JP2012081643A - Fine powder removing apparatus - Google Patents

Fine powder removing apparatus Download PDF

Info

Publication number
JP2012081643A
JP2012081643A JP2010229276A JP2010229276A JP2012081643A JP 2012081643 A JP2012081643 A JP 2012081643A JP 2010229276 A JP2010229276 A JP 2010229276A JP 2010229276 A JP2010229276 A JP 2010229276A JP 2012081643 A JP2012081643 A JP 2012081643A
Authority
JP
Japan
Prior art keywords
air
filter
inner cylinder
fine powder
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010229276A
Other languages
Japanese (ja)
Inventor
Kazuhiro Baba
和弘 馬場
Takeshi Tanezawa
岳志 種澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawata Manufacturing Co Ltd
Original Assignee
Kawata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawata Manufacturing Co Ltd filed Critical Kawata Manufacturing Co Ltd
Priority to JP2010229276A priority Critical patent/JP2012081643A/en
Publication of JP2012081643A publication Critical patent/JP2012081643A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Combined Means For Separation Of Solids (AREA)
  • Cyclones (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fine powder removing apparatus which can freely design the shape of the apparatus and lengthen the retention time of an air-fuel mixture on a filter face.SOLUTION: The fine powder removing apparatus includes: an inner cylinder 10; and an outer cylinder 20. At least a part of an overlapping part with the sidewall of the outer cylinder 20 in the axial direction of the central axis 11 of the inner cylinder 10 of the sidewall of the inner cylinder 10 is made to be a porous filter 30, and a first inlet pipe 60 for making an air-fuel mixture 3 of air 1 and pellets 2 flow into the inner cylinder 10 is provided, and an outlet pipe 70 for making the air 1 passing through filter holes 31 with fine powder 4 included in the air-fuel mixture 3 flowed into the inner cylinder 10 flow out to the outside of the outer cylinder 20 is provided. A second inlet 120 for making air 1a for generating a revolving air flow into the inner cylinder 10 is provided, and a revolving air flow 9 with the same revolving direction with the flow 6 of the air-fuel mixture 3 flowing spirally along the inner wall of the filter 30 is formed by the air 1a flowing into the inner cylinder 10 therefrom.

Description

本発明は、粉粒体から微粉を除去する微粉除去装置に関する。   The present invention relates to a fine powder removing apparatus for removing fine powder from a granular material.

粉粒体から微粉を除去する機構の一例が特許文献1、2に開示されている。この機構は、円筒形のケーシングの上方に供給管を設け、ケーシングの下方に吸引管を設け、ケーシング内に側壁が網状となった円筒形のフィルタを設ける。プラスチック樹脂のペレット(粉粒体の一例)の入った材料タンクにホースや配管で供給管を接続し、吸引ブロアにホースや配管で吸引管を接続する。供給管からペレットと空気(粉粒体の輸送気体の一例)との混合気を流入させてフィルタの内壁(フィルタ面)に沿って旋回させながら下降させ、この螺旋流で生じる遠心力の作用により、ペレットに付着している粉(微粉の一例)とペレットとをフィルタの側壁の内外に分離し、粉を含んだ空気は吸引管から排出し、粉が除去されたペレットはフィルタ下端の開口から落下する。   An example of a mechanism for removing fine powder from a granular material is disclosed in Patent Documents 1 and 2. In this mechanism, a supply pipe is provided above a cylindrical casing, a suction pipe is provided below the casing, and a cylindrical filter having a net-like side wall is provided in the casing. A supply pipe is connected to a material tank containing plastic resin pellets (an example of a granular material) with a hose or pipe, and a suction pipe is connected to the suction blower with a hose or pipe. Due to the action of centrifugal force generated by this spiral flow, the mixture of pellets and air (an example of transport gas for granular materials) flows in from the supply pipe and flows down along the inner wall (filter surface) of the filter. The powder adhering to the pellet (an example of fine powder) and the pellet are separated into the inside and outside of the filter side wall, the air containing the powder is discharged from the suction pipe, and the pellet from which the powder has been removed is from the opening at the lower end of the filter Fall.

特許文献2は、吸引管である空気吸引口は、供給管である粉粒体吸込口よりも口径を大きくし、かつ、ケーシングの円心からの距離が該ケーシングの円心から粉粒体吸込口の設置位置までの距離よりも大きくなるように設けることで、フィルタの内壁に沿って流れる混合気の流れを螺旋状とし、混合気のフィルタ面での滞留時間を長くすることを提案する。   In Patent Document 2, the air suction port that is a suction pipe has a larger diameter than the powder body suction port that is a supply pipe, and the distance from the center of the casing is the distance between the center of the casing and the powder body suction port. It is proposed that the air-fuel mixture flow along the inner wall of the filter is spiraled by providing it so that it is larger than the distance to the installation position, and the residence time of the air-fuel mixture on the filter surface is increased.

特開2007−50354号公報JP 2007-50354 A 特開2009−273969号公報JP 2009-273969 A

上記のように粉粒体から微粉を除去する場合、混合気のフィルタ面での滞留時間を長くできると微粉の除去効率が上がる。しかし特許文献2に開示された技術では、装置の形状が制約されるという問題がある。   When the fine powder is removed from the granular material as described above, the removal efficiency of the fine powder increases if the residence time of the air-fuel mixture on the filter surface can be increased. However, the technique disclosed in Patent Document 2 has a problem that the shape of the apparatus is restricted.

本発明の目的は、装置の形状を自由に設計でき、しかも混合気のフィルタ面での滞留時間を長くできる微粉除去装置を提供することにある。   An object of the present invention is to provide a fine powder removing device that can freely design the shape of the device and can increase the residence time of the air-fuel mixture on the filter surface.

上記目的を達成するため本発明は、内筒および該内筒の外側に配置する外筒を備え、前記内筒の側壁のうち、前記内筒の中心軸の軸方向において前記外筒の側壁と重なる部分の少なくとも一部分を多孔のフィルタとし、前記内筒内に粉粒体の輸送気体と前記粉粒体との混合気を流入させる流入口を設けるとともに、前記内筒内に流入した前記混合気に含まれる微粉とともに前記フィルタの側壁を通過する前記輸送気体を前記外筒外に流出させる流出口を設ける微粉除去装置において、前記内筒内に旋回気流発生用の気体を流入させる第2の流入口を設け、前記第2の流入口から前記内筒内に流入させた前記気体によって、前記フィルタの内壁に沿って螺旋状に流れる前記混合気の流れと旋回方向が同じ前記旋回気流を形成したことを特徴とする微粉除去装置を提供するものである。   In order to achieve the above object, the present invention comprises an inner cylinder and an outer cylinder arranged outside the inner cylinder, and of the side walls of the inner cylinder, the side wall of the outer cylinder in the axial direction of the central axis of the inner cylinder At least a part of the overlapping portion is a porous filter, and an inflow port is provided in the inner cylinder for allowing the mixture of the particulate transport gas and the powder to flow in, and the mixture that has flowed into the inner cylinder. In the fine powder removing apparatus, the second flow for flowing the gas for generating the swirling air flow into the inner cylinder is provided with an outlet for allowing the transport gas passing through the side wall of the filter to flow out of the outer cylinder together with the fine powder contained in the inner cylinder. An inlet is provided, and the swirling airflow having the same swirling direction as the flow of the air-fuel mixture flowing spirally along the inner wall of the filter is formed by the gas flowing into the inner cylinder from the second inflow port. It is characterized by There is provided a fine powder removal device.

本発明によれば、内筒内に旋回気流発生用の気体を流入させる第2の流入口を設け、第2の流入口から内筒内に流入させた気体によって、フィルタの内壁に沿って螺旋状に流れる混合気の流れと旋回方向が同じ旋回気流を形成したことで、この旋回気流はフィルタの内壁に沿って螺旋状に流れる混合気の流れを巻き込み、その混合気の流れを旋回流に近付けていわゆるリード角の小さい螺旋状とするため、装置の形状を自由に設計でき、しかも混合気のフィルタ面での滞留時間を長くできる微粉除去装置を提供することができる。   According to the present invention, the second inflow port for allowing the gas for generating the swirling airflow to flow into the inner cylinder is provided, and spiraled along the inner wall of the filter by the gas introduced from the second inflow port into the inner cylinder. The swirling airflow is the same as the flow of the airflowing mixture, and the swirling airflow entrains the airflow of the airflowing airflow along the inner wall of the filter. Since it is close to a spiral shape with a small lead angle, it is possible to provide a fine powder removing device in which the shape of the device can be freely designed and the residence time of the air-fuel mixture on the filter surface can be increased.

本発明において、第2の流入口は、流入口よりも下部に設けることで、流入口から流入させた混合気をフィルタの内壁に沿って旋回させながら下降させる場合に、その混合気の流れを旋回気流に近付けてリード角の小さい螺旋状とすることができる。逆に、第2の流入口は、流入口よりも上部に設けることで、流入口から流入させた混合気をフィルタの内壁に沿って旋回させながら上昇させる場合に、その混合気の流れを旋回気流に近付けてリード角の小さい螺旋状とすることができる。   In the present invention, the second inflow port is provided below the inflow port, so that when the air-fuel mixture introduced from the inflow port is lowered while swirling along the inner wall of the filter, the flow of the air-fuel mixture is reduced. The spiral can be made close to the swirling airflow and have a small lead angle. Conversely, the second inflow port is provided above the inflow port so that when the air-fuel mixture introduced from the inflow port is raised while swirling along the inner wall of the filter, the flow of the air-fuel mixture is swirled. A spiral with a small lead angle can be made close to the air flow.

また、流入口から流入させる混合気中の輸送気体の流量よりも第2の流入口から流入させる気体の流量の方を少なくすることで、第2の流入口から流入させる気体が流入口からの混合気の流入の妨げになるのを防ぐことができる。   Further, by reducing the flow rate of the gas flowing in from the second inflow port from the flow rate of the transport gas in the air-fuel mixture flowing in from the inflow port, the gas flowing in from the second inflow port It is possible to prevent the inflow of the air-fuel mixture.

さらに、第2の流入口から流入させる気体の流入方向は、上向き成分を含むことで、特に、流入口から流入させた混合気をフィルタの内壁に沿って旋回させながら下降させる場合に、その混合気の流れをさらにリード角の小さい螺旋状とすることができる。   Furthermore, the inflow direction of the gas flowing in from the second inflow port includes an upward component, and particularly when the air-fuel mixture flowing in from the inflow port is lowered while swirling along the inner wall of the filter, the mixing is performed. The air flow can be further spiraled with a smaller lead angle.

本発明の実施例1の微粉除去装置の全体構成を示す図である。It is a figure which shows the whole structure of the fine powder removal apparatus of Example 1 of this invention. 実施例1の微粉除去装置の外観を示す図であり、(A)は正面図、(B)は平面図、(C)は側面図である。It is a figure which shows the external appearance of the fine powder removal apparatus of Example 1, (A) is a front view, (B) is a top view, (C) is a side view. 実施例1の微粉除去装置の使用例を示す図である。It is a figure which shows the usage example of the fine powder removal apparatus of Example 1. FIG. 実施例1の微粉除去装置内での空気の流れを示す側面図である。It is a side view which shows the flow of the air in the fine powder removal apparatus of Example 1. FIG. 実施例1の微粉除去装置内での空気の流れを示す平面図であり、(A)は流入口部での空気の流れを示す平面図、(B)は分離部での空気の流れを示す平面図、(C)は流出口部での空気の流れを示す平面図である。It is a top view which shows the flow of the air in the fine powder removal apparatus of Example 1, (A) is a top view which shows the flow of the air in an inflow port part, (B) shows the flow of the air in a isolation | separation part. A top view and (C) are top views which show the flow of the air in an outflow part. 実施例1の微粉除去装置の第2の流入口の変形構造を示す図である。It is a figure which shows the deformation | transformation structure of the 2nd inflow port of the fine powder removal apparatus of Example 1. FIG. 実施例1の微粉除去装置の第2の流入口への他の空気供給手段を示す図である。It is a figure which shows the other air supply means to the 2nd inflow port of the fine powder removal apparatus of Example 1. FIG. 本発明の実施例2の微粉除去装置の全体構成を示す図である。It is a figure which shows the whole structure of the fine powder removal apparatus of Example 2 of this invention. 実施例2の微粉除去装置の外観を示す図であり、(A)は正面図、(B)は平面図、(C)は側面図である。It is a figure which shows the external appearance of the fine powder removal apparatus of Example 2, (A) is a front view, (B) is a top view, (C) is a side view. 実施例2の微粉除去装置内での空気の流れを示す側面図である。It is a side view which shows the flow of the air in the fine powder removal apparatus of Example 2. 実施例2の微粉除去装置内での空気の流れを示す平面図であり、(A)は流入口部での空気の流れを示す平面図、(B)は分離部での空気の流れを示す平面図、(C)は流出口部での空気の流れを示す平面図である。It is a top view which shows the flow of the air in the fine powder removal apparatus of Example 2, (A) is a top view which shows the flow of the air in an inflow port part, (B) shows the flow of the air in a isolation | separation part. A top view and (C) are top views which show the flow of the air in an outflow part. 本発明の実施例3の微粉除去装置の全体構成を示す図である。It is a figure which shows the whole structure of the fine powder removal apparatus of Example 3 of this invention. 実施例3の微粉除去装置内での空気の流れを示す側面図である。It is a side view which shows the flow of the air in the fine powder removal apparatus of Example 3. 実施例3の微粉除去装置内での空気の流れを示す平面図であり、(A)は流入口部での空気の流れを示す平面図、(B)は分離部での空気の流れを示す平面図、(C)は流出口部での空気の流れを示す平面図である。It is a top view which shows the flow of the air in the fine powder removal apparatus of Example 3, (A) is a top view which shows the flow of the air in an inflow port part, (B) shows the flow of the air in a isolation | separation part. A top view and (C) are top views which show the flow of the air in an outflow part. 本発明の実施例4の微粉除去装置の全体構成を示す図である。It is a figure which shows the whole structure of the fine powder removal apparatus of Example 4 of this invention. 実施例4の微粉除去装置の外観を示す図であり、(A)は正面図、(B)は平面図、(C)は側面図である。It is a figure which shows the external appearance of the fine powder removal apparatus of Example 4, (A) is a front view, (B) is a top view, (C) is a side view. 実施例4の微粉除去装置内での空気の流れを示す側面図である。It is a side view which shows the flow of the air in the fine powder removal apparatus of Example 4. 実施例4の微粉除去装置内での空気の流れを示す平面図であり、(A)は分離部での空気の流れを示す平面図、(B)は流出口部での空気の流れを示す平面図、(C)は流入口部での空気の流れを示す平面図である。It is a top view which shows the flow of the air in the fine powder removal apparatus of Example 4, (A) is a top view which shows the flow of the air in a isolation | separation part, (B) shows the flow of the air in an outflow part. A top view and (C) are top views which show the flow of the air in an inflow port part.

以下、本発明を実施するための形態を図面に示す実施例に基づいて説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described based on examples shown in the drawings.

図1ないし図5を参照して実施例1の微粉除去装置を説明する。図1は実施例1の微粉除去装置の全体構成を示す図、図2は実施例1の微粉除去装置の外観を示す図であり、(A)は正面図、(B)は平面図、(C)は側面図、図3は実施例1の微粉除去装置の使用例を示す図、図4は実施例1の微粉除去装置内での空気の流れを示す側面図、図5は実施例1の微粉除去装置内での空気の流れを示す平面図であり、(A)は流入口部での空気の流れを示す平面図、(B)は分離部での空気の流れを示す平面図、(C)は流出口部での空気の流れを示す平面図である。   The fine powder removing apparatus according to the first embodiment will be described with reference to FIGS. FIG. 1 is a diagram showing the overall configuration of the fine powder removing apparatus of Example 1, FIG. 2 is a diagram showing the appearance of the fine powder removing apparatus of Example 1, (A) is a front view, (B) is a plan view, C) is a side view, FIG. 3 is a view showing an example of use of the fine powder removing apparatus of the first embodiment, FIG. 4 is a side view showing the air flow in the fine powder removing apparatus of the first embodiment, and FIG. It is a top view which shows the flow of the air in the fine powder removal apparatus of (A), (A) is a top view which shows the flow of the air in an inflow port part, (B) is a top view which shows the flow of the air in a separation part, (C) is a top view which shows the flow of the air in an outflow port part.

図1、図2に示すように、本実施例の微粉除去装置は、フィルタ30を含む内筒10と、内筒10の外側に同軸で配置する外筒20と、微粉除去装置設置用の台板40と、上蓋50などにより構成している。   As shown in FIG. 1 and FIG. 2, the fine powder removing apparatus of the present embodiment includes an inner cylinder 10 including a filter 30, an outer cylinder 20 arranged coaxially on the outer side of the inner cylinder 10, and a stand for installing the fine powder removing apparatus. The plate 40 and the upper lid 50 are used.

フィルタ30は、内筒10の側壁のうち、内筒10の中心軸11の軸方向において外筒20の側壁と重なる部分の少なくとも一部分を構成するとともに、内筒10内に流入させる混合気3(図3ないし図5参照)中のプラスチック樹脂のペレット2(粉粒体の一例)から微粉4を内筒10の側壁の外側に分離するためのもので、内筒10の中心軸11が鉛直線のときに、鉛直下方に向かって窄まり形状となる円錐台形に形成し、その側壁(側面)の略全体に、混合気3中の空気1と微粉4のみを通過させる(ペレット2は通過させない)多数のフィルタ孔31を千鳥状などに配列して設ける。このフィルタ30の側壁はパンチングメタルにより構成している。   The filter 30 constitutes at least part of a portion of the side wall of the inner cylinder 10 that overlaps the side wall of the outer cylinder 20 in the axial direction of the central axis 11 of the inner cylinder 10, and the air-fuel mixture 3 ( 3 to 5) for separating the fine powder 4 from the plastic resin pellet 2 (an example of a granular material) in the outside of the side wall of the inner cylinder 10, the central axis 11 of the inner cylinder 10 being a vertical line At this time, it is formed into a truncated cone shape that is narrowed vertically downward, and only the air 1 and the fine powder 4 in the air-fuel mixture 3 are allowed to pass through substantially the entire side wall (side surface) (the pellet 2 is not allowed to pass). ) A large number of filter holes 31 are arranged in a staggered pattern. The side walls of the filter 30 are made of punching metal.

各フィルタ孔31は、フィルタ30の内壁(フィルタ面)に沿って螺旋状に流れる混合気3の流れ6を、内筒10の中心軸11と直角の方向(内筒10の中心軸11が鉛直線のときは水平方向)に案内するため、長さ方向が内筒10の中心軸11と直角の方向である長孔に形成している。   Each filter hole 31 causes the flow 6 of the air-fuel mixture 3 flowing spirally along the inner wall (filter surface) of the filter 30 to flow in a direction perpendicular to the central axis 11 of the inner cylinder 10 (the central axis 11 of the inner cylinder 10 is vertical). In the case of a line, it is formed in a long hole whose length direction is a direction perpendicular to the central axis 11 of the inner cylinder 10.

内筒10は、フィルタ30と、フィルタ30の上部開口径と略同径な円筒形に形成する上筒部12と、フィルタ30の下部開口径と略同径な円筒形に形成する下筒部13との、3ピース構造を有しており、上下筒部12、13を繋ぐように、これらの間にフィルタ30を配置している。上下筒部12、13は、その側壁がフィルタ30の側壁を含む円錐面内に配置されるような円錐台形であってもよい。外筒20は、略同径な円筒形の上筒部21と下筒部22との2ピース構造を有している。これら同軸配置の内筒10と外筒20は、台板40から直角に立ち上げられ、内筒10の上部(上筒部12)が外筒20の上部開口(上筒部21の上部開口)から上方に突出し、この内筒10の上部開口(上筒部12の上部開口)が上蓋50により閉じられ、外筒20の上部開口はそこを貫通している内筒10の上部とそこの側壁から外筒20の上側に張り出して設けられたフランジ12aにより閉じられている。   The inner cylinder 10 includes a filter 30, an upper cylinder portion 12 formed in a cylindrical shape having substantially the same diameter as the upper opening diameter of the filter 30, and a lower cylinder portion formed in a cylindrical shape having substantially the same diameter as the lower opening diameter of the filter 30. 13 has a three-piece structure, and a filter 30 is disposed between them so as to connect the upper and lower cylindrical portions 12 and 13. The upper and lower cylindrical portions 12 and 13 may have a truncated cone shape whose side walls are arranged in a conical surface including the side wall of the filter 30. The outer cylinder 20 has a two-piece structure of a cylindrical upper cylinder part 21 and a lower cylinder part 22 having substantially the same diameter. The coaxially arranged inner cylinder 10 and outer cylinder 20 are raised at a right angle from the base plate 40, and the upper part of the inner cylinder 10 (upper cylinder part 12) is the upper opening of the outer cylinder 20 (upper opening of the upper cylinder part 21). The upper opening of the inner cylinder 10 (upper opening of the upper cylinder portion 12) is closed by the upper lid 50, and the upper opening of the outer cylinder 20 is the upper part of the inner cylinder 10 passing through the upper cylinder and the side wall thereof. Is closed by a flange 12a provided so as to protrude from the outer cylinder 20 to the upper side.

外筒20の上部開口から上方に突出した内筒10の上部(上筒部12)の側壁には、そこから混合気3を接線方向に内筒10内に流入させるための流入口(第1の流入口)である流入管60(以下、「第1の流入管」という。)を設けている。この第1の流入管60は直管であって、第1の流入管60における入口61は円形に形成され、出口62は矩形に形成され、この出口62が内筒10の上部の側壁に沿って開口されている(図5A参照)。   An inlet (a first inlet) for allowing the air-fuel mixture 3 to flow into the inner cylinder 10 tangentially from the side wall of the upper part (upper cylinder part 12) of the inner cylinder 10 protruding upward from the upper opening of the outer cylinder 20. Inflow pipe 60 (hereinafter referred to as “first inflow pipe”). The first inflow pipe 60 is a straight pipe, and the inlet 61 in the first inflow pipe 60 is formed in a circular shape, the outlet 62 is formed in a rectangular shape, and the outlet 62 extends along the upper side wall of the inner cylinder 10. (See FIG. 5A).

内筒10内にその側壁から接線方向に旋回気流発生用の気体1a(図3ないし図5参照)を流入させ、その気体1aによって、フィルタ30の内壁に沿って螺旋状に流れる混合気3の流れ6と旋回方向が同じ旋回気流9(図4、図5C参照)を形成するための第2の流入口である第2の流入管120を設けている。この第2の流入管120は、内筒10の側壁のうち、内筒10の中心軸11の軸方向において第1の流入管60よりも下部の側壁から旋回気流発生用の気体1aを接線方向に内筒10内に流入させるように、内筒10の側壁のうち、内筒10の中心軸11の軸方向において第1の流入管60よりも下部の側壁に設けている。具体的には内筒10の下部(下筒部13)の側壁に設けている。この第2の流入管120は直管であって、外筒20の下部(下筒部22)の側壁を貫通し、第2の流入管120における入口121は円形に形成され、外筒20の下部外側に開口されている。第2の流入管120における出口122は矩形に形成され、この出口122が内筒10の下部(下筒部22)の側壁に沿って開口されている(図5C参照)。   A gas 1a (see FIGS. 3 to 5) for generating a swirling airflow is introduced into the inner cylinder 10 from the side wall in a tangential direction, and the gas 1a causes the mixture 3 to flow spirally along the inner wall of the filter 30. A second inflow pipe 120 is provided as a second inlet for forming a swirling airflow 9 (see FIGS. 4 and 5C) having the same swirling direction as the flow 6. The second inflow pipe 120 circulates the gas 1 a for generating the swirling airflow from the side wall below the first inflow pipe 60 in the axial direction of the central axis 11 of the inner cylinder 10 among the side walls of the inner cylinder 10. Among the side walls of the inner cylinder 10, the inner cylinder 10 is provided on the side wall below the first inflow pipe 60 in the axial direction of the central axis 11 of the inner cylinder 10. Specifically, it is provided on the side wall of the lower part (lower cylinder part 13) of the inner cylinder 10. The second inflow pipe 120 is a straight pipe and penetrates the side wall of the lower part (lower cylinder part 22) of the outer cylinder 20, and the inlet 121 in the second inflow pipe 120 is formed in a circular shape. Opened to the lower outside. The outlet 122 in the second inflow pipe 120 is formed in a rectangular shape, and the outlet 122 is opened along the side wall of the lower part (lower cylinder part 22) of the inner cylinder 10 (see FIG. 5C).

外筒20の側壁のうち、内筒10の中心軸11の軸方向において内筒10のフィルタ30よりも下部(下筒部13)の側壁と重なっている外筒20の下部(下筒部22)の側壁には、そこから微粉4混じりの空気1(各フィルタ孔31を通過し内筒10内から内筒10の側壁(フィルタ30の側壁と下筒部13の側壁)と外筒20の側壁(上筒部21の側壁と下筒部22の側壁)との間の環状空間20Aに流入した微粉4混じりの空気1)を接線方向に外筒20外に流出させるための流出口である流出管70を設けている。この流出管70は直管であって、流出管70における入口71と出口72はともに円形に形成されている。流出管70は、内筒10の側壁と外筒20の側壁との間の環状空間20Aであって、内筒10の下部の側壁と外筒20の下部の側壁との間の環状空間20A下部に入り込んだ入口71を形成するように、内筒10の下部の側壁と外筒20の下部の側壁との間の環状空間20A下部に入り込んだ管側壁73を有している(図5C参照)。
本実施例では流出管70と外筒20の側壁(環状空間20Aの外壁)との間、流出管70と台板40(外筒20の底面:環状空間20Aの底面)との間に、それぞれ、隙間があるが、これらは無い方が好ましい。流出管70の入口71の開口形状として円形のものを示したが、円形でも矩形でもよい。流出管70の入口71としては、矩形であり、外筒20の側壁との間、台板40との間に、それぞれ、隙間の無いものが好ましい。
Of the side wall of the outer cylinder 20, the lower part (lower cylinder part 22) of the outer cylinder 20 that overlaps the side wall of the lower part (lower cylinder part 13) than the filter 30 of the inner cylinder 10 in the axial direction of the central axis 11 of the inner cylinder 10. ) From the inside of the inner cylinder 10 through the inner side of the inner cylinder 10 (the side walls of the filter 30 and the side of the lower cylinder part 13) and the outer cylinder 20 It is an outlet for causing the fine powder 4 mixed air 1 that has flowed into the annular space 20A between the side wall (the side wall of the upper cylinder part 21 and the side wall of the lower cylinder part 22) to flow out of the outer cylinder 20 in the tangential direction. An outflow pipe 70 is provided. The outflow pipe 70 is a straight pipe, and both the inlet 71 and the outlet 72 of the outflow pipe 70 are formed in a circular shape. The outflow pipe 70 is an annular space 20 </ b> A between the side wall of the inner cylinder 10 and the side wall of the outer cylinder 20, and the lower part of the annular space 20 </ b> A between the lower side wall of the inner cylinder 10 and the lower side wall of the outer cylinder 20. In order to form the inlet 71 which entered, it has the pipe | tube side wall 73 which entered the annular space 20A lower part between the lower side wall of the inner cylinder 10, and the lower side wall of the outer cylinder 20 (refer FIG. 5C). .
In this embodiment, between the outflow pipe 70 and the side wall of the outer cylinder 20 (outer wall of the annular space 20A), between the outflow pipe 70 and the base plate 40 (the bottom surface of the outer cylinder 20: the bottom surface of the annular space 20A), respectively. Although there are gaps, it is preferable that these are not present. Although the circular opening shape of the inlet 71 of the outflow pipe 70 is shown, it may be circular or rectangular. The inlet 71 of the outflow pipe 70 is rectangular and preferably has no gap between the side wall of the outer cylinder 20 and the base plate 40.

台板40の中央部には内筒10の下部開口(下筒部13の下部開口)と略同径な円形の貫通孔41が設けられ、内筒10は台板40の貫通孔41の縁から立ち上げられ、内筒10の下部開口が台板40の下面側に開放されて微粉4が除去されたペレット2の排出口13aになっている。外筒20は台板40の上面外側部から立ち上げられ、外筒20の下部開口(下筒部22の下部開口)は台板40で閉じられている。   A circular through hole 41 having substantially the same diameter as the lower opening of the inner cylinder 10 (lower opening of the lower cylinder part 13) is provided at the center of the base plate 40, and the inner cylinder 10 is the edge of the through hole 41 of the base plate 40. The lower opening of the inner cylinder 10 is opened to the lower surface side of the base plate 40 to form a discharge port 13a for the pellet 2 from which the fine powder 4 has been removed. The outer cylinder 20 is raised from the outer surface of the upper surface of the base plate 40, and the lower opening of the outer cylinder 20 (the lower opening of the lower cylindrical portion 22) is closed by the base plate 40.

内筒10は下端に排出口13aを開口し、上部の側壁に第1の流入管60を接続し、かつその第1の流入管60よりも下部の側壁に第2の流入管120を接続した柱状空間10Aを形成し、外筒20は第1の流入管60より下部の柱状空間20Aの周囲に、下部の側壁に流出管70を接続した環状空間20Aを形成する。これら柱状空間20Aと環状空間20Aの境目にある内筒10の側壁であるフィルタ30の側壁と下筒部13の側壁のうち、フィルタ30の側壁はそこに設けた多数のフィルタ孔31によって柱状空間10Aと環状空間20Aとを連通接続し、下筒部13の側壁は柱状空間10Aと環状空間20Aとの間での通気を遮断している。   The inner cylinder 10 has a discharge port 13a at its lower end, a first inflow pipe 60 connected to the upper side wall, and a second inflow pipe 120 connected to the lower side wall of the first inflow pipe 60. The columnar space 10 </ b> A is formed, and the outer cylinder 20 forms an annular space 20 </ b> A in which the outflow pipe 70 is connected to the lower side wall around the columnar space 20 </ b> A below the first inflow pipe 60. Of the side walls of the filter 30 and the lower cylinder portion 13 which are the side walls of the inner cylinder 10 at the boundary between the columnar space 20A and the annular space 20A, the side wall of the filter 30 is columnar space by a number of filter holes 31 provided therein. 10A and the annular space 20A are connected in communication, and the side wall of the lower cylindrical portion 13 blocks ventilation between the columnar space 10A and the annular space 20A.

次に、本実施例の微粉除去装置の組み立てについて説明する。   Next, assembly of the fine powder removing device of the present embodiment will be described.

図1、図2に示すように、内筒10の下筒部13と外筒20の下筒部22とは台板40に一体に設けられている。本実施例の微粉除去装置を組み立てるときは、内筒10の下筒部13の側壁上端に設けたフランジ13bの上に、フィルタ30の側壁下端に設けたフランジ30aを重ね合わせ、内筒10の下筒部13の上にフィルタ30を載置する。   As shown in FIGS. 1 and 2, the lower cylinder portion 13 of the inner cylinder 10 and the lower cylinder portion 22 of the outer cylinder 20 are integrally provided on the base plate 40. When assembling the fine powder removing device of the present embodiment, the flange 30a provided at the lower end of the side wall of the filter 30 is overlaid on the flange 13b provided at the upper end of the side wall of the lower cylinder portion 13 of the inner cylinder 10, and The filter 30 is placed on the lower cylinder portion 13.

また、外筒20の下筒部22の側壁上端に設けたフランジ22aの上にリング状の下パッキン80を介して外筒20の上筒部21を載置し、その外筒20の上筒部21の上にリング状の上パッキン81を介してリング状のフランジ82を重ね合わせ、フランジ82、22a間に上下パッキン81、80を介して外筒20の上筒部21を挟む。   Further, the upper cylinder portion 21 of the outer cylinder 20 is placed on the flange 22a provided at the upper end of the side wall of the lower cylinder portion 22 of the outer cylinder 20 via the ring-shaped lower packing 80, and the upper cylinder of the outer cylinder 20 is placed. A ring-shaped flange 82 is superposed on the portion 21 via a ring-shaped upper packing 81, and the upper tube portion 21 of the outer cylinder 20 is sandwiched between the flanges 82, 22a via upper and lower packings 81, 80.

内筒10の上筒部12の側壁下端近傍から外側に張り出して設けた上記フランジ12aをフランジ82の上に重ね合わせ、内筒10の上筒部12の側壁下端をフィルタ30の上部開口に内嵌する。このとき、フィルタ30は内筒10の上筒部12のフランジ12aと内筒10の下円筒部13との間に挟まれる。また、外筒20の上筒部21は内筒10の上筒部12のフランジ12aと外筒20の下筒部22との間に挟まれ、外筒20の上部開口(上筒部21の上部開口)が内筒10の上筒部12のフランジ12aで閉じられる。   The flange 12 a provided to project outward from the vicinity of the lower end of the side wall of the upper cylinder portion 12 of the inner cylinder 10 is overlaid on the flange 82, and the lower end of the side wall of the upper cylinder portion 12 of the inner cylinder 10 is placed inside the upper opening of the filter 30. Fit. At this time, the filter 30 is sandwiched between the flange 12 a of the upper cylinder portion 12 of the inner cylinder 10 and the lower cylinder portion 13 of the inner cylinder 10. Further, the upper cylinder portion 21 of the outer cylinder 20 is sandwiched between the flange 12a of the upper cylinder portion 12 of the inner cylinder 10 and the lower cylinder portion 22 of the outer cylinder 20, and the upper opening of the outer cylinder 20 (the upper cylinder portion 21). The upper opening) is closed by the flange 12a of the upper cylinder portion 12 of the inner cylinder 10.

両端部に雄ネジを有する複数のボルト83をフランジ82を貫通させてフランジ12a、22a間に通し付け、フランジ12aの上面から上方に突出する各ボルト83の上端にナット84を螺着し、フランジ22aの下面から下方に突出する各ボルト83の下端にナット84を螺着し、内筒10の下筒部13と外筒20の下筒部22に対して内筒10の上筒部12を締め付ける。このとき、過大な締め付けにより外筒20の上筒部21、フィルタ30などに変形や割れが生じるのを防止するため、各ボルト83にはフランジ12a、22a間に挟み込む筒状のスペーサ85が外嵌されている。   A plurality of bolts 83 having male threads at both ends are passed through the flange 82 and passed between the flanges 12a and 22a, and nuts 84 are screwed onto the upper ends of the bolts 83 protruding upward from the upper surface of the flange 12a. A nut 84 is screwed to the lower end of each bolt 83 projecting downward from the lower surface of 22a, and the upper tube portion 12 of the inner tube 10 is connected to the lower tube portion 13 of the inner tube 10 and the lower tube portion 22 of the outer tube 20. tighten. At this time, in order to prevent the upper cylinder portion 21 of the outer cylinder 20 and the filter 30 from being deformed or cracked due to excessive tightening, each bolt 83 is provided with a cylindrical spacer 85 sandwiched between the flanges 12a and 22a. It is fitted.

内筒10の上筒部12の側壁上端に設けたフランジ12bの上に上蓋50の外側部を載置し、その上蓋50の外側部の上にリング状の押え板86を重ね合わせ、クランプバンド87などにより上蓋50をフランジ12bに固定し、内筒10の上部開口(上筒部12の上部開口)を上蓋50で閉じて、完成する。   An outer portion of the upper lid 50 is placed on the flange 12b provided at the upper end of the side wall of the upper cylinder portion 12 of the inner cylinder 10, and a ring-shaped presser plate 86 is overlaid on the outer portion of the upper lid 50, thereby clamping the clamp band. The upper lid 50 is fixed to the flange 12b by 87 or the like, and the upper opening of the inner cylinder 10 (the upper opening of the upper cylinder portion 12) is closed by the upper lid 50 to complete.

これにより、内筒10の上筒部12を取り外すことでフィルタ交換が行える。また、微粉除去装置を洗浄するときなどに、内筒10の下筒部13と外筒20の下筒部22と台板40の一体部品と、フィルタ30と、内筒10の上筒部12と、外筒20の上筒部21とに分解できる。   Thereby, filter replacement | exchange can be performed by removing the upper cylinder part 12 of the inner cylinder 10. FIG. Moreover, when washing | cleaning a fine powder removal apparatus, the lower cylinder part 13 of the inner cylinder 10, the lower cylinder part 22 of the outer cylinder 20, the integral part of the baseplate 40, the filter 30, and the upper cylinder part 12 of the inner cylinder 10 And the upper cylinder portion 21 of the outer cylinder 20.

次に、本実施例の微粉除去装置の材質について説明する。   Next, the material of the fine powder removing apparatus of this embodiment will be described.

フィルタ30を含む内筒10、外筒20、台板40、上蓋50などの材質は、一般構造用鋼板やステンレス鋼板などの金属を使用することができる。このとき、外筒20の上筒部21と上蓋50にはアクリル、ポリカーボネイト、ガラスなどの透明材質を使用することが好ましい。   Materials such as the inner cylinder 10, the outer cylinder 20, the base plate 40, and the upper lid 50 including the filter 30 may be metals such as general structural steel plates and stainless steel plates. At this time, it is preferable to use a transparent material such as acrylic, polycarbonate, or glass for the upper cylinder portion 21 and the upper lid 50 of the outer cylinder 20.

これにより、微粉除去装置の外側方から外筒20の上筒部21を透して、環状空間20Aで螺旋状に流れる微粉4混じりの空気1の流れ8を目視確認できる。また、微粉除去装置の上方から上蓋50を透して、柱状空間10Aで螺旋状に流れる混合気3の流れ6、特に、フィルタ30の内壁に沿って螺旋状に流れる混合気3の流れ6を目視確認できる。このように、微粉除去装置の外部から外筒20の上筒部21および上蓋50を透して、微粉除去装置の内部全体を見通すことができ、微粉除去装置の処理状況を確認できる。   Thereby, the flow 8 of the air 1 mixed with the fine powder 4 flowing spirally in the annular space 20 </ b> A through the outer cylinder 20 from the outside of the fine powder removing device can be visually confirmed. Further, the flow 6 of the air-fuel mixture 3 flowing spirally in the columnar space 10 </ b> A through the upper lid 50 from above the fine powder removing device, particularly the flow 6 of the air-fuel mixture 3 flowing spirally along the inner wall of the filter 30. It can be confirmed visually. Thus, the entire inside of the fine powder removing device can be seen through the upper cylinder portion 21 and the upper lid 50 of the outer cylinder 20 from the outside of the fine powder removing device, and the processing status of the fine powder removing device can be confirmed.

次に、本実施例の微粉除去装置の使用について説明する。   Next, the use of the fine powder removing apparatus of this embodiment will be described.

図3に示すように、本実施例の微粉除去装置は、プラスチック樹脂成形の原料となるプラスチック樹脂ペレット(チップの場合もある)2を成形機90へ供給する前に、そのペレット2に含まれるプラスチック樹脂の微粉4を除去するために、成形機90の原料供給ホッパ91の上部に台板40を介して鉛直に設置(斜めに設置する場合もある)して使用する。このとき、第1の流入管60にはペレット2の貯槽92をホースや配管を介して接続し、流出管70には空気1に運動エネルギーを与えたり圧力を高めたりする流体機器であるブロア93の吸込口をホースや配管を介して接続する。流出管70とブロア93の間には集塵装置94を設けている。   As shown in FIG. 3, the fine powder removing apparatus of the present embodiment is included in the pellet 2 before supplying the plastic resin pellet (which may be a chip) 2 as a raw material for plastic resin molding to the molding machine 90. In order to remove the fine powder 4 of the plastic resin, it is used by being installed vertically (may be installed obliquely) on the upper part of the raw material supply hopper 91 of the molding machine 90 via the base plate 40. At this time, the storage tank 92 for the pellet 2 is connected to the first inflow pipe 60 via a hose or a pipe, and the blower 93 which is a fluid device that gives kinetic energy to the air 1 or increases the pressure to the outflow pipe 70. Connect the suction port of the unit via a hose or pipe. A dust collector 94 is provided between the outflow pipe 70 and the blower 93.

ここで、貯槽92と第1の流入管60を接続している輸送配管123の途中にはY字管124が設けられ、そのY字管124によって輸送配管123から分岐した分岐配管126を第2の流入管120に接続することで、ペレット2の配管輸送用の空気1の一部1aを第2の流入管120から流入させるように構成している。分岐配管126にはエアフィルタ(空気1aのみを通す)127と流量調整弁128とを設ける。   Here, a Y-shaped pipe 124 is provided in the middle of the transport pipe 123 connecting the storage tank 92 and the first inflow pipe 60, and the branch pipe 126 branched from the transport pipe 123 by the Y-shaped pipe 124 is connected to the second pipe 126. By connecting to the inflow pipe 120, a part 1 a of the air 1 for transporting the pipes of the pellet 2 is made to flow from the second inflow pipe 120. The branch pipe 126 is provided with an air filter (passing only air 1a) 127 and a flow rate adjusting valve 128.

流量調整弁128は、第1の流入管60から流入させる空気1の流量よりも第2の流入管120から流入させる空気1aの流量を少なくするものであるが、Y字管124のY字の角度125によって貯槽92の接続ポート124aから第1の流入管60の接続ポート124bと第2の流入管120の接続ポート124cへの流量を変えることができるので、Y字管124も第1の流入管60から流入させる空気1の流量よりも第2の流入管120から流入させる空気1aの流量を少なくする流量調整手段として使用することができる。   The flow rate adjustment valve 128 reduces the flow rate of the air 1a flowing in from the second inflow tube 120 than the flow rate of the air 1 flowing in from the first inflow tube 60. Since the flow rate from the connection port 124a of the storage tank 92 to the connection port 124b of the first inflow pipe 60 and the connection port 124c of the second inflow pipe 120 can be changed by the angle 125, the Y-shaped pipe 124 also has the first inflow. It can be used as a flow rate adjusting means for reducing the flow rate of the air 1a flowing in from the second inflow tube 120 than the flow rate of the air 1 flowing in from the tube 60.

次に、本実施例の微粉除去装置の作用について説明する。   Next, the operation of the fine powder removing apparatus of this embodiment will be described.

流出管70に接続したブロア93を駆動すると、吸引式の配管輸送が開始される。この吸引式の配管輸送により、図4、図5に示すように、空気1とペレット2との混合気3(微粉4を含んでいる)が、第1の流入管60を通り、内筒10の上筒部12内(柱状空間10Aの上部)にそこの側壁から接線方向に流入し、内筒10の上筒部12の内壁に沿って旋回しながら下降してフィルタ30(柱状空間10Aの上下中間部)に入り、フィルタ30の内壁に沿って旋回しながら下降する。このとき、ペレット2の配管輸送用の空気1の一部1aが、第2の流入管120を通り、内筒10の下筒部13内(柱状空間10Aの下部)にそこの側壁から接線方向に流入し、内筒10の下筒部13の内壁に沿って旋回しながらフィルタ30の内壁に沿って螺旋状に流れる混合気3の流れ6と旋回方向が同じ旋回気流9を内筒10の下筒部13内に形成する。この旋回気流9はフィルタ30の内壁に沿って螺旋状に流れる混合気3の流れ6を巻き込み、その混合気3の流れ6を旋回流に近付けてよりリード角の小さい螺旋状とする。   When the blower 93 connected to the outflow pipe 70 is driven, suction-type piping transportation is started. By this suction-type piping transportation, as shown in FIGS. 4 and 5, the air-fuel mixture 3 (including the fine powder 4) of the air 1 and the pellets 2 passes through the first inflow pipe 60 and passes through the inner cylinder 10. Into the upper cylindrical portion 12 (upper part of the columnar space 10A) from the side wall thereof, descends while turning along the inner wall of the upper cylindrical portion 12 of the inner cylinder 10 and the filter 30 (in the columnar space 10A). It enters the upper and lower intermediate part) and descends while turning along the inner wall of the filter 30. At this time, a part 1 a of the air 1 for transporting the pipes of the pellets 2 passes through the second inflow pipe 120 and enters the lower cylinder portion 13 (lower part of the columnar space 10 </ b> A) of the inner cylinder 10 from the side wall in the tangential direction. The swirl airflow 9 having the same swirling direction as the flow 6 of the air-fuel mixture 3 flowing spirally along the inner wall of the filter 30 while swirling along the inner wall of the lower cylinder portion 13 of the inner cylinder 10 It is formed in the lower cylinder part 13. The swirling air flow 9 entrains the flow 6 of the air-fuel mixture 3 flowing spirally along the inner wall of the filter 30 and brings the flow 6 of the air-fuel mixture 3 closer to the swirling flow into a spiral with a smaller lead angle.

ここで、内筒10の側壁のうち、内筒10の中心軸11の軸方向において第2の流入管120と重なっている部分は、内筒10の下筒部13の側壁によって通気遮断のため無孔の通気止め部となっており、第2の流入管120から流入させた空気1aが柱状空間10A下部の外壁(内筒10の下筒部13の側壁)からその周囲にある環状空間20A下部に漏れることがなく、柱状空間10A下部(内筒10の下筒部13内)に強い旋回気流9を形成できるため、フィルタ30の内壁に沿って螺旋状に流れる混合気3の流れ6はよりリード角の小さい螺旋状となる。   Here, a portion of the side wall of the inner cylinder 10 that overlaps the second inflow pipe 120 in the axial direction of the central axis 11 of the inner cylinder 10 is blocked by the side wall of the lower cylinder portion 13 of the inner cylinder 10. An annular space 20 </ b> A that is a non-ventilated air-blocking portion, and in which the air 1 a that has flowed in from the second inflow pipe 120 is located around the outer wall of the lower part of the columnar space 10 </ b> A (side wall of the lower tube portion 13 of the inner tube 10) Since the strong swirling airflow 9 can be formed in the lower part of the columnar space 10A (inside the lower cylinder part 13) of the columnar space 10A without leaking to the lower part, the flow 6 of the air-fuel mixture 3 flowing spirally along the inner wall of the filter 30 is It becomes a spiral with a smaller lead angle.

また、内筒10の側壁のうち、内筒10の中心軸11の軸方向において流出管70と重なっている部分は、内筒10の下筒部13の側壁によって通気遮断のため無孔の通気止め部となっており、環状空間20A下部の内壁(内筒10の下筒部13の側壁)からその内側にある柱状空間10A下部の空気1、1aを吸引することがなく、環状空間20A下部に図示しない強い旋回気流を形成でき、しかも流出管70は環状空間20A下部に入り込んだ入口71を形成するように、その環状空間20A下部に入り込んだ管側壁73を有するので、旋回気流の旋回方向とは逆向きでの吸気を少なくすることができ、より強い旋回気流を形成できるため、フィルタ30の内壁に沿って螺旋状に流れる混合気3の流れ6はよりリード角の小さい螺旋状となる。   Further, a portion of the side wall of the inner cylinder 10 that overlaps the outflow pipe 70 in the axial direction of the central axis 11 of the inner cylinder 10 is a non-porous ventilation for blocking the ventilation by the side wall of the lower cylinder portion 13 of the inner cylinder 10. It serves as a stop, and the air 1 and 1a in the lower part of the columnar space 10A inside the annular wall 20A is not sucked from the inner wall (the side wall of the lower cylinder part 13 of the inner cylinder 10) below the annular space 20A. The outflow pipe 70 has a pipe side wall 73 that enters the lower part of the annular space 20A so as to form an inlet 71 that enters the lower part of the annular space 20A. Since the intake air in the opposite direction can be reduced and a stronger swirling airflow can be formed, the flow 6 of the air-fuel mixture 3 flowing spirally along the inner wall of the filter 30 has a spiral shape with a smaller lead angle. That.

また、フィルタ30の側壁に設けたフィルタ孔31は、長さ方向が内筒10の中心軸11と直角の方向である長孔である。一方、フィルタ30の内壁に沿って螺旋状に流れる混合気3には遠心力が働いている。このため、フィルタ孔31は、混合気3中のペレット2をフィルタ孔31の長さ方向の上下辺に沿って移動させ、フィルタ30の内壁に沿って螺旋状に流れる混合気3の流れ6はよりリード角の小さい螺旋状となる。   The filter hole 31 provided in the side wall of the filter 30 is a long hole whose length direction is a direction perpendicular to the central axis 11 of the inner cylinder 10. On the other hand, centrifugal force is acting on the air-fuel mixture 3 that flows spirally along the inner wall of the filter 30. For this reason, the filter hole 31 moves the pellet 2 in the air-fuel mixture 3 along the upper and lower sides in the length direction of the filter hole 31, and the flow 6 of the air-fuel mixture 3 flowing spirally along the inner wall of the filter 30 is It becomes a spiral with a smaller lead angle.

そして、混合気3は、フィルタ30の内壁に沿ってリード角の小さい螺旋状に流れる間に、その流れ6で生じる遠心力の作用で、混合気10中のペレット2と微粉4がフィルタ30の側壁の内外側に分離される。フィルタ孔31よりも大きいペレット2はフィルタ孔31を通り抜けることなくフィルタ30の側壁の内側に止まり、フィルタ孔31よりも小さい微粉4はフィルタ孔31を通り抜けフィルタ30の側壁の外側に分離する。このとき、フィルタ孔31でフィルタ30の側壁の内側から外側に向かって通り抜ける空気1の流れ7があるので、ペレット2と微粉4とを容易に分離できる。   While the air-fuel mixture 3 flows in a spiral shape with a small lead angle along the inner wall of the filter 30, the pellet 2 and the fine powder 4 in the air-fuel mixture 10 are separated from the filter 30 by the action of centrifugal force generated in the flow 6. Separated inside and outside the side wall. The pellet 2 larger than the filter hole 31 does not pass through the filter hole 31 and stops inside the side wall of the filter 30, and the fine powder 4 smaller than the filter hole 31 passes through the filter hole 31 and is separated outside the side wall of the filter 30. At this time, since there is a flow 7 of air 1 that passes through the filter hole 31 from the inside to the outside of the side wall of the filter 30, the pellet 2 and the fine powder 4 can be easily separated.

フィルタ30の側壁の外側、すなわち、環状空間20Aに分離した微粉4は、そこで螺旋状に流れる空気1の流れ8により、旋回しながら下降して環状空間20A下部に達し、流出管70を通り、外筒20の下筒部22の側壁から接線方向に流出する。すなわち、外筒20外に流出する。外筒20外に流出した空気1に含まれる微粉4は集塵装置94により回収され、ブロア93の吐出口からはクリーンな空気1が大気中に放出される。   The fine powder 4 separated to the outside of the side wall of the filter 30, that is, the annular space 20 </ b> A, swirls down and reaches the lower part of the annular space 20 </ b> A by the flow 8 of the air 1 flowing spirally there, passes through the outflow pipe 70, It flows out from the side wall of the lower cylinder part 22 of the outer cylinder 20 in the tangential direction. That is, it flows out of the outer cylinder 20. The fine powder 4 contained in the air 1 flowing out of the outer cylinder 20 is collected by the dust collector 94, and clean air 1 is released from the discharge port of the blower 93 into the atmosphere.

フィルタ30の内壁に沿って旋回しながら下降する間に、微粉4が除去されたペレット2は、内筒10の下筒部13(柱状空間10Aの下部)に入り、内筒10の下筒部13の内壁に沿って旋回しながら下降して内筒10の下筒部13の下部開口である排出口13aに達し、そこから成形機90の原料供給ホッパ91に排出される。勿論、フィルタ30の内壁に沿って旋回しながら下降する間には、フィルタ孔31を通り抜ける塵やプラスチック樹脂の小片なども微粉4とともに異物として除去されている。   While descending while turning along the inner wall of the filter 30, the pellet 2 from which the fine powder 4 has been removed enters the lower cylinder portion 13 (lower part of the columnar space 10 </ b> A) of the inner cylinder 10, and the lower cylinder portion of the inner cylinder 10. 13, descends while turning along the inner wall of the inner cylinder 10, reaches a discharge port 13 a which is a lower opening of the lower cylinder portion 13 of the inner cylinder 10, and is discharged from there to a raw material supply hopper 91 of the molding machine 90. Of course, while descending while turning along the inner wall of the filter 30, dust passing through the filter hole 31, small pieces of plastic resin, and the like are removed as foreign matter together with the fine powder 4.

こうして、本実施例の微粉除去装置は、ペレット2を連続的に処理し、そのペレット2から微粉4などの異物を除去できる。なお、本実施例では、第1の流入管60から混合気3を流入させ、第2の流入管120からペレット2の配管輸送用の空気1の一部1aを流入させている(この形態を「α」とする。)が、第2の流入管120から混合気3を流入させ、第1の流入管60からペレット2の配管輸送用の空気1の一部1aを流入させてもよい(この形態をβとする。)。この場合、第2の流入管120から流入させる混合気3中の空気1の流量よりも第1の流入管60から流入させる空気1aの流量の方を少なくする。また、Y字管124よりも下流側の輸送配管123を第1の流入管60と第2の流入管120に切り換え接続すると同時に、流量調整弁128よりも下流側の分岐配管126を第1の流入管60を接続していない第2の流入管120と第1の流入管60とに切り換え接続する流路切り換え弁を設け、αとβの切り換えを行うようにしてもよい。   Thus, the fine powder removing apparatus of the present embodiment can continuously process the pellet 2 and remove foreign matters such as the fine powder 4 from the pellet 2. In the present embodiment, the air-fuel mixture 3 is introduced from the first inflow pipe 60, and a part 1a of the air 1 for transporting the pellets 2 from the second inflow pipe 120 is introduced (this form is changed). However, the air-fuel mixture 3 may be introduced from the second inflow pipe 120 and a part 1a of the air 1 for transporting the pipe 2 of the pellet 2 may be introduced from the first inflow pipe 60 ( This form is β). In this case, the flow rate of the air 1a flowing in from the first inflow tube 60 is made smaller than the flow rate of the air 1 in the air-fuel mixture 3 flowing in from the second inflow tube 120. Further, the transport pipe 123 on the downstream side of the Y-shaped pipe 124 is switched and connected to the first inflow pipe 60 and the second inflow pipe 120, and at the same time, the branch pipe 126 on the downstream side of the flow rate adjustment valve 128 is connected to the first inflow pipe. A flow path switching valve that switches between the second inflow pipe 120 and the first inflow pipe 60 that are not connected to the inflow pipe 60 may be provided to switch between α and β.

以上、本実施例によれば、次のような効果を奏する。   As mentioned above, according to the present Example, there exist the following effects.

内筒10内に旋回気流発生用の空気1aを流入させる第2の流入管120を設け、第2の流入管120から内筒10内に流入させた空気1aによって、フィルタ30の内壁に沿って螺旋状に流れる混合気3の流れ6と旋回方向が同じ旋回気流9を形成したことで、この旋回気流9はフィルタ30の内壁に沿って螺旋状に流れる混合気3の流れ6を巻き込み、その混合気3の流れ6を旋回流に近付けてリード角の小さい螺旋状とするため、装置の形状を自由に設計でき、しかも混合気3のフィルタ面での滞留時間を長くできて微粉4の除去効率を上げることができる。   A second inflow pipe 120 through which the air 1a for generating the swirling airflow is introduced into the inner cylinder 10 is provided, and along the inner wall of the filter 30 by the air 1a introduced into the inner cylinder 10 from the second inflow pipe 120. By forming a swirl airflow 9 having the same swirl direction as the flow 6 of the airflowing mixture 3, the swirl airflow 9 entrains the flow 6 of the mixture 3 flowing spirally along the inner wall of the filter 30. Since the flow 6 of the air-fuel mixture 3 is made close to the swirl flow and has a spiral shape with a small lead angle, the shape of the apparatus can be designed freely, and the residence time on the filter surface of the air-fuel mixture 3 can be increased to remove the fine powder 4. Efficiency can be increased.

第1の流入管60から流入させる混合気3中の空気1の流量よりも第2の流入管120から流入させる空気1aの流量の方を少なくすることで、第2の流入管120から流入させる空気1aが第1の流入管60からの混合気3の流入の妨げになるのを防ぐことができる。   By making the flow rate of the air 1a flowing in from the second inflow tube 120 smaller than the flow rate of the air 1 in the air-fuel mixture 3 flowing in from the first inflow tube 60, the air flows in from the second inflow tube 120. It is possible to prevent the air 1a from obstructing the inflow of the air-fuel mixture 3 from the first inflow pipe 60.

内筒10の側壁のうち、内筒10の中心軸11の軸方向において第2の流入管120と重なっている部分は、内筒10の下筒部13の側壁によって通気遮断のため無孔の通気止め部とすることで、第2の流入管120から流入させた空気1aが柱状空間10A下部の外壁(内筒10の下筒部13の側壁)からその周囲にある環状空間20A下部に漏れることがなく、柱状空間10A下部(内筒10の下筒部13内)に強い旋回気流9を形成できるため、フィルタ30の内壁に沿って螺旋状に流れる混合気3の流れ6はよりリード角の小さい螺旋状となるため、装置の形状を自由に設計でき、しかも混合気3のフィルタ面での滞留時間をより長くできて微粉4の除去効率をさらに上げることができる。   A portion of the side wall of the inner cylinder 10 that overlaps the second inflow pipe 120 in the axial direction of the central axis 11 of the inner cylinder 10 is non-porous for blocking airflow by the side wall of the lower cylinder portion 13 of the inner cylinder 10. By using the ventilation stopper, the air 1a introduced from the second inflow pipe 120 leaks from the outer wall of the columnar space 10A lower part (side wall of the lower cylinder part 13 of the inner cylinder 10) to the lower part of the annular space 20A around it. Since a strong swirling airflow 9 can be formed in the lower part of the columnar space 10A (in the lower cylinder portion 13) of the columnar space 10A, the flow 6 of the air-fuel mixture 3 flowing spirally along the inner wall of the filter 30 is more reed angle. Therefore, the shape of the apparatus can be designed freely, and the residence time of the air-fuel mixture 3 on the filter surface can be made longer and the removal efficiency of the fine powder 4 can be further increased.

内筒10の側壁のうち、内筒10の中心軸11の軸方向において流出管70と重なっている部分は、内筒10の下筒部13の側壁によって通気遮断のため無孔の通気止め部とすることで、環状空間20A下部の内壁(内筒10の下筒部13の側壁)からその内側にある柱状空間10A下部の空気1、1aを吸引することがなく、環状空間20A下部に図示しない強い旋回気流を形成でき、しかも流出管70は環状空間20A下部に入り込んだ入口71を形成するように、その環状空間20A下部に入り込んだ管側壁73を有するので、旋回気流の旋回方向とは逆向きでの吸気を少なくすることができ、より強い旋回気流を形成できるため、フィルタ30の内壁に沿って螺旋状に流れる混合気3の流れ6はよりリード角の小さい螺旋状となるため、装置の形状を自由に設計でき、しかも混合気3のフィルタ面での滞留時間をより長くできて微粉4の除去効率をさらに上げることができる。   A portion of the side wall of the inner cylinder 10 that overlaps the outflow pipe 70 in the axial direction of the central axis 11 of the inner cylinder 10 is a non-perforated ventilation stopper for blocking ventilation by the side wall of the lower cylinder part 13 of the inner cylinder 10. As a result, the air 1 and 1a in the lower part of the columnar space 10A on the inner side (the side wall of the lower cylinder part 13 of the inner cylinder 10) is not sucked from the inner wall at the lower part of the annular space 20A, and is illustrated in the lower part of the annular space 20A. In addition, the outflow pipe 70 has a pipe side wall 73 that enters the lower part of the annular space 20A so as to form an inlet 71 that enters the lower part of the annular space 20A. Since the intake air in the reverse direction can be reduced and a stronger swirling airflow can be formed, the flow 6 of the air-fuel mixture 3 flowing spirally along the inner wall of the filter 30 has a spiral shape with a smaller lead angle. The shape of the device can be freely designed, moreover can be further increased efficiency of removing fines 4 residence time in the filter surface of the mixture 3 made longer.

フィルタ30のフィルタ孔31は、長さ方向が内筒10の中心軸11と直角の方向である長孔とすることで、フィルタ孔31は、混合気3中のペレット2をフィルタ孔31の長さ方向の上下辺に沿って移動させ、フィルタ30の内壁に沿って螺旋状に流れる混合気3の流れ6はよりリード角の小さい螺旋状とするため、装置の形状を自由に設計でき、しかも混合気3のフィルタ面での滞留時間をより長くできて微粉4の除去効率をさらに上げることができる。   The filter hole 31 of the filter 30 is a long hole whose length direction is a direction perpendicular to the central axis 11 of the inner cylinder 10, so that the filter hole 31 allows the pellet 2 in the air-fuel mixture 3 to be longer than the filter hole 31. Since the flow 6 of the air-fuel mixture 3 that moves along the upper and lower sides in the vertical direction and flows spirally along the inner wall of the filter 30 has a spiral shape with a smaller lead angle, the shape of the apparatus can be designed freely. The residence time of the air-fuel mixture 3 on the filter surface can be made longer, and the removal efficiency of the fine powder 4 can be further increased.

図6は実施例1の微粉除去装置の第2の流入口の変形構造を示す図である。図1ないし図5に示した第2の流入管120は、内筒10の中心軸11に対して直角に設けており、その第2の流入管120から流入する空気1aの流入方向には内筒10の中心軸11の軸方向成分は含まれない。すなわち、第2の流入管120は、空気1aを内筒10の中心軸11に対して直角の方向(内筒10の中心軸11が鉛直線のときは水平方向)で流入させるが、図6に示すように、外筒20の外側に開口する入口121Aの中心が内筒10の側壁に沿って開口する出口122Aの中心よりも低くなるように、第2の流入管120に内筒10の中心軸11に対して傾斜角θを持たせ、第2の流入管120から流入する空気1aの流入方向に内筒10の中心軸11の軸方向成分であって、上向きの成分を含ませることが好ましい。これにより、傾斜角θを持つ第2の流入管120から流入した空気1aはフィルタ30の内壁に沿って旋回しながら上昇して螺旋状の旋回気流9Aを形成し、フィルタ30の内壁に沿って旋回しながら下降する螺旋状の混合気3の流れ6をよりリード角の小さい螺旋状とするため、装置の形状を自由に設計でき、しかも混合気3のフィルタ面での滞留時間をより長くできて微粉4の除去効率をさらに上げることができる。この場合、旋回気流9Aのリード角が大きいと、混合気3の流れ6を乱したり、混合気3の流れ6と合流しそれを巻き込むことができなくなる可能性があるため、第2の流入管120の傾斜角θは混合気3の流れ6のリード角よりも十分に小さい1度以上10度以下が好ましく、さらには1度以上5度以下がより好ましい。   FIG. 6 is a view showing a modified structure of the second inlet of the fine powder removing apparatus of the first embodiment. The second inflow pipe 120 shown in FIGS. 1 to 5 is provided at a right angle to the central axis 11 of the inner cylinder 10, and in the inflow direction of the air 1 a flowing in from the second inflow pipe 120, the second inflow pipe 120 shown in FIG. The axial component of the central axis 11 of the cylinder 10 is not included. That is, the second inflow pipe 120 allows the air 1a to flow in a direction perpendicular to the central axis 11 of the inner cylinder 10 (horizontal direction when the central axis 11 of the inner cylinder 10 is a vertical line). As shown in FIG. 4, the second inflow pipe 120 is connected to the inner cylinder 10 so that the center of the inlet 121A that opens to the outside of the outer cylinder 20 is lower than the center of the outlet 122A that opens along the side wall of the inner cylinder 10. An inclination angle θ is given to the central axis 11, and an upward component that is an axial component of the central axis 11 of the inner cylinder 10 is included in the inflow direction of the air 1 a flowing in from the second inflow pipe 120. Is preferred. As a result, the air 1 a flowing in from the second inflow pipe 120 having the inclination angle θ rises while swirling along the inner wall of the filter 30 to form a spiral swirl airflow 9 </ b> A, and along the inner wall of the filter 30. Since the flow 6 of the spiral mixture 3 that descends while swirling is made into a spiral with a smaller lead angle, the shape of the apparatus can be designed freely, and the residence time of the mixture 3 on the filter surface can be made longer. Thus, the removal efficiency of the fine powder 4 can be further increased. In this case, if the lead angle of the swirling airflow 9A is large, the flow 6 of the air-fuel mixture 3 may be disturbed, or the flow 6 of the air-fuel mixture 3 may be merged and cannot be entrained. The inclination angle θ of the tube 120 is preferably 1 degree or more and 10 degrees or less, which is sufficiently smaller than the lead angle of the flow 6 of the air-fuel mixture 3, and more preferably 1 degree or more and 5 degrees or less.

図7は実施例1の微粉除去装置の第2の流入口への他の空気供給手段を示す図である。第2の流入管120には、旋回気流発生用の気体としてペレット2の輸送気体である空気1の一部1aを供給する代わりに、図7に示すように、ペレット2の配管輸送とは別の専用配管系によって旋回気流発生用の気体としての空気1を供給してもよい。この専用配管系は、旋回気流発生用のブロア93Aの吐出口を第2の流入管120に給気配管126を介して接続し、この給気配管126の途中に、第2の流入管120から流入させる空気1の流量を第1の流入管60から流入させる空気1の流量よりも少なくするための流量調整弁128Aを設けたものである。また、流量調整弁128Aの上流側または下流側の給気配管126には空気1に含まれる塵埃などの異物を除去するためのフィルタ127Aを設けることが好ましい。なお、旋回気流発生用の気体として窒素ガスや炭酸ガスなどの空気1以外の気体を供給してもよい。   FIG. 7 is a view showing another air supply means to the second inlet of the fine powder removing apparatus of the first embodiment. Instead of supplying a part 1a of air 1 that is a transport gas of pellet 2 as a gas for generating a swirl airflow to second inflow pipe 120, as shown in FIG. You may supply the air 1 as gas for generation | occurrence | production of a swirl | vortex airflow by this exclusive piping system. This dedicated piping system connects the discharge port of the blower 93 </ b> A for generating the swirling airflow to the second inflow pipe 120 via the air supply pipe 126, and the second inflow pipe 120 passes through the air supply pipe 126. A flow rate adjustment valve 128 </ b> A is provided to reduce the flow rate of the air 1 that flows in from the flow rate of the air 1 that flows in from the first inflow pipe 60. Further, it is preferable to provide a filter 127A for removing foreign matters such as dust contained in the air 1 in the air supply pipe 126 upstream or downstream of the flow rate adjustment valve 128A. A gas other than air 1 such as nitrogen gas or carbon dioxide gas may be supplied as the gas for generating the swirling airflow.

図8ないし図11を参照して実施例2の微粉除去装置を説明する。図8は実施例2の微粉除去装置の全体構成を示す図、図9は実施例2の微粉除去装置の外観を示す図であり、(A)は正面図、(B)は平面図、(C)は側面図、図10は実施例2の微粉除去装置内での空気の流れを示す側面図、図11は実施例2の微粉除去装置内での空気の流れを示す平面図であり、(A)は流入口部での空気の流れを示す平面図、(B)は分離部での空気の流れを示す平面図、(C)は流出口部での空気の流れを示す平面図である。   The fine powder removing apparatus according to the second embodiment will be described with reference to FIGS. FIG. 8 is a diagram showing the overall configuration of the fine powder removing apparatus of Example 2, FIG. 9 is a diagram showing the appearance of the fine powder removing apparatus of Example 2, (A) is a front view, (B) is a plan view, C) is a side view, FIG. 10 is a side view showing the flow of air in the fine powder removing apparatus of Example 2, and FIG. 11 is a plan view showing the flow of air in the fine powder removing apparatus of Example 2. (A) is a plan view showing the flow of air at the inlet, (B) is a plan view showing the flow of air at the separation part, (C) is a plan view showing the flow of air at the outlet. is there.

本実施例の微粉除去装置は、第2の流入管の内筒10の中心軸11の軸方向における設置位置が実施例1の微粉除去装置と相違すること以外、実施例1の微粉除去装置と同一構造を有し、同一構造には同一符号を付して詳しい説明は省略する。   The fine powder removing apparatus of the present embodiment is the same as the fine powder removing apparatus of the first embodiment except that the installation position in the axial direction of the central axis 11 of the inner cylinder 10 of the second inflow pipe is different from the fine powder removing apparatus of the first embodiment. It has the same structure, the same code | symbol is attached | subjected to the same structure, and detailed description is abbreviate | omitted.

図8ないし図11に示すように、内筒10内に内筒10の側壁から接線方向に旋回気流発生用の気体1aまたは1を流入させ、その気体1aまたは1によって、フィルタ30の内壁に沿って螺旋状に流れる混合気3の流れ6と旋回方向が同じ旋回気流9Bを形成するための第2の流入口である第2の流入管120Aを設けている。この第2の流入管120Aは、内筒10の側壁のうち、内筒10の中心軸11の軸方向において第1の流入管60よりも下部の側壁から旋回気流発生用の気体1aまたは1を接線方向に内筒10内に流入させるように、内筒10の側壁のうち、内筒10の中心軸11の軸方向において第1の流入管60よりも下部の側壁に設けている。具体的には内筒10の上下中間部(フィルタ30)の側壁に設けている。この第2の流入管120Aは直管であって、外筒20の上部(上筒部21)の側壁を貫通し、第2の流入管120Aにおける入口121Aは円形に形成され、外筒20の上部外側に開口されている。第2の流入管120Aにおける出口122Aは矩形に形成され、この出口122Aが内筒10の上下中間部(フィルタ30)の側壁に沿って開口されている。   As shown in FIGS. 8 to 11, the gas 1 a or 1 for generating the swirling airflow is introduced into the inner cylinder 10 in the tangential direction from the side wall of the inner cylinder 10, and along the inner wall of the filter 30 by the gas 1 a or 1. A second inflow pipe 120A is provided as a second inlet for forming a swirling airflow 9B having the same swirling direction as the flow 6 of the air-fuel mixture 3 flowing spirally. The second inflow pipe 120 </ b> A supplies the swirling air flow generating gas 1 a or 1 from the side wall lower than the first inflow pipe 60 in the axial direction of the central axis 11 of the inner cylinder 10 among the side walls of the inner cylinder 10. Among the side walls of the inner cylinder 10, the inner cylinder 10 is provided on the side wall below the first inflow pipe 60 in the axial direction of the central axis 11 so as to flow into the inner cylinder 10 in the tangential direction. Specifically, it is provided on the side wall of the upper and lower intermediate portion (filter 30) of the inner cylinder 10. The second inflow pipe 120A is a straight pipe and penetrates the side wall of the upper part (upper cylinder part 21) of the outer cylinder 20, and the inlet 121A in the second inflow pipe 120A is formed in a circular shape. Opened to the top outside. The outlet 122A of the second inflow pipe 120A is formed in a rectangular shape, and the outlet 122A is opened along the side wall of the upper and lower intermediate portion (filter 30) of the inner cylinder 10.

流出管70に接続したブロア93または93Aを駆動すると、図10、図11Bに示すように、旋回気流発生用の空気1aまたは1が、第2の流入管120Aを通り、内筒10のフィルタ30内(柱状空間10Aの上下中間部)にそこの側壁から接線方向に流入し、内筒10のフィルタ30の内壁に沿って旋回しながらフィルタ30の内壁に沿って螺旋状に流れる混合気3の流れ6と旋回方向が同じ旋回気流9Bを内筒10のフィルタ30内に形成する。この旋回気流9Bによってフィルタ30の内壁に沿って螺旋状に流れる混合気3の流れ6を巻き込み、その混合気3の流れ6を旋回流に近付けてよりリード角の小さい螺旋状とする。なお、本実施例の第2の流入管120Aにも実施例1と同様に傾斜角θを付けてもよい。   When the blower 93 or 93A connected to the outflow pipe 70 is driven, the air 1a or 1 for generating the swirling airflow passes through the second inflow pipe 120A as shown in FIGS. The air-fuel mixture 3 flows into the inside (upper and lower middle parts of the columnar space 10A) from the side wall in a tangential direction and flows spirally along the inner wall of the filter 30 while turning along the inner wall of the filter 30 of the inner cylinder 10 A swirling airflow 9B having the same swirling direction as the flow 6 is formed in the filter 30 of the inner cylinder 10. The swirl airflow 9B entrains the flow 6 of the air-fuel mixture 3 flowing spirally along the inner wall of the filter 30, and the flow 6 of the air-fuel mixture 3 is brought close to the swirl flow to form a spiral with a smaller lead angle. Note that the second inflow pipe 120A of the present embodiment may be provided with an inclination angle θ as in the first embodiment.

図12ないし図14を参照して実施例3の微粉除去装置を説明する。図12は実施例3の微粉除去装置の全体構成を示す図、図13は実施例3の微粉除去装置内での空気の流れを示す側面図、図14は実施例3の微粉除去装置内での空気の流れを示す平面図であり、(A)は流入口部での空気の流れを示す平面図、(B)は分離部での空気の流れを示す平面図、(C)は流出口部での空気の流れを示す平面図である。   The fine powder removing apparatus according to the third embodiment will be described with reference to FIGS. FIG. 12 is a diagram showing the overall configuration of the fine powder removing apparatus of Example 3, FIG. 13 is a side view showing the flow of air in the fine powder removing apparatus of Example 3, and FIG. 14 is in the fine powder removing apparatus of Example 3. It is a top view which shows the flow of air of (A), (A) is a top view which shows the flow of air in an inflow port part, (B) is a top view which shows the flow of air in a separation part, (C) is an outflow port It is a top view which shows the flow of the air in a part.

本実施例の微粉除去装置は、実施例1の微粉除去装置に中心筒100とフィルタカバー110を付加したものであり、実施例1の微粉除去装置の全ての構成を有している。   The fine powder removing apparatus of the present embodiment is obtained by adding a central tube 100 and a filter cover 110 to the fine powder removing apparatus of the first embodiment, and has all the configurations of the fine powder removing apparatus of the first embodiment.

図12ないし図14に示すように、中心筒100は、その上端を上蓋50の内面に着脱自在に固定し、上蓋50の内面から内筒10の内側に同軸で挿入配置したもので、内筒10の上筒部12と並行する円筒部101と、フィルタ30の側壁と並行する円錐台部102と、円錐台部102側の閉鎖端部103とを有し、閉鎖端部103はフィルタ30の上部開口と下部開口との間に配置されており、閉鎖端部103より上部の柱状空間10Aを環状空間10Bに形成している。第1の流入管60を通り、内筒10の上筒部12の側壁から接線方向に流入した混合気3は、内筒10の上筒部12の内壁に沿って旋回しながら下降してフィルタ30に入り、フィルタ30の内壁に沿って旋回しながら下降するが、そのときの旋回内径を中心筒100の側壁によって規制し、混合気3がフィルタ30の内壁に沿って螺旋状に流れやすくしている。   As shown in FIGS. 12 to 14, the center cylinder 100 is configured such that its upper end is detachably fixed to the inner surface of the upper lid 50 and is coaxially inserted from the inner surface of the upper lid 50 into the inner cylinder 10. 10 has a cylindrical portion 101 parallel to the upper cylindrical portion 12, a truncated cone portion 102 parallel to the side wall of the filter 30, and a closed end portion 103 on the truncated cone portion 102 side. It is arranged between the upper opening and the lower opening, and the columnar space 10A above the closed end 103 is formed in the annular space 10B. The air-fuel mixture 3 flowing in the tangential direction from the side wall of the upper cylinder portion 12 through the first inflow pipe 60 descends while turning along the inner wall of the upper cylinder portion 12 of the inner cylinder 10 and is filtered. 30, and descends while swirling along the inner wall of the filter 30, but the swirling inner diameter at that time is regulated by the side wall of the central cylinder 100, and the air-fuel mixture 3 easily flows spirally along the inner wall of the filter 30. ing.

フィルタカバー110は、フィルタ孔31でフィルタ30の側壁の内側から外側に向かって通り抜ける空気1の量を抑える通気抑制手段として、外筒20の側壁とフィルタ30の側壁との間に設けるものである。フィルタカバー110は筒状であって、上部開口に設けたフランジ111をフランジ12aとフランジ82との間に挟み込むことで、内筒10と同軸で外筒20の側壁とフィルタ30の側壁との間に配置されており、少なくともフィルタ30の側壁の上部を覆っている。そして、フィルタカバー110の側壁の長さ(フィルタ30の側壁を覆う面積)、直径(フィルタカバー110の側壁とフィルタ30の側壁との間隔)、形状(孔の有無、開口率の多少)によって、フィルタ孔31でフィルタ30の側壁の内側から外側に向かって通り抜ける空気1の量を最適化し、フィルタ30内に必要な空気1の量を確保し、混合気3がフィルタ30の内壁に沿って螺旋状に流れる間に、その流れ6の速度を落とさないようにしている。すなわち、フィルタ30の内壁に沿って螺旋状に流れる混合気3の流れ6で生じる遠心力を小さくしないようにし、微粉4の除去効率の低下を防止している。   The filter cover 110 is provided between the side wall of the outer cylinder 20 and the side wall of the filter 30 as a ventilation suppression unit that suppresses the amount of air 1 that passes through the filter hole 31 from the inside to the outside of the side wall of the filter 30. . The filter cover 110 has a cylindrical shape, and a flange 111 provided in the upper opening is sandwiched between the flange 12 a and the flange 82, so that it is coaxial with the inner cylinder 10 and between the side wall of the outer cylinder 20 and the side wall of the filter 30. And covers at least the upper part of the side wall of the filter 30. The length of the side wall of the filter cover 110 (the area covering the side wall of the filter 30), the diameter (the distance between the side wall of the filter cover 110 and the side wall of the filter 30), and the shape (the presence or absence of holes, the degree of opening ratio) The amount of air 1 passing through the filter hole 31 from the inside to the outside of the filter 30 is optimized, the necessary amount of air 1 is secured in the filter 30, and the air-fuel mixture 3 spirals along the inner wall of the filter 30. The velocity of the flow 6 is not reduced during the flow. That is, the centrifugal force generated in the flow 6 of the air-fuel mixture 3 flowing spirally along the inner wall of the filter 30 is not reduced, and the reduction in the removal efficiency of the fine powder 4 is prevented.

ところで、本実施例において流出管70は、内筒10の中心軸11から第1の流入管60の中心までの半径で内筒10の中心軸11を中心に回転させたときに、内筒10の中心軸11の軸方向に見て第1の流入管60と重なることがなく、フィルタ30の内壁に沿って螺旋状に流れる混合気3の流れ6と、内筒10の側壁(フィルタ30の側壁と下筒部13の側壁)と外筒20の側壁(上筒部21の側壁と下筒部22の側壁)との間で螺旋状に流れる微粉4混じりの空気1の流れ8とは、同方向に旋回するが、流出管70を第1の流入管60と重なるように設けることで、両流れ6、8の旋回方向を逆にすることができる。ここで、フィルタ30の内壁に沿って螺旋状に流れる混合気3の流れ6とは旋回方向が逆であって、内筒10の側壁(フィルタ30の側壁と下筒部13の側壁)と外筒20の側壁(上筒部21の側壁と下筒部22の側壁)との間で螺旋状に流れる微粉4混じりの空気1の流れ8は、フィルタ孔31でフィルタ30の側壁の内側から外側に向かって通り抜ける空気1の量を抑えるエアカーテンになるため、フィルタカバー110に代わる通気抑制手段として利用できる。   By the way, in this embodiment, when the outflow pipe 70 is rotated around the central axis 11 of the inner cylinder 10 with a radius from the central axis 11 of the inner cylinder 10 to the center of the first inflow pipe 60, the inner cylinder 10. The flow 6 of the air-fuel mixture 3 flowing spirally along the inner wall of the filter 30 without overlapping the first inflow pipe 60 when viewed in the axial direction of the central axis 11 of the The flow 8 of air 1 mixed with fine powder 4 flowing spirally between the side wall and the side wall of the lower cylinder part 13 and the side wall of the outer cylinder 20 (the side wall of the upper cylinder part 21 and the side wall of the lower cylinder part 22) Although swirling in the same direction, the swirling direction of both flows 6 and 8 can be reversed by providing the outflow pipe 70 so as to overlap the first inflow pipe 60. Here, the swirl direction is opposite to the flow 6 of the air-fuel mixture 3 flowing spirally along the inner wall of the filter 30, and the side wall of the inner cylinder 10 (the side wall of the filter 30 and the side wall of the lower cylinder portion 13) and the outer The flow 8 of air 1 mixed with fine powder 4 spirally flowing between the side wall of the cylinder 20 (the side wall of the upper cylinder part 21 and the side wall of the lower cylinder part 22) is outside from the inside of the side wall of the filter 30 through the filter hole 31. Since the air curtain suppresses the amount of air 1 passing through the filter cover 110, the air curtain can be used as an air flow suppressing means instead of the filter cover 110.

図15ないし図18を参照して実施例4の微粉除去装置を説明する。図15は実施例4の微粉除去装置の全体構成を示す図、図16は実施例4の微粉除去装置の外観を示す図であり、(A)は正面図、(B)は平面図、(C)は側面図、図17は実施例4の微粉除去装置内での空気の流れを示す側面図、図18は実施例4の微粉除去装置内での空気の流れを示す平面図であり、(A)は分離部での空気の流れを示す平面図、(B)は流出口部での空気の流れを示す平面図、(C)は流入口部での空気の流れを示す平面図である。   The fine powder removing apparatus according to the fourth embodiment will be described with reference to FIGS. FIG. 15 is a diagram showing the overall configuration of the fine powder removing apparatus of Example 4, FIG. 16 is a diagram showing the appearance of the fine powder removing apparatus of Example 4, (A) is a front view, (B) is a plan view, C) is a side view, FIG. 17 is a side view showing the flow of air in the fine powder removing apparatus of Example 4, and FIG. 18 is a plan view showing the flow of air in the fine powder removing apparatus of Example 4. (A) is a plan view showing the air flow at the separation part, (B) is a plan view showing the air flow at the outlet part, (C) is a plan view showing the air flow at the inlet part. is there.

図15、図16に示すように、本実施例の微粉除去装置は、フィルタ130を含む内筒140と、内筒140の外側に同軸で配置する外筒150と、微粉除去装置設置用の台板160と、上蓋170などにより構成している。   As shown in FIGS. 15 and 16, the fine powder removing device of the present embodiment includes an inner cylinder 140 including a filter 130, an outer cylinder 150 arranged coaxially on the outer side of the inner cylinder 140, and a stand for installing the fine powder removing device. A plate 160, an upper lid 170, and the like are included.

フィルタ130は、実施例1、2、3のフィルタ30と同じ構造・機能を有する。内筒140の側壁のうち、内筒140の中心軸141の軸方向において外筒150の側壁と重なる部分の少なくとも一部分を構成するとともに、内筒140内に流入させる混合気3(図17、図18参照)中のプラスチック樹脂のペレット2(粉粒体の一例)から微粉4を内筒140の側壁の外側に分離するためのもので、内筒140の中心軸141が鉛直線のときに、鉛直下方に向かって窄まり形状となる円錐台形に形成し、その側壁(側面)の略全体に、混合気3中の空気1と微粉4のみを通過させる(ペレット2は通過させない)多数のフィルタ孔131を千鳥状などに配列して設ける。このフィルタ130の側壁はパンチングメタルにより構成している。   The filter 130 has the same structure and function as the filter 30 of the first, second, and third embodiments. Of the side wall of the inner cylinder 140, at least a part of a portion overlapping the side wall of the outer cylinder 150 in the axial direction of the central axis 141 of the inner cylinder 140 is formed, and the air-fuel mixture 3 that flows into the inner cylinder 140 (FIG. 17, FIG. 18) for separating the fine powder 4 from the plastic resin pellet 2 (an example of a granular material) in the outside of the side wall of the inner cylinder 140. When the central axis 141 of the inner cylinder 140 is a vertical line, A large number of filters that are formed in a truncated cone shape that narrows downward in the vertical direction and allow only the air 1 and fine powder 4 in the air-fuel mixture 3 to pass through substantially the entire side wall (side surfaces) (the pellet 2 does not pass). The holes 131 are arranged in a staggered pattern. The side wall of the filter 130 is made of punching metal.

各フィルタ孔131は、実施例1、2、3のフィルタ孔31と同じ構造・機能を有するもので、フィルタ130の内壁(フィルタ面)に沿って螺旋状に流れる混合気3の流れ6Aを、内筒140の中心軸141と直角の方向(内筒140の中心軸141が鉛直線のときは水平方向)に案内するため、長さ方向が内筒140の中心軸141と直角の方向である長孔に形成している。   Each filter hole 131 has the same structure and function as the filter holes 31 of the first, second, and third embodiments. The flow 6A of the air-fuel mixture 3 that flows spirally along the inner wall (filter surface) of the filter 130 is In order to guide in a direction perpendicular to the central axis 141 of the inner cylinder 140 (horizontal direction when the central axis 141 of the inner cylinder 140 is a vertical line), the length direction is a direction perpendicular to the central axis 141 of the inner cylinder 140. It is formed in a long hole.

内筒140は、その中心軸141が鉛直線のときに、鉛直下方に向かって窄まり形状となる大きな円錐台形を上部・中部・下部の3つの部分で構成したもので、上部をフィルタ130により構成し、中部と下部をそれぞれ円錐台形の中筒部142と下筒部143により構成している。外筒150は、略同径な円筒形の上筒部151と下筒部152との2ピース構造を有し、下筒部152は底板152aを有する。これら同軸配置の内筒140と外筒150のうち、内筒140が台板160から直角に立ち上げられ、外筒150は、内筒140のフィルタ130と中筒部142との周囲に配置され、内筒140の下筒部152を底板152aの中央部から下方に突出し、略同じ高さ位置に揃えられている内筒140の上部開口(フィルタ130の上部開口)と外筒150の上部開口(上筒部151の上部開口)が上蓋170で閉じられている。   The inner cylinder 140 has a large truncated cone shape, which is narrowed downward vertically when the central axis 141 is a vertical line, and is composed of three parts, an upper part, a middle part, and a lower part. The middle part and the lower part are constituted by a truncated cone-shaped middle cylinder part 142 and a lower cylinder part 143, respectively. The outer cylinder 150 has a two-piece structure of a cylindrical upper cylinder part 151 and a lower cylinder part 152 having substantially the same diameter, and the lower cylinder part 152 has a bottom plate 152a. Among the coaxially arranged inner cylinder 140 and outer cylinder 150, the inner cylinder 140 is raised from the base plate 160 at a right angle, and the outer cylinder 150 is arranged around the filter 130 and the middle cylinder portion 142 of the inner cylinder 140. The lower cylinder part 152 of the inner cylinder 140 protrudes downward from the center part of the bottom plate 152a, and the upper opening of the inner cylinder 140 (upper opening of the filter 130) and the upper opening of the outer cylinder 150 are aligned at substantially the same height position. (Upper opening of the upper cylinder portion 151) is closed by the upper lid 170.

外筒150の底板152aから下方に突出した内筒140の下部(下筒部143)の側壁には、そこから混合気3を接線方向に内筒140内に流入させるための流入口(第1の流入口)である流入管180(以下、「第1の流入管」という。)を設けている。この第1の流入管180における入口181は円形に形成され、出口182は円形(矩形の場合もある)に形成され、この出口182が内筒140の下部(下筒部143)の側壁に沿って開口されている(図18C参照)。   In the side wall of the lower part (lower cylinder part 143) of the inner cylinder 140 projecting downward from the bottom plate 152a of the outer cylinder 150, an inflow port (a first inlet) through which the air-fuel mixture 3 flows tangentially into the inner cylinder 140 Inflow pipe 180 (hereinafter referred to as “first inflow pipe”). The inlet 181 in the first inflow pipe 180 is formed in a circular shape, and the outlet 182 is formed in a circular shape (which may be rectangular). The outlet 182 extends along the side wall of the lower portion of the inner tube 140 (the lower tube portion 143). (See FIG. 18C).

内筒140内に内筒140の側壁から接線方向に旋回気流発生用の気体1a(図17、図18A参照)を流入させ、その気体1aによって、フィルタ130の内壁に沿って螺旋状に流れる混合気3の流れ6Aと旋回方向が同じ旋回気流9C(図17、図18A参照)を形成するための第2の流入口である第2の流入管220を設けている。この第2の流入管220は、内筒140の側壁のうち、内筒140の中心軸141の軸方向において第1の流入管180よりも上部の側壁から旋回気流発生用の気体1aを接線方向に内筒140内に流入させるように、内筒140の側壁のうち、内筒140の中心軸141の軸方向において第1の流入管180よりも上部の側壁に設けている。具体的には内筒140の上部(フィルタ130)の側壁(内筒140の上下中間部(フィルタ130)の側壁の場合もある)に設けている。この第2の流入管220は直管であって、外筒150の上部(上筒部151)の側壁を貫通し、第2の流入管220における入口221は円形に形成され、外筒150の上部外側に開口されている。第2の流入管220における出口222は矩形に形成され、この出口222が内筒140の上部(フィルタ130)の側壁に沿って開口されている(図18A参照)。   A gas 1a (see FIGS. 17 and 18A) for generating a swirling airflow is introduced into the inner cylinder 140 in a tangential direction from the side wall of the inner cylinder 140, and mixed by the gas 1a to flow spirally along the inner wall of the filter 130. A second inflow pipe 220 serving as a second inflow port for forming a swirling airflow 9C (see FIGS. 17 and 18A) having the same swirling direction as the flow 3A of the air 3 is provided. The second inflow pipe 220 circulates the gas 1 a for generating the swirling airflow from the side wall of the inner cylinder 140 in the axial direction of the central axis 141 of the inner cylinder 140 from the side wall above the first inflow pipe 180. Among the side walls of the inner cylinder 140, the inner cylinder 140 is provided on the side wall above the first inflow pipe 180 in the axial direction of the central axis 141. Specifically, it is provided on the side wall of the upper part (filter 130) of the inner cylinder 140 (in some cases, the side wall of the upper and lower intermediate part (filter 130) of the inner cylinder 140). The second inflow pipe 220 is a straight pipe and penetrates the side wall of the upper part (upper cylinder part 151) of the outer cylinder 150, and the inlet 221 in the second inflow pipe 220 is formed in a circular shape. Opened to the top outside. The outlet 222 in the second inflow pipe 220 is formed in a rectangular shape, and the outlet 222 is opened along the side wall of the upper portion (filter 130) of the inner cylinder 140 (see FIG. 18A).

外筒150の側壁のうち、内筒140の中心軸141の軸方向において内筒140のフィルタ130よりも下部の内筒140の中部(中筒部142)の側壁と重なっている外筒150の下部(下筒部152)の側壁には、そこから微粉4混じりの空気1(各フィルタ孔131を通過し内筒140内から内筒140の側壁(フィルタ130の側壁と中筒部142の側壁)と外筒20の側壁(上筒部151の側壁と下筒部152の側壁)との間の環状空間150Aに流入した微粉4混じりの空気1)を接線方向に外筒150外に流出させるための流出口である流出管190を設けている。この流出管190は直管であって、流出管190における入口191と出口192はともに円形に形成されている。流出管190は、内筒140の側壁と外筒150の側壁との間の環状空間150Aであって、内筒140の中部の側壁と外筒150の下部の側壁との間の環状空間150A下部に入り込んだ入口191を形成するように、内筒140の中部の側壁と外筒150の下部の側壁との間の環状空間150A下部に入り込んだ管側壁193を有している(図18B参照)。
本実施例では流出管190と外筒150の側壁(環状空間150Aの外壁)との間、流出管190と底板152a(外筒150の底面:環状空間20Aの底面)との間に、それぞれ隙間があるが、これらは無い方が好ましい。流出管190の入口191の開口形状として円形のものを示したが、円形でも矩形でもよい。流出管190の入口191としては、矩形であり、外筒150の側壁との間、底板152aとの間に、それぞれ、隙間の無いものが好ましい。
Among the side walls of the outer cylinder 150, the outer cylinder 150 that overlaps the side wall of the middle part (middle cylinder part 142) of the inner cylinder 140 below the filter 130 of the inner cylinder 140 in the axial direction of the central axis 141 of the inner cylinder 140. On the side wall of the lower part (lower cylinder part 152), air 1 mixed with fine powder 4 (from each of the filter holes 131 and from the inner cylinder 140 to the side wall of the inner cylinder 140 (the side walls of the filter 130 and the middle cylinder part 142) ) And the side wall of the outer cylinder 20 (the side wall of the upper cylinder part 151 and the side wall of the lower cylinder part 152), the air 1) mixed with the fine powder 4 flowing into the annular space 150A flows out of the outer cylinder 150 in the tangential direction. An outflow pipe 190 serving as an outflow port is provided. The outflow pipe 190 is a straight pipe, and both the inlet 191 and the outlet 192 in the outflow pipe 190 are formed in a circular shape. The outflow pipe 190 is an annular space 150A between the side wall of the inner cylinder 140 and the side wall of the outer cylinder 150, and the lower part of the annular space 150A between the middle side wall of the inner cylinder 140 and the lower side wall of the outer cylinder 150. In order to form the inlet 191 which entered, it has the pipe | tube side wall 193 which entered the annular space 150A lower part between the side wall of the inner part of the inner cylinder 140, and the lower side wall of the outer cylinder 150 (refer FIG. 18B). .
In this embodiment, there are gaps between the outflow pipe 190 and the side wall of the outer cylinder 150 (outer wall of the annular space 150A) and between the outflow pipe 190 and the bottom plate 152a (the bottom surface of the outer cylinder 150: the bottom surface of the annular space 20A). However, it is preferable that these are not present. Although the circular opening shape of the inlet 191 of the outflow pipe 190 is shown, it may be circular or rectangular. The inlet 191 of the outflow pipe 190 is rectangular and preferably has no gap between the side wall of the outer cylinder 150 and the bottom plate 152a.

台板160の中央部には内筒140の下部開口(下筒部143の下部開口)と略同径な円形の貫通孔161が設けられ、内筒140は台板160の貫通孔161の縁から立ち上げられ、内筒140の下部開口が台板160の下面側に開放されて微粉4が除去されたペレット2の排出口143aになっている。   A circular through hole 161 having substantially the same diameter as the lower opening of the inner cylinder 140 (lower opening of the lower cylinder part 143) is provided at the center of the base plate 160. The inner cylinder 140 is an edge of the through hole 161 of the base plate 160. The lower opening of the inner cylinder 140 is opened to the lower surface side of the base plate 160 to form a discharge port 143a for the pellet 2 from which the fine powder 4 has been removed.

内筒140は下端に排出口143aを開口し、下部の側壁に第1の流入管180を接続し、かつその第1の流入管180よりも上部の側壁に第2の流入管220を接続した漏斗状空間140Aを形成し、外筒150は第1の流入管180より上部の漏斗状空間140Aの周囲に、下部の側壁に流出管190を接続した環状空間150Aを形成する。これら漏斗状空間140Aと環状空間150Aの境目にある内筒140の側壁であるフィルタ130の側壁と中筒部142の側壁のうち、フィルタ130の側壁はそこに設けた多数のフィルタ孔131によって漏斗状空間140Aと環状空間150Aとを連通接続し、中筒部142の側壁は漏斗状空間140Aと環状空間150Aとの間での通気を遮断している。   The inner cylinder 140 has a discharge port 143a at its lower end, a first inflow pipe 180 connected to the lower side wall, and a second inflow pipe 220 connected to the upper side wall of the first inflow pipe 180. A funnel-shaped space 140A is formed, and the outer cylinder 150 forms an annular space 150A around the funnel-shaped space 140A above the first inflow pipe 180 and having an outflow pipe 190 connected to the lower side wall. Of the side wall of the filter 130 and the side wall of the middle cylinder portion 142 which are the side walls of the inner cylinder 140 at the boundary between the funnel-shaped space 140A and the annular space 150A, the side wall of the filter 130 is funneled by a number of filter holes 131 provided therein. 140A and the annular space 150A are connected in communication, and the side wall of the middle cylindrical portion 142 blocks ventilation between the funnel-shaped space 140A and the annular space 150A.

次に、本実施例の微粉除去装置の組み立てについて説明する。   Next, assembly of the fine powder removing device of the present embodiment will be described.

図15、図16に示すように、内筒140の中筒部142と下筒部143と外筒150の下筒部152とは台板160に一体に設けられている。本実施例の微粉除去装置を組み立てるときは、内筒140の中筒部142の側壁上端に設けたフランジ142aの上に、フィルタ130の側壁下端に設けたフランジ130aを重ね合わせ、内筒140の中筒部142の上にフィルタ130を載置する。   As shown in FIGS. 15 and 16, the middle tube portion 142, the lower tube portion 143, and the lower tube portion 152 of the outer tube 150 are integrally provided on the base plate 160. When assembling the fine powder removing device of the present embodiment, the flange 130a provided at the lower end of the side wall of the filter 130 is overlaid on the flange 142a provided at the upper end of the side wall of the middle cylindrical portion 142 of the inner cylinder 140. The filter 130 is placed on the middle tube portion 142.

また、外筒150の下筒部152の側壁上端に設けたフランジ152bの上にリング状の下パッキン200を介して外筒150の上筒部151を載置し、その外筒150の上筒部151の上にリング状の上パッキン201を被せ、内筒140と外筒150の上に上蓋170を載置する。このときフィルタ130は上蓋170と内筒140の中筒部142との間に挟まれる。また、外筒150の上筒部151は上下パッキン201、200を介して上蓋170と外筒150の下筒部152との間に挟まれる。内筒140の上部開口(フィルタ130の上部開口)と外筒150の上部開口(上筒部151の上部開口)が上蓋170で一体的に閉じられる。   Further, the upper cylinder portion 151 of the outer cylinder 150 is placed on the flange 152b provided at the upper end of the side wall of the lower cylinder portion 152 of the outer cylinder 150 via the ring-shaped lower packing 200, and the upper cylinder of the outer cylinder 150 is placed. A ring-shaped upper packing 201 is placed on the portion 151, and the upper lid 170 is placed on the inner cylinder 140 and the outer cylinder 150. At this time, the filter 130 is sandwiched between the upper lid 170 and the middle cylinder portion 142 of the inner cylinder 140. Further, the upper cylinder portion 151 of the outer cylinder 150 is sandwiched between the upper lid 170 and the lower cylinder portion 152 of the outer cylinder 150 via the upper and lower packings 201 and 200. The upper opening of the inner cylinder 140 (upper opening of the filter 130) and the upper opening of the outer cylinder 150 (upper opening of the upper cylinder portion 151) are integrally closed by the upper lid 170.

両端部に雄ネジを有する複数のボルト202を上蓋170とフランジ152b間に通し付け、上蓋170の上面から上方に突出する各ボルト202の上端にナット203を螺着し、フランジ152bの下面から下方に突出する各ボルト202の下端にナット203を螺着し、上蓋170により内筒140の中筒部13に対してフィルタ130を、外筒150の下筒部152に対して上筒部130を締め付けて、完成する。このとき、過大な締め付けにより上蓋170、内筒140のフィルタ130、外筒150の上筒部151などに変形や割れが生じるのを防止するため、各ボルト202には上蓋170とフランジ152b間に挟み込む筒状のスペーサ204が外嵌されている。   A plurality of bolts 202 having male screws at both ends are passed between the upper lid 170 and the flange 152b, and nuts 203 are screwed onto the upper ends of the bolts 202 protruding upward from the upper surface of the upper lid 170, and downward from the lower surface of the flange 152b. A nut 203 is screwed onto the lower end of each bolt 202 projecting to the top, and a filter 130 is attached to the middle cylinder part 13 of the inner cylinder 140 by an upper lid 170, and an upper cylinder part 130 is attached to the lower cylinder part 152 of the outer cylinder 150. Tighten to complete. At this time, in order to prevent the upper lid 170, the filter 130 of the inner cylinder 140, the upper cylinder portion 151 of the outer cylinder 150 from being deformed or cracked due to excessive tightening, each bolt 202 has a gap between the upper lid 170 and the flange 152b. A cylindrical spacer 204 to be sandwiched is externally fitted.

これにより、上蓋170を取り外すことでフィルタ交換が行える。また、微粉除去装置を洗浄するときなどに、内筒140の中筒部142と下筒部143と外筒150の下筒部152と台板160の一体部品と、フィルタ130と、外筒150の上筒部151と、上蓋170とに分解できる。   Thereby, the filter can be replaced by removing the upper lid 170. Further, when cleaning the fine powder removing device, etc., an integral part of the inner tube portion 142, the lower tube portion 143, the outer tube 150, the lower tube portion 152 and the base plate 160 of the inner tube 140, the filter 130, and the outer tube 150 Can be disassembled into an upper cylinder portion 151 and an upper lid 170.

次に、本実施例の微粉除去装置の材質について説明する。   Next, the material of the fine powder removing apparatus of this embodiment will be described.

フィルタ130を含む内筒140、外筒150、台板160、上蓋170などの材質は、一般構造用鋼板やステンレス鋼板などの金属を使用することができる。このとき、外筒150の上筒部151にアクリル、ポリカーボネイト、ガラスなどの透明材質を使用することが好ましい。上蓋170にも透明材質を使用するとさらに好ましい。   Materials such as the inner cylinder 140, the outer cylinder 150, the base plate 160, and the upper lid 170 including the filter 130 may be metals such as general structural steel plates and stainless steel plates. At this time, it is preferable to use a transparent material such as acrylic, polycarbonate, or glass for the upper tube portion 151 of the outer tube 150. It is more preferable to use a transparent material for the upper lid 170 as well.

これにより、微粉除去装置の外側方から外筒150の上筒部151を透して、環状空間150Aで螺旋状に流れる微粉4混じりの空気1の流れ8Aを目視確認できる。また、微粉除去装置の上方から上蓋170を透して、漏斗状空間140Aで螺旋状に流れる混合気3の流れ6A、特に、フィルタ130内での混合気3の流れ6Aを目視確認できる。このように、微粉除去装置の外部から外筒150の上筒部151および上蓋170を透して、微粉除去装置の内部全体を見通すことができ、微粉除去装置の処理状況を確認できる。   Thereby, the flow 8A of the air 1 mixed with the fine powder 4 flowing spirally in the annular space 150A through the outer cylinder 150 from the outside of the fine powder removing device can be visually confirmed. Further, the flow 6A of the air-fuel mixture 3 flowing spirally in the funnel-shaped space 140A through the upper lid 170 from above the fine powder removing device, in particular, the flow 6A of the air-fuel mixture 3 in the filter 130 can be visually confirmed. In this way, the entire inside of the fine powder removing device can be seen through the upper cylinder portion 151 and the upper lid 170 of the outer cylinder 150 from the outside of the fine powder removing device, and the processing status of the fine powder removing device can be confirmed.

次に、本実施例の微粉除去装置の使用について説明する。   Next, the use of the fine powder removing apparatus of this embodiment will be described.

本実施例の微粉除去装置は、実施例1、2、3の微粉除去装置に代えて成形機90に設置し、第1の流入管180をペレット2の貯槽92にホースや配管を介して接続し、第2の流入管220を貯槽92と第1の流入管60を接続している輸送配管123から分岐した分岐配管126の末端に接続し、流出管190を空気1に運動エネルギーを与えたり圧力を高めたりする流体機器であるブロア93の吸込口にホースや配管を介して接続し、バッチ処理で、ある単位のペレット2毎に処理し、そのペレット2から微粉4などの異物を除去する。本実施例の微粉除去装置を成形機90に設置するときは原料供給ホッパ91は取り外し、その接続口に台板160を介して鉛直に設置(斜めに設置する場合もある)して使用する。流出管190とブロア93の間には集塵装置94を設ける。   The fine powder removing device of the present embodiment is installed in the molding machine 90 instead of the fine powder removing devices of the first, second, and third embodiments, and the first inflow pipe 180 is connected to the storage tank 92 of the pellet 2 via a hose or a pipe. The second inflow pipe 220 is connected to the end of the branch pipe 126 branched from the transport pipe 123 connecting the storage tank 92 and the first inflow pipe 60, and the outflow pipe 190 is given kinetic energy to the air 1. Connected to the suction port of the blower 93, which is a fluid device that increases the pressure, through a hose or pipe, and treats each unit of pellet 2 by batch processing, and removes foreign matter such as fine powder 4 from the pellet 2. . When the fine powder removing device of this embodiment is installed in the molding machine 90, the raw material supply hopper 91 is removed, and the connecting port is vertically installed through the base plate 160 (may be installed obliquely). A dust collector 94 is provided between the outflow pipe 190 and the blower 93.

次に、本実施例の微粉除去装置の作用について説明する。   Next, the operation of the fine powder removing apparatus of this embodiment will be described.

流出管190に接続したブロア93を駆動すると、吸引式の配管輸送が開始される。この吸引式の配管輸送により、図17、図18に示すように、空気1とペレット2との混合気3(微粉4を含んでいる)が、第1の流入管180を通り、内筒140の下筒部143内(漏斗状空間140Aの下部)にそこの側壁から接線方向に流入し、内筒140の下筒部143の内壁に沿って旋回しながら上昇して中筒部142に入り、中筒部142の内壁に沿って旋回しながら上昇してフィルタ130(漏斗状空間140Aの上部)に入り、フィルタ130の内壁に沿って旋回しながら上昇し、上蓋170に達する。このとき、ペレット2の配管輸送用の空気1の一部1aが、第2の流入管220を通り、内筒140のフィルタ130内(柱状空間140Aの上部)にそこの側壁から接線方向に流入し、内筒140のフィルタ130の内壁に沿って旋回しながらフィルタ130の内壁に沿って螺旋状に流れる混合気3の流れ6Aと旋回方向が同じ旋回気流9Cを内筒140のフィルタ130内に形成する。この旋回気流9Cはフィルタ130の内壁に沿って螺旋状に流れる混合気3の流れ6を巻き込み、その混合気3の流れ6を旋回流に近付けてよりリード角の小さい螺旋状とする。   When the blower 93 connected to the outflow pipe 190 is driven, suction-type piping transportation is started. As a result of this suction-type piping transportation, as shown in FIGS. 17 and 18, the air-fuel mixture 3 (containing fine powder 4) of air 1 and pellets 2 passes through the first inflow pipe 180 and the inner cylinder 140. Flows into the lower cylinder part 143 (lower part of the funnel-shaped space 140A) from the side wall there, rises while turning along the inner wall of the lower cylinder part 143 of the inner cylinder 140, and enters the middle cylinder part 142 The filter 130 (upper part of the funnel-shaped space 140 </ b> A) rises while turning along the inner wall of the middle cylinder part 142, rises while turning along the inner wall of the filter 130, and reaches the upper lid 170. At this time, a part 1 a of the air 1 for transporting the pipe of the pellet 2 passes through the second inflow pipe 220 and flows into the filter 130 of the inner cylinder 140 (upper part of the columnar space 140A) from the side wall in the tangential direction. Then, a swirling airflow 9C having the same swirling direction as the flow 6A of the air-fuel mixture 3 flowing spirally along the inner wall of the filter 130 while swirling along the inner wall of the filter 130 of the inner cylinder 140 enters the filter 130 of the inner cylinder 140. Form. The swirling airflow 9C entrains the flow 6 of the air-fuel mixture 3 that flows spirally along the inner wall of the filter 130, and brings the flow 6 of the air-fuel mixture 3 closer to the swirling flow into a spiral with a smaller lead angle.

ここで、内筒140の側壁のうち、内筒140の中心軸141の軸方向において流出管190と重なっている部分は、内筒140の中筒部142の側壁によって通気遮断のため無孔の通気止め部となっており、環状空間150A下部の内壁(内筒140の中筒部142の側壁)からその内側にある漏斗状空間140A上下中部の空気1、1aを吸引することがなく、環状空間150A下部に図示しない強い旋回気流を形成でき、しかも流出管190は環状空間150A下部に入り込んだ入口191を形成するように、その環状空間150A下部に入り込んだ管側壁193を有するので、旋回気流の旋回方向とは逆向きでの吸気を少なくすることができ、より強い旋回気流を形成できるため、フィルタ130の内壁に沿って螺旋状に流れる混合気3の流れ6Aはよりリード角の小さい螺旋状となる。   Here, a portion of the side wall of the inner cylinder 140 that overlaps the outflow pipe 190 in the axial direction of the central axis 141 of the inner cylinder 140 is a non-hole for blocking airflow by the side wall of the inner cylinder portion 142 of the inner cylinder 140. It is a ventilation stopper, and the air 1, 1a in the upper and lower middle parts of the funnel-like space 140A inside the annular space 150A is not sucked from the inner wall (the side wall of the middle cylinder part 142 of the inner cylinder 140). Since a strong swirling air flow (not shown) can be formed in the lower portion of the space 150A, and the outflow pipe 190 has a pipe side wall 193 that enters the lower portion of the annular space 150A so as to form an inlet 191 that enters the lower portion of the annular space 150A. Since the intake air in the direction opposite to the swirling direction of the air can be reduced and a stronger swirling airflow can be formed, the mixing flows spirally along the inner wall of the filter 130. 3 of flow 6A becomes more of a lead angle small spiral.

また、フィルタ130の側壁に設けたフィルタ孔131は、長さ方向が内筒140の中心軸141と直角の方向である長孔である。一方、フィルタ130の内壁に沿って螺旋状に流れる混合気3には遠心力が働いている。このため、フィルタ孔131は、混合気3中のペレット2をフィルタ孔131の長さ方向の上下辺に沿って移動させ、フィルタ130の内壁に沿って螺旋状に流れる混合気3の流れ6Aはよりリード角の小さい螺旋状となる。   The filter hole 131 provided in the side wall of the filter 130 is a long hole whose length direction is a direction perpendicular to the central axis 141 of the inner cylinder 140. On the other hand, centrifugal force is acting on the air-fuel mixture 3 that flows spirally along the inner wall of the filter 130. For this reason, the filter hole 131 moves the pellet 2 in the air-fuel mixture 3 along the upper and lower sides in the length direction of the filter hole 131, and the flow 6A of the air-fuel mixture 3 flowing spirally along the inner wall of the filter 130 is It becomes a spiral with a smaller lead angle.

なお、第2の流入管220を内筒140の上下中間部(フィルタ130)の側壁に設けた場合、内筒140の側壁のうち、内筒140の中心軸141の軸方向において第2の流入管120と重なっている部分は、内筒140の中筒部142の側壁によって通気遮断のため無孔の通気止め部となっており、第2の流入管220から流入させた空気1aが漏斗状空間140A上下中間部の外壁(内筒140の中筒部142の側壁)からその周囲にある環状空間150A下部に漏れることがなく、漏斗状空間140A上下中部(内筒140の中筒部13内)に強い旋回気流9Aを形成できるため、フィルタ130の内壁に沿って螺旋状に流れる混合気3の流れ6Aはよりリード角の小さい螺旋状となる。   When the second inflow pipe 220 is provided on the side wall of the upper and lower intermediate portion (filter 130) of the inner cylinder 140, the second inflow in the axial direction of the central axis 141 of the inner cylinder 140 out of the side walls of the inner cylinder 140. The portion overlapping the tube 120 is a non-porous air-blocking portion for blocking airflow by the side wall of the middle tube portion 142 of the inner tube 140, and the air 1a introduced from the second inflow tube 220 is funnel-shaped. There is no leakage from the outer wall of the space 140A upper and lower intermediate portion (side wall of the middle tube portion 142 of the inner tube 140) to the lower portion of the annular space 150A around it, and the upper and lower middle portion of the funnel-shaped space 140A (inside the middle tube portion 13 of the inner tube 140) Therefore, the flow 6A of the air-fuel mixture 3 flowing spirally along the inner wall of the filter 130 has a spiral shape with a smaller lead angle.

そして、1単位の混合気3は、ブロア93の駆動を停止するまで、フィルタ130の内壁に沿って旋回しながらフィルタ130内で滞留する、その間にフィルタ130の内壁に沿って螺旋状に流れる混合気3の流れ6Aで生じる遠心力の作用で、混合気3中のペレット2と微粉4とがフィルタ130の側壁の内外側に分離される。フィルタ孔131よりも大きいペレット2はフィルタ孔131を通り抜けることなくフィルタ130の側壁の内側に止まり、フィルタ孔131よりも小さい微粉4はフィルタ孔131を通り抜けフィルタ130の側壁の外側に分離する。このとき、フィルタ孔131でフィルタ130の側壁の内側から外側に向かって通り抜ける空気1の流れ7Aがあるので、ペレット2と微粉4とを容易に分離できる。   Then, one unit of the air-fuel mixture 3 stays in the filter 130 while swirling along the inner wall of the filter 130 until the drive of the blower 93 is stopped. During this period, the mixture 3 flows spirally along the inner wall of the filter 130. The pellet 2 and the fine powder 4 in the air-fuel mixture 3 are separated on the inner and outer sides of the side wall of the filter 130 by the action of the centrifugal force generated in the flow 6 </ b> A of the air 3. The pellet 2 larger than the filter hole 131 stops inside the filter 130 without passing through the filter hole 131, and the fine powder 4 smaller than the filter hole 131 passes through the filter hole 131 and is separated to the outside of the filter 130 side wall. At this time, since there is a flow 7A of air 1 that passes from the inside to the outside of the side wall of the filter 130 at the filter hole 131, the pellet 2 and the fine powder 4 can be easily separated.

フィルタ130の側壁の外側、すなわち、環状空間150Aに分離した微粉4は、そこで螺旋状に流れる空気1の流れ8Aにより、旋回しながら下降して環状空間150A下部に達し、流出管190を通り、外筒150の下筒部152の側壁から接線方向に流出する。すなわち、外筒150外に流出する。外筒150外に流出した空気1に含まれる微粉4は集塵装置94により回収され、ブロア93の吐出口からはクリーンな空気1が大気中に放出される。   The fine powder 4 separated from the side wall of the filter 130, that is, the annular space 150A, descends while swirling by the flow 1A of the air 1 flowing spirally there, reaches the lower portion of the annular space 150A, passes through the outflow pipe 190, It flows out in the tangential direction from the side wall of the lower cylinder portion 152 of the outer cylinder 150. That is, it flows out of the outer cylinder 150. The fine powder 4 contained in the air 1 flowing out of the outer cylinder 150 is collected by the dust collector 94, and clean air 1 is discharged into the atmosphere from the discharge port of the blower 93.

フィルタ130の内壁に沿って旋回しながらフィルタ130で滞留する間に、微粉4が除去されたペレット2は、ブロア93の駆動を停止することにより落下し、内筒140の下筒部143の下部開口である排出口143aから成形機90に排出される。勿論、フィルタ130の内壁に沿って旋回しながら滞留する間には、フィルタ孔131を通り抜ける塵やプラスチック樹脂の小片なども微粉4とともに異物として除去されている。こうして1単位の微粉除去処理が終了するとブロア93の駆動を開始し、次の1単位の微粉除去処理を行う。   While swirling along the inner wall of the filter 130 and staying in the filter 130, the pellet 2 from which the fine powder 4 has been removed falls by stopping the drive of the blower 93, and the lower part of the lower cylinder part 143 of the inner cylinder 140. It is discharged to the molding machine 90 from the discharge port 143a which is an opening. Of course, while staying while swirling along the inner wall of the filter 130, dust passing through the filter hole 131, small pieces of plastic resin, and the like are removed as foreign matter together with the fine powder 4. When one unit of fine powder removal processing is completed, the blower 93 starts to be driven, and the next one unit of fine powder removal processing is performed.

こうして、本実施例の微粉除去装置と参考例の微粉除去装置は、バッチ処理で、ある単位のペレット2毎に処理し、そのペレット2から微粉4などの異物を除去する。   Thus, the fine powder removing apparatus of the present embodiment and the fine powder removing apparatus of the reference example process each pellet 2 in a unit by batch processing, and remove foreign matters such as the fine powder 4 from the pellet 2.

バッチ処理ではブロア93の駆動時間(吸引時間)によりペレット2のフィルタ130の内壁での滞留時間が決まるので、本実施例の微粉除去装置で第2の流入管220の有無、環状空間150A下部での旋回気流の強弱、フィルタ孔131の形状の違いによる滞留時間の差はないが、本実施例の微粉除去装置の変形構造として、装置上部に処理済みのペレット2を排出する排出口を設け、処理対象のペレット2を装置下部から入れて、処理済みのペレット2を装置上部から抜くタイプ(連続処理タイプ)がある。このタイプの場合、混合気3のフィルタ面での滞留時間が長くなることで、微粉4の除去効率を上げることができる。   In the batch processing, the residence time of the pellet 2 on the inner wall of the filter 130 is determined by the driving time (suction time) of the blower 93. Therefore, in the fine powder removing apparatus of this embodiment, the presence / absence of the second inflow pipe 220 and the lower part of the annular space 150A There is no difference in residence time due to the strength of the swirling airflow and the shape of the filter hole 131, but as a modified structure of the fine powder removing device of this embodiment, a discharge port for discharging the processed pellet 2 is provided at the upper part of the device, There is a type (continuous processing type) in which the pellets 2 to be processed are inserted from the lower part of the apparatus and the processed pellets 2 are extracted from the upper part of the apparatus. In the case of this type, the removal time of the fine powder 4 can be increased by increasing the residence time of the air-fuel mixture 3 on the filter surface.

以上、本実施例によっても、実施例1、2と同じ効果を奏する。   As described above, the present embodiment has the same effects as the first and second embodiments.

また、本実施例の微粉除去装置においても、第2の流入管220Aに実施例1と同様に傾斜角θを付けてもよい。また、ペレット2の配管輸送とは別の専用配管系によって旋回気流発生用の気体としての空気1を第2の流入管220Aに供給してもよい。さらに、実施例2の微粉除去装置で付加した中心筒100とフィルタカバー110を付加できる。   Also in the fine powder removing apparatus of the present embodiment, the second inflow pipe 220A may be provided with an inclination angle θ as in the first embodiment. Further, the air 1 as the gas for generating the swirling airflow may be supplied to the second inflow pipe 220 </ b> A by a dedicated pipe system different from the pipe transportation of the pellet 2. Furthermore, the center tube 100 and the filter cover 110 added by the fine powder removing apparatus of the second embodiment can be added.

以上、実施例1ないし4では粉粒体の周知の吸引式管路輸送に適用した微粉除去装置で本発明を説明したが、本発明はそれに限定されることなく、その要旨を逸脱しない範囲内で種々変形実施することができる。たとえば粉粒体の周知の圧送式管路輸送に適用でき、窒素ガスや炭酸ガスを輸送気体として用いる管路輸送にも適用できるものである。また、実施例1ないし4では一種類の粉粒体を管路輸送し、微粉を除去する装置で本発明を説明したが、複数種類の粉粒体を管路輸送すると共に、混合し、微粉を除去する装置にも適用できるものである。   As described above, in the first to fourth embodiments, the present invention has been described with the fine powder removing apparatus applied to the well-known suction-type pipeline transportation of the granular material. However, the present invention is not limited thereto, and the scope of the present invention is not deviated. Various modifications can be made. For example, the present invention can be applied to the well-known pressure-feed type pipe transportation of granular materials, and can also be applied to pipe transportation using nitrogen gas or carbon dioxide gas as a transport gas. In addition, in Examples 1 to 4, the present invention has been described with an apparatus that transports one type of granular material and removes fine powder. However, a plurality of types of granular material are transported and mixed to form fine powder. It is applicable also to the apparatus which removes.

また、フィルタの側壁の内外に螺旋流を形成するには、混合気の流入管(第1の流入管)と微粉混じりの空気の流出管の接続方向に関して、その両方を接線方向で筒側壁に設ける必要はなくいずれか一方で足り、混合気の流入管と微粉混じりの空気の流出管の内筒の中心軸の軸方向の位置に関して、それが相違していればよく、この場合、両者が内筒の中心軸の軸方向において全く重ならなくても、一部が重なっていてもよい。なお、実施例4の場合は混合気の流入管と微粉混じりの空気の流出管の内筒の中心軸の軸方向の位置は同一であってもよい。また、フィルタは混合気のガイド機能を持たないフィルタ孔を側壁に設けた周知のものであってもよい。また、フィルタ孔は、長孔でなくてもよい。また、フィルタ孔は、フィルタの内壁に沿って螺旋状に流れる混合気の自由流れを、その自由流れ方向よりも内筒の中心軸と直角の方向に近い方向から内筒の中心軸と直角の方向までの1方向に案内する長孔であってもよい。この場合、フィルタ孔は、長さ方向が案内方向である長孔に形成する。   In addition, in order to form a spiral flow inside and outside the filter side wall, both the tangential direction of the connection direction of the mixed gas inflow pipe (first inflow pipe) and the fine powder mixed air outflow pipe to the cylindrical side wall. It is not necessary to provide either one, and it is sufficient as long as it is different with respect to the axial position of the central axis of the inner cylinder of the inflow pipe of mixture gas and the outflow pipe of air mixed with fine powder. Even if they do not overlap at all in the axial direction of the central axis of the inner cylinder, they may overlap. In the case of the fourth embodiment, the axial position of the central axis of the inner cylinder of the inflow pipe for the air-fuel mixture and the outflow pipe for the air mixed with fine powder may be the same. The filter may be a well-known filter provided with a filter hole on the side wall that does not have an air-fuel mixture guide function. Further, the filter hole may not be a long hole. Further, the filter hole allows the free flow of the air-fuel mixture flowing spirally along the inner wall of the filter to be perpendicular to the central axis of the inner cylinder from a direction closer to the central axis of the inner cylinder than the free flow direction. It may be a long hole guiding in one direction up to the direction. In this case, the filter hole is formed in a long hole whose length direction is the guide direction.

1 空気(輸送気体)
2 ペレット(粉粒体)
3 混合気
4 微粉
10,140 内筒
11、141 中心軸
20 150 外筒
30、130 フィルタ
31、131 フィルタ孔
60、180 第1の流入管(第1の流入口)
70、190 流出管(流出口)
120、220 第2の流入管(第2の流入口)
9、9A、9B、9C 旋回気流
1 Air (transport gas)
2 Pellet (powder)
3 Mixture 4 Fine powder 10,140 Inner cylinder 11, 141 Center axis 20 150 Outer cylinder 30, 130 Filter 31, 131 Filter hole 60, 180 First inlet pipe (first inlet)
70, 190 Outflow pipe (outlet)
120, 220 Second inlet pipe (second inlet)
9, 9A, 9B, 9C Swirl airflow

Claims (5)

内筒および該内筒の外側に配置する外筒を備え、前記内筒の側壁のうち、前記内筒の中心軸の軸方向において前記外筒の側壁と重なる部分の少なくとも一部分を多孔のフィルタとし、前記内筒内に粉粒体の輸送気体と前記粉粒体との混合気を流入させる流入口を設けるとともに、前記内筒内に流入した前記混合気に含まれる微粉とともに前記フィルタの側壁を通過する前記輸送気体を前記外筒外に流出させる流出口を設ける微粉除去装置において、前記内筒内に旋回気流発生用の気体を流入させる第2の流入口を設け、前記第2の流入口から前記内筒内に流入させた前記気体によって、前記フィルタの内壁に沿って螺旋状に流れる前記混合気の流れと旋回方向が同じ前記旋回気流を形成したことを特徴とする微粉除去装置。   An inner cylinder and an outer cylinder arranged outside the inner cylinder, and at least a portion of the side wall of the inner cylinder that overlaps the side wall of the outer cylinder in the axial direction of the central axis of the inner cylinder is a porous filter. In addition, an inlet is provided in the inner cylinder for allowing a mixture of the particulate transport gas and the particulate to flow in, and the side wall of the filter is disposed along with the fine powder contained in the mixture flowing into the inner cylinder. In the fine powder removing apparatus provided with an outlet for allowing the transporting gas passing therethrough to flow out of the outer cylinder, a second inlet for allowing a gas for generating a swirling airflow to flow into the inner cylinder is provided, and the second inlet is provided. The fine powder removing device, wherein the swirling air flow having the same swirling direction as the flow of the air-fuel mixture flowing spirally along the inner wall of the filter is formed by the gas that has flowed into the inner cylinder from the inside. 前記第2の流入口は、前記流入口よりも下部に設けることを特徴とする請求項1に記載の微粉除去装置。   The fine powder removing apparatus according to claim 1, wherein the second inflow port is provided below the inflow port. 前記第2の流入口は、前記流入口よりも上部に設けることを特徴とする請求項1に記載の微粉除去装置。   The fine powder removing apparatus according to claim 1, wherein the second inflow port is provided above the inflow port. 前記流入口から流入させる前記混合気中の前記輸送気体の流量よりも前記第2の流入口から流入させる前記気体の流量の方を少なくすることを特徴とする請求項1ないし3のいずれか1項に記載の微粉除去装置。   4. The flow rate of the gas flowing in from the second inflow port is made smaller than the flow rate of the transport gas in the air-fuel mixture flowing in from the inflow port. 5. The fine powder removing apparatus according to item. 前記第2の流入口から流入させる前記気体の流入方向は、上向き成分を含むことを特徴とする請求項1ないし4のいずれか1項に記載の微粉除去装置。   The fine powder removing apparatus according to any one of claims 1 to 4, wherein an inflow direction of the gas introduced from the second inflow port includes an upward component.
JP2010229276A 2010-10-12 2010-10-12 Fine powder removing apparatus Pending JP2012081643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010229276A JP2012081643A (en) 2010-10-12 2010-10-12 Fine powder removing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010229276A JP2012081643A (en) 2010-10-12 2010-10-12 Fine powder removing apparatus

Publications (1)

Publication Number Publication Date
JP2012081643A true JP2012081643A (en) 2012-04-26

Family

ID=46241037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010229276A Pending JP2012081643A (en) 2010-10-12 2010-10-12 Fine powder removing apparatus

Country Status (1)

Country Link
JP (1) JP2012081643A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017109181A (en) * 2015-12-17 2017-06-22 積水フィルム株式会社 Cyclone, transportation method
CN108372114A (en) * 2018-01-29 2018-08-07 浙江理工大学 A kind of fresh tea leaves winnowing machine
JP2020018418A (en) * 2018-07-31 2020-02-06 パナソニックIpマネジメント株式会社 Clothes dryer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017109181A (en) * 2015-12-17 2017-06-22 積水フィルム株式会社 Cyclone, transportation method
CN108372114A (en) * 2018-01-29 2018-08-07 浙江理工大学 A kind of fresh tea leaves winnowing machine
JP2020018418A (en) * 2018-07-31 2020-02-06 パナソニックIpマネジメント株式会社 Clothes dryer
JP7142195B2 (en) 2018-07-31 2022-09-27 パナソニックIpマネジメント株式会社 clothes dryer

Similar Documents

Publication Publication Date Title
JP5736142B2 (en) Fine powder removal device
CN105597460B (en) For the filtrate tank of cleaner and the cleaner with it
TWI523693B (en) Swirl generator
US9174225B2 (en) Filter
JP2007216116A (en) Method and apparatus for removing fine particle from granular material
CA2687349A1 (en) Induced vortex particle separator
JP5039074B2 (en) Cyclone equipment
JP2012081643A (en) Fine powder removing apparatus
JP2006346538A (en) Cyclone type solid-gas separator
JP5401392B2 (en) Fine powder removal device
RU2485425C2 (en) Method and device for coarse separation of solid particles from gases contaminated with solid substances
JP5695874B2 (en) Fine powder removal device
CN104307286A (en) High-efficiency combined type dust collection device
JP2012081407A (en) Fine powder removing apparatus
KR101149772B1 (en) Cyclone
JP2006142261A (en) Filter unit
CN117580647A (en) Multi cyclone sediment filter
JP7232736B2 (en) air purifier
RU2380166C1 (en) Device for wet cleaning of gases
CN110812943A (en) Filtering structure, pre-filter and filtering method
CN219630945U (en) Dust removing device
KR20190021305A (en) Cyclone separator with outflow of underflow prevented
KR101425000B1 (en) Particle Separating Apparatus
JP2019084478A (en) Air separator
KR20180135679A (en) Cyclone separator with outflow of underflow prevented