, from the forward path side, the heat medium passes through the reserve tank 24, flows through the return path, returns to the circulation pump 14, and is further discharged. The heating medium is circulated in a closed circuit. At this time, both the forward opening / closing valve 20 and the return opening / closing valve 22 are in the open state ((3) -O), and the direction switching valve 18 is blocked from being introduced from the heat medium storage tank 10 to the electromagnetic pump 12, and is electromagnetically connected to the return path 3B. It is set to communicate only with the pump 12.

上記の特許文献1の太陽熱温水システムにおいては、循環駆動機構におけるポンプを小型化、低消費電力化し、さらに循環経路内へのエアーの封入を防止しうる効果を有するが、熱媒充填の最終段階における熱媒の閉回路周回駆動の際に電磁ポンプ12の吐出側と往路3Aとの配管合流部kにおいて、図5に示すように循環ポンプ14側と電磁ポンプ12側の両方から同時に熱媒が配管合流部kに合流するのでこのk部分での圧力損失が大きくなり、このため単位時間あたりの熱媒の圧送流量が小さくなる結果、熱媒充填時のエアー抜き作業時間がかかり作業効率を損なう問題があった。また、配管長さ全体が長くなりさらに熱媒圧送力が小さくなるため配管内のエアー抜き精度にも影響が出てポンプ稼働効率を低下させることも考えられる。   In the solar hot water system of Patent Document 1 described above, the pump in the circulation drive mechanism is reduced in size, consumes less power, and has the effect of preventing air from being enclosed in the circulation path. In the closed circuit circuit drive of the heat medium in FIG. 5, in the piping junction k between the discharge side of the electromagnetic pump 12 and the forward path 3A, the heat medium is simultaneously supplied from both the circulation pump 14 side and the electromagnetic pump 12 side as shown in FIG. Since it merges into the pipe junction k, the pressure loss at this k portion increases, and as a result, the pumping flow rate of the heat medium per unit time decreases, resulting in a longer time for air venting at the time of filling the heat medium, impairing work efficiency. There was a problem. In addition, since the entire length of the pipe becomes longer and the heat medium pumping force becomes smaller, the air bleeding accuracy in the pipe is also affected, and the pump operating efficiency may be lowered.

本発明は上記従来の課題に鑑みてなされたものであり、その目的は、熱媒強制循環式の
太陽熱温水システムにおける熱媒充填及び配管内エアー抜き作業時の熱媒圧送力を向上させ、確実な配管内エアー抜きと、短時間での配管内エアー抜きを実現し、システム立ち上げ時間を短縮させることのできる太陽熱温水システムにおける配管内エアー抜き機構並びにその配管内エアー抜き方法を提供することにある。
The present invention has been made in view of the above-described conventional problems, and its purpose is to improve the heat medium pressure feeding force during the heat medium filling and the air venting work in the pipe in the heat medium forced circulation solar hot water system, and reliably To provide an air bleed mechanism in a solar hot water system and a method for air bleed in the pipe that can reduce air evacuation in the pipe and evacuate the pipe in a short time and shorten the system start-up time. is there.

上記課題を解決するために本発明は、集熱パネル1と、集熱パネルで加温された熱媒と水との熱交換を行なう熱交換部16と、集熱パネル1と熱交換部16間で熱媒を循環駆動させる循環駆動機構4と、を配管接続して熱媒の循環経路3を形成した太陽熱温水システムにおける配管内エアー抜き機構5であり、該配管内エアー抜き機構5は循環駆動機構4と兼用して設けられており、熱媒貯留タンク10からの熱媒を一方向にのみ定量吐出して循環経路3の配管に熱媒を供給する第1のポンプ50と、第1のポンプ50の近傍であって循環経路3の配管に介設されたターボ型の第2のポンプ60と、循環経路3での熱媒貯留タンク10を基準とした往路3Aと復路3Bのそれぞれに介設され経路の開閉を行なう第1、第2開閉バルブ20、22と、第1のポンプ50と熱媒貯留タンク10と復路3Bとの配管接続部100に設けられた方向切替バルブ18と、第2のポンプ60の往路上り方向Qに対して上流側の循環経路3配管に第1のポンプ50を配管接続した第1の分岐接続部40と、復路3Bであって復路側の第2開閉バルブ22の復路上りR方向に対して下流側に方向切替バルブ18を配管接続した第2の分岐接続部42と、を含む太陽熱温水システムにおける配管内エアー抜き機構5から構成される。   In order to solve the above-described problems, the present invention provides a heat collecting panel 1, a heat exchanging unit 16 that exchanges heat between the heat medium heated by the heat collecting panel and water, and the heat collecting panel 1 and the heat exchanging unit 16. An air vent mechanism 5 in a pipe in a solar hot water system in which a circulation drive mechanism 4 for circulatingly driving the heat medium is connected to form a circulation path 3 for the heat medium. The air vent mechanism 5 in the pipe circulates. A first pump 50 which is also used as the drive mechanism 4 and discharges the heat medium from the heat medium storage tank 10 only in one direction to supply the heat medium to the piping of the circulation path 3; The turbo-type second pump 60 provided in the vicinity of the pump 50 and installed in the piping of the circulation path 3, and the forward path 3A and the return path 3B based on the heat medium storage tank 10 in the circulation path 3, respectively. First and second on-off valves 20 and 2 that open and close the path. And the direction switching valve 18 provided in the pipe connection part 100 of the first pump 50, the heat medium storage tank 10, and the return path 3B, and the circulation path upstream of the forward direction Q of the second pump 60. A first branch connection portion 40 in which a first pump 50 is connected to three pipes, and a direction switching valve 18 on the downstream side with respect to the return upstream R direction of the return valve 2 on the return path 3B. And a second branch connection part 42 connected to the pipe, and the air vent mechanism 5 in the pipe in the solar hot water system.

また、本発明は、集熱パネル1と、集熱パネル1で加温された熱媒と水との熱交換を行なう熱交換部16と、集熱パネル1と熱交換部16間で熱媒を循環駆動させる循環駆動機構4と、を配管接続して熱媒の循環経路3を形成した太陽熱温水システムにおける配管内エアー抜き方法であり、循環駆動機構4において熱媒貯留タンク10からの熱媒を一方向にのみ定量吐出して循環経路3の配管に熱媒を供給する第1のポンプ50と、第1のポンプの近傍であって循環経路3の配管に介設され熱交換部16の近傍に配置されたターボ式駆動による第2のポンプ60と、循環経路に介設した複数のバルブ18、20、22を用意し、熱媒貯留タンク10からの熱媒を第1のポンプ50により循環経路3での熱媒貯留タンク10を基準とした復路上り方向R又は往路上り方向Qのいずれかの方向に向けて圧送し集熱パネル1に熱媒を充填する第1の工程と、第1の工程後に熱媒貯留タンク10からの熱媒を第2のポンプ60の上流側から循環経路3での熱媒貯留タンク10を基準とした往路上り方向Q又は復路上り方向Rのいずれかの方向であって、第1の工程と逆方向に向けて第1のポンプ50により圧送し集熱パネル1に熱媒を充填する第2の工程と、熱媒貯留タンク10からの熱媒の供給を遮断し循環経路3の往路上り方向Qに向けて第1ポンプ50を上流に位置させるように直列に接続した第1ポンプ50と第2ポンプ60を循環経路3に接続し、循環経路3の往路上り方向Qに向けて第1及び第2のポンプ50,60により熱媒を圧送し循環経路3を通流させて配管内のエアー抜きを行なう第3の工程と、を含む太陽熱温水システムにおける配管内エアー抜き方法から構成される。   The present invention also relates to the heat collection panel 1, the heat exchange unit 16 that performs heat exchange between the heat medium heated by the heat collection panel 1 and water, and the heat medium between the heat collection panel 1 and the heat exchange unit 16. And a circulation drive mechanism 4 that circulates and circulates the air in the pipe in the solar hot water system in which the circulation path 3 of the heat medium is formed by pipe connection, and the circulation of the heat medium from the heat medium storage tank 10 in the circulation drive mechanism 4. A first pump 50 for supplying a heat medium to the piping of the circulation path 3 by quantitatively discharging the gas only in one direction, and a heat exchange unit 16 provided in the vicinity of the first pump and interposed in the piping of the circulation path 3. A turbo-driven second pump 60 arranged in the vicinity and a plurality of valves 18, 20, 22 provided in the circulation path are prepared, and the heat medium from the heat medium storage tank 10 is transferred by the first pump 50. On the return path based on the heat medium storage tank 10 in the circulation path 3 A first step in which the heat collecting panel 1 is filled with a heat medium by pumping in the direction R or the forward direction Q, and a heat medium from the heat medium storage tank 10 is second after the first step. From the upstream side of the pump 60, the forward path upward direction Q or the backward path upward direction R with respect to the heat medium storage tank 10 in the circulation path 3, and in the direction opposite to the first step. A second step of pumping the heat collecting panel 1 with a heat medium pumped by the first pump 50, and a first step toward the upstream direction Q of the circulation path 3 by cutting off the supply of the heat medium from the heat medium storage tank 10. A first pump 50 and a second pump 60 connected in series so as to position the pump 50 upstream are connected to the circulation path 3, and the first and second pumps 50, The heat medium is pumped by 60 and flows through the circulation path 3 so that the air in the pipe A third step of performing a tree, and a pipe air-release method in solar water system including.

本発明の太陽熱温水システムにおける配管内エアー抜き機構によれば、集熱パネルと、集熱パネルで加温された熱媒と水との熱交換を行なう熱交換部と、集熱パネルと熱交換部間で熱媒を循環駆動させる循環駆動機構と、を配管接続して熱媒の循環経路を形成した太陽熱温水システムにおける配管内エアー抜き機構であり、該配管内エアー抜き機構は循環駆動機構と兼用して設けられており、熱媒貯留タンクからの熱媒を一方向にのみ定量吐出して循環経路の配管に熱媒を供給する第1のポンプと、第1のポンプの近傍であって循環経路の配管に介設されたターボ型の第2のポンプと、循環経路での熱媒貯留タンクを基準とした往路と復路のそれぞれに介設され経路の開閉を行なう第1、第2開閉バルブと、第1のポンプと熱媒貯留タンクと復路との配管接続部に設けられた方向切替バルブと、第2のポンプの往路上り方向に対して上流側の循環経路配管に第1のポンプを配管接続した第1の分岐接続部と、復路であって復路側の第2開閉バルブの復路上り方向に対して下流側に方向切替バルブを配管接続した第2の分岐接続部と、を含む構成であるから、往路と復路それぞれについて開閉弁の切替により第1ポンプから直列配管で集熱パネル側に熱媒供給すると同時に、熱媒貯留タンクからの熱媒供給を遮断したエアー抜き周回駆動時にも第1、第2ポンプを直列接続し、復路側から方向切替バルブへの経路を短縮できるので、熱媒強制循環式の太陽熱温水システムにおける熱媒充填及び配管内エアー抜き作業時の熱媒圧送力を向上させ、確実な配管内エアー抜きと、短時間での配管内エアー抜きを実現し、システム立ち上げ時間を大幅に短縮させることができる。   According to the air venting mechanism in the solar hot water system of the present invention, the heat collecting panel, the heat exchanging part for exchanging heat between the heat medium heated by the heat collecting panel and water, the heat collecting panel and the heat exchanging A circulation drive mechanism that circulates and drives the heat medium between the parts, and a piping air vent mechanism in a solar hot water system in which a circulation path of the heat medium is formed by pipe connection, and the air vent mechanism in the pipe is connected to the circulation drive mechanism A first pump that is provided in common and that discharges the heat medium from the heat medium storage tank only in one direction and supplies the heat medium to the piping of the circulation path; and in the vicinity of the first pump. A turbo-type second pump interposed in the circulation path piping, and a first and second opening / closing opening and closing path that are interposed in each of the forward path and the return path based on the heat medium storage tank in the circulation path A valve, a first pump and a heat medium storage tank; A direction switching valve provided in a pipe connection portion with the road, a first branch connection portion in which the first pump is pipe-connected to the circulation path pipe upstream of the second pump in the upstream direction, and a return path And a second branch connection portion in which a direction switching valve is piped downstream with respect to the upstream direction of the second open / close valve on the return path side. By switching, the heat medium is supplied from the first pump to the heat collecting panel side by serial piping, and at the same time the first and second pumps are connected in series at the time of air venting circulation operation in which the heat medium supply from the heat medium storage tank is shut off. Since the path from the side to the direction switching valve can be shortened, the heat medium forced circulation type solar hot water system improves the heat medium pumping force at the time of heat medium filling and pipe air venting work, In a short time Realized the tube air vent, it is possible to significantly reduce the system start-up time.

また、本発明の太陽熱温水システムにおける配管内エアー抜き方法によれば、集熱パネルと、集熱パネルで加温された熱媒と水との熱交換を行なう熱交換部と、集熱パネルと熱交換部間で熱媒を循環駆動させる循環駆動機構と、を配管接続して熱媒の循環経路を形成した太陽熱温水システムにおける配管内エアー抜き方法であり、循環駆動機構において熱媒貯留タンクからの熱媒を一方向にのみ定量吐出して循環経路の配管に熱媒を供給する第1のポンプと、第1のポンプの近傍であって循環経路の配管に介設され熱交換部の近傍に配置されたターボ式駆動による第2のポンプと、循環経路に介設した複数のバルブを用意し、熱媒貯留タンクからの熱媒を第1のポンプにより循環経路での熱媒貯留タンクを基準とした復路上り方向又は往路上り方向のいずれかの方向に向けて圧送し集熱パネルに熱媒を充填する第1の工程と、第1の工程後に熱媒貯留タンクからの熱媒を第2のポンプの上流側から循環経路での熱媒貯留タンクを基準とした往路上り方向又は復路上り方向のいずれかの方向であって、第1の工程と逆方向に向けて第1のポンプにより圧送し集熱パネルに熱媒を充填する第2の工程と、熱媒貯留タンクからの熱媒の供給を遮断し循環経路の往路上り方向に向けて第1ポンプを上流に位置させるように直列に接続した第1ポンプと第2ポンプを循環経路に接続し、循環経路の往路上り方向に向けて第1及び第2のポンプにより熱媒を圧送し循環経路を通流させて配管内のエアー抜きを行なう第3の工程と、を含む構成であるから、熱媒強制循環式の太陽熱温水システムにおける熱媒充填及び配管内エアー抜き作業時の熱媒圧送力を向上させ、確実な配管内エアー抜きと、短時間での配管内エアー抜きを実現し、システム立ち上げ時間を大幅に短縮させることができる。   Moreover, according to the air venting method in the solar hot water system of the present invention, the heat collecting panel, the heat exchanging part for exchanging heat between the heat medium heated by the heat collecting panel and water, the heat collecting panel, A circulation drive mechanism that circulates and drives a heat medium between heat exchange units, and a method for venting air in a pipe in a solar hot water system in which a circulation path of the heat medium is formed by pipe connection, from the heat medium storage tank in the circulation drive mechanism A first pump for quantitatively discharging the heat medium in only one direction and supplying the heat medium to the piping of the circulation path, and in the vicinity of the first pump and in the vicinity of the heat exchanging section provided in the circulation path of the pipe A second pump with a turbo drive arranged in the tank and a plurality of valves interposed in the circulation path are prepared, and the heat medium storage tank in the circulation path is transferred to the heat medium from the heat medium storage tank by the first pump. Backward as a reference or forward A first step of pumping the heat collecting panel into the heat collecting panel and filling the heat collecting panel with the heat medium, and circulating the heat medium from the heat medium storage tank after the first step from the upstream side of the second pump The heat pump is pumped by the first pump in either the forward or backward direction relative to the heat medium storage tank in the first direction and in the opposite direction to the first step. A second step of filling, and a first pump and a second pump connected in series so as to block the supply of the heat medium from the heat medium storage tank and position the first pump upstream in the forward direction of the circulation path A third step in which the pump is connected to the circulation path, the heat medium is pumped by the first and second pumps in the upstream direction of the circulation path, and the circulation path is circulated to vent the air in the piping; Because it is a configuration that includes a heat medium forced circulation solar water heating system Improve heat pumping power during heating medium filling and piping air venting work, realize reliable air venting and air venting in the pipe in a short time, and greatly shorten the system startup time Can do.

本発明の実施形態に係る太陽熱温水システムにおける配管内エアー抜き機構の作用兼構成説明図である。It is an effect | action and structure explanatory drawing of the in-pipe air bleeding mechanism in the solar hot water system which concerns on embodiment of this invention. 図1の太陽熱温水システムにおける配管内エアー抜き機構の他の作用兼構成説明図である。It is another effect | action and structure explanatory drawing of the in-pipe air vent mechanism in the solar hot water system of FIG. 図1の太陽熱温水システムにおける配管内エアー抜き機構の他の作用兼構成説明図である。It is another effect | action and structure explanatory drawing of the in-pipe air vent mechanism in the solar hot water system of FIG. 従来の太陽熱温水システムにおける配管内エアー抜き機構の作用兼構成説明図である。It is an effect | action and structure explanatory drawing of the in-pipe air bleeding mechanism in the conventional solar hot water system. 図4の配管経路の一部拡大説明図である。It is a partially expanded explanatory view of the piping path | route of FIG.

次に、本発明の実施形態に係る太陽熱温水システムにおける配管内エアー抜き機構について図1〜図3を参照して説明する。本発明の太陽熱温水システムにおける配管内エアー抜き機構は、熱媒強制循環式の太陽熱温水システムにおける熱媒充填作業に伴って行なわれる配管内エアー抜きの機構である。なお、図4の従来の太陽熱温水システム構成と同一部材には同一符号を付して説明する。   Next, an in-pipe air vent mechanism in the solar hot water system according to the embodiment of the present invention will be described with reference to FIGS. The in-pipe air venting mechanism in the solar hot water system of the present invention is an in-pipe air venting mechanism that is performed in association with the heating medium filling operation in the solar-heated hot water system of the heat medium forced circulation type. In addition, the same code | symbol is attached | subjected and demonstrated to the same member as the conventional solar water heating system structure of FIG.

図1、2、3において、実施形態の太陽熱温水システムにおける配管内エアー抜き機構5は、集熱パネル1と、集熱パネルで加温された熱媒と水との熱交換を行なう熱交換部(16)と、集熱パネルと熱交換部間で熱媒を循環駆動させる循環駆動機構4と、を配管接続して熱媒の循環経路3を形成した太陽熱温水システムにおける配管内エアー抜き機構5である。該配管内エアー抜き機構5は循環駆動機構4と一部を兼用して設けられている。   1, 2, and 3, the in-pipe air vent mechanism 5 in the solar hot water system of the embodiment includes a heat exchanging unit 1 and a heat exchanging unit that exchanges heat between the heat medium heated by the heat collecting panel and water. (16) and a circulation drive mechanism 4 that circulates and drives the heat medium between the heat collecting panel and the heat exchanging section, and the air vent mechanism 5 in the pipe in the solar hot water system in which the circulation path 3 of the heat medium is formed. It is. The in-pipe air venting mechanism 5 is provided so as to share a part with the circulation driving mechanism 4.

図1において、建物上部の屋根面(図示せず)には公知の集熱管を内蔵させた2個の集熱パネル1a、1bが互いに連通状態で設置されており、太陽光の照射によりこの集熱管内に充填させた不凍液等の熱媒を加熱させ循環経路3で蓄熱槽2側に循環させる。蓄熱槽2は地上側に設置されており、この蓄熱槽2には下部給水口26及び上部温水取出し口28が取り付けられ、図示しない送液管などを接続し、さらに熱源分配器を介して所要の暖房、キッチン給湯、浴湯などの需要源に供給される。集熱パネル1の1つには熱媒のリザーブタンク24が連通接続して設けられている。このリザーブタンク24には図示しない大気に連通する空気逃がし孔が設けられるとともに、タンク内の異なる液面高さを検出する複数のセンサが設置されている。   In FIG. 1, two heat collecting panels 1a and 1b each incorporating a known heat collecting tube are installed on the roof surface (not shown) at the top of the building in communication with each other. A heat medium such as antifreeze filled in the heat pipe is heated and circulated to the heat storage tank 2 side through the circulation path 3. The heat storage tank 2 is installed on the ground side, and a lower water supply port 26 and an upper hot water outlet 28 are attached to the heat storage tank 2, connected to a liquid supply pipe (not shown), and further required via a heat source distributor. Supplied to demand sources such as heating, kitchen hot water and bath water. One of the heat collecting panels 1 is provided with a heat medium reserve tank 24 connected in communication. The reserve tank 24 is provided with an air escape hole communicating with the atmosphere (not shown) and a plurality of sensors for detecting different liquid level heights in the tank.

集熱パネル1と蓄熱槽2とは、ポリエチレン製等の配管で連通されて閉回路としての循環経路3を構成している。実施例において、熱媒貯留タンク10を基準あるいは起点とし、図2の矢示(2)の蓄熱槽2から集熱パネル1側に至る反時計回り経路が循環往路3Aとされるとともに、熱媒貯留タンク10を基準あるいは起点とし図1の矢視(1)の第1のポンプ50から集熱パネル1側に至る時計回り経路が循環復路3Bとされる。   The heat collection panel 1 and the heat storage tank 2 are communicated by a pipe made of polyethylene or the like to constitute a circulation path 3 as a closed circuit. In the embodiment, the counterclockwise path from the heat storage tank 2 to the heat collecting panel 1 side indicated by the arrow (2) in FIG. A clockwise path from the first pump 50 to the heat collecting panel 1 side as indicated by an arrow (1) in FIG. 1 with the storage tank 10 as a reference or starting point is defined as a circulation return path 3B.

図1において、集熱パネル1と蓄熱槽2間の循環経路3に介在して熱媒の循環駆動機構4が設けられ、該循環駆動機構4は、集熱パネル1で太陽熱を受けて加熱された熱媒が蓄熱槽で熱交換され、冷却された熱媒は再び集熱パネル1に送られて加熱されるサイクルを循環経路3内で実行させ、熱媒を循環駆動させる。   In FIG. 1, a heat medium circulation drive mechanism 4 is provided in a circulation path 3 between the heat collection panel 1 and the heat storage tank 2, and the circulation drive mechanism 4 is heated by receiving heat from the heat collection panel 1. The heated heat medium is exchanged in the heat storage tank, and the cooled heat medium is sent to the heat collecting panel 1 and heated again in the circulation path 3 to circulate and drive the heat medium.

蓄熱槽2内において、配管パイプの一部は複数重に屈曲反転あるいは周回させて熱交換器16を形成し、下部給水口26から蓄熱槽2内に導入された水が熱交換器16で熱交換されて温水化し、上部温水取出し口28から外部に導出されて利用される。   In the heat storage tank 2, a part of the piping pipe is bent, inverted, or circulated in multiple layers to form the heat exchanger 16, and water introduced into the heat storage tank 2 from the lower water supply port 26 is heated by the heat exchanger 16. The water is exchanged and warmed, and is led out from the upper hot water outlet 28 to be used.

循環経路3の配管内に充填する熱媒は、例えば、プロピレングリコール等の凝固点が低く、かつ無害の成分の水溶液からなるいわゆる不凍液が用いられる。熱媒はこれに限ることなく、例えば無害の塩類等を混入して凝固点を低くした水溶液からなる不凍液等を用いても良い。   As the heating medium filled in the piping of the circulation path 3, for example, a so-called antifreeze liquid composed of an aqueous solution of a harmless component having a low freezing point such as propylene glycol is used. The heat medium is not limited to this, and for example, an antifreeze solution composed of an aqueous solution in which harmless salts or the like are mixed to lower the freezing point may be used.

図1〜図3において、循環経路に介設された循環駆動機構4は、熱媒貯留タンク10と第1のポンプ50と、第2のポンプ60と、複数の弁部材18〜22と、を備えている。同様に、配管内エアー抜き機構5は、熱媒貯留タンク10と第1のポンプ50と、第2のポンプ60と、複数の弁部材18〜22と、を含む。複数の弁部材は、方向切替バルブ18と、第1開閉バルブとしての往路開閉弁20と、第2開閉バルブとしての復路開閉弁22と、を含む。   1 to 3, the circulation drive mechanism 4 interposed in the circulation path includes a heat medium storage tank 10, a first pump 50, a second pump 60, and a plurality of valve members 18 to 22. I have. Similarly, the in-pipe air vent mechanism 5 includes the heat medium storage tank 10, the first pump 50, the second pump 60, and a plurality of valve members 18 to 22. The plurality of valve members include a direction switching valve 18, an outward opening / closing valve 20 as a first opening / closing valve, and a return opening / closing valve 22 as a second opening / closing valve.

図において、熱媒貯留タンク10は、常時、所定量の熱媒を貯留しておき、方向切替バルブ18を介して連通接続された第1のポンプ50と循環復路3Bとに熱媒を切替供給する。   In the figure, a heat medium storage tank 10 always stores a predetermined amount of heat medium, and switches and supplies the heat medium to the first pump 50 and the circulation return path 3B connected in communication via the direction switching valve 18. To do.

第1のポンプ50は、熱媒貯留タンク10からの熱媒を一方向にのみ定量吐出して循環経路の配管に熱媒を供給する第1のポンプ手段であり、一方向にのみ吐出して逆止弁機能を有し、さらに一定容積空間内の熱媒を定量吐出して小型で比較的高い揚程を保持する容積形ポンプが適用される。具体的には、例えば電磁ポンプなどを用いることができる。容積形ポンプには往復運動又は回転運動により容積変化させて液体を圧送駆動させるものがある。第1のポンプ50は、方向切替バルブ18を経由して受けた熱媒を常時第2のポンプ60の循環復路3B側にのみ圧送する。詳細には、この第1ポンプとしての電磁ポンプは、例えば入口と出口を有する通水管路にオリフィスを設け、通水管路の中間部に交差方向に駆動部ケーシングを連通接続し、このケーシング内にバネ付勢された進退移動体機構を設けさらにこのケーシングに電磁ソレノイドを設け、通水管路に入口から出口方向へのみ液体が通流し、逆方向への通流を遮断するような弁機構を設け、電磁力により高速で進退移動体を進退方向に移動させることにより通水管路の不凍液等の液体をオリフィスを介して所定の吐出方向に高い噴射圧で吐出させる公知の電磁ポンプが用いられる。実施形態の電磁ポンプは、以上のような簡単な構成であり、吐出力が大きいので小型、低コストでありながら、液体の圧送等には揚水(液)力が大きく、小型のものでも50m程度の揚程に対しても簡単に液体圧送が可能である。   The first pump 50 is a first pump means that discharges the heat medium from the heat medium storage tank 10 only in one direction and supplies the heat medium to the piping of the circulation path, and discharges the heat medium only in one direction. A positive displacement pump that has a check valve function and is small in size and holds a relatively high head by quantitatively discharging a heat medium in a fixed volume space is applied. Specifically, for example, an electromagnetic pump or the like can be used. Some positive displacement pumps change the volume by a reciprocating motion or a rotational motion to drive the liquid under pressure. The first pump 50 always pumps the heat medium received via the direction switching valve 18 only to the circulation return path 3B side of the second pump 60. Specifically, the electromagnetic pump as the first pump is provided with, for example, an orifice in a water conduit having an inlet and an outlet, and a drive unit casing is connected in a crossing direction to an intermediate portion of the water conduit. A spring-biased forward / backward moving body mechanism is provided, and an electromagnetic solenoid is provided in this casing, and a valve mechanism is provided to allow liquid to flow only in the direction from the inlet to the outlet and to block the flow in the reverse direction. A known electromagnetic pump is used that discharges a liquid such as an antifreeze liquid in a water conduit at a high discharge pressure in a predetermined discharge direction through an orifice by moving an advance / retreat moving body in an advance / retreat direction at high speed by electromagnetic force. The electromagnetic pump according to the embodiment has a simple configuration as described above, and has a large discharge force and is small and low in cost. However, it has a large pumping power (liquid) for liquid pumping and the like, and even a small pump is about 50 m. Liquid pumping can be easily performed even with respect to the head.

第2のポンプ60は、熱媒を循環駆動させる循環ポンプであり、循環経路3の配管に介設されている。実施形態において第2のポンプ60は、羽根車の回転により液体に推進力を与えて両側接続方向に液体を通流させるターボ型ポンプであり詳しくは、例えば軸流あるいは斜流ポンプで構成されている。図に示すように、第2のポンプ60は、蓄熱槽2と第1のポンプ50との中間位置での経路配管に介設されており、第1ポンプ50を基準とした循環往路3Aの往路上り方向に対して蓄熱槽2よりも上流側に設置されている。第2のポンプは、液体吐出量が大きく連続流で液体を駆動させることができるが、吸い上げ・押し上げ揚程は比較的低く、負荷によって流量が大きく変動する。   The second pump 60 is a circulation pump that circulates and drives the heat medium, and is interposed in the piping of the circulation path 3. In the embodiment, the second pump 60 is a turbo pump that applies propulsive force to the liquid by rotation of the impeller and allows the liquid to flow in the connecting direction on both sides. Specifically, the second pump 60 is configured by, for example, an axial flow or a diagonal flow pump. Yes. As shown in the figure, the second pump 60 is interposed in a route pipe at an intermediate position between the heat storage tank 2 and the first pump 50, and the forward route of the circulation forward route 3 </ b> A with the first pump 50 as a reference. It is installed upstream of the heat storage tank 2 with respect to the upward direction. The second pump has a large liquid discharge amount and can drive the liquid in a continuous flow. However, the suction / push-up lift is relatively low, and the flow rate varies greatly depending on the load.

したがって、本実施形態のように住宅の北面側に蓄熱槽を設置し南面の屋根に設置した集熱パネルと閉回路により循環経路を形成した配管の場合には、ある程度の揚程があり、また経路が長くなるので配管の圧力損失もあって揚程に対応した充分な熱媒液の吐出量と吐出圧を保持し、さらに吐出駆動体に一方向吐出力を有する駆動機構が必要とされる。本実施形態においては、逆止機能を有する電磁ポンプからなる第1のポンプ50が確実な吐出機能を行ない、さらに第2のポンプ60が吐出量を保持して確実に熱媒液を循環駆動させる。   Therefore, in the case of a pipe in which a heat storage tank is installed on the north surface side of the house and a circulation path is formed by a closed circuit and a closed circuit as in this embodiment, there is a certain amount of head, Therefore, there is a need for a drive mechanism that maintains a sufficient discharge amount and discharge pressure of the heat transfer fluid corresponding to the head due to a pressure loss of the piping, and further has a one-way discharge force in the discharge drive body. In the present embodiment, the first pump 50 composed of an electromagnetic pump having a check function performs a reliable discharge function, and the second pump 60 holds the discharge amount and reliably drives the heat transfer fluid to circulate. .

そして、閉回路を形成する循環経路3の一部に蓄熱槽2と第2のポンプ60とが直列に連通配置され、第2のポンプ60の他端配管側は、直列配管接続された方向切替バルブ18と第1のポンプ50の経路30aと、復路開閉弁22を設置した経路30bと、が並列接続されたその1つの並列接続の結合部と配管で連通接続されている。経路30aと経路30bとの並列接続の他の結合部は循環復路3Bに配管接続されている。   Then, the heat storage tank 2 and the second pump 60 are arranged in series in a part of the circulation path 3 forming the closed circuit, and the other end piping side of the second pump 60 is connected in series piping. The valve 18 and the path 30a of the first pump 50 and the path 30b provided with the return path opening / closing valve 22 are connected in communication with each other by a parallel connection portion connected in parallel. The other joint part of the parallel connection of the path | route 30a and the path | route 30b is pipe-connected to the circulation return path 3B.

本発明において、特徴的なことは、第1ポンプ50と第2ポンプ60とは往路3Aでの第2ポンプ60の上流側経路で第1分岐接続部40において管路接続されるとともに、熱媒貯留タンク10と第1のポンプ50に接続される方向切替バルブ18はこれと並列接続した復路開閉弁22よりも復路上り方向に対して下流側の第2分岐接続部42において接続されていることである。これによって、熱媒貯留タンク10から、方向切替バルブ18、第1ポンプ50、第1分岐接続部40、復路開閉弁22から集熱パネル1に至る第1の熱媒充填態様と、熱媒貯留タンク10から、方向切替バルブ18、第1ポンプ50、第1分岐接続部40、第2ポンプ60、熱交換器16、往路開閉弁20から集熱パネル1に至る第2の熱媒充填態様と、第1ポンプ50から、第1分岐接続部40、第2ポンプ60、熱交換器16、往路開閉弁20、集熱パネル1、第2分岐接続部42、方向切替バルブ18から第1ポンプ50の周回循環を行なう第3の熱媒充填態様と、を行なうことができる。この際、第3の熱媒充填態様で配管内のエアー抜きを行なうが、大きな吐出源となる第1のポンプによる最終のエアー抜き工程において、従来のように第1ポンプと第2ポンプを並列に接続して、復路から還流する熱媒を第1、第2の両方のポンプに分岐供給して第2ポンプの下流側で合流することによる流路損失を生じることがない。すなわち、図3に示すように復路から還流する熱媒は、第2分岐接続部42から方向切替バルブ18、第1ポンプ50、第1分岐接続部40、第2ポンプ60、熱交換器16、往路開閉弁20のように熱媒の分岐、合流を生じることなく、第1、第2ポンプ50,60を直列連通で通流するから圧力損失を大幅に小さくすることができる。実機テストでは、従来方法で20分程度要していた熱媒充填作業は、さらに確実なエアー抜き精度を保持しつつ4分程度で作業を完了することができた。   In the present invention, what is characteristic is that the first pump 50 and the second pump 60 are connected to each other at the first branch connection portion 40 in the upstream path of the second pump 60 in the forward path 3A, and the heat medium. The direction switching valve 18 connected to the storage tank 10 and the first pump 50 is connected at the second branch connection portion 42 on the downstream side with respect to the upward direction of the return path with respect to the return path on-off valve 22 connected in parallel therewith. It is. Thus, the first heat medium filling mode from the heat medium storage tank 10 to the heat collecting panel 1 from the direction switching valve 18, the first pump 50, the first branch connection portion 40, and the return path opening / closing valve 22, and the heat medium storage A second heat medium filling mode from the tank 10 to the heat collecting panel 1 from the direction switching valve 18, the first pump 50, the first branch connection part 40, the second pump 60, the heat exchanger 16, and the outward opening / closing valve 20. From the first pump 50, the first branch connection 40, the second pump 60, the heat exchanger 16, the forward opening / closing valve 20, the heat collecting panel 1, the second branch connection 42, and the direction switching valve 18 to the first pump 50. The third heat medium filling mode in which the circulation of the above is performed can be performed. At this time, the air in the pipe is vented in the third heating medium filling mode, but in the final air venting process by the first pump that becomes a large discharge source, the first pump and the second pump are arranged in parallel as in the prior art. Therefore, there is no flow path loss caused by branching and supplying the heat medium returning from the return path to both the first and second pumps and joining them downstream of the second pump. That is, as shown in FIG. 3, the heat medium recirculating from the return path is from the second branch connection portion 42 to the direction switching valve 18, the first pump 50, the first branch connection portion 40, the second pump 60, the heat exchanger 16, Since the first and second pumps 50 and 60 are connected in series without causing branching and merging of the heat medium as in the forward opening / closing valve 20, the pressure loss can be significantly reduced. In the actual machine test, the heating medium filling operation, which required about 20 minutes by the conventional method, could be completed in about 4 minutes while maintaining more reliable air bleeding accuracy.

次に、図を参照しつつ実施形態の配管内エアー抜き機構の作用を配管内エアー抜き方法とともに、説明する。本実施形態の太陽熱温水システムにおける配管内エアー抜き作業は熱媒の循環経路配管内への充填作業に伴い、蓄熱槽2が設置された地上と集熱パネル1との高低差と壁面や屋根面の迂回曲折などにより熱媒充填時に下方に湾曲した配管部分などにおいて配管内にエアーを滞留させ、これが理由でポンプによる熱媒の輸送機能を低下させ、ひいては温水生成機能を損なう問題から、熱媒充填と同時にその充填作業の最終段階において行なわれる。すなわち、まず循環経路配管内への熱媒充填を行い、その後熱媒の補給を絶って循環経路内全体に熱媒を所要時間循環駆動させる際に配管内エアー抜きを行なう。   Next, the action of the in-pipe air vent mechanism of the embodiment will be described together with the in-pipe air vent method with reference to the drawings. In the solar hot water system of the present embodiment, the air venting operation in the pipe is accompanied by the filling work into the circulation path piping of the heat medium, the height difference between the ground where the heat storage tank 2 is installed and the heat collecting panel 1, the wall surface and the roof surface. Due to the problem that air stays in the pipe at the pipe part curved downward when the heat medium is filled due to the circumvention of the heat medium, etc., which reduces the function of transporting the heat medium by the pump and thus impairs the function of generating hot water Simultaneously with filling, it takes place in the final stage of the filling operation. That is, first, the heating medium is filled into the circulation path pipe, and then the air supply in the pipe is vented when the heating medium is turned off and the heating medium is circulated in the circulation path for a required time.

図1は熱媒貯留タンクを基準とした復路上り方向に向けて集熱パネル1のリザーブタンク24に熱媒を圧送充填する経路(復路充填)を太線で示している。図2は、熱媒貯留タンクを基準とした往路上り方向に向けて集熱パネル1のリザーブタンク24に熱媒を圧送充填する経路(往路充填)を太線で示している。図3は、熱媒貯留タンク10の供給を止め、第1のポンプ50を起点とした往路上り方向に向けて熱媒を圧送充填し、集熱パネル1から方向切替バルブ18を経由して第1のポンプに戻る工程を循環する経路を太線で示している。   FIG. 1 shows a path (return path filling) in which the heat medium is pumped and filled into the reserve tank 24 of the heat collecting panel 1 in the upward direction of the return path with reference to the heat medium storage tank. FIG. 2 shows a path (outward path filling) in which the heat medium is pumped and filled in the reserve tank 24 of the heat collecting panel 1 in the outward direction with respect to the heat medium storage tank. FIG. 3 shows that the supply of the heat medium storage tank 10 is stopped, the heat medium is pumped and filled in the forward direction starting from the first pump 50, and the first heat is passed from the heat collection panel 1 via the direction switching valve 18. A route for circulating the process of returning to the pump 1 is indicated by a bold line.

図1の熱媒の復路充填工程が第1の工程とされ、この工程を行なう際は、方向切替弁18は、熱媒貯留タンク10と第1ポンプ50とのみ(h−i経路)を連通するように設定される。このとき、復路開閉弁22は、開弁セットされるとともに往路開閉弁20は、閉弁されている。この状態で電磁ポンプ等からなる第1のポンプ50を駆動すると、熱媒は
熱媒貯留タンク10、方向切替バルブ18、第1のポンプ50、第1分岐接続部40、復路開閉弁22を通って集熱パネル1のリザーブタンク24に圧送される。リザーブタンク24の1つの液面レベルセンサが往路側熱媒通流接続口に溢流しない液面高さを検知すると、図示しないコントローラからの停止信号により第1のポンプ50が停止し、これによって、復路の熱媒充填作業を完了する。
1 is the first step, and when this step is performed, the direction switching valve 18 communicates only the heat medium storage tank 10 and the first pump 50 (hi route). Set to do. At this time, the return path on-off valve 22 is set to open, and the forward path on-off valve 20 is closed. When the first pump 50 comprising an electromagnetic pump or the like is driven in this state, the heat medium passes through the heat medium storage tank 10, the direction switching valve 18, the first pump 50, the first branch connection portion 40, and the return opening / closing valve 22. Then, it is pumped to the reserve tank 24 of the heat collecting panel 1. When one liquid level sensor of the reserve tank 24 detects the liquid level that does not overflow to the forward-side heat medium flow connection port, the first pump 50 is stopped by a stop signal from a controller (not shown). Then, the heating medium filling work on the return path is completed.

次に、図2の熱媒の往路充填工程が第2の工程とされ、この工程を行なう際は、方向切替弁18は、第1の工程と同様、熱媒貯留タンク10と第1ポンプ50とのみ(h−i経路)を連通するように設定される。このとき、復路開閉弁22は、閉弁セットされるとともに往路開閉弁20は、開弁されている。この状態で電磁ポンプ等からなる第1のポンプ50を駆動すると、熱媒は熱媒貯留タンク10、方向切替バルブ18、第1のポンプ50、第1分岐接続部40、自由流路状態にセットした第2のポンプ60、熱交換器16、往路開閉弁20を通って集熱パネル1のリザーブタンク24に圧送される。このように、第2の工程では、熱媒貯留タンクからの熱媒を第2のポンプの上流側から循環経路での熱媒貯留タンクを基準とした往路上りQ方向に向けて第1のポンプにより圧送し集熱パネルに熱媒を充填する。リザーブタンク24の他の液面レベルセンサが復路側熱媒通流接続口に溢流しない液面高さを検知すると、図示しないコントローラからの停止信号により第1のポンプ50が停止し、これによって、復路の熱媒充填作業を完了する。リザーブタンク24内でこのように復路側と往路側を別に駆動しそれぞれの液面レベルを検出して熱媒液の合流や溢流を起こさないようにすることにより空気を包含した泡などを生じさせないようにし、これらが配管内に循環されて滞留させることがないようにしている。   Next, the forward filling process of the heat medium in FIG. 2 is a second process, and when this process is performed, the direction switching valve 18 has the heat medium storage tank 10 and the first pump 50 as in the first process. And (hi route) are set to communicate with each other. At this time, the return path on / off valve 22 is set to be closed and the forward path on / off valve 20 is opened. When the first pump 50 comprising an electromagnetic pump or the like is driven in this state, the heat medium is set in the heat medium storage tank 10, the direction switching valve 18, the first pump 50, the first branch connection portion 40, and the free flow path state. The pressure is fed to the reserve tank 24 of the heat collecting panel 1 through the second pump 60, the heat exchanger 16, and the forward path opening / closing valve 20. As described above, in the second step, the first pump moves the heat medium from the heat medium storage tank toward the forward Q direction with respect to the heat medium storage tank in the circulation path from the upstream side of the second pump. The heat collecting panel is filled with a heat medium by pressure feeding. When the other liquid level sensor of the reserve tank 24 detects the liquid level that does not overflow to the return side heat medium flow connection port, the first pump 50 is stopped by a stop signal from a controller (not shown). Then, the heating medium filling work on the return path is completed. In the reserve tank 24, the return side and the forward side are separately driven, and the respective liquid surface levels are detected to prevent the heat medium liquid from joining or overflowing, thereby generating bubbles including air. These are prevented from being circulated in the piping and retained.

次に、上記図1、図2により循環経路の配管に熱媒が充填された状態で熱媒を周回駆動させる図3の熱媒の循環駆動工程が第3の工程とされ、この工程を行なう際は、方向切替弁18は、(i−j経路)のみを連通させて熱媒貯留タンク10からの第1ポンプ50への供給は遮断される。このとき、復路開閉弁22は、閉弁セットされるとともに往路開閉弁20は、開弁されている。この状態で電磁ポンプ等からなる第1のポンプ50及び第2のポンプを共に駆動すると、熱媒は第1のポンプ50、第1分岐接続部40、第2のポンプ60、熱交換器16、往路開閉弁20、集熱パネル1の循環往路3Aを経由し、リザーブタンク24から循環復路3Bを通って第2分岐接続部42において、方向切替バルブ18側に流れ、第1ポンプ50に戻る周回の循環経路Tを反復周回駆動される。この第3の工程では、高吐出の第1ポンプ50は比較的大流量の第2ポンプと直列配管状態で同時に駆動されるから、大きな吐出力と輸送力により熱媒を搬送駆動させる上に、第1、第2ポンプの直列配管接続により流体の抵抗損失が大幅に軽減される。この結果、配管への熱媒充填作業を短時間に終了し、同時に配管の屋根面付近などでの気泡やエアー滞留がなくなり、温水生成機能を保持することが可能である。   Next, the heating medium circulation driving process of FIG. 3 in which the heating medium is driven in a state in which the piping of the circulation path is filled with the heating medium according to FIGS. 1 and 2 is a third process, and this process is performed. At that time, the direction switching valve 18 communicates only the (ij path), and the supply from the heat medium storage tank 10 to the first pump 50 is shut off. At this time, the return path on / off valve 22 is set to be closed and the forward path on / off valve 20 is opened. When the first pump 50 and the second pump made of an electromagnetic pump or the like are driven together in this state, the heat medium is the first pump 50, the first branch connection portion 40, the second pump 60, the heat exchanger 16, Circulation that flows to the direction switching valve 18 side in the second branch connection section 42 from the reserve tank 24 through the circulation return path 3B through the circulation path 3A of the forward path on-off valve 20 and the heat collecting panel 1 and returns to the first pump 50 The circulation path T is driven repeatedly. In this third step, the high-discharge first pump 50 is driven simultaneously with a relatively large flow rate second pump in series piping, so that the heating medium is conveyed and driven by a large discharge force and transport force. By connecting the first and second pumps in series, the resistance loss of the fluid is greatly reduced. As a result, the heating medium filling operation into the pipe can be completed in a short time, and at the same time, bubbles and air stay in the vicinity of the roof surface of the pipe can be eliminated and the hot water generating function can be maintained.

なお、上記の実施形態では、経路の反時計回り方向を往路とし、時計回り方向を復路としているが、これは熱媒貯留タンク10を基準として反時計回りか、時計回りかで仮に設定したもので、逆に実施形態の反時計回り方向を復路とし、時計回り方向を往路として熱媒通流経路を設定してもよい。また、熱媒充填の順序も実施形態と逆に最初に往路側を充填し、次に復路を充填し、最後のエアー抜きの循環方法も復路回りで循環させてもよい。なお、実施形態のように、図上では復路は直接に集熱パネルのリザーブタンクに接続しているのに対し、往路は、熱交換器や集熱パネル自体がリザーブタンクに到達する前に設置されているので、圧力損失が高く、その点で実施形態のように充填順序を行なうことにより、最初に損失のない管路で充分に熱媒を配管内に充填できるから、充填精度や作業時間短縮により有利である。   In the above embodiment, the counterclockwise direction of the path is the forward path and the clockwise direction is the return path, but this is provisionally set to be counterclockwise or clockwise based on the heat medium storage tank 10. On the contrary, the heat medium flow path may be set with the counterclockwise direction of the embodiment as the backward path and the clockwise direction as the forward path. In addition, the heating medium filling sequence may be reverse to the embodiment, first the forward path side is filled, then the backward path is filled, and the last air vent circulation method may be circulated around the backward path. As in the embodiment, the return path is directly connected to the reserve tank of the heat collection panel in the figure, whereas the forward path is installed before the heat exchanger or the heat collection panel itself reaches the reserve tank. Therefore, the pressure loss is high, and by performing the filling sequence as in the embodiment in that respect, the heat medium can be sufficiently filled in the pipe with the pipe without loss first, so that the filling accuracy and work time are Shortening is more advantageous.

上記のように、第1ポンプ50を第2ポンプ60の往路上流側で循環経路3にT字状に分岐接続するとともに、方向切替バルブ18の一端側を復路下流側で循環経路3にT字状に分岐接続しているから、熱媒の配管への充填作業の最終仕上げにおけるエアー抜き作業を短時間に、しかも精度良く行なうことができる。   As described above, the first pump 50 is branched and connected in a T shape to the circulation path 3 on the upstream side of the second pump 60, and one end side of the direction switching valve 18 is T-shaped on the circulation path 3 on the downstream side of the return path. Therefore, the air venting operation in the final finishing of the filling operation of the heat medium into the pipe can be performed in a short time and with high accuracy.

本発明の太陽熱温水システムにおける配管内エアー抜き機構及びその方法は、上記した実施態様の構成のみに限定されるものではなく、特許請求の範囲に記載した発明の本質を逸脱しない限りにおいて任意に改変してもよい。   The in-pipe air venting mechanism and method in the solar hot water system of the present invention are not limited to the configuration of the above-described embodiment, and may be arbitrarily modified without departing from the essence of the invention described in the claims. May be.

1 集熱パネル
2 蓄熱槽
3 循環経路
3A 循環往路
3B 循環復路
5 配管内エアー抜き機構
10 熱媒貯留タンク
16 熱交換器
18 方向切替バルブ
20 往路開閉弁
22 復路開閉弁
40 第1分岐接続部
42 第2分岐接続部
50 第1のポンプ
60 第2のポンプ
100 配管接続部
Q 往路上り方向
R 復路上り方向
DESCRIPTION OF SYMBOLS 1 Heat collection panel 2 Thermal storage tank 3 Circulation path 3A Circulation outward path 3B Circulation return path 5 In-pipe air venting mechanism 10 Heat medium storage tank 16 Heat exchanger 18 Direction switching valve 20 Outward opening / closing valve 22 Return path opening / closing valve 40 First branch connection part 42 Second branch connection portion 50 First pump 60 Second pump 100 Pipe connection portion Q Forward direction upward direction R Return direction upward direction

Claims (2)

集熱パネルと、集熱パネルで加温された熱媒と水との熱交換を行なう熱交換部と、集熱パネルと熱交換部間で熱媒を循環駆動させる循環駆動機構と、を配管接続して熱媒の循環経路を形成した太陽熱温水システムにおける配管内エアー抜き機構であり、
該配管内エアー抜き機構は循環駆動機構と兼用して設けられており、
熱媒貯留タンクからの熱媒を一方向にのみ定量吐出して循環経路の配管に熱媒を供給する第1のポンプと、
第1のポンプの近傍であって循環経路の配管に介設されたターボ型の第2のポンプと、
循環経路での熱媒貯留タンクを基準とした往路と復路のそれぞれに介設され経路の開閉を行なう第1、第2開閉バルブと、
第1のポンプと熱媒貯留タンクと復路との配管接続部に設けられた方向切替バルブと、
第2のポンプの往路上り方向に対して上流側の循環経路配管に第1のポンプを配管接続した第1の分岐接続部と、
復路であって復路側の第2開閉バルブの復路上り方向に対して下流側に方向切替バルブを配管接続した第2の分岐接続部と、を含むことを特徴とする太陽熱温水システムにおける配管内エアー抜き機構。
Piping a heat collecting panel, a heat exchanging part for exchanging heat between the heat medium heated by the heat collecting panel and water, and a circulation drive mechanism for circulatingly driving the heat medium between the heat collecting panel and the heat exchanging part It is an air venting mechanism in a pipe in a solar hot water system that is connected to form a circulation path of a heat medium,
The in-pipe air venting mechanism is provided also as a circulation drive mechanism,
A first pump for quantitatively discharging the heat medium from the heat medium storage tank in one direction and supplying the heat medium to the piping of the circulation path;
A turbo-type second pump provided in the vicinity of the first pump and interposed in a circulation path;
First and second on-off valves for opening and closing the path, which are interposed in each of the forward path and the return path based on the heat medium storage tank in the circulation path;
A direction switching valve provided at a pipe connection portion between the first pump, the heat medium storage tank, and the return path;
A first branch connection section in which the first pump is pipe-connected to the circulation path pipe on the upstream side with respect to the upstream direction of the second pump;
And a second branch connection portion that pipe-connects a direction switching valve downstream from the return upstream direction of the second open / close valve on the return path side, and the air in the pipe in the solar water heating system Unplug mechanism.
集熱パネルと、集熱パネルで加温された熱媒と水との熱交換を行なう熱交換部と、集熱パネルと熱交換部間で熱媒を循環駆動させる循環駆動機構と、を配管接続して熱媒の循環経路を形成した太陽熱温水システムにおける配管内エアー抜き方法であり、
循環駆動機構において熱媒貯留タンクからの熱媒を一方向にのみ定量吐出して循環経路の配管に熱媒を供給する第1のポンプと、第1のポンプの近傍であって循環経路の配管に介設され熱交換部の近傍に配置されたターボ式駆動による第2のポンプと、循環経路に介設した複数のバルブと、を用意し、
熱媒貯留タンクからの熱媒を第1のポンプにより循環経路での熱媒貯留タンクを基準とした復路上り方向又は往路上り方向のいずれかの方向に向けて圧送し集熱パネルに熱媒を充填する第1の工程と、
第1の工程後に熱媒貯留タンクからの熱媒を第2のポンプの上流側から循環経路での熱媒貯留タンクを基準とした往路上り方向又は復路上り方向のいずれかの方向であって、第1の工程と逆方向に向けて第1のポンプにより圧送し集熱パネルに熱媒を充填する第2の工程と、
熱媒貯留タンクからの熱媒の供給を遮断し循環経路の往路上り方向または復路上り方向のいずれかの方向に向けて第1ポンプを上流に位置させるように直列に接続した第1ポンプと第2ポンプを循環経路に接続し、第1及び第2のポンプにより熱媒を圧送し循環経路を周回通流させて配管内のエアー抜きを行なう第3の工程と、を含むことを特徴とする太陽熱温水システムにおける配管内エアー抜き方法。
Piping a heat collecting panel, a heat exchanging part for exchanging heat between the heat medium heated by the heat collecting panel and water, and a circulation drive mechanism for circulatingly driving the heat medium between the heat collecting panel and the heat exchanging part It is a method for venting air in a pipe in a solar hot water system that is connected to form a circulation path of a heat medium,
In the circulation drive mechanism, the first pump that discharges the heat medium from the heat medium storage tank only in one direction and supplies the heat medium to the circulation path piping, and the circulation path piping in the vicinity of the first pump. A second pump with a turbo drive disposed in the vicinity of the heat exchange unit and a plurality of valves interposed in the circulation path,
The heat medium from the heat medium storage tank is pumped by the first pump in either the upward direction of the return path or the upward direction of the forward path based on the heat medium storage tank in the circulation path, and the heat medium is supplied to the heat collecting panel. A first step of filling;
The heat medium from the heat medium storage tank after the first step is in either the forward direction or the reverse direction based on the heat medium storage tank in the circulation path from the upstream side of the second pump, A second step in which the heat collecting panel is filled with a heat medium by being pumped by the first pump in the opposite direction to the first step;
The first pump connected in series with the first pump connected in series so that the supply of the heat medium from the heat medium storage tank is shut off and the first pump is positioned upstream in either the forward or backward direction of the circulation path And a third step of connecting the two pumps to the circulation path, pumping the heat medium by the first and second pumps, and circulating the circulation path to bleed the air in the pipe. Air venting method for piping in solar hot water systems.
JP2010228091A 2010-10-08 2010-10-08 In-pipe air venting mechanism and method in solar hot water system Expired - Fee Related JP5388012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010228091A JP5388012B2 (en) 2010-10-08 2010-10-08 In-pipe air venting mechanism and method in solar hot water system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010228091A JP5388012B2 (en) 2010-10-08 2010-10-08 In-pipe air venting mechanism and method in solar hot water system

Publications (2)

Publication Number Publication Date
JP2012083004A true JP2012083004A (en) 2012-04-26
JP5388012B2 JP5388012B2 (en) 2014-01-15

Family

ID=46242063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010228091A Expired - Fee Related JP5388012B2 (en) 2010-10-08 2010-10-08 In-pipe air venting mechanism and method in solar hot water system

Country Status (1)

Country Link
JP (1) JP5388012B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014066055A (en) * 2012-09-26 2014-04-17 Sumitomo Densetsu Corp Method of filling inside of conduit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819660A (en) * 1981-07-28 1983-02-04 Sharp Corp Solar heat collecting device
JPS58186358U (en) * 1982-06-04 1983-12-10 松下電器産業株式会社 solar heat collector
JP3234976B2 (en) * 1998-06-05 2001-12-04 亀川工業株式会社 Solar hot water system and method for charging heat medium into circulation circuit in solar hot water system
JP2002195663A (en) * 2000-12-27 2002-07-10 Showa Denko Kk Heat storage system utilizing solar heat

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819660A (en) * 1981-07-28 1983-02-04 Sharp Corp Solar heat collecting device
JPS58186358U (en) * 1982-06-04 1983-12-10 松下電器産業株式会社 solar heat collector
JP3234976B2 (en) * 1998-06-05 2001-12-04 亀川工業株式会社 Solar hot water system and method for charging heat medium into circulation circuit in solar hot water system
JP2002195663A (en) * 2000-12-27 2002-07-10 Showa Denko Kk Heat storage system utilizing solar heat

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014066055A (en) * 2012-09-26 2014-04-17 Sumitomo Densetsu Corp Method of filling inside of conduit

Also Published As

Publication number Publication date
JP5388012B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
US8215104B2 (en) Energy from subterranean reservoir fluid
US20090121481A1 (en) Aquifer fluid use in a domestic or industrial application
CN109000413A (en) A kind of passive outboard cooling system suitable for underwater platform
US20110079216A1 (en) Hermetic primary circuit for thermal solar system
JP5388012B2 (en) In-pipe air venting mechanism and method in solar hot water system
JP2004251593A (en) Heat storage type hot-water supply apparatus
CN205156674U (en) Closed -system cooling tower system of preventing frostbite
CN203584578U (en) Circulation heating system of anti-freezing device of gas turbine
CN206670005U (en) Gas heater
KR100990034B1 (en) Method for controlling of drain down-type closed loop solar energy system having waiting condition
CN107021078B (en) Automatic back-suction antifreezing solution device
CN101285407A (en) Power machine powered by thermal expansion
KR101092496B1 (en) Apparatus for draining solar energy collcector to prevent overheating
CN201120718Y (en) Extruder refrigerating device
CN201318788Y (en) Water-storage electric water heater inner tank
CN220285856U (en) Thermal management system and work machine
CN215256353U (en) Hydrophobic sealing device of steam turbine low pressure heater
CN219529320U (en) Water pump for energy storage liquid cooling system
CN201184701Y (en) Double-pump workstation for solar heating system
CN217441786U (en) Air source heat pump pressure-bearing hot water system
CN102809227B (en) Economical solar heat collection system for supplying warm and heat
JP5384181B2 (en) Ejector vacuum pump
CN203053069U (en) Unpressurized solar water heater system with gas-liquid mixed heat exchange
CN202048617U (en) Novel hot water supply system
JPH0443547B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130927

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees