JP2012082410A - Method of manufacturing proton-conductive polymer electrolyte membrane - Google Patents

Method of manufacturing proton-conductive polymer electrolyte membrane Download PDF

Info

Publication number
JP2012082410A
JP2012082410A JP2011203234A JP2011203234A JP2012082410A JP 2012082410 A JP2012082410 A JP 2012082410A JP 2011203234 A JP2011203234 A JP 2011203234A JP 2011203234 A JP2011203234 A JP 2011203234A JP 2012082410 A JP2012082410 A JP 2012082410A
Authority
JP
Japan
Prior art keywords
fine particles
graft
resin fine
film
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011203234A
Other languages
Japanese (ja)
Other versions
JP5836028B2 (en
Inventor
Hideyuki Emori
秀之 江守
Hiroyuki Higuchi
浩之 樋口
Shigeko Ogino
慈子 荻野
Masaharu Asano
雅春 浅野
Yasunari Maekawa
康成 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Japan Atomic Energy Agency
Original Assignee
Nitto Denko Corp
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp, Japan Atomic Energy Agency filed Critical Nitto Denko Corp
Priority to JP2011203234A priority Critical patent/JP5836028B2/en
Publication of JP2012082410A publication Critical patent/JP2012082410A/en
Application granted granted Critical
Publication of JP5836028B2 publication Critical patent/JP5836028B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F259/00Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00
    • C08F259/08Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00 on to polymers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F291/00Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00
    • C08F291/18Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00 on to irradiated or oxidised macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2243Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1051Non-ion-conducting additives, e.g. stabilisers, SiO2 or ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing industrially a proton-conductive polymer electrolyte membrane of excellent characteristic, by graft polymerization.SOLUTION: This method of manufacturing the proton-conductive polymer electrolyte membrane includes a process for irradiating a resin fine particles with a radiation, a process for graft-polymerizing vinyl monomers having a sulfonic acid group precursor on to the resin fine particles in a solid-liquid two-phase system, to obtain a fine particle-like graft polymer containing the resin fine particles and polymeric chains of the vinyl monomers, a casting process for forming a cast membrane of the graft polymer, a drying process for drying the cast membrane at a drying temperature of a melting point or less of the resin fine particles, to obtain a film, and a process for converting the sulfonic acid group precursor contained in the film into a sulfonic acid group. The solid-liquid two-phase system is constituted of a liquid phase containing the vinyl monomers and a solvent therefor, and a solid phase containing the resin fine particles.

Description

本発明は、固体高分子型燃料電池、電気分解セル、加湿モジュールのような種々の用途に用いうるプロトン伝導性高分子電解質膜の製造方法に関する。   The present invention relates to a method for producing a proton conductive polymer electrolyte membrane that can be used in various applications such as a polymer electrolyte fuel cell, an electrolysis cell, and a humidification module.

プロトン伝導性を有する高分子電解質膜は、固体高分子型燃料電池(PEFC)、アルカリ電解セル、気体(例えば空気)への加湿モジュールなどに使用されている。特に、PEFCの電解質膜としての用途が注目されている。燃料電池は理論的な発電効率が高く、水素またはメタノールを燃料とするクリーンな電気エネルギー供給源である。燃料電池は、次世代の発電方法として期待されており、家庭用コージェネ電源、携帯機器用電源、電気自動車の電源、簡易補助電源のような各種電源としての開発が盛んになされている。   Polymer electrolyte membranes having proton conductivity are used in polymer electrolyte fuel cells (PEFC), alkaline electrolysis cells, humidification modules for gases (for example, air), and the like. In particular, the use of PEFC as an electrolyte membrane has attracted attention. A fuel cell has a high theoretical power generation efficiency and is a clean electric energy supply source using hydrogen or methanol as fuel. The fuel cell is expected as a next generation power generation method, and has been actively developed as various power sources such as a household cogeneration power source, a power source for portable devices, a power source of an electric vehicle, and a simple auxiliary power source.

PEFCの電解質膜は、プロトンを伝導する電解質としての機能、ならびにアノードに供給される燃料とカソードに供給される酸化剤とを分離する隔壁としての機能、を備える必要がある。このため、PEFCの電解質膜には、イオン交換容量、プロトン伝導率、電気化学的な安定性および力学的強度が高いこと、ならびに電気抵抗、燃料(例えば水素)透過性および酸化ガス(例えば酸素)透過性が低いこと、が要求される。   The electrolyte membrane of PEFC needs to have a function as an electrolyte that conducts protons and a function as a partition that separates the fuel supplied to the anode and the oxidant supplied to the cathode. For this reason, PEFC electrolyte membranes have high ion exchange capacity, proton conductivity, electrochemical stability and mechanical strength, as well as electrical resistance, fuel (eg, hydrogen) permeability and oxidizing gas (eg, oxygen). Low permeability is required.

プロトン伝導性高分子電解質膜として、ナフィオン(デュポンの登録商標)に代表されるパーフルオロアルキルエーテルスルホン酸ポリマー(PFSAポリマー)が多用されている。しかし、製造工程が複雑であることから、PFSAポリマーは高価である。これに加えて、100℃以上の高温域におけるPFSAポリマーの機械的強度は、低い。さらに、PFSAポリマーは、メタノール透過性が高く、メタノールを含む溶液を燃料に使用するメタノール直接型燃料電池(DMFC:Direct Methanol Fuel Cell)への使用が困難である。   As a proton conductive polymer electrolyte membrane, a perfluoroalkyl ether sulfonic acid polymer (PFSA polymer) represented by Nafion (registered trademark of DuPont) is frequently used. However, due to the complexity of the manufacturing process, PFSA polymers are expensive. In addition, the mechanical strength of the PFSA polymer in a high temperature range of 100 ° C. or higher is low. Furthermore, the PFSA polymer has high methanol permeability and is difficult to use in a direct methanol fuel cell (DMFC) that uses a solution containing methanol as a fuel.

PFSAポリマーに代わる高分子が検討されている。電気化学的な安定性の観点からは、フッ素原子が多く結合した高分子が好ましい。イオン交換容量およびプロトン伝導性の観点からは、スルホン酸基およびホスホン酸基のようなプロトン伝導基が多く導入された高分子が好ましい。   Polymers to replace PFSA polymers are being investigated. From the viewpoint of electrochemical stability, a polymer having many fluorine atoms bonded thereto is preferable. From the viewpoint of ion exchange capacity and proton conductivity, a polymer into which many proton conductive groups such as sulfonic acid groups and phosphonic acid groups are introduced is preferable.

特開2001−348439号公報(特許文献1)には、長鎖分岐型ポリテトラフルオロエチレンからなるフィルムに放射線を照射し、スチレン系化合物をモノマーとして含む溶液にこのフィルムを浸漬してグラフト重合を進行させ、形成されたグラフト鎖に含まれるフェニル基をスルホン化して得た高分子電解質膜が開示されている。特開2004−59752号公報(特許文献2)および特許第3417946号公報(特許文献3)には、上記フィルムがエチレン−テトラフルオロエチレン共重合体またはポリフッ化ビニリデンからなる以外は、特開2001−348439号公報の方法と同様にして得た高分子電解質膜が開示されている。   In JP 2001-348439 A (Patent Document 1), a film made of long-chain branched polytetrafluoroethylene is irradiated with radiation, and this film is immersed in a solution containing a styrene compound as a monomer to perform graft polymerization. A polymer electrolyte membrane obtained by proceeding and sulfonating a phenyl group contained in a formed graft chain is disclosed. Japanese Patent Application Laid-Open No. 2004-59752 (Patent Document 2) and Japanese Patent No. 3417946 (Patent Document 3) disclose that the above film is made of an ethylene-tetrafluoroethylene copolymer or polyvinylidene fluoride. A polymer electrolyte membrane obtained in the same manner as in the method of Japanese Patent No. 348439 is disclosed.

上記各文献に開示されている高分子電解質膜の製法は、小スケールの製造の場合、簡便かつ合理的である。しかし、グラフト重合の反応速度が小さいことから、上記製法ではフィルム状の樹脂材料を極めて長時間処理する必要がある。このため、上記製法の工業的な生産性は低く、仮に上記製法によって高分子電解質膜を工業的に連続生産しようとすると、大型サイズのフィルムを継続的に処理する巨大な設備が必要となる。グラフト重合の反応性を高めるために放射線の照射量を多くすると、平行してグラフト重合以外の副反応が進行し、ホモポリマーが生成して、短時間で反応溶液がゲル化する。このゲル化を防止するために、反応溶液中に重合禁止剤を共存させた場合、フィルム表面におけるグラフト鎖の分布にムラが生じ、燃料電池の電解質膜としての使用において十分な発電特性を得ることができない。   The method for producing a polymer electrolyte membrane disclosed in each of the above documents is simple and reasonable for small scale production. However, since the reaction rate of the graft polymerization is low, it is necessary to treat the film-like resin material for a very long time in the above production method. For this reason, the industrial productivity of the manufacturing method is low, and if a polymer electrolyte membrane is to be industrially continuously produced by the manufacturing method, a huge facility for continuously processing a large-sized film is required. When the irradiation dose of radiation is increased in order to increase the reactivity of graft polymerization, side reactions other than graft polymerization proceed in parallel, a homopolymer is formed, and the reaction solution gels in a short time. In order to prevent this gelation, when a polymerization inhibitor coexists in the reaction solution, uneven distribution occurs in the graft chain distribution on the film surface, and sufficient power generation characteristics are obtained for use as an electrolyte membrane of a fuel cell. I can't.

特表2005−525682号公報(特許文献4)には、樹脂材料の粉末に放射線を照射し、放射線を照射した当該粉末と、スルホン酸基またはホスホン酸基を有するビニルモノマーとの双方を溶媒に溶解させてグラフト重合を進行させ、得られた重合溶液をフィルム状にキャスティングし、乾燥させて、高分子電解質膜を製造する方法が開示されている。当該文献には、放射線を照射した樹脂粉末と上記ビニルモノマーとを溶媒に溶解して均質な溶液とすることが好ましいこと、ならびに当該溶媒としてジメチルアセトアミド、N−メチルピロリドン、ジメチルホルムアミド、ジメチルスルホキシド(DMSO)が好ましいこと、が記載されている。この文献には具体的な実施例が示されておらず、このため、当該文献に記載された発明を実施するために必要となる詳細の全てを読み取ることは、当業者であっても容易ではない。しかし、本発明者らの検討によれば、放射線を照射した樹脂材料およびモノマーの双方が溶解する溶媒を使用して均質な溶液を形成した場合、放射線の照射によって樹脂材料に形成されたラジカルが速やかに溶媒へ連鎖移動して消滅するため、少なくとも、現実にはグラフト重合を実施することが困難である。   In Japanese translations of PCT publication No. 2005-525682 (Patent Document 4), a resin material powder is irradiated with radiation, and both the powder irradiated with radiation and a vinyl monomer having a sulfonic acid group or a phosphonic acid group are used as a solvent. Disclosed is a method for producing a polymer electrolyte membrane by dissolving and allowing graft polymerization to proceed, casting the resulting polymer solution into a film, and drying it. In this document, it is preferable to dissolve the resin powder irradiated with radiation and the vinyl monomer in a solvent to obtain a homogeneous solution, and as the solvent, dimethylacetamide, N-methylpyrrolidone, dimethylformamide, dimethylsulfoxide ( DMSO) is preferred. No specific examples are given in this document, and therefore it is not easy for a person skilled in the art to read all the details necessary to implement the invention described in that document. Absent. However, according to the study by the present inventors, when a homogeneous solution is formed using a solvent in which both the resin material irradiated with radiation and the monomer are dissolved, radicals formed in the resin material by radiation irradiation are not. Since it rapidly disappears by chain transfer to the solvent, at least it is actually difficult to carry out graft polymerization.

特開2001−348439号公報JP 2001-348439 A 特開2004−59752号公報JP 2004-59752 A 特許第3417946号公報Japanese Patent No. 3417946 特表2005−525682号公報JP 2005-525682 A

本発明は、特性に優れたプロトン伝導性高分子電解質膜を、グラフト重合によって工業的に製造しうる方法の提供を目的とする。   An object of the present invention is to provide a method capable of industrially producing a proton conductive polymer electrolyte membrane having excellent characteristics by graft polymerization.

本発明の製造方法は、樹脂微粒子に放射線を照射する工程と;スルホン酸基前駆体を有するビニルモノマーを、固液二相系において、前記放射線が照射された樹脂微粒子にグラフト重合させて、前記樹脂微粒子および前記ビニルモノマーの重合鎖を含む、微粒子状のグラフト重合体を得る工程と;前記得られたグラフト重合体のキャスト膜を形成するキャスト工程と;前記形成したキャスト膜を、前記樹脂微粒子の融点以下の乾燥温度で乾燥して、フィルムを得る乾燥工程と;前記得られたフィルムにおけるスルホン酸基前駆体をスルホン酸基に変換する工程と;を含む。ここで、前記固液二相系は、前記ビニルモノマーおよび当該モノマーの溶媒を含む液相と、前記樹脂微粒子を含む固相により構成される。   The production method of the present invention includes a step of irradiating resin fine particles with radiation; and a vinyl monomer having a sulfonic acid group precursor is graft-polymerized to the resin fine particles irradiated with the radiation in a solid-liquid two-phase system, A step of obtaining a fine particle-like graft polymer comprising resin fine particles and a polymer chain of the vinyl monomer; a casting step of forming a cast film of the obtained graft polymer; and And a step of converting the sulfonic acid group precursor in the obtained film into a sulfonic acid group. Here, the solid-liquid two-phase system includes a liquid phase containing the vinyl monomer and a solvent for the monomer and a solid phase containing the resin fine particles.

本発明によれば、特性に優れたプロトン伝導性高分子電解質膜を、グラフト重合によって工業的に製造しうる。   According to the present invention, a proton conductive polymer electrolyte membrane having excellent characteristics can be industrially produced by graft polymerization.

以下、本発明を実施するための形態を具体的に説明する。   Hereinafter, the form for implementing this invention is demonstrated concretely.

[照射工程]
本発明の製造方法は、樹脂微粒子に放射線を照射する工程(照射工程)を含む。樹脂微粒子は、高分子電解質膜の基材となる樹脂材料により構成される。樹脂微粒子を構成する樹脂材料は、放射線グラフト重合を適用しうる材料である限り限定されない。電気化学的な安定性および機械的強度が高い高分子電解質膜を製造しうることから、樹脂微粒子は、芳香族炭化水素系高分子、オレフィン系高分子およびフッ素化オレフィン系高分子から選ばれる少なくとも1種の高分子を含むことが好ましい。樹脂微粒子は、当該少なくとも1種の高分子からなりうる。
[Irradiation process]
The production method of the present invention includes a step of irradiating resin fine particles with radiation (irradiation step). The resin fine particles are made of a resin material that serves as a base material for the polymer electrolyte membrane. The resin material constituting the resin fine particles is not limited as long as it is a material to which radiation graft polymerization can be applied. Since the polymer electrolyte membrane having high electrochemical stability and high mechanical strength can be produced, the resin fine particles are at least selected from aromatic hydrocarbon polymers, olefin polymers and fluorinated olefin polymers. It preferably contains one polymer. The resin fine particles can be made of the at least one polymer.

芳香族炭化水素系高分子は、例えば、ポリスチレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリフェニレンサルファイド、ポリアリレート、ポリエーテルイミド、芳香族ポリイミド、ポリアミドイミドである。   Aromatic hydrocarbon polymers include, for example, polystyrene, polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyether ether ketone, polyether ketone, polysulfone, polyether sulfone, polyphenylene. Sulfide, polyarylate, polyetherimide, aromatic polyimide, and polyamideimide.

オレフィン系高分子は、例えば、低密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテンである。   Examples of the olefin polymer include low density polyethylene, high density polyethylene, ultrahigh molecular weight polyethylene, polypropylene, polybutene, and polymethylpentene.

フッ素化オレフィン系高分子は、例えば、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル、エチレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、ポリテトラフルオロエチレン、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、ポリクロロトリフルオロエチレン、テトラフルオロエチレン−ヘキサフルオロプロピレン−フッ化ビニリデン共重合体である。   Examples of the fluorinated olefin polymer include polyvinylidene fluoride (PVDF), polyvinyl fluoride, ethylene-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene copolymer, and tetrafluoroethylene-hexafluoropropylene copolymer. A polymer, polytetrafluoroethylene, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, polychlorotrifluoroethylene, tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer.

なかでも、樹脂微粒子が、ポリスチレン、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリフェニレンサルファイド、ポリアリレート、ポリエーテルイミド、芳香族ポリイミド、ポリアミドイミド、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリフッ化ビニル、エチレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、およびテトラフルオロエチレン−ヘキサフルオロプロピレン−フッ化ビニリデン共重合体から選ばれる少なくとも1種を含むことが好ましい。   Among them, the resin fine particles are polystyrene, polyether ether ketone, polyether ketone, polysulfone, polyether sulfone, polyphenylene sulfide, polyarylate, polyetherimide, aromatic polyimide, polyamideimide, polyethylene, polypropylene, polyvinylidene fluoride, polyfluoride. It is preferable to include at least one selected from vinyl fluoride, ethylene-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene copolymer, and tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer.

得られた電解質膜の化学的な安定性の観点からは、樹脂微粒子がフッ素系高分子を含むことが好ましい。当該観点からは、樹脂微粒子が、ポリフッ化ビニリデン、ポリフッ化ビニル、エチレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、およびテトラフルオロエチレン−ヘキサフルオロプロピレン−フッ化ビニリデン共重合体から選ばれる少なくとも1種を含むことが特に好ましい。   From the viewpoint of chemical stability of the obtained electrolyte membrane, it is preferable that the resin fine particles contain a fluorine-based polymer. From this point of view, the resin fine particles are polyvinylidene fluoride, polyvinyl fluoride, ethylene-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene copolymer, and tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer. It is particularly preferable that at least one selected from polymers be included.

樹脂微粒子を構成する樹脂材料は、2種以上の高分子の共重合体または混合物でありうる。   The resin material constituting the resin fine particles may be a copolymer or a mixture of two or more kinds of polymers.

樹脂微粒子の平均粒子径は、好ましくは10μm〜500μmであり、より好ましくは50μm〜300μmである。樹脂微粒子の平均粒子径が過度に大きいと、微粒子の内部におけるグラフト重合の反応速度が低下し、後のグラフト重合工程に長時間を要することがある。樹脂微粒子の平均粒子径が過度に小さいと、各工程における樹脂材料の取り扱いが容易ではなくなる。本明細書において、樹脂微粒子の平均粒子径は、乾式ふるい分け法により測定される値を採用する。   The average particle diameter of the resin fine particles is preferably 10 μm to 500 μm, more preferably 50 μm to 300 μm. If the average particle size of the resin fine particles is excessively large, the reaction rate of the graft polymerization inside the fine particles may be reduced, and the subsequent graft polymerization step may take a long time. When the average particle diameter of the resin fine particles is excessively small, it becomes difficult to handle the resin material in each step. In this specification, the value measured by the dry sieving method is adopted as the average particle size of the resin fine particles.

樹脂微粒子への放射線の照射方法は、公知の方法を適用しうる。樹脂微粒子に照射する放射線として、α線、β線、γ線、電子線および紫外線のような電離放射線が使用される。グラフト重合には、γ線および電子線が特に適している。グラフト重合に必要な照射線量は、通常、1〜500kGyであり、好ましくは10〜300kGyである。樹脂微粒子への照射線量が1kGy未満であると、ラジカルの生成量が少なくなり、グラフト重合が困難になることがある。照射線量が500kGyより大きいと、後のグラフト重合工程において過剰な架橋反応が進行したり、樹脂微粒子を構成する樹脂材料が劣化したりすることがある。   A known method can be applied as a method of irradiating the resin fine particles with radiation. Ionizing radiation such as α-rays, β-rays, γ-rays, electron beams and ultraviolet rays is used as the radiation applied to the resin particles. Gamma rays and electron beams are particularly suitable for graft polymerization. The irradiation dose necessary for graft polymerization is usually 1 to 500 kGy, preferably 10 to 300 kGy. If the irradiation dose to the resin fine particles is less than 1 kGy, the amount of radicals generated may be reduced, and graft polymerization may be difficult. If the irradiation dose is larger than 500 kGy, an excessive crosslinking reaction may proceed in the subsequent graft polymerization step, or the resin material constituting the resin fine particles may be deteriorated.

ラジカル重合の方法には、酸素の存在下で放射線の照射およびラジカル反応を行うパーオキサイド法と、酸素の不在下で放射線の照射およびラジカル反応を行うポリマーラジカル法とがある。パーオキサイド法では、樹脂材料に結合した酸素ラジカルを起点としてグラフト反応が進行するのに対し、ポリマーラジカル法では、樹脂材料に生じたラジカルを起点としてグラフト反応が進行する。本発明の製造方法では、酸素の存在によってグラフト反応が阻害されるのを防ぐため、ポリマーラジカル法によりラジカル重合を進行させることが好ましい。したがって、樹脂微粒子への放射線の照射は、不活性ガス雰囲気下または真空中で実施することが好ましい。照射時の温度(照射温度)は、−100〜100℃の範囲が好ましく、−100〜60℃の範囲が特に好ましい。照射温度が高すぎると、生成したラジカルが失活し易い。ラジカルの失活を防止するために、照射後の樹脂微粒子を、当該微粒子を構成する樹脂材料のガラス転移温度以下の温度で保管することが望ましい。   The radical polymerization method includes a peroxide method in which radiation and radical reaction are performed in the presence of oxygen, and a polymer radical method in which radiation and radical reaction are performed in the absence of oxygen. In the peroxide method, the graft reaction proceeds from an oxygen radical bonded to the resin material, whereas in the polymer radical method, the graft reaction proceeds from a radical generated in the resin material. In the production method of the present invention, in order to prevent the graft reaction from being inhibited by the presence of oxygen, it is preferable to proceed radical polymerization by a polymer radical method. Therefore, it is preferable to perform irradiation of the resin fine particles in an inert gas atmosphere or in a vacuum. The temperature during irradiation (irradiation temperature) is preferably in the range of -100 to 100 ° C, particularly preferably in the range of -100 to 60 ° C. If the irradiation temperature is too high, the generated radicals are liable to be deactivated. In order to prevent radical deactivation, it is desirable to store the resin fine particles after irradiation at a temperature not higher than the glass transition temperature of the resin material constituting the fine particles.

[グラフト重合工程]
本発明の製造方法では、照射工程の後に、放射線が照射された微粒子に対してグラフト重合を実施する(グラフト重合工程)。具体的には、スルホン酸基前駆体を有するビニル化合物をモノマーとして、当該ビニルモノマーAを、照射工程において放射線が照射された樹脂微粒子にグラフト重合させる。これにより、樹脂微粒子と、当該微粒子に結合した、ビニルモノマーAの重合鎖(グラフト鎖)とを含む、微粒子状のグラフト重合体を得る。このグラフト重合は、固液二相系において実施される。固液二相系は、ビニルモノマーAおよび当該モノマーの溶媒を含む液相と、樹脂微粒子を含む固相により構成される。液相において、ビニルモノマーAは当該溶媒(重合溶媒)に溶解している。固液二相系におけるグラフト重合の一例は、重合溶媒(第一の溶媒)にビニルモノマーAを溶解して得られるモノマー溶液に、放射線照射された樹脂微粒子を分散させた状態で実施される。グラフト重合工程は、照射工程と同様に、酸素の存在による反応阻害を抑制するため、できる限り低い酸素濃度雰囲気下で実施することが好ましい。
[Graft polymerization process]
In the production method of the present invention, after the irradiation step, graft polymerization is performed on the fine particles irradiated with radiation (graft polymerization step). Specifically, using a vinyl compound having a sulfonic acid group precursor as a monomer, the vinyl monomer A is graft-polymerized to resin fine particles irradiated with radiation in the irradiation step. As a result, a fine particle graft polymer containing resin fine particles and a polymer chain (graft chain) of vinyl monomer A bonded to the fine particles is obtained. This graft polymerization is carried out in a solid-liquid two-phase system. The solid-liquid two-phase system includes a liquid phase containing vinyl monomer A and a solvent for the monomer, and a solid phase containing resin fine particles. In the liquid phase, the vinyl monomer A is dissolved in the solvent (polymerization solvent). An example of graft polymerization in a solid-liquid two-phase system is performed in a state where resin fine particles irradiated with radiation are dispersed in a monomer solution obtained by dissolving vinyl monomer A in a polymerization solvent (first solvent). As in the irradiation step, the graft polymerization step is preferably carried out in an atmosphere with an oxygen concentration as low as possible in order to suppress reaction inhibition due to the presence of oxygen.

ビニルモノマーAは、スルホン酸基前駆体を有するビニル化合物である限り限定されないが、一般式H2C=C(X)Rで表されるビニル化合物(以下、ビニルスルホン酸系化合物という)が好ましい。上記式において、Xは水素原子、フッ素原子または1価の炭化水素基である。Rはスルホン酸基前駆体、またはスルホン酸基前駆体を有する1価の置換基である。 The vinyl monomer A is not limited as long as it is a vinyl compound having a sulfonic acid group precursor, but a vinyl compound represented by the general formula H 2 C═C (X) R (hereinafter referred to as a vinyl sulfonic acid compound) is preferable. . In the above formula, X is a hydrogen atom, a fluorine atom or a monovalent hydrocarbon group. R is a sulfonic acid group precursor or a monovalent substituent having a sulfonic acid group precursor.

スルホン酸基前駆体は、好ましくは、グラフト重合工程よりも後に実施される変換工程において、加水分解および/またはイオン交換によってスルホン酸基へ容易に変換しうる基である。具体的なスルホン酸基前駆体は、例えば、スルホン酸メチルエステル、スルホン酸エチルエステル、スルホン酸プロピルエステル、スルホン酸ブチルエステル、スルホン酸シクロヘキシルエステルなどのスルホン酸アルキルエステルに代表される、スルホン酸脂肪族エステル;スルホン酸フェニルエステルなどのスルホン酸芳香族エステル;スルホン酸カリウム塩、スルホン酸ナトリウム塩、スルホン酸リチウム塩などのスルホン酸アルカリ金属塩に代表される、スルホン酸金属塩である。   The sulfonic acid group precursor is preferably a group that can be easily converted into a sulfonic acid group by hydrolysis and / or ion exchange in a conversion step performed after the graft polymerization step. Specific sulfonic acid group precursors include, for example, sulfonic acid fatty esters represented by sulfonic acid alkyl esters such as sulfonic acid methyl ester, sulfonic acid ethyl ester, sulfonic acid propyl ester, sulfonic acid butyl ester, and sulfonic acid cyclohexyl ester. Sulphonic acid aromatic esters such as sulfonic acid phenyl esters; sulfonic acid metal salts typified by sulfonic acid alkali metal salts such as sulfonic acid potassium salt, sulfonic acid sodium salt, and sulfonic acid lithium salt.

ビニルスルホン酸系化合物は、例えば、ビニルスルホン酸誘導体、アリルスルホン酸誘導体、スチレン系化合物のスルホン酸誘導体である。   The vinyl sulfonic acid compounds are, for example, vinyl sulfonic acid derivatives, allyl sulfonic acid derivatives, and sulfonic acid derivatives of styrene compounds.

スチレン系化合物のスルホン酸誘導体は、例えば、スチレン系化合物に、置換基としてスルホン酸基前駆体を導入した化合物である。スチレン系化合物は、例えば、スチレン;メチルスチレン類(α−メチルスチレン、p−ビニルトルエン、m−ビニルトルエンなど)、エチルスチレン類、ジメチルスチレン類、トリメチルスチレン類、ペンタメチルスチレン類、ジエチルスチレン類、イソプロピルスチレン類、およびブチルスチレン類(3−tert−ブチルスチレン、4−tert−ブチルスチレンなど)のようなアルキルスチレン;クロロスチレン類、ジクロロスチレン類、トリクロロスチレン類、ブロモスチレン類(2−ブロモスチレン、3−ブロモスチレン、4−ブロモスチレンなど)、およびフルオロスチレン類(2−フルオロスチレン、3−フルオロスチレン、4−フルオロスチレンなど)のようなハロゲン化スチレン;メトキシスチレン類、メトキシメチルスチレン類、ジメトキシスチレン類、エトキシスチレン類、ビニルフェニルアリルエーテル類、およびビニルベンジルアルキルエーテル類のようなアルコキシスチレン;ヒドロキシスチレン類、メトキシヒドロキシスチレン類およびアセトキシスチレン類のようなヒドロキシスチレン誘導体;ビニル安息香酸類およびホルミルスチレン類のようなカルボキシスチレン誘導体;ニトロスチレンのようなニトロスチレン類;アミノスチレン類およびジメチルアミノスチレン類のようなアミノスチレン誘導体;ビニルベンジルスルホン酸類およびスチレンスルホニルフルオリド類のようなイオン性スチレン誘導体である。   The sulfonic acid derivative of the styrene compound is, for example, a compound in which a sulfonic acid group precursor is introduced as a substituent into the styrene compound. Styrene compounds include, for example, styrene; methylstyrenes (α-methylstyrene, p-vinyltoluene, m-vinyltoluene, etc.), ethylstyrenes, dimethylstyrenes, trimethylstyrenes, pentamethylstyrenes, diethylstyrenes. Alkyl styrenes such as isopropyl styrenes, and butyl styrenes (3-tert-butyl styrene, 4-tert-butyl styrene, etc.); chlorostyrenes, dichlorostyrenes, trichlorostyrenes, bromostyrenes (2-bromo Halogenated styrenes such as styrene, 3-bromostyrene, 4-bromostyrene, and the like, and fluorostyrenes (2-fluorostyrene, 3-fluorostyrene, 4-fluorostyrene, etc.); methoxystyrenes, methoxymethyl Alkoxy styrenes such as ethylene, dimethoxy styrenes, ethoxy styrenes, vinyl phenyl allyl ethers, and vinyl benzyl alkyl ethers; hydroxy styrene derivatives such as hydroxy styrenes, methoxy hydroxy styrenes and acetoxy styrenes; vinyl benzoes Carboxystyrene derivatives such as acids and formylstyrenes; Nitrostyrenes such as nitrostyrene; Aminostyrene derivatives such as aminostyrenes and dimethylaminostyrenes; Ions such as vinylbenzyl sulfonic acids and styrenesulfonyl fluorides Is a functional styrene derivative.

ビニルモノマーAは、スチレンスルホン酸のメチルエステル、エチルエステル、プロピルエステル、ブチルエステル、シクロヘキシルエステル、フェニルエステル、およびナトリウム塩から選ばれる少なくとも1種が好ましい。   The vinyl monomer A is preferably at least one selected from methyl ester, ethyl ester, propyl ester, butyl ester, cyclohexyl ester, phenyl ester, and sodium salt of styrene sulfonic acid.

グラフト重合工程では、1種のビニルモノマーAを単独でグラフト重合してもよいし、2種以上のビニルモノマーAをグラフト重合してもよい。後者の場合、グラフト鎖は、上記2種以上のビニルモノマーAの共重合鎖である。ビニルモノマーA以外のモノマーを、グラフト鎖として共重合してもよい。   In the graft polymerization step, one kind of vinyl monomer A may be graft polymerized alone, or two or more kinds of vinyl monomers A may be graft polymerized. In the latter case, the graft chain is a copolymer chain of the two or more vinyl monomers A. A monomer other than the vinyl monomer A may be copolymerized as a graft chain.

ビニルモノマーAを溶解する重合溶媒(第一の溶媒)として、樹脂微粒子を構成する樹脂材料を溶解し難い溶媒が選択される。固液二相系のグラフト重合において、樹脂微粒子が固相を維持する必要があるためである。この条件を満たす限り重合溶媒は限定されない。具体的な重合溶媒は、例えば、メタノール、エタノール、n−プロパノール、イソプロパノールおよびn−ブタノールのようなアルコール類;アセトンおよびメチルエチルケトンのようなケトン類;ヘキサン、ヘプタン、オクタン、ノナン、デカンおよびシクロヘキサンのような炭化水素類;ベンゼン、トルエン、キシレンなどの芳香族炭化水素類ならびにフェノール、クレゾールなどのフェノール類のような芳香族化合物である。これらの中でも、重合溶媒(固液二相系の液相に含まれる溶媒)として、芳香族化合物が好ましい。芳香族化合物の重合溶媒としての使用により、グラフト重合率が高くなる。これに加えて、芳香族化合物は、副生成物であるホモポリマーに対する高い溶解性を有するため、固液二相系におけるグラフト重合の進行がより均一となる。   As the polymerization solvent (first solvent) for dissolving the vinyl monomer A, a solvent that does not readily dissolve the resin material constituting the resin fine particles is selected. This is because the resin fine particles need to maintain a solid phase in the solid-liquid two-phase graft polymerization. As long as this condition is satisfied, the polymerization solvent is not limited. Specific polymerization solvents include, for example, alcohols such as methanol, ethanol, n-propanol, isopropanol and n-butanol; ketones such as acetone and methyl ethyl ketone; hexane, heptane, octane, nonane, decane and cyclohexane. Hydrocarbons; aromatic hydrocarbons such as benzene, toluene and xylene, and aromatic compounds such as phenols such as phenol and cresol. Among these, an aromatic compound is preferable as a polymerization solvent (a solvent contained in a solid-liquid two-phase liquid phase). By using an aromatic compound as a polymerization solvent, the graft polymerization rate is increased. In addition, since the aromatic compound has high solubility in the homopolymer as a by-product, the progress of graft polymerization in the solid-liquid two-phase system becomes more uniform.

重合溶媒に対するビニルモノマーAおよび樹脂微粒子の溶解性は、樹脂微粒子を構成する樹脂材料およびビニルモノマーAの構造および極性によって異なる。このため、使用するモノマーAおよび樹脂微粒子に応じて、適宜、重合溶媒を選択しうる。重合溶媒は、2種以上の溶媒の混合物でありうる。ただし、ジメチルアセトアミド、N−メチルピロリドン、ジメチルホルムアミドなどのアミド系化合物;ジメチルスルホキシド(DMSO)などのスルホキシド;ヘキサメチルリン酸トリアミドなどのリン酸アミド;スルホンアミドは、ビニルモノマーAおよび樹脂微粒子の双方を溶解する傾向にあるため、重合溶媒として適さない。   The solubility of the vinyl monomer A and the resin fine particles in the polymerization solvent varies depending on the resin material constituting the resin fine particles and the structure and polarity of the vinyl monomer A. For this reason, a polymerization solvent can be appropriately selected according to the monomer A and resin fine particles used. The polymerization solvent can be a mixture of two or more solvents. However, amide compounds such as dimethylacetamide, N-methylpyrrolidone, dimethylformamide; sulfoxides such as dimethyl sulfoxide (DMSO); phosphoric acid amides such as hexamethylphosphoric triamide; sulfonamide is both vinyl monomer A and resin fine particles. Therefore, it is not suitable as a polymerization solvent.

グラフト重合工程において、必要に応じて、樹脂微粒子およびビニルモノマーA以外の材料を重合系内に加えてもよい。当該材料は、例えば、分子中に複数の不飽和結合を有する化合物である。この化合物は、重合系において、グラフト鎖間の架橋剤として作用する。重合系がこの化合物を含む場合、グラフト反応によって形成されたグラフト鎖間に架橋構造が形成されるため、高分子電解質膜の耐久性が向上する。   In the graft polymerization step, materials other than the resin fine particles and the vinyl monomer A may be added to the polymerization system as necessary. The material is, for example, a compound having a plurality of unsaturated bonds in the molecule. This compound acts as a crosslinking agent between graft chains in the polymerization system. When the polymerization system contains this compound, a cross-linked structure is formed between the graft chains formed by the graft reaction, so that the durability of the polymer electrolyte membrane is improved.

当該材料は、反応禁止剤でありうる。   The material can be a reaction inhibitor.

液相におけるビニルモノマーA、それ以外のモノマーおよび架橋剤の濃度は、好ましくは0.2〜3モル/Lであり、より好ましくは0.5〜2.5モル/Lである。当該濃度が0.2モル/L未満であると、グラフト反応が十分に進行しないことがある。当該濃度が3モル/Lより大きいと、グラフト反応と平行して進行するモノマーのみの重合により、副生成物であるホモポリマーの生成量が増大する傾向を示す。ホモポリマーはグラフト反応に寄与しない。これに加えて、生成したホモポリマーによる連鎖移動が生じやすくなり、停止反応が優位となって、グラフト率が低下する。すなわち、電解質膜の特性が低下したり、歩留まりが低下したりする。   The concentration of the vinyl monomer A, other monomers and the crosslinking agent in the liquid phase is preferably 0.2 to 3 mol / L, more preferably 0.5 to 2.5 mol / L. If the concentration is less than 0.2 mol / L, the graft reaction may not proceed sufficiently. If the concentration is higher than 3 mol / L, the amount of homopolymer as a by-product tends to increase due to polymerization of only the monomer that proceeds in parallel with the graft reaction. The homopolymer does not contribute to the grafting reaction. In addition to this, chain transfer due to the generated homopolymer is likely to occur, the termination reaction becomes dominant, and the graft rate decreases. That is, the characteristics of the electrolyte membrane are lowered, and the yield is lowered.

グラフト重合は、公知の方法を応用して実施できる。例えば、以下のとおりである。重合溶媒にビニルモノマーAを溶解させ、液相であるモノマー溶液を調製する。次に、調製したモノマー溶液を、ガラスまたはステンレスの容器に収容する。次に、収容したモノマー溶液に対して、減圧脱気および不活性ガス(例えば窒素)によるバブリングを実施し、グラフト反応を阻害する溶存酸素を除去する。次に、モノマー溶液を攪拌しながら、放射線を照射した樹脂微粒子を投入し、グラフト重合を進行させる。グラフト重合の反応時間は、例えば、10分〜12時間程度である。反応温度は、例えば、0〜100℃であり、好ましくは40〜80℃である。グラフト反応が終了した後、微粒子状のグラフト重合体を、濾過によって、重合溶液から取り出す。次に、取り出したグラフト重合体を、適量の溶剤で3〜6回洗浄し、重合溶媒、未反応モノマーおよびホモポリマーを除去する。溶剤は、例えば、トルエン、メタノール、イソプロピルアルコール、アセトンである。その後、微粒子状のグラフト重合体を乾燥させる。   Graft polymerization can be carried out by applying a known method. For example, it is as follows. The vinyl monomer A is dissolved in the polymerization solvent to prepare a monomer solution that is a liquid phase. Next, the prepared monomer solution is accommodated in a glass or stainless steel container. Next, the stored monomer solution is subjected to vacuum degassing and bubbling with an inert gas (for example, nitrogen) to remove dissolved oxygen that inhibits the graft reaction. Next, while stirring the monomer solution, the resin fine particles irradiated with radiation are added, and the graft polymerization proceeds. The reaction time of graft polymerization is, for example, about 10 minutes to 12 hours. The reaction temperature is, for example, 0 to 100 ° C, preferably 40 to 80 ° C. After the grafting reaction is completed, the particulate graft polymer is removed from the polymerization solution by filtration. Next, the taken out graft polymer is washed 3 to 6 times with an appropriate amount of solvent to remove the polymerization solvent, unreacted monomer and homopolymer. The solvent is, for example, toluene, methanol, isopropyl alcohol, or acetone. Thereafter, the particulate graft polymer is dried.

[キャスト工程、乾燥工程]
本発明の製造方法では、グラフト重合工程の後に、グラフト重合体のキャスト膜を形成する(キャスト工程)。キャスト膜の形成には、キャスティング法と一般に呼ばれている製膜方法を適用する。例えば、グラフト重合工程において形成した、微粒子状のグラフト重合体をキャスト溶媒(第二の溶媒)に溶解させて、キャスト溶液を調製する。次に、調製したキャスト溶液を適切な支持体に塗布して、キャスト膜を形成する。形成したキャスト膜を、後の乾燥工程において乾燥して(具体的には、キャスト膜中のキャスト溶媒を蒸発させて)、フィルムが得られる。
[Casting process, drying process]
In the production method of the present invention, after the graft polymerization step, a cast film of the graft polymer is formed (casting step). In forming the cast film, a film forming method generally called a casting method is applied. For example, the fine particle graft polymer formed in the graft polymerization step is dissolved in a cast solvent (second solvent) to prepare a cast solution. Next, the prepared cast solution is applied to an appropriate support to form a cast film. The formed cast film is dried in a subsequent drying step (specifically, the cast solvent in the cast film is evaporated) to obtain a film.

グラフト重合体を溶解するキャスト溶媒には、グラフト重合により形成されたグラフト鎖と、樹脂微粒子との双方を溶解しうる化合物を用いることが望ましい。キャスト工程において、グラフト重合体を溶解するキャスト溶媒に非プロトン性極性溶媒を用いてキャスト膜を形成することが好ましい。非プロトン性極性溶媒は、例えば、ジメチルアセトアミド、N−メチルピロリドン、ジメチルホルムアミド、ジメチルスルホキシド(DMSO)である。これらの溶媒は、汎用性が高い。   As the casting solvent for dissolving the graft polymer, it is desirable to use a compound that can dissolve both the graft chain formed by graft polymerization and the resin fine particles. In the casting step, it is preferable to form a cast film using an aprotic polar solvent as a casting solvent for dissolving the graft polymer. The aprotic polar solvent is, for example, dimethylacetamide, N-methylpyrrolidone, dimethylformamide, dimethylsulfoxide (DMSO). These solvents are highly versatile.

キャスト溶液におけるグラフト重合体の濃度は、好ましくは5〜30重量%であり、より好ましくは10〜25重量%である。当該濃度が30重量%を超えると、キャスト溶液の粘度が過度に高くなり、均一な膜厚を有するキャスト膜およびフィルムの形成が難しくなることがある。当該濃度が5重量%未満であると、塗布したキャスト膜が流動しやすく、均一な膜厚を有するキャスト膜およびフィルムの形成が難しくなることがある。   The concentration of the graft polymer in the cast solution is preferably 5 to 30% by weight, more preferably 10 to 25% by weight. When the said concentration exceeds 30 weight%, the viscosity of a cast solution will become high too much and formation of the cast film | membrane and film which have a uniform film thickness may become difficult. When the concentration is less than 5% by weight, the applied cast film tends to flow, and it may be difficult to form a cast film and a film having a uniform film thickness.

キャスト溶液を塗布する支持体は、例えば、ガラス、金属または樹脂からなるシートである。キャスト膜の膜厚は、最終的に得た高分子電解質膜の厚さが所望の値となるように適宜調整すればよい。高分子電解質膜の厚さは、好ましくは10μm〜70μmである。   The support on which the cast solution is applied is, for example, a sheet made of glass, metal, or resin. What is necessary is just to adjust the film thickness of a cast film suitably so that the thickness of the polymer electrolyte film finally obtained may become a desired value. The thickness of the polymer electrolyte membrane is preferably 10 μm to 70 μm.

支持体へのキャスト溶液の塗布には、公知の方法を適用できる。   A known method can be applied to apply the cast solution to the support.

キャスト工程において形成したキャスト膜は、樹脂微粒子の融点以下の乾燥温度で乾燥され、フィルムが形成される(乾燥工程)。乾燥温度が樹脂微粒子の融点(樹脂微粒子を構成する樹脂材料の融点)を超えると、最終的に得た高分子電解質膜のプロトン伝導度が低下するとともに、メタノールに対するプロトンの選択的な透過性(選択透過性)が低下する。   The cast film formed in the casting process is dried at a drying temperature equal to or lower than the melting point of the resin fine particles to form a film (drying process). When the drying temperature exceeds the melting point of the resin fine particles (the melting point of the resin material constituting the resin fine particles), the proton conductivity of the finally obtained polymer electrolyte membrane decreases, and the selective permeability of protons to methanol ( (Selectivity) decreases.

厚さ10μm〜70μmのフィルムを形成する場合の乾燥温度は、好ましくは、当該膜の乾燥に要する時間(乾燥時間)が6時間となる温度以上であり、より好ましくは、乾燥時間が2時間となる温度以上である。乾燥温度は、好ましくは、樹脂微粒子を構成する樹脂材料の融点より10℃低い温度以下であり、より好ましくは、当該樹脂材料の融点より20℃低い温度以下である。乾燥温度が過度に高くなると、最終的に得た高分子電解質膜のプロトン伝導性が低下するとともに、メタノールに対するプロトンの選択的な透過性(選択透過性)が低下することがある。乾燥温度が過度に低くなると、乾燥工程の実施に長時間が必要となる。   The drying temperature in the case of forming a film having a thickness of 10 μm to 70 μm is preferably equal to or higher than the temperature at which the time required for drying the film (drying time) is 6 hours, and more preferably, the drying time is 2 hours. Above the temperature. The drying temperature is preferably 10 ° C. or lower than the melting point of the resin material constituting the resin fine particles, and more preferably 20 ° C. or lower than the melting point of the resin material. When the drying temperature is excessively high, the proton conductivity of the finally obtained polymer electrolyte membrane is lowered, and the selective permeability (selectivity) of protons to methanol may be lowered. If the drying temperature becomes excessively low, it takes a long time to perform the drying process.

乾燥工程において、キャスト工程において形成したキャスト膜を、当該膜の乾燥に要する時間が6時間となる温度以上、かつ樹脂微粒子の融点よりも10℃低い温度以下、の乾燥温度で乾燥して、厚さ10μm〜70μmのフィルムを得ることが好ましい。   In the drying process, the cast film formed in the casting process is dried at a drying temperature of not less than a temperature at which drying time of the film is 6 hours and not more than 10 ° C. lower than the melting point of the resin fine particles. It is preferable to obtain a film having a thickness of 10 μm to 70 μm.

乾燥工程には、公知の膜乾燥方法を適用できる。   A known film drying method can be applied to the drying step.

[変換工程]
本発明の製造方法では、乾燥工程の後に、当該工程により得られたフィルムにおけるスルホン酸基前駆体をスルホン酸基に変換する(変換工程)。
[Conversion process]
In the production method of the present invention, after the drying step, the sulfonic acid group precursor in the film obtained by the step is converted into a sulfonic acid group (conversion step).

スルホン酸基への変換は、例えば、加水分解および/またはイオン交換を利用して実施する。スルホン酸基前駆体がスルホン酸基のアルキルエステルである場合、硝酸、塩酸、硫酸などを用いた酸処理、またはアルコール水溶液を用いた処理により、変換工程を実施しうる。スルホン酸基前駆体がスルホン酸基の塩である場合、硝酸、塩酸、硫酸などを用いた酸処理により、変換工程を実施しうる。酸処理における酸の濃度は、好ましくは1規定程度である。これらの処理は、必要に応じて、加温条件下で実施しうる。   The conversion to a sulfonic acid group is performed using, for example, hydrolysis and / or ion exchange. When the sulfonic acid group precursor is an alkyl ester of a sulfonic acid group, the conversion step can be carried out by acid treatment using nitric acid, hydrochloric acid, sulfuric acid or the like, or treatment using an aqueous alcohol solution. When the sulfonic acid group precursor is a salt of a sulfonic acid group, the conversion step can be carried out by acid treatment using nitric acid, hydrochloric acid, sulfuric acid or the like. The acid concentration in the acid treatment is preferably about 1 N. These treatments can be performed under warming conditions as necessary.

変換工程を経たフィルムを、例えば、純粋で洗浄して、プロトン伝導性高分子電解質膜が得られる。   The film that has undergone the conversion process is washed, for example, purely to obtain a proton conductive polymer electrolyte membrane.

本発明の製造方法は、本発明の効果が得られる限り、上述した工程以外の工程を含みうる。   The production method of the present invention can include steps other than those described above as long as the effects of the present invention are obtained.

以下、実施例により、本発明をさらに詳細に説明する。本発明は、以下の実施例に限定されない。   Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the following examples.

(実施例1)
微粒子状のポリフッ化ビニリデン(PVDF:クレハ製、KFポリマーW#1100、平均粒子径約200μm)50gを、バリアフィルムを有する酸素遮断性の袋に投入した。この袋内に、脱酸素剤(三菱瓦斯化学製、エージレス)を投入し、袋をヒートシールして密閉した。これを一昼夜保管することにより、袋内の酸素を脱酸素剤に十分吸着させた。このようにして、放射線を照射する前の脱酸素を実施した。
Example 1
50 g of particulate polyvinylidene fluoride (PVDF: manufactured by Kureha, KF polymer W # 1100, average particle diameter of about 200 μm) was put into an oxygen-blocking bag having a barrier film. An oxygen scavenger (manufactured by Mitsubishi Gas Chemical Co., Ltd., Ageless) was introduced into the bag, and the bag was heat sealed and sealed. By storing this overnight, the oxygen in the bag was sufficiently adsorbed by the oxygen scavenger. In this manner, deoxygenation before irradiation with radiation was performed.

脱酸素後、PVDF微粒子が入ったこの袋に、コバルト60を線源とするγ線を照射線量30kGyで照射した。次に、照射後の袋を、ドライアイスによって低温状態を保ちながら、保管した。   After deoxygenation, this bag containing PVDF fine particles was irradiated with γ rays using cobalt 60 as a radiation source at an irradiation dose of 30 kGy. Next, the bag after irradiation was stored while keeping a low temperature state with dry ice.

これとは別に、セパラブルフラスコに、ビニルモノマーAとして150gのスチレンスルホン酸エチルエステル(EtSS)、および重合溶媒として100gのm−クレゾールを投入した。これを温度70℃で撹拌しながら、窒素を30分間バブリングして脱酸素を十分に実施した。このようにして、モノマー溶液を得た。   Separately, 150 g of styrene sulfonic acid ethyl ester (EtSS) as vinyl monomer A and 100 g of m-cresol as a polymerization solvent were charged into a separable flask. While stirring this at a temperature of 70 ° C., nitrogen was bubbled for 30 minutes to sufficiently perform deoxygenation. In this way, a monomer solution was obtained.

次に、γ線を照射したPVDF微粒子を袋から取り出して、モノマー溶液に投入した。続いて、窒素バブリングおよび攪拌を継続して実施し、グラフト重合を進行させた。反応温度は70℃、反応時間は20分とした。   Next, the PVDF fine particles irradiated with γ rays were taken out of the bag and put into the monomer solution. Subsequently, nitrogen bubbling and stirring were continuously carried out to advance the graft polymerization. The reaction temperature was 70 ° C. and the reaction time was 20 minutes.

重合終了後、フラスコ内の溶液をろ過して、グラフト重合体の微粒子を取り出した。次に、取り出した微粒子をアセトンに浸漬した(室温、60分間)後、さらにろ過して微粒子を取り出す操作を5回繰り返した。最後のろ過によって取り出した微粒子を、60℃に保持した乾燥機内で一晩乾燥させて、微粒子状のグラフト重合体を得た。このグラフト重合体のグラフト率を、後述する方法により測定した。   After completion of the polymerization, the solution in the flask was filtered to take out fine particles of the graft polymer. Next, the operation of immersing the extracted fine particles in acetone (room temperature, 60 minutes) and further filtering to extract the fine particles was repeated five times. The fine particles taken out by the last filtration were dried overnight in a drier maintained at 60 ° C. to obtain a fine particle graft polymer. The graft ratio of this graft polymer was measured by the method described later.

次に、グラフト重合体1gに対して、キャスト溶媒としてN−メチル−2−ピロリドン4gを加え、70℃で2時間以上、強く振動させて、キャスト溶媒にグラフト重合体が溶解したキャスト溶液を得た。次に、得られたキャスト溶液を、支持体であるガラス板上にギャップ厚さ480μmで塗工して、キャスト膜を形成した。   Next, 4 g of N-methyl-2-pyrrolidone as a cast solvent is added to 1 g of the graft polymer, and vigorously vibrated at 70 ° C. for 2 hours or more to obtain a cast solution in which the graft polymer is dissolved in the cast solvent. It was. Next, the obtained cast solution was applied on a glass plate as a support with a gap thickness of 480 μm to form a cast film.

次に、形成したキャスト膜を、150℃の乾燥機で30分間加熱して乾燥させ、フィルムを得た。   Next, the formed cast film was dried by heating at 150 ° C. for 30 minutes to obtain a film.

次に、得られたフィルムに含まれるスルホン酸基前駆体をスルホン酸基に変換した。スルホン酸基への変換は、フィルムを70℃で12時間、濃度50重量%のエタノール水溶液に浸漬して行った。その後、エタノール水溶液からフィルムを取り出し、純水で複数回洗浄した後、乾燥させた。このようにして、プロトン伝導性高分子電解質が得られた。   Next, the sulfonic acid group precursor contained in the obtained film was converted into a sulfonic acid group. Conversion to the sulfonic acid group was performed by immersing the film in an aqueous ethanol solution having a concentration of 50% by weight at 70 ° C. for 12 hours. Thereafter, the film was taken out from the ethanol aqueous solution, washed several times with pure water, and then dried. In this way, a proton conductive polymer electrolyte was obtained.

(実施例2)
実施例1と同様にして、微粒子状のグラフト重合体を得た。このグラフト重合体のグラフト率を、後述する方法により測定した。次に、得られた当該グラフト重合体を用い、キャスト溶液を塗工する際のギャップ厚さを240μmとした以外は実施例1と同様にして、プロトン伝導性高分子電解質膜を得た。
(Example 2)
In the same manner as in Example 1, a fine particle graft polymer was obtained. The graft ratio of this graft polymer was measured by the method described later. Next, using the obtained graft polymer, a proton conductive polymer electrolyte membrane was obtained in the same manner as in Example 1 except that the gap thickness when applying the cast solution was 240 μm.

(実施例3)
実施例1と同様にして、微粒子状のグラフト重合体を得た。このグラフト重合体のグラフト率を、後述する方法により測定した。次に、得られた当該グラフト重合体を用い、キャスト溶液を塗工する際のギャップ厚さを240μmとし、キャスト膜の乾燥の条件を80℃で2時間とした以外は、実施例1と同様にして、プロトン伝導性高分子電解質膜を得た。
(Example 3)
In the same manner as in Example 1, a fine particle graft polymer was obtained. The graft ratio of this graft polymer was measured by the method described later. Next, the obtained graft polymer was used, the gap thickness when applying the cast solution was 240 μm, and the conditions for drying the cast film were 80 ° C. for 2 hours, the same as in Example 1. Thus, a proton conductive polymer electrolyte membrane was obtained.

(比較例1)
市販のイオン交換膜(デュポン製、Nafion112)を、比較例1とした。
(Comparative Example 1)
A commercially available ion exchange membrane (manufactured by DuPont, Nafion 112) was used as Comparative Example 1.

(比較例2)
市販のイオン交換膜(デュポン製、Nafion115)を、比較例2とした。
(Comparative Example 2)
A commercially available ion exchange membrane (manufactured by DuPont, Nafion 115) was used as Comparative Example 2.

(比較例3)
市販のイオン交換膜(デュポン製、Nafion117)を、比較例3とした。
(Comparative Example 3)
A commercially available ion exchange membrane (manufactured by DuPont, Nafion 117) was used as Comparative Example 3.

(比較例4)
実施例1と同様にして、微粒子状のグラフト重合体を得た。このグラフト重合体のグラフト率を、後述する方法により測定した。次に、得られた当該グラフト重合体を用い、キャスト膜の乾燥の条件を、PVDFの融点を超える温度である200℃において15分間とした以外は、実施例1と同様にして、プロトン伝導性高分子電解質膜を得た。
(Comparative Example 4)
In the same manner as in Example 1, a fine particle graft polymer was obtained. The graft ratio of this graft polymer was measured by the method described later. Next, proton conductivity was obtained in the same manner as in Example 1 except that the obtained graft polymer was used and the conditions for drying the cast membrane were set at 200 ° C., which is a temperature exceeding the melting point of PVDF, for 15 minutes. A polymer electrolyte membrane was obtained.

(比較例5)
実施例1と同様にして、微粒子状のグラフト重合体を得た。このグラフト重合体のグラフト率を、後述する方法により測定した。次に、得られた当該グラフト重合体を、ラボプラストミル(東洋精機製)により220℃で20分間、溶融混練した後、220℃、約20MPaで熱プレスして、フィルムを形成した。このフィルムに対して、実施例1と同様に変換工程(加水分解処理)を実施して、プロトン伝導性高分子電解質膜を得た。
(Comparative Example 5)
In the same manner as in Example 1, a fine particle graft polymer was obtained. The graft ratio of this graft polymer was measured by the method described later. Next, the obtained graft polymer was melt-kneaded at 220 ° C. for 20 minutes using a Laboplast mill (manufactured by Toyo Seiki Co., Ltd.), and then hot-pressed at 220 ° C. and about 20 MPa to form a film. This film was subjected to a conversion step (hydrolysis treatment) in the same manner as in Example 1 to obtain a proton conductive polymer electrolyte membrane.

実施例1〜3および比較例4,5で作製した微粒子状のグラフト重合体のグラフト率を、以下のように評価した。   The graft ratios of the fine particle graft polymers prepared in Examples 1 to 3 and Comparative Examples 4 and 5 were evaluated as follows.

[グラフト率]
グラフト率G(%)は、下記式(1)により定義される。
[Graft ratio]
The graft ratio G (%) is defined by the following formula (1).

G=(W2−W1)÷W1×100 (1)
G:グラフト率[%],W1:グラフト反応前の樹脂材料の重量[g],W2:グラフト反応後の樹脂材料の重量[g]
G = (W2−W1) ÷ W1 × 100 (1)
G: Graft ratio [%], W1: Weight of resin material before graft reaction [g], W2: Weight of resin material after graft reaction [g]

測定対象物が微粒子状である場合、W1およびW2を直接測定することが困難である。そこで、本実施例では、作製したフィルムを構成するグラフト重合体の赤外線吸収スペクトルを測定して、樹脂微粒子を構成する樹脂材料(本実施例においてはPVDF)およびグラフト鎖(本実施例においてはEtSS鎖)のそれぞれに特徴的なピークのピーク比を求め、このピーク比とグラフト率との相関関係を表す検量線を用いてグラフト率を求めた。この検量線は、以下のようにして、予め作成しておいた。   When the measurement object is in the form of fine particles, it is difficult to directly measure W1 and W2. Therefore, in this example, the infrared absorption spectrum of the graft polymer constituting the produced film is measured, and the resin material (PVDF in this example) and the graft chain (EtSS in this example) constituting the resin fine particles are measured. The peak ratio of the characteristic peaks of each chain was determined, and the graft ratio was determined using a calibration curve representing the correlation between the peak ratio and the graft ratio. This calibration curve was prepared in advance as follows.

最初に、グラフト重合の時間を変えるなどにより、グラフト化の程度が異なる微粒子状のグラフト重合体を複数の種類、作製した。作製した各グラフト重合体の赤外線スペクトルを測定した後、それぞれの重合体を所定の重量W2ずつ計り取った。乾燥重量W2の各グラフト重合体について、後述するイオン交換容量の測定方法と同様の方法により、酸基のモル量“n(酸基)obs”を測定した。グラフト反応前の樹脂材料の質量W1は、EtSSモノマーの分子量をMwとして下記式(2)により求められる。   First, a plurality of types of fine particle graft polymers having different degrees of grafting were prepared by changing the graft polymerization time. After measuring the infrared spectrum of each produced graft polymer, each polymer was weighed by a predetermined weight W2. For each graft polymer having a dry weight W2, the molar amount “n (acid group) obs” of acid groups was measured by the same method as the ion exchange capacity measurement method described later. The mass W1 of the resin material before the graft reaction is obtained by the following formula (2), where the molecular weight of the EtSS monomer is Mw.

W1=W2−{Mw×n(酸基)obs÷1000} (2)
Mw:EtSSモノマーの分子量,n(酸基)obs:試料が有する酸基のモル量[mmol]
W1 = W2- {Mw × n (acid group) obs / 1000} (2)
Mw: molecular weight of EtSS monomer, n (acid group) obs: molar amount of acid group of sample [mmol]

このW1とW2とを式(1)に代入することにより各グラフト重合体のグラフト率Gを算出し、赤外線スペクトルのピーク比とグラフト率との関係を表す検量線を作成した。   By substituting W1 and W2 into the formula (1), the graft ratio G of each graft polymer was calculated, and a calibration curve representing the relationship between the peak ratio of the infrared spectrum and the graft ratio was created.

実施例1〜3および比較例1〜6で作製した電解質膜について、その膜厚、イオン交換容量(IEC)、プロトン伝導度σ、メタノール透過流速Fmおよび選択透過性指標Sindexを評価した。これらの各特性の評価方法を、以下に示す。   About the electrolyte membrane produced in Examples 1-3 and Comparative Examples 1-6, the film thickness, ion exchange capacity (IEC), proton conductivity (sigma), methanol permeation | transmission flow rate Fm, and the selective permeability parameter | index Sindex were evaluated. The evaluation method of each of these characteristics is shown below.

[膜厚]
電解質膜の膜厚は、尾崎製作所製ダイヤルシックネスゲージG−6C(1/1000mm、測定子直径5mm)を用いて、温度25±2℃、湿度65±20%RHの雰囲気下で測定した。
[Film thickness]
The thickness of the electrolyte membrane was measured in an atmosphere of a temperature of 25 ± 2 ° C. and a humidity of 65 ± 20% RH using a dial thickness gauge G-6C (1/1000 mm, probe diameter 5 mm) manufactured by Ozaki Seisakusho.

[イオン交換容量(IEC)]
電解質膜のイオン交換容量(IEC)は、式(3)により定義される。
[Ion exchange capacity (IEC)]
The ion exchange capacity (IEC) of the electrolyte membrane is defined by equation (3).

IEC=n(酸基)obs/Wd (3)
IEC:イオン交換容量[mmol/g],n(酸基)obs:試料が有する酸基のモル量[mmol],Wd:試料の乾燥重量[g]
IEC = n (acid group) obs / Wd (3)
IEC: ion exchange capacity [mmol / g], n (acid group) obs: molar amount of acid group of sample [mmol], Wd: dry weight of sample [g]

“n(酸基)obs”は、以下のように測定した。最初に、試料を、50℃に保持した濃度1モル/Lの硫酸水溶液に4時間浸漬して、当該試料が有する酸基を全て酸型とした。次に、浸漬した試料をイオン交換水で洗浄した後、50℃に保持した濃度3モル/Lの塩化ナトリウム水溶液に4時間浸漬して、酸基のプロトンをナトリウムイオンにより置換した。次に、試料を浸漬した後の上記塩化ナトリウム水溶液を水酸化ナトリウム水溶液で滴定して、イオン交換されたプロトンの量を測定し、“n(酸基)obs”を求めた。   “N (acid group) obs” was measured as follows. First, the sample was immersed in an aqueous sulfuric acid solution having a concentration of 1 mol / L maintained at 50 ° C. for 4 hours to make all the acid groups of the sample an acid type. Next, the immersed sample was washed with ion-exchanged water, and then immersed in an aqueous sodium chloride solution having a concentration of 3 mol / L maintained at 50 ° C. for 4 hours to replace the proton of the acid group with sodium ions. Next, the sodium chloride aqueous solution after the sample was immersed was titrated with an aqueous sodium hydroxide solution, and the amount of ion-exchanged protons was measured to obtain “n (acid group) obs”.

[プロトン伝導度σ]
電解質膜のプロトン伝導度は、専用の膜抵抗測定セル、ポテンショスタット(北斗電工製、HABF−5001)および電圧計(北斗電工製、HE−104)を使用して測定した。最初に、2つの白金電極が備えられたセルに、濃度1モル/Lの硫酸水溶液を満たして室温に置いた。次に、当該2つの白金電極に電流を印加し、印加する電流値を変えて測定した時の各電極間の電位差を測定することにより、この電極間に面積Smの試料膜を置いたときの抵抗値R1と、試料膜を置かないときの抵抗値R0とを求めた。R1とR0との差分から試料膜の抵抗値Rmを求め、下記式(4)により、試料膜のプロトン伝導度σを算出した。
[Proton conductivity σ]
The proton conductivity of the electrolyte membrane was measured using a dedicated membrane resistance measurement cell, potentiostat (Hokuto Denko, HABF-5001) and voltmeter (Hokuto Denko, HE-104). First, a cell equipped with two platinum electrodes was filled with a 1 mol / L sulfuric acid aqueous solution and placed at room temperature. Next, by applying a current to the two platinum electrodes and measuring the potential difference between the electrodes when the applied current value is changed, a sample film having an area Sm is placed between the electrodes. A resistance value R1 and a resistance value R0 when no sample film was placed were obtained. The resistance value Rm of the sample membrane was obtained from the difference between R1 and R0, and the proton conductivity σ of the sample membrane was calculated by the following equation (4).

σ=1/(Rm×Sm)=1/{(R1−R0)×Sm} (4)
σ:プロトン伝導度[S/cm2],Rm:試料膜の抵抗値[Ω],Sm:試料膜の面積[cm2
σ = 1 / (Rm × Sm) = 1 / {(R1−R0) × Sm} (4)
σ: proton conductivity [S / cm 2 ], Rm: resistance value of sample film [Ω], Sm: area of sample film [cm 2 ]

[メタノール透過流速Fm]
開口部および密栓可能な注入口を有するガラス容器を2つ用意した。試料膜を隔壁として狭持するように、2つの容器の開口部同士を合わせて連結した。容器内に狭持されている試料膜の面積をDとした。容器の注入口を介して、片方の容器内を濃度2モル/Lのメタノール水溶液で満たし、もう片方の容器内を蒸留水で満たした。これをウォーターバスにより60℃で保温した。蒸留水側の容器の水溶液を、適当な経過時間ごとにサンプリングし、ガスクロマトグラフ法により分析した。標準メタノール水溶液と、ガスクロマトグラムにおけるピーク面積との関係から作成した検量線を用い、サンプリング液中のメタノール濃度を求めた。さらに、各サンプリング液中のメタノール濃度を、保温の経過時間に対してプロットしたときの傾きtを求めた。プロットの傾きtと試料膜の面積Dとを式(5)に代入することにより、メタノール透過流速Fmを算出した。
[Methanol permeation flow rate Fm]
Two glass containers having an opening and an inlet that can be sealed were prepared. The openings of the two containers were connected together so as to sandwich the sample film as a partition wall. The area of the sample film held in the container was defined as D. One container was filled with a 2 mol / L aqueous methanol solution through the container inlet, and the other container was filled with distilled water. This was kept at 60 ° C. with a water bath. The aqueous solution in the container on the distilled water side was sampled at an appropriate elapsed time and analyzed by gas chromatography. Using a calibration curve created from the relationship between the standard aqueous methanol solution and the peak area in the gas chromatogram, the methanol concentration in the sampling solution was determined. Furthermore, the slope t when the methanol concentration in each sampling solution was plotted against the elapsed time of the incubation was obtained. The methanol permeation flow rate Fm was calculated by substituting the slope t of the plot and the area D of the sample membrane into Equation (5).

Fm=t÷D (5)
Fm:メタノール透過流速[mmol/(cm2・hr)],t:プロットの傾き[mmol/hr],D:試料膜の面積[cm2
Fm = t ÷ D (5)
Fm: methanol permeation flow rate [mmol / (cm 2 · hr)], t: slope of plot [mmol / hr], D: area of sample film [cm 2 ]

[選択透過性指標 Sindex]
選択透過性指標Sindexは、式(6)により表され、プロトン伝導度σをメタノール透過流速Fmで除した数値である。この数値が高い方が、メタノールに対してプロトンを選択的に透過させる度合いが大きく、電解質膜の性能が良いと判断できる。
[Selective permeability index Sindex]
The selective permeability index Sindex is a numerical value expressed by the equation (6) and obtained by dividing the proton conductivity σ by the methanol permeation flow rate Fm. The higher this value, the greater the degree of selective permeation of protons to methanol, and it can be judged that the performance of the electrolyte membrane is good.

Sindex=σ÷Fm (6)
Sindex:選択透過性指標[(S・hr)/mmol],σ:プロトン伝導度[S/cm2],Fm:メタノール透過流速[mmol/(cm2・hr)]
Index = σ ÷ Fm (6)
Sindex: selective permeability index [(S · hr) / mmol], σ: proton conductivity [S / cm 2 ], Fm: methanol permeation flow rate [mmol / (cm 2 · hr)]

これらの評価結果を、以下の表1に示す。   These evaluation results are shown in Table 1 below.

Figure 2012082410
Figure 2012082410

実施例1〜3の電解質膜は、本発明の製造方法により作製されたプロトン伝導性高分子電解質膜であり、プロトン伝導度が大きく、メタノール透過流速が小さく、したがって、選択透過性指標が高い。   The electrolyte membranes of Examples 1 to 3 are proton conductive polymer electrolyte membranes produced by the production method of the present invention, have a high proton conductivity, a low methanol permeation flow rate, and therefore a high permselectivity index.

比較例1〜3の電解質膜はナフィオン膜であるため、選択透過性指標が低い。比較例4の電解質膜は、キャスト膜の乾燥温度がPVDFの融点よりも高いため、プロトン伝導度が小さく、選択透過性指標が低い。比較例5の電解質膜は、キャスティング法ではなく溶融混練およびプレスにより製造されたため、プロトン伝導度が小さく、選択透過性指標が低い。   Since the electrolyte membranes of Comparative Examples 1 to 3 are Nafion membranes, the permselectivity index is low. The electrolyte membrane of Comparative Example 4 has a low proton conductivity and a low selective permeability index because the drying temperature of the cast membrane is higher than the melting point of PVDF. Since the electrolyte membrane of Comparative Example 5 was produced by melt kneading and pressing instead of the casting method, the proton conductivity was low and the selective permeability index was low.

本発明の製造方法により得たプロトン伝導性高分子電解質膜は、PEFC、特にDMFCの電解質膜に好適に使用しうる。   The proton conductive polymer electrolyte membrane obtained by the production method of the present invention can be suitably used for an electrolyte membrane of PEFC, particularly DMFC.

Claims (6)

樹脂微粒子に放射線を照射する工程と、
スルホン酸基前駆体を有するビニルモノマーを、固液二相系において、前記放射線が照射された樹脂微粒子にグラフト重合させて、前記樹脂微粒子および前記ビニルモノマーの重合鎖を含む、微粒子状のグラフト重合体を得る工程と、
前記得られたグラフト重合体のキャスト膜を形成するキャスト工程と、
前記形成したキャスト膜を、前記樹脂微粒子の融点以下の乾燥温度で乾燥して、フィルムを得る乾燥工程と、
前記得られたフィルムにおけるスルホン酸基前駆体をスルホン酸基に変換する工程と、を含み、
前記固液二相系が、前記ビニルモノマーおよび当該モノマーの溶媒を含む液相と、前記樹脂微粒子を含む固相により構成される、プロトン伝導性高分子電解質膜の製造方法。
Irradiating resin fine particles with radiation;
In a solid-liquid two-phase system, a vinyl monomer having a sulfonic acid group precursor is graft-polymerized onto the resin fine particles irradiated with the radiation, and the fine particle graft weight containing the resin fine particles and the polymer chain of the vinyl monomer is included. Obtaining a coalescence;
A casting step of forming a cast film of the obtained graft polymer;
Drying the formed cast film at a drying temperature below the melting point of the resin fine particles to obtain a film; and
Converting the sulfonic acid group precursor in the obtained film to a sulfonic acid group,
A method for producing a proton-conductive polymer electrolyte membrane, wherein the solid-liquid two-phase system includes a liquid phase containing the vinyl monomer and a solvent for the monomer and a solid phase containing the resin fine particles.
前記固液二相系の液相に含まれる前記溶媒が、芳香族化合物である請求項1に記載のプロトン伝導性高分子電解質膜の製造方法。   The method for producing a proton conductive polymer electrolyte membrane according to claim 1, wherein the solvent contained in the liquid phase of the solid-liquid two-phase system is an aromatic compound. 前記キャスト工程において、
前記グラフト重合体を溶解するキャスト溶媒に非プロトン性極性溶媒を用いて前記キャスト膜を形成する、請求項1または2に記載のプロトン伝導性高分子電解質膜の製造方法。
In the casting step,
The method for producing a proton conductive polymer electrolyte membrane according to claim 1 or 2, wherein the cast membrane is formed using an aprotic polar solvent as a cast solvent for dissolving the graft polymer.
前記乾燥工程において、
前記キャスト膜を、当該膜の乾燥に要する時間が6時間となる温度以上、かつ前記樹脂微粒子の融点よりも10℃低い温度以下、の乾燥温度で乾燥して、厚さ10μm〜70μmの前記フィルムを得る、請求項1〜3のいずれかに記載のプロトン伝導性高分子電解質膜の製造方法。
In the drying step,
The film having a thickness of 10 μm to 70 μm is dried by drying the cast film at a drying temperature not lower than a temperature at which drying time of the film is 6 hours and not higher than a melting point of the resin fine particles by 10 ° C. The method for producing a proton conductive polymer electrolyte membrane according to claim 1, wherein:
前記樹脂微粒子が、ポリスチレン、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリフェニレンサルファイド、ポリアリレート、ポリエーテルイミド、芳香族ポリイミド、ポリアミドイミド、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリフッ化ビニル、エチレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、およびテトラフルオロエチレン−ヘキサフルオロプロピレン−フッ化ビニリデン共重合体から選ばれる少なくとも1種を含む、請求項1〜4のいずれかに記載のプロトン伝導性高分子電解質膜の製造方法。   The resin fine particles are polystyrene, polyether ether ketone, polyether ketone, polysulfone, polyether sulfone, polyphenylene sulfide, polyarylate, polyetherimide, aromatic polyimide, polyamideimide, polyethylene, polypropylene, polyvinylidene fluoride, polyvinyl fluoride. And at least one selected from ethylene-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene copolymer, and tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer. A method for producing a proton conductive polymer electrolyte membrane according to any one of the above. 前記ビニルモノマーが、スチレンスルホン酸の、メチルエステル、エチルエステル、プロピルエステル、ブチルエステル、シクロヘキシルエステル、フェニルエステル、およびナトリウム塩から選ばれる少なくとも1種である請求項1〜5のいずれかに記載のプロトン伝導性高分子電解質膜の製造方法。   The vinyl monomer is at least one selected from methyl ester, ethyl ester, propyl ester, butyl ester, cyclohexyl ester, phenyl ester, and sodium salt of styrene sulfonic acid. A method for producing a proton conductive polymer electrolyte membrane.
JP2011203234A 2010-09-17 2011-09-16 Proton conductive polymer electrolyte membrane production method Expired - Fee Related JP5836028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011203234A JP5836028B2 (en) 2010-09-17 2011-09-16 Proton conductive polymer electrolyte membrane production method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010209099 2010-09-17
JP2010209099 2010-09-17
JP2011203234A JP5836028B2 (en) 2010-09-17 2011-09-16 Proton conductive polymer electrolyte membrane production method

Publications (2)

Publication Number Publication Date
JP2012082410A true JP2012082410A (en) 2012-04-26
JP5836028B2 JP5836028B2 (en) 2015-12-24

Family

ID=45831269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011203234A Expired - Fee Related JP5836028B2 (en) 2010-09-17 2011-09-16 Proton conductive polymer electrolyte membrane production method

Country Status (2)

Country Link
JP (1) JP5836028B2 (en)
WO (1) WO2012035784A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084350A (en) * 2012-10-22 2014-05-12 Nitto Denko Corp Ion exchange resin-containing liquid and ion exchange membrane, and methods for producing them

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731935A (en) * 1980-06-24 1982-02-20 Commissariat Energie Atomique Manufacture of cation exchange membrane and membrane obtained thereby
JPS60155238A (en) * 1984-12-13 1985-08-15 Tokuyama Soda Co Ltd Production of composite membrane
JP2002313364A (en) * 2001-04-13 2002-10-25 Hitachi Cable Ltd Electrolyte film for use in fuel cell, film manufacturing method, and fuel cell
JP2003192805A (en) * 2001-12-27 2003-07-09 Kanegafuchi Chem Ind Co Ltd Method for producing sulfonated polymer film
JP2004107461A (en) * 2002-09-18 2004-04-08 Univ Waseda Polyelectrolyte membrane
JP2005078871A (en) * 2003-08-29 2005-03-24 Shin Etsu Chem Co Ltd Manufacturing method of solid high polymer electrolyte membrane and fuel cell
JP2005162623A (en) * 2003-11-28 2005-06-23 Toyota Motor Corp Monomer compound, graft copolymer compound, method for producing the same, polyelectrolyte membrane and fuel cell
JP2005525682A (en) * 2002-05-10 2005-08-25 ペメアス ゲーエムベーハー Graft polymer electrolyte membrane, its production method and its application to fuel cells
JP2007510028A (en) * 2003-10-30 2007-04-19 ライプニッツ−インスティチュート フュア ポリマーフォルシュング ドレスデン エーファウ Radical-bonded PTFE polymer powder and method for producing the same
JP2007141601A (en) * 2005-11-17 2007-06-07 Japan Atomic Energy Agency Inorganic nano-particle composite cross-linking polymer electrolyte film, manufacturing method of the same, and film-electrode assembly using the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731935A (en) * 1980-06-24 1982-02-20 Commissariat Energie Atomique Manufacture of cation exchange membrane and membrane obtained thereby
JPS60155238A (en) * 1984-12-13 1985-08-15 Tokuyama Soda Co Ltd Production of composite membrane
JP2002313364A (en) * 2001-04-13 2002-10-25 Hitachi Cable Ltd Electrolyte film for use in fuel cell, film manufacturing method, and fuel cell
JP2003192805A (en) * 2001-12-27 2003-07-09 Kanegafuchi Chem Ind Co Ltd Method for producing sulfonated polymer film
JP2005525682A (en) * 2002-05-10 2005-08-25 ペメアス ゲーエムベーハー Graft polymer electrolyte membrane, its production method and its application to fuel cells
JP2004107461A (en) * 2002-09-18 2004-04-08 Univ Waseda Polyelectrolyte membrane
JP2005078871A (en) * 2003-08-29 2005-03-24 Shin Etsu Chem Co Ltd Manufacturing method of solid high polymer electrolyte membrane and fuel cell
JP2007510028A (en) * 2003-10-30 2007-04-19 ライプニッツ−インスティチュート フュア ポリマーフォルシュング ドレスデン エーファウ Radical-bonded PTFE polymer powder and method for producing the same
JP2005162623A (en) * 2003-11-28 2005-06-23 Toyota Motor Corp Monomer compound, graft copolymer compound, method for producing the same, polyelectrolyte membrane and fuel cell
JP2007141601A (en) * 2005-11-17 2007-06-07 Japan Atomic Energy Agency Inorganic nano-particle composite cross-linking polymer electrolyte film, manufacturing method of the same, and film-electrode assembly using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084350A (en) * 2012-10-22 2014-05-12 Nitto Denko Corp Ion exchange resin-containing liquid and ion exchange membrane, and methods for producing them

Also Published As

Publication number Publication date
JP5836028B2 (en) 2015-12-24
WO2012035784A1 (en) 2012-03-22

Similar Documents

Publication Publication Date Title
Nasef et al. Radiation-grafted materials for energy conversion and energy storage applications
JP5862372B2 (en) Production method of polymer, production method of electrolyte membrane for polymer electrolyte fuel cell, and production method of membrane electrode assembly
JP5004178B2 (en) High proton conductive polymer electrolyte membrane excellent in mechanical strength and method for producing the same
JP2006344552A (en) Cross-link type electrolyte membrane and its manufacturing method
JP4354937B2 (en) Composite electrolyte membrane and method for producing the same, fuel cell
EP3239189A1 (en) Electrolyte material, liquid composition, and membrane-electrode assembly for solid polymer fuel cell
JP2004059752A (en) Electrolyte membrane for fuel cell comprising crosslinked fluororesin base
JP4854284B2 (en) Method for producing polymer electrolyte membrane
JP4986219B2 (en) Electrolyte membrane
US10862151B2 (en) Polyphenylsulfone-based proton conducting polymer electrolyte, proton conducting solid polymer electrolyte membrane, electrode catalyst layer for solid polymer fuel cells, method for producing electrode catalyst layer for slid polymer fuel cells, and fuel cell
JP5673922B2 (en) Cross-linked aromatic polymer electrolyte membrane, production method thereof, and polymer fuel cell using cross-linked aromatic polymer electrolyte membrane
JP2014084350A (en) Ion exchange resin-containing liquid and ion exchange membrane, and methods for producing them
JP2005531891A (en) Fuel cell with polymer electrolyte membrane grafted by irradiation
JP5776095B2 (en) Proton conducting polymer electrolyte membrane with excellent oxidation resistance and method for producing the same
JP5158353B2 (en) Fuel cell electrolyte membrane and method for producing fuel cell electrolyte membrane / electrode assembly
KR100843569B1 (en) Proton conductive composite triblock polymer electrolyte membrane and preparation method thereof
JP5836028B2 (en) Proton conductive polymer electrolyte membrane production method
JP2006066174A (en) Electrolyte film for fuel cell with excellent acid resistance
JP5326288B2 (en) Solid polymer electrolyte membrane, method for producing the same, membrane electrode assembly for fuel cell, and fuel cell
Nasef Radiation grafted ion conducting membranes for electrochemical energy systems: status of developmental and upscaled membranes
Sezgin et al. An investigation of proton conductivity of vinyltriazole-grafted PVDF proton exchange membranes prepared via photoinduced grafting
JP2013028710A (en) Ionically-conductive electrolyte membrane, and method of producing the same
JP4499004B2 (en) Method for producing sulfonated polymer electrolyte membrane
JP2012062426A (en) Method for manufacturing proton conductive polymer electrolyte film
JP2009123437A (en) Electrolyte membrane for solid polymer fuel cell, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140401

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151102

R150 Certificate of patent or registration of utility model

Ref document number: 5836028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees