JP2012081440A - Vinylpyridine resin for catalyst carrier and method of producing the same - Google Patents

Vinylpyridine resin for catalyst carrier and method of producing the same Download PDF

Info

Publication number
JP2012081440A
JP2012081440A JP2010231321A JP2010231321A JP2012081440A JP 2012081440 A JP2012081440 A JP 2012081440A JP 2010231321 A JP2010231321 A JP 2010231321A JP 2010231321 A JP2010231321 A JP 2010231321A JP 2012081440 A JP2012081440 A JP 2012081440A
Authority
JP
Japan
Prior art keywords
resin
vinylpyridine
pores
polymerization initiator
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010231321A
Other languages
Japanese (ja)
Other versions
JP5592225B2 (en
Inventor
Yukio Yu
志雄 游
Takeshi Minami
武志 皆見
Chikako Hashimoto
智佳子 橋本
Yoichi Umehara
洋一 梅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP2010231321A priority Critical patent/JP5592225B2/en
Publication of JP2012081440A publication Critical patent/JP2012081440A/en
Application granted granted Critical
Publication of JP5592225B2 publication Critical patent/JP5592225B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vinylpyridine resin, which is hard to powder and thermally decompose, contains many pores of a small size such that deterioration of carbonylation catalyst activity of methanol by thermal decomposition is suppressed, and has a pore capacity and a specific surface area which can provide sufficient catalyst activity.SOLUTION: The vinylpyridine resin has a capacity ratio of pores having pore a diameter of 3-5 nm to all pores of 4% or more and 60% or less, an overall pore capacity of 0.15 cc/g or more and 0.35 cc/g or less, and a specific surface area of 20 m/g or more and 100 m/g or less. The method of producing the vinylpyridine resin includes using a poor solvent and a good solvent in combination as porous agents, the amount of the good solvent being 50 wt.% or more and less than 90 wt.% relative to the total weight of the porous agents.

Description

本発明は、メタノールのカルボニル化反応による酢酸製造の際に触媒担体として用いられるビニルピリジン樹脂及びその製造方法に関する。   The present invention relates to a vinylpyridine resin used as a catalyst carrier in the production of acetic acid by methanol carbonylation reaction and a method for producing the same.

酢酸はポリ酢酸ビニル、アセチルセルロース及び酢酸エステル類の原料、並びにテレフタル酸製造プラントの溶媒等、幅広い用途を持つ基礎化学品である。   Acetic acid is a basic chemical with a wide range of uses, such as raw materials for polyvinyl acetate, acetylcellulose and acetates, and solvents for terephthalic acid production plants.

化学工業上利用される酢酸の製造方法としては、メタノールのカルボニル化、アセトアルデヒドの部分酸化、並びにブタン及びプロパン等の酸化などによる方法が公知であるが、現在、その大部分はメタノールのカルボニル化によってなされている。   As methods for producing acetic acid used in the chemical industry, methods using carbonylation of methanol, partial oxidation of acetaldehyde, oxidation of butane, propane and the like are known, but most of them are currently produced by carbonylation of methanol. Has been made.

メタノールのカルボニル化による酢酸の製造方法としては、ロジウム化合物とヨウ化メチルとを均一に溶解した水含有酢酸溶媒中でメタノールと一酸化炭素とを反応させる「モンサント法」(特許文献1)がよく知られている。また、近年ではモンサント法を改良した方法として、多孔質のビニルピリジン樹脂担体にロジウムを担持させた触媒を用いる不均一系で反応を進行させるという技術(特許文献2、特許文献3、特許文献4、特許文献5)が提案され、実用化も図られている。   As a method for producing acetic acid by carbonylation of methanol, “Monsanto method” (Patent Document 1) in which methanol and carbon monoxide are reacted in a water-containing acetic acid solvent in which a rhodium compound and methyl iodide are uniformly dissolved is often used. Are known. Further, in recent years, as an improved method of the Monsanto method, a technique in which the reaction proceeds in a heterogeneous system using a catalyst in which rhodium is supported on a porous vinylpyridine resin carrier (Patent Document 2, Patent Document 3, Patent Document 4). Patent Document 5) has been proposed and put to practical use.

これらの改良した方法では、メタノールから酢酸を高収率で製造し得るというモンサント法の利点に加えて、反応生成液の水分濃度を低くしてヨウ化メチルの加水分解によるヨウ化水素酸の生成量を減少することにより装置系の腐食や製品酢酸の分離精製工程の負荷を抑えることができ、ロジウム錯体を固定化して触媒の高濃度化を達成することにより反応速度が高まり、触媒を反応器内に封じ込めて触媒の析出を減少することにより分離回収に必要なコストと負荷を抑えることができる、といった利点をさらに有する。   In these improved methods, in addition to the advantage of the Monsanto method that acetic acid can be produced from methanol in high yields, hydroiodic acid is produced by hydrolysis of methyl iodide by reducing the water concentration in the reaction product solution. By reducing the amount, the corrosion of the equipment system and the load of the separation and purification process of product acetic acid can be suppressed, and the reaction rate increases by immobilizing the rhodium complex to achieve a high concentration of the catalyst, and the catalyst is converted into the reactor. It has the further advantage that the cost and load required for separation and recovery can be reduced by reducing the deposition of the catalyst by enclosing the catalyst inside.

これらの技術に用いることのできる多孔質のビニルピリジン樹脂として、特許文献6には、ビニルピリジンモノマーに架橋剤としてのジビニルベンゼン、ポーラス剤としてのイソオクタン、及び重合開始剤としての過酸化ベンゾイルを加えた油相と、密度調整及びビニルピリジンの水相への溶解防止のために加えられる塩化ナトリウム、水相に溶解したビニルピリジンモノマーの重合を防止するために加えられる亜硝酸ナトリウム、並びにセルロース系懸濁安定剤を含有する水相と、を重合反応器内で混合し、油相を分散させて80℃で2時間重合させた後、95℃で5時間熱処理することにより製造したビニルピリジン樹脂が開示されている。   As a porous vinylpyridine resin that can be used in these technologies, Patent Document 6 adds divinylbenzene as a crosslinking agent, isooctane as a porous agent, and benzoyl peroxide as a polymerization initiator to a vinylpyridine monomer. Oil phase, sodium chloride added to adjust density and prevent dissolution of vinylpyridine in the aqueous phase, sodium nitrite added to prevent polymerization of vinylpyridine monomer dissolved in the aqueous phase, and cellulosic suspension A vinyl pyridine resin produced by mixing an aqueous phase containing a turbid stabilizer in a polymerization reactor, dispersing the oil phase and polymerizing at 80 ° C. for 2 hours, followed by heat treatment at 95 ° C. for 5 hours. It is disclosed.

特公昭47−3334号Japanese Patent Publication No.47-3334 特開昭63−253047号JP-A-63-253047 特開平5−306253号JP-A-5-306253 特開平5−306254号JP-A-5-306254 特開平6−315637号JP-A-6-315637 特公昭61−25731号公報Japanese Patent Publication No. 61-25731

しかし、特許文献6等に記載されている従来の方法で得られるビニルピリジン樹脂では、樹脂が粉化や熱分解等しやすく、また、粉化や熱分解によって生じる離脱物によって細孔が閉塞されることにより触媒活性の劣化が早まるという問題があった。   However, in the vinyl pyridine resin obtained by the conventional method described in Patent Document 6 and the like, the resin is easily pulverized or thermally decomposed, and the pores are blocked by the detachment generated by pulverization or thermal decomposition. As a result, there is a problem that the deterioration of the catalyst activity is accelerated.

上記の課題に鑑み、本発明は、粉化及び熱分解しにくく、並びに熱分解による触媒活性の劣化が抑制され、かつ十分な触媒活性を有するビニルピリジン樹脂及びその製造方法を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a vinyl pyridine resin that is difficult to be pulverized and thermally decomposed and that has a reduced catalytic activity due to thermal decomposition and has sufficient catalytic activity, and a method for producing the same. And

本発明者らは鋭意研究の結果、3〜5nmの細孔径を有する細孔が全細孔に占める容積の割合が4%以上60%以下、全細孔容積が0.15cc/g以上0.35cc/g以下、比表面積が20m/g以上100m/g以下であるようなビニルピリジン樹脂によって上記の課題が解決されることを見出した。 As a result of intensive studies, the present inventors have found that the proportion of the volume of pores having a pore diameter of 3 to 5 nm in the total pores is 4% or more and 60% or less, and the total pore volume is 0.15 cc / g or more and 0.0. It has been found that the above problems can be solved by a vinylpyridine resin having a surface area of 35 cc / g or less and a specific surface area of 20 m 2 / g or more and 100 m 2 / g or less.

また、ポーラス剤として貧溶媒と良溶媒とを、良溶媒の量がポーラス剤の全重量に対して50wt%以上90wt%未満となるように組み合わせて用いることで、本発明に係るビニルピリジン樹脂を製造できることを見出し、もって本発明を完成させた。   Further, by using a poor solvent and a good solvent as the porous agent in combination such that the amount of the good solvent is 50 wt% or more and less than 90 wt% with respect to the total weight of the porous agent, the vinylpyridine resin according to the present invention is used. As a result, the present invention was completed.

本発明のビニルピリジン樹脂にロジウム錯体を担持させた触媒は、メタノールのカルボニル化反応に対して十分な触媒活性を有し、かつ粉化や熱分解しにくく、さらにはより高い熱分解率まで失活しない。   The catalyst in which the rhodium complex is supported on the vinylpyridine resin of the present invention has sufficient catalytic activity for the carbonylation reaction of methanol, is not easily pulverized or thermally decomposed, and is lost to a higher thermal decomposition rate. I do not live.

本発明の実施例によって得られた樹脂の代表的な細孔径分布を示す図。The figure which shows the typical pore diameter distribution of resin obtained by the Example of this invention. 樹脂の全細孔容積に対する3〜5nmの細孔径を有する細孔が全細孔に占める容積の割合と粉化速度との関係を示す図。The figure which shows the relationship between the ratio of the volume which the pore which has a 3-5 nm pore diameter with respect to the total pore volume of resin occupies for all the pores, and the powdering speed | rate. 樹脂の全細孔容積とカルボニル化反応触媒活性との関係を示す図。The figure which shows the relationship between the total pore volume of resin, and carbonylation reaction catalytic activity. 本発明の実施例1及び比較例1における熱分解時間と触媒分解率との関係を示す図。The figure which shows the relationship between the thermal decomposition time and catalyst decomposition rate in Example 1 and Comparative Example 1 of the present invention. 本発明の実施例1及び比較例1における触媒分解率とカルボニル化反応触媒活性との関係を示す図。The figure which shows the relationship between the catalyst decomposition rate and carbonylation reaction catalytic activity in Example 1 and Comparative Example 1 of the present invention.

本発明に係るビニルピリジン樹脂は粒子状に製造されており、その粒子径が50μm以上1500μm以下、好ましくは200μm以上1000μm以下であることを特徴とする。また、本発明に係るビニルピリジン樹脂は、3〜5nmの細孔径を有する細孔が全細孔に占める容積の割合(以下、3〜5nm細孔容積比という)が4%以上60%以下、好ましくは4%以上50%以下であることを特徴とする。さらに、本発明に係るビニルピリジン樹脂は、全細孔容積が0.15cc/g以上0.35cc/g以下、好ましくは0.15cc/g以上0.25cc/g以下であり、比表面積が20m/g以上100m/g以下、好ましくは30m/g以上80m/g以下であることを特徴とする。 The vinylpyridine resin according to the present invention is produced in the form of particles, and the particle diameter is 50 μm or more and 1500 μm or less, preferably 200 μm or more and 1000 μm or less. The vinyl pyridine resin according to the present invention has a volume ratio (hereinafter referred to as 3 to 5 nm pore volume ratio) of pores having a pore diameter of 3 to 5 nm of 4 to 60%, Preferably, it is 4% or more and 50% or less. Furthermore, the vinylpyridine resin according to the present invention has a total pore volume of 0.15 cc / g or more and 0.35 cc / g or less, preferably 0.15 cc / g or more and 0.25 cc / g or less, and a specific surface area of 20 m. 2 / g or more and 100 m 2 / g or less, preferably 30 m 2 / g or more and 80 m 2 / g or less.

本発明者らの研究によれば、3〜5nm細孔容積比を4%以上とすることで、触媒の粉化速度や熱分解速度が従来のビニルピリジン樹脂よりも顕著に低くなるという利点を有する。   According to the studies by the present inventors, the 3-5 nm pore volume ratio is 4% or more, so that the catalyst powdering rate and the thermal decomposition rate are significantly lower than those of conventional vinylpyridine resins. Have.

触媒に使用されるビニルピリジン樹脂粒子は、0.10〜100μmのサイズを有しネットワーク状に架橋している数多くのマイクロジェルから構成されている。ここで、3〜5nmという小さい細孔径を有する細孔の割合を増やすためには、樹脂を構成するマイクロジェルのサイズを小さくし、かつ、マイクロジェル同士の融合を適度に制御する必要がある。そのため、3〜5nmの細孔径を有する細孔の容積比が4%以上である本発明のビニルピリジン樹脂では、樹脂を構成するマイクロジェル同士が均一かつ緻密に結合することになり、粉化や熱分解によるマイクロジェルの離脱が生じにくくなる。さらには、マイクロジェルのサイズが小さいため、離脱したマイクロジェルによる細孔の閉塞が生じにくく、細孔の閉塞による触媒活性の低下が抑制される。   The vinylpyridine resin particles used for the catalyst are composed of a number of microgels having a size of 0.10 to 100 μm and crosslinked in a network form. Here, in order to increase the proportion of pores having a small pore diameter of 3 to 5 nm, it is necessary to reduce the size of the microgels constituting the resin and appropriately control the fusion of the microgels. Therefore, in the vinylpyridine resin of the present invention in which the volume ratio of the pores having a pore diameter of 3 to 5 nm is 4% or more, the microgels constituting the resin are uniformly and densely bonded to each other. Microgel separation due to thermal decomposition is less likely to occur. Furthermore, since the size of the microgel is small, the clogging of the pores due to the detached microgel hardly occurs, and the decrease in the catalytic activity due to the clogging of the pores is suppressed.

一方で3〜5nm細孔容積比が60%を超えると反応物質の拡散が律速となり、触媒活性が低下する。   On the other hand, when the 3-5 nm pore volume ratio exceeds 60%, the diffusion of the reactant becomes rate-limiting and the catalytic activity is lowered.

また、全細孔容積が0.15cc/g未満であったり比表面積が20m/g未満であると十分な触媒活性が得られず、逆に全細孔容積が0.35cc/gを超えたり比表面積が100m/g以上であると、樹脂の構造に弱い部分が生じ、粉化や熱分解しやすくなる。 Further, if the total pore volume is less than 0.15 cc / g or the specific surface area is less than 20 m 2 / g, sufficient catalytic activity cannot be obtained, and conversely, the total pore volume exceeds 0.35 cc / g. When the specific surface area is 100 m 2 / g or more, a weak portion is generated in the resin structure, and the powder is easily pulverized or thermally decomposed.

本発明のビニルピリジン樹脂を製造する方法は特に限定されないが、例えばビニルピリジンモノマー、架橋剤、ポーラス剤及び重合開始剤を含む油性媒体と水性媒体とを混合して、ビニルピリジンモノマーを懸濁重合する方法によって製造することができる。   The method for producing the vinylpyridine resin of the present invention is not particularly limited. For example, an oily medium containing a vinylpyridine monomer, a crosslinking agent, a porous agent, and a polymerization initiator is mixed with an aqueous medium, and the vinylpyridine monomer is subjected to suspension polymerization. Can be manufactured by a method.

また、このとき水性媒体には必要に応じて適量の分散剤(懸濁安定剤)、界面活性剤、消ラジカル剤、比重調整剤及びpH調整剤等を含んでいてもよい。これらの油性媒体と水性媒体とを重合反応器内で混合し、緩やかに昇温して50℃〜80℃でポリマーを重合させ、さらに昇温して85℃〜95℃で熱処理を加えることにより、本発明のビニルピリジン樹脂を製造することができる。   At this time, the aqueous medium may contain an appropriate amount of a dispersant (suspension stabilizer), a surfactant, a deradical radical agent, a specific gravity adjuster, a pH adjuster, and the like as required. By mixing these oily medium and aqueous medium in a polymerization reactor, gradually raising the temperature to polymerize the polymer at 50 ° C. to 80 ° C., further raising the temperature and applying heat treatment at 85 ° C. to 95 ° C. The vinylpyridine resin of the present invention can be produced.

本発明におけるポーラス剤とは、モノマーを溶解するがモノマーが重合してできるポリマーを溶解しにくい溶媒をいい、例えば架橋共重合体を膨潤する性質を有する有機溶媒や、非膨潤性の有機溶媒などを用いることができる。   The porous agent in the present invention refers to a solvent that dissolves a monomer but hardly dissolves a polymer formed by polymerization of the monomer. For example, an organic solvent having a property of swelling a crosslinked copolymer, a non-swellable organic solvent, etc. Can be used.

ビニルピリジン樹脂粒子が懸濁重合法で合成される際には、モノマーと一緒に仕込んだポーラス剤とが相分離することによって、数多くの0.10〜100μmのサイズを有するネットワーク状に架橋しているマイクロジェルが生成される。マイクロジェルのサイズ、マイクロジェル同士の融合、又はマイクロジェルの隙間における有機溶媒の分布はマイクロジェルとポーラス剤との相溶性により顕著に影響される。   When vinylpyridine resin particles are synthesized by the suspension polymerization method, the porous agent charged together with the monomer is phase-separated to crosslink into a large number of networks having a size of 0.10 to 100 μm. A microgel is generated. The size of the microgel, the fusion between the microgels, or the distribution of the organic solvent in the gap between the microgels is significantly affected by the compatibility between the microgel and the porous agent.

ここで、本発明に係るビニルピリジン樹脂の製造方法は、ポーラス剤としてビニルピリジンポリマーに対する貧溶媒と良溶媒とを組み合わせて用いることによってビニルピリジンポリマーと溶媒との相溶性を調整し、マイクロジェルの析出及び析出したマイクロジェル同士の溶媒中のモノマーを介した融合を調節することを特徴とする。   Here, the method for producing a vinyl pyridine resin according to the present invention adjusts the compatibility of the vinyl pyridine polymer and the solvent by using a poor solvent and a good solvent for the vinyl pyridine polymer in combination as a porous agent. It is characterized by controlling the precipitation and fusion of the precipitated microgels via monomers in a solvent.

ポリマーとポーラス剤として用いられる溶媒との相溶性は両者の極性に左右され、極性が近いほど相溶性が高い。溶解性の尺度として、分子間結合力を表す凝集エネルギー密度の平方根で示される溶解パラメータ(SP)が使われている。本発明においては、ビニルピリジンポリマーのSPとの差の絶対値が2より小さいSPを有する溶媒を良溶媒と、2より大きいSPを有するものを貧溶媒と定義する。   The compatibility between the polymer and the solvent used as the porous agent depends on the polarities of the two, and the closer the polarity is, the higher the compatibility is. As a measure of solubility, a solubility parameter (SP) represented by the square root of the cohesive energy density representing intermolecular bonding force is used. In the present invention, a solvent having an SP whose absolute value of the difference from the SP of the vinylpyridine polymer is less than 2 is defined as a good solvent, and a solvent having an SP greater than 2 is defined as a poor solvent.

このような良溶媒としては例えば、トリメチルベンゼン、トルエン、キシレン、2−エチルヘキサノール等を用いることができる。また、このような貧溶媒としては例えば、ジオクチルフタレート、オクタン、ノナン等を用いることができる。   As such a good solvent, for example, trimethylbenzene, toluene, xylene, 2-ethylhexanol and the like can be used. Moreover, as such a poor solvent, dioctyl phthalate, octane, nonane, etc. can be used, for example.

また、本発明において「組み合わせる」とは、ポーラス剤について使用されるときは2以上のポーラス剤を、重合開始剤について使用されるときは2種類以上の重合開始剤を、それぞれ混合して懸濁重合に用いることをいう。この2種類以上のポーラス剤又は重合開始剤は、あらかじめ混合して調製したものを用いてもよいし、反応容器内で撹拌等により混合してもよい。   In the present invention, “combined” means that two or more porous agents are mixed and suspended when used for a porous agent, and two or more polymerization initiators are mixed and used when used for a polymerization initiator. This is used for polymerization. These two or more types of porous agents or polymerization initiators may be prepared by mixing in advance, or may be mixed by stirring or the like in a reaction vessel.

本発明者らの検討によれば、本発明の方法では、以下の作用により所望の特性を有するビニルピリジン樹脂が得られると考えられる。
貧溶媒のみをポーラス剤として用いると、モノマーが重合することにより生成したポリマーはすぐに溶媒と相分離するため、比較的小さいマイクロジェルがはじめに析出する。この析出したマイクロジェルは高い相溶性を示す未反応のモノマーを取り込んで互いに融合し、比較的大きいサイズのマイクロジェルに成長する。このとき、取り込まれたモノマーによりマイクロジェル間の隙間が閉塞されるため、最終的な樹脂では大きいマイクロジェル同士の間隙に由来する大きいサイズの細孔が発達することになる。こうしてできた樹脂では、発達した大きいサイズの細孔によりマイクロジェル同士の接合面が小さくなり、粉化や熱分解等によりマイクロジェルが離脱しやすい。また、離脱するマイクロジェルにより細孔が閉塞しやすく、触媒活性が低下しやすい。
According to the study by the present inventors, it is considered that the method of the present invention can provide a vinylpyridine resin having desired characteristics by the following actions.
When only the poor solvent is used as the porous agent, the polymer produced by the polymerization of the monomer is immediately phase-separated from the solvent, so that relatively small microgels are precipitated first. These precipitated microgels take in unreacted monomers exhibiting high compatibility and fuse with each other to grow into relatively large microgels. At this time, since the gap between the microgels is closed by the incorporated monomer, large pores derived from the gaps between the large microgels develop in the final resin. In the resin made in this way, the joint surface between the microgels becomes small due to the developed large-sized pores, and the microgels are easily detached by pulverization or thermal decomposition. Further, the pores are easily blocked by the released microgel, and the catalytic activity is likely to be lowered.

一方で良溶媒のみをポーラス剤として用いると、ポリマーと溶媒とは相分離しにくく、マイクロジェルは一定の大きさに成長してから析出しはじめることになる。このとき、溶媒中に残存するモノマーは少なくなっている。さらに、モノマーが良溶媒とマイクロジェルとの間に均等に分配されるため、析出したマイクロジェル同士のモノマーを介した融合はほとんどなされず、結果としてマイクロジェル同士の隙間に均一に分散される良溶媒に由来する微小な細孔のみが形成される。そのため、最終的に得られる樹脂は細孔径が小さく、十分な触媒活性が得られない。   On the other hand, when only a good solvent is used as a porous agent, the polymer and the solvent are difficult to phase-separate, and the microgel begins to precipitate after growing to a certain size. At this time, the monomer remaining in the solvent is reduced. Furthermore, since the monomers are evenly distributed between the good solvent and the microgels, the fusion of the precipitated microgels via the monomers is hardly performed, and as a result, the good dispersion is evenly distributed in the gaps between the microgels. Only minute pores derived from the solvent are formed. For this reason, the resin finally obtained has a small pore size, and sufficient catalytic activity cannot be obtained.

これに対し、本発明に係るビニルピリジン樹脂の製造方法は、貧溶媒と良溶媒とを組み合わせて用いることにより、ポリマーと溶媒との相分離を調整することを特徴とする。そのため、析出するマイクロジェルのサイズ及び析出した後のマイクロジェル同士の溶媒中のモノマーを介した融合が調節され、貧溶媒のみを用いたときのような大きいサイズのマイクロジェルは発達せず、比較的小さいマイクロジェルが緻密に接合された樹脂を得ることができる。このとき、良溶媒はマイクロジェルと相溶性が高く、その一部はマイクロジェル内部で骨格を溶媒和する。残りの良溶媒と貧溶媒との混合物はマイクロジェル同士の隙間に均一に分散される。そのため、マイクロジェル同士の間隙がモノマーによって完全に閉塞されることはなく、樹脂が形成された後に良溶媒と貧溶媒とを除去することにより、3〜5nmの細孔径を有する細孔が樹脂全体に均一に形成されることになる。   On the other hand, the method for producing a vinylpyridine resin according to the present invention is characterized in that phase separation between a polymer and a solvent is adjusted by using a poor solvent and a good solvent in combination. Therefore, the size of the precipitated microgel and the fusion of the microgels after precipitation via the monomer in the solvent are controlled, and the microgel of a large size like when using only a poor solvent does not develop, A resin in which small microgels are closely joined can be obtained. At this time, the good solvent is highly compatible with the microgel, and a part of the good solvent solvates the skeleton inside the microgel. The remaining mixture of the good solvent and the poor solvent is uniformly dispersed in the gaps between the microgels. Therefore, the gap between the microgels is not completely blocked by the monomer, and the pores having a pore diameter of 3 to 5 nm are formed by removing the good solvent and the poor solvent after the resin is formed. Are uniformly formed.

このようにして、マイクロジェル同士を緻密に接合しつつ、その隙間に由来する適当な大きさの細孔を残したマクロポーラス型の樹脂を得ることができる。この樹脂では、比較的に小さいサイズのマイクロジェル同士が緻密に接合しているため、マイクロジェルの離脱による樹脂の粉化や熱分解を抑えることができる。また、ビニルピリジン樹脂を構成しているマイクロジェルが小さいため、粉化や熱分解により離脱したマイクロジェルにより細孔が閉塞されにくく、触媒活性が低下しにくい。   In this way, it is possible to obtain a macroporous resin in which microgels are closely joined to each other while leaving pores of appropriate sizes derived from the gaps. In this resin, since the microgels having relatively small sizes are densely bonded to each other, powdering and thermal decomposition of the resin due to separation of the microgel can be suppressed. Further, since the microgel constituting the vinylpyridine resin is small, the pores are not easily blocked by the microgel released by pulverization or thermal decomposition, and the catalytic activity is not easily lowered.

本発明に用いるポーラス剤の組成は、用いる良溶媒及び貧溶媒の性質により異なるが、良溶媒がポーラス剤全重量に対して50wt%以上90wt%未満、好ましくは60wt%以上85wt%以下であることが好ましい。   The composition of the porous agent used in the present invention varies depending on the properties of the good solvent and the poor solvent used, but the good solvent is 50 wt% or more and less than 90 wt%, preferably 60 wt% or more and 85 wt% or less with respect to the total weight of the porous agent. Is preferred.

良溶媒の割合が50wt%より少ないと、析出したマイクロジェルは溶媒中のモノマーを取り込みつつ成長して最終的に大きなマイクロジェルとなり、その隙間に由来する細孔も大きくなる。また、必要な数の3〜5nmの細孔径を有する細孔が形成されない。   When the proportion of the good solvent is less than 50 wt%, the precipitated microgel grows while taking in the monomer in the solvent and finally becomes a large microgel, and the pores derived from the gaps also become large. Further, the necessary number of pores having a pore diameter of 3 to 5 nm are not formed.

なお、良溶媒としては、トリメチルベンゼン、トルエン、キシレン等のベンゼン環を持つものが好ましい。良溶媒のベンゼン環とビニルピリジン及びジビニルベンゼンからなるコポリマーの芳香族環との間の高い相溶性により良溶媒がマイクロジェル内の骨格やマイクロジェル同士の隙間に均一に分布するため、3〜5nmの細孔径を有する細孔をより多くかつ均一に分布させることができ、さらには樹脂の構造のむらもなくして粉化や熱分解を生じにくくすることができるからである。   In addition, as a good solvent, what has benzene rings, such as a trimethylbenzene, toluene, xylene, is preferable. 3-5 nm because the good solvent is uniformly distributed in the skeleton in the microgel and the gaps between the microgels due to the high compatibility between the benzene ring of the good solvent and the aromatic ring of the copolymer composed of vinylpyridine and divinylbenzene. This is because it is possible to distribute more and more uniformly the pores having the above pore diameters, and further, it is possible to make the powder structure and thermal decomposition difficult to occur without unevenness of the resin structure.

ビニルピリジンモノマーとしては、限定されないが、2−ビニルピリジン、3−ビニルピリジン、4−ビニルピリジン、ピリジン環にメチル基やエチル基等の低級アルキル基を有する4−ビニルピリジン誘導体又は2−ビニルピリジン誘導体等を使用することができる。   Examples of the vinylpyridine monomer include, but are not limited to, 2-vinylpyridine, 3-vinylpyridine, 4-vinylpyridine, 4-vinylpyridine derivatives or 2-vinylpyridine having a lower alkyl group such as a methyl group or an ethyl group in the pyridine ring. Derivatives and the like can be used.

2−メチル−5−ビニルピリジン、2−エチル−5−ビニルピリジン、3−メチル−5−ビニルピリジン、2、3−ジメチル−5−ビニルピリジン、2−メチル−3−エチル−5−ビニルピリジン等を使用することができる。これらのモノマーは単独で使用してもよく、また二種類又はそれ以上のモノマーを組み合わせてもよい。   2-methyl-5-vinylpyridine, 2-ethyl-5-vinylpyridine, 3-methyl-5-vinylpyridine, 2,3-dimethyl-5-vinylpyridine, 2-methyl-3-ethyl-5-vinylpyridine Etc. can be used. These monomers may be used alone, or two or more monomers may be combined.

架橋剤としては、2個又はそれ以上のビニル基を有する化合物を使用することができる。ジビニルベンゼン、ジビニルトルエン、ジビニルナフタレン、若しくはトリビニルベンゼン等の芳香族ポリビニル化合物、ブタジエン、フタル酸ジアリル、ジアクリル酸エチレングリコール、若しくはジメタアクリル酸エチレングリコール等の脂肪族ポリビニル化合物、又はジビニルピリジン、トリビニルピリジン、ジビニルキノリン、若しくはジビニルイソキノリン等のポリビニル含窒素複素環式化合物等を用いることができる。また、架橋剤はモノマーに対して20〜60wt%、好ましくは25〜35wt%の割合で使用することが好ましい。   As the crosslinking agent, a compound having two or more vinyl groups can be used. Aromatic polyvinyl compounds such as divinylbenzene, divinyltoluene, divinylnaphthalene, or trivinylbenzene, aliphatic polyvinyl compounds such as butadiene, diallyl phthalate, ethylene glycol diacrylate, or ethylene glycol dimethacrylate, or divinylpyridine, trivinylpyridine Polyvinyl nitrogen-containing heterocyclic compounds such as divinylquinoline or divinylisoquinoline can be used. Moreover, it is preferable to use a crosslinking agent in the ratio of 20-60 wt% with respect to a monomer, Preferably it is 25-35 wt%.

本発明で用いる重合開始剤は特に限定されることはなく、過酸化ベンゾイル、過酸化ラウロイル、及びアゾビスイソブチロニトリルなどの、ビニル化合物の反応を開始させるために従来使用されているいかなるものをも使用することができる。好ましい重合開始剤の使用量はモノマー混合物に対して0.5〜5.0wt%、好ましくは0.7〜2.0wt%である。   The polymerization initiator used in the present invention is not particularly limited, and any of those conventionally used for initiating the reaction of vinyl compounds such as benzoyl peroxide, lauroyl peroxide, and azobisisobutyronitrile. Can also be used. A preferable use amount of the polymerization initiator is 0.5 to 5.0 wt%, preferably 0.7 to 2.0 wt% with respect to the monomer mixture.

さらに本発明においては、上記重合開始剤を主重合開始剤として用い、これに主重合開始剤よりも低い半減温度を有する補助重合開始剤を組み合わせて使用することが好ましい。   Furthermore, in this invention, it is preferable to use the said polymerization initiator as a main polymerization initiator, and to use this in combination with the auxiliary polymerization initiator which has a half temperature lower than a main polymerization initiator.

モノマーを重合させる際に発生する反応熱により反応温度が100℃に近づくと、水相が沸騰して分散された油滴が合一してしまう。主重合開始剤のみを用いる場合、この反応熱を除去して反応温度を100℃以下に制御するために油相/水相比を小さくする必要があり、1バッチあたり得られる樹脂の量が少ないという問題があった。   When the reaction temperature approaches 100 ° C. due to the reaction heat generated when the monomers are polymerized, the aqueous phase boils and the dispersed oil droplets coalesce. When only the main polymerization initiator is used, it is necessary to reduce the oil phase / water phase ratio in order to remove this heat of reaction and control the reaction temperature to 100 ° C. or less, and the amount of resin obtained per batch is small. There was a problem.

これに対し、主重合開始剤と補助重合開始剤とを組み合わせて使用することにより、重合速度を維持したまま重合温度を低下させることができる。これにより重合反応熱の除去が容易になり、油相/水相比を大きくすることができるため、1バッチ当たりの製造量を多くすることができる。   In contrast, by using a combination of the main polymerization initiator and the auxiliary polymerization initiator, the polymerization temperature can be lowered while maintaining the polymerization rate. This facilitates the removal of the heat of polymerization reaction, and the oil phase / water phase ratio can be increased, so that the production amount per batch can be increased.

このような補助重合開始剤としては、例えば2,2'-Azobis(2,4-dimethylvaleronitrile)、2,2'-Azobis(2-methylbutyronitrile)等を用いることができる。重合開始剤と補助重合開始剤との比率は、用いる重合開始剤及び補助重合開始剤の種類にもよるが、例えば1:0.2〜1.0、好ましくは1:0.3〜0.5とすることが好ましい。   As such an auxiliary polymerization initiator, for example, 2,2′-Azobis (2,4-dimethylvaleronitrile), 2,2′-Azobis (2-methylbutyronitrile), or the like can be used. The ratio of the polymerization initiator to the auxiliary polymerization initiator depends on the types of the polymerization initiator and auxiliary polymerization initiator used, but is, for example, 1: 0.2 to 1.0, preferably 1: 0.3 to 0.00. 5 is preferable.

本発明で用いる分散剤も特に限定されることはなく、従来使用されているポリビニルアルコール、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリメタクリル酸ナトリウム、ポリアクリル酸ナトリウム、澱粉、ゼラチン、スチレン/無水マレイン酸共重合体のアンモニウム塩等の水溶性高分子、炭酸カルシウム、硫酸カルシウム、ベントナイト、ケイ酸マグネシウム等の無機塩を使用することができる。   The dispersant used in the present invention is not particularly limited, and conventionally used polyvinyl alcohol, hydroxyethyl cellulose, carboxymethyl cellulose, sodium polymethacrylate, sodium polyacrylate, starch, gelatin, styrene / maleic anhydride copolymer Water-soluble polymers such as a combined ammonium salt, and inorganic salts such as calcium carbonate, calcium sulfate, bentonite, and magnesium silicate can be used.

本発明で用いる界面活性剤、消ラジカル剤、比重調整剤、pH調整剤としても特に限定されることはなく、従来使用されているいかなるものをも使用することができる。例えば、界面活性剤としてはドデシルベンゼンスルホン酸等を、消ラジカル剤としては亜硝酸ナトリウム等を、比重調整剤としては塩化ナトリウム等を、pH調整剤としては水酸化ナトリウム等を使用することができる。   There are no particular limitations on the surfactant, deradical agent, specific gravity adjusting agent, and pH adjusting agent used in the present invention, and any conventionally used one can be used. For example, dodecylbenzenesulfonic acid or the like can be used as the surfactant, sodium nitrite or the like can be used as the deradical agent, sodium chloride or the like can be used as the specific gravity adjusting agent, and sodium hydroxide or the like can be used as the pH adjusting agent. .

本発明のビニルピリジン樹脂は、ロジウム錯体を担持させて、不均一系による酢酸の製造に好適に用いることができる。   The vinylpyridine resin of the present invention can be suitably used for production of acetic acid by heterogeneous system by supporting a rhodium complex.

1.ビニルピリジン樹脂の調製
[実施例1]
水相として、10wt%のNaCl(比重調整剤)、0.3wt%のNaNO2(消ラジカル剤)、0.064wt%のゼラチン(分散剤)及び0.009wt%のドデシルベンゼンスルホン酸ナトリウム(界面活性剤)をイオン交換水に溶解させた液を6250g調製した。
1. Preparation of vinylpyridine resin [Example 1]
As an aqueous phase, 10 wt% NaCl (specific gravity adjusting agent), 0.3 wt% NaNO 2 (detergent), 0.064 wt% gelatin (dispersing agent) and 0.009 wt% sodium dodecylbenzenesulfonate (surfactant) 6250 g of a solution in which was dissolved in ion exchange water was prepared.

油相として、36.4wt%の4−ビニルピリジン(ビニルピリジンモノマー)、43.6wt%のジビニルベンゼン(純度:55wt%)(架橋剤)、15wt%の1,2,4-トリメチルベンゼン(良溶媒)、5wt%のジオクチルフタレート(貧溶媒)を混合した液を3750g調製した。   As oil phase, 36.4 wt% 4-vinylpyridine (vinylpyridine monomer), 43.6 wt% divinylbenzene (purity: 55 wt%) (crosslinking agent), 15 wt% 1,2,4-trimethylbenzene (good solvent) 3750 g of a liquid containing 5 wt% dioctyl phthalate (poor solvent) was prepared.

さらに、油相に0.84wt%の過酸化ベンゾイル(重合剤)及び、0.34wt%の2,2'-Azobis(2,4-dimethylvaleronitrile)(補助重合開始剤)を溶解して、ジャケット付き10L懸濁重合反応器に入れた。そこに反応器下部から調製した水相を供給し、緩やかに撹拌を行った。   Furthermore, 0.84wt% benzoyl peroxide (polymerization agent) and 0.34wt% 2,2'-Azobis (2,4-dimethylvaleronitrile) (auxiliary polymerization initiator) are dissolved in the oil phase, and 10L suspension with jacket is added. Placed in a turbid polymerization reactor. The aqueous phase prepared from the lower part of the reactor was supplied thereto and gently stirred.

油滴が均一に分散するまで撹拌した後に、反応器のジャケットに65℃の温水を流すことにより反応器内液を昇温し、反応器内でモノマーを重合させた。反応器内液の温度は60℃まで上昇した後、上昇速度が増加し、80℃まで上昇した後、徐々に低下した。反応器内液が60℃まで下降したことを確認した後、さらに反応器内液を90℃まで昇温し、そのまま4時間保持した。その後、反応器内液を常温まで冷却し、ろ過により固液分離を行い、樹脂を回収した。回収した樹脂はさらに抽出洗浄によりポーラス剤である1,2,4-トリメチルベンゼン及びジオクチルフタレートを除去し、篩により分級を行い、最終的な触媒用4−ビニルピリジン樹脂を得た。   After stirring until the oil droplets were uniformly dispersed, the temperature of the liquid in the reactor was increased by flowing warm water of 65 ° C. through the jacket of the reactor, and the monomer was polymerized in the reactor. After the temperature of the liquid in the reactor rose to 60 ° C, the rate of increase increased, and after rising to 80 ° C, it gradually decreased. After confirming that the liquid in the reactor had fallen to 60 ° C., the liquid in the reactor was further heated to 90 ° C. and held there for 4 hours. Thereafter, the liquid in the reactor was cooled to room temperature, solid-liquid separation was performed by filtration, and the resin was recovered. The recovered resin was further extracted and washed to remove porous agents 1,2,4-trimethylbenzene and dioctyl phthalate, and classified with a sieve to obtain the final 4-vinylpyridine resin for catalyst.

[実施例2]
貧溶媒として5wt%のオクタン、良溶媒として15wt%のトルエンを使用した他は実施例1と同様にして、触媒用4−ビニルピリジン樹脂を得た。
[Example 2]
A 4-vinylpyridine resin for a catalyst was obtained in the same manner as in Example 1 except that 5 wt% octane was used as a poor solvent and 15 wt% toluene was used as a good solvent.

[実施例3]
貧溶媒として6wt%のオクタン、良溶媒として14wt%のトルエンを使用した他は実施例1と同様にして、触媒用4−ビニルピリジン樹脂を得た。
[Example 3]
A 4-vinylpyridine resin for a catalyst was obtained in the same manner as in Example 1 except that 6 wt% octane was used as a poor solvent and 14 wt% toluene was used as a good solvent.

[実施例4]
ジャケット付き3m懸濁重合反応器(水相:1650kg、油相:990kg)を使用した他は実施例1と同様にして、触媒用4−ビニルピリジン樹脂を得た。
[Example 4]
A 4-vinylpyridine resin for a catalyst was obtained in the same manner as in Example 1 except that a 3 m 3 suspension polymerization reactor with a jacket (aqueous phase: 1650 kg, oil phase: 990 kg) was used.

[比較例1]
溶媒として20wt%のイソオクタンのみを使用した他は実施例1と同様にして、触媒用4−ビニルピリジン樹脂を得た。
[Comparative Example 1]
A 4-vinylpyridine resin for a catalyst was obtained in the same manner as in Example 1 except that only 20 wt% isooctane was used as a solvent.

[比較例2]
貧溶媒として10wt%のオクタン、良溶媒として10wt%のトルエンを使用した他は実施例1と同様にして、触媒用4−ビニルピリジン樹脂を得た。
[Comparative Example 2]
A 4-vinylpyridine resin for a catalyst was obtained in the same manner as in Example 1 except that 10 wt% octane was used as the poor solvent and 10 wt% toluene was used as the good solvent.

[比較例3]
重合開始剤として0.91wt%の過酸化ベンゾイル、補助重合開始剤として0.27wt%の2,2'-Azobis(2,4-dimethylvaleronitrile) 使用した他は実施例1と同様にして、触媒用4−ビニルピリジン樹脂を得た。
[Comparative Example 3]
As in Example 1, except that 0.91 wt% benzoyl peroxide was used as the polymerization initiator and 0.27 wt% 2,2′-Azobis (2,4-dimethylvaleronitrile) was used as the auxiliary polymerization initiator, 4- A vinylpyridine resin was obtained.

[比較例4]
ジャケットに流す温水の温度を10℃/hrで65℃まで昇温した他は実施例1と同様にして、触媒用4−ビニルピリジン樹脂を得た。
[Comparative Example 4]
A 4-vinylpyridine resin for a catalyst was obtained in the same manner as in Example 1 except that the temperature of warm water flowing through the jacket was raised to 65 ° C at 10 ° C / hr.

2.物性の測定
得られた触媒担体用4−ビニルピリジン樹脂の物性を以下の方法により測定した。
2. Measurement of physical properties The physical properties of the obtained 4-vinylpyridine resin for catalyst support were measured by the following methods.

(1)樹脂比表面積、細孔容積、平均細孔径の測定
得られた触媒担体用4−ビニルピリジン樹脂の比表面積、細孔容積(全細孔容積、3-5 nm細孔容積)、平均細孔径は窒素吸着法(ユアサアイオニクス(株)AUTOSORB-1)で測定した。
(1) Measurement of resin specific surface area, pore volume, average pore diameter Specific surface area, pore volume (total pore volume, 3-5 nm pore volume), average of obtained 4-vinylpyridine resin for catalyst carrier The pore diameter was measured by a nitrogen adsorption method (Yuasa Ionics Co., Ltd. AUTOSORB-1).

(2)粉化率の測定
得られた触媒担体用4−ビニルピリジン樹脂を17g(dry)分取し、ヨウ化メチル17wt%メタノール溶液を100g加え、18時間振とうを行い、ピリジン基の4級化を行った。
(2) Measurement of pulverization rate 17 g (dry) of the obtained 4-vinylpyridine resin for catalyst support was taken, 100 g of methyl iodide 17 wt% methanol solution was added, and the mixture was shaken for 18 hours. Classification was performed.

4級化した触媒担体用4−ビニルピリジン樹脂を300ml筒型セパラブルフラスコ(バッフル4枚付)に入れ、40mmデスクタービン攪拌翼、1000rpmで18、72、144時間攪拌を行った。   The quaternized 4-vinylpyridine resin for catalyst carrier was placed in a 300 ml cylindrical separable flask (with 4 baffles), and stirred for 40, 72 and 144 hours at 1000 rpm with a 40 mm desk turbine stirring blade.

攪拌終了後、目開き90μmの篩で固液分離を行い、通過液を重量既知300mlビーカーに受け、90℃で蒸発乾固して重量を測定し粉化物とした。粉化率は得られた粉化物重量と仕込み触媒担体用4−ビニルピリジン樹脂重量との比で求めた。また、72時間と144時間後の粉化率(%)と攪拌時間とから粉化速度を求め、その平均値をそれぞれの実施例及び比較例における粉化速度とした。   After stirring, solid-liquid separation was performed with a sieve having an opening of 90 μm. The pulverization rate was determined by the ratio between the weight of the obtained pulverized product and the weight of the charged 4-vinylpyridine resin for the catalyst carrier. Moreover, the pulverization rate was calculated | required from the pulverization rate (%) after 72 hours and 144 hours, and stirring time, and the average value was made into the pulverization rate in each Example and a comparative example.

(3)触媒活性測定
(i)触媒化
得られた触媒担体用4-ビニルピリジン樹脂8.5g (dry基準)と反応液79.7g(メタノール31.3wt%、ヨウ化メチル21.6wt%、酢酸47.1wt%)及び所定量の酢酸ロジウムを200mlジルコニウム製オートクレーブに仕込み、反応温度180℃、CO圧力5.0MPaGで1hr反応させ、触媒化した。
(3) Measurement of catalytic activity (i) Catalysis The obtained 4-vinylpyridine resin for catalyst carrier 8.5g (dry basis) and reaction solution 79.7g (methanol 31.3wt%, methyl iodide 21.6wt%, acetic acid 47.1wt% ) And a predetermined amount of rhodium acetate were charged into a 200 ml zirconium autoclave and reacted at a reaction temperature of 180 ° C. and a CO pressure of 5.0 MPaG for 1 hour to catalyze.

(ii)反応試験
上記触媒全量と反応液80g(メタノール25wt%、酢酸62.5wt%、ヨウ化メチル12.5wt%)を200mlジルコニウム製オートクレーブに仕込み、反応温度180℃、CO圧力5.0MPaGで1hr反応させ、CO消費量及び酢酸の生成量からカルボニル化反応速度を求めた。
(Ii) Reaction test A total amount of the above catalyst and 80 g of the reaction solution (methanol 25 wt%, acetic acid 62.5 wt%, methyl iodide 12.5 wt%) were charged into a 200 ml zirconium autoclave and reacted at a reaction temperature of 180 ° C. and a CO pressure of 5.0 MPaG for 1 hour. The carbonylation reaction rate was determined from the CO consumption and the amount of acetic acid produced.

得られた触媒担体用4−ビニルピリジン樹脂の物性を表1に、代表的な細孔径分布を図1に示す。   Table 1 shows the physical properties of the resulting 4-vinylpyridine resin for catalyst support, and FIG. 1 shows a typical pore size distribution.

Figure 2012081440
*カルボニル化活性の一番低い比較例3の活性を1とした。
Figure 2012081440
* The activity of Comparative Example 3 having the lowest carbonylation activity was set to 1.

全細孔容積に対する細孔径3〜5nmの細孔が占める容積比と粉化速度との関係を図2に示す。細孔径3〜5nmの細孔が占める容積比が増加するに伴い粉化速度が低下することが分かる。   The relationship between the volume ratio occupied by pores having a pore diameter of 3 to 5 nm with respect to the total pore volume and the powdering rate is shown in FIG. It can be seen that the powdering rate decreases as the volume ratio occupied by pores having a pore diameter of 3 to 5 nm increases.

細孔容積とカルボニル化反応触媒活性との関係を図3に示す。細孔容積0.15cc/g以上ではカルボニル化反応触媒活性が一定となることが分かる。   FIG. 3 shows the relationship between the pore volume and the carbonylation reaction catalytic activity. It can be seen that the catalytic activity of the carbonylation reaction is constant when the pore volume is 0.15 cc / g or more.

(4)熱分解率及び分解率と触媒活性の関係の測定
実施例1及び比較例1で得られた4-ビニルピリジン樹脂を触媒化し、下記の方法で熱分解速度及び分解率とカルボニル化反応触媒活性の関係を調べた。
(4) Measurement of thermal decomposition rate and relationship between decomposition rate and catalytic activity The 4-vinylpyridine resin obtained in Example 1 and Comparative Example 1 was catalyzed, and the thermal decomposition rate, decomposition rate and carbonylation reaction were carried out by the following method. The relationship of catalyst activity was investigated.

(i)熱分解加速試験
得られた触媒担体用4−ビニルピリジン樹脂を前記方法で触媒化し、酢酸100mlと共に200mlジルコニウム製オートクレーブに仕込み、攪拌しながら220℃に加熱した。その後、24時間毎に液を採取して窒素濃度を測定し、離脱したピリジン基量を求めた。さらに、別途4−ビニルピリジン樹脂中の窒素濃度を測定し、離脱ピリジン基との比から分解率を求めた。
(I) Thermal decomposition acceleration test The obtained 4-vinylpyridine resin for a catalyst support was catalyzed by the above-described method, charged with 200 ml of acetic acid in a 200 ml zirconium autoclave, and heated to 220 ° C. with stirring. Thereafter, the liquid was sampled every 24 hours, the nitrogen concentration was measured, and the amount of detached pyridine groups was determined. Further, the nitrogen concentration in the 4-vinylpyridine resin was separately measured, and the decomposition rate was determined from the ratio with the leaving pyridine group.

熱分解時間と触媒分解率の関係を図4に示す。比較例1(4)に比べて実施例1(2)の熱分解速度が小さいことがわかる。   FIG. 4 shows the relationship between the thermal decomposition time and the catalyst decomposition rate. It turns out that the thermal decomposition rate of Example 1 (2) is small compared with the comparative example 1 (4).

次に触媒分解率とカルボニル化反応触媒活性との関係を図5に示す。なお、図5においては、未処理触媒の活性を1として触媒活性比を表している。比較例1(4)では未処理触媒の活性を下回るのは分解率20%付近であるのに対し、実施例1(2)では分解率30%付近まで未処理触媒以上の活性を維持していた。   Next, the relationship between the catalytic decomposition rate and the catalytic activity of the carbonylation reaction is shown in FIG. In FIG. 5, the catalyst activity ratio is expressed with the activity of the untreated catalyst as 1. In Comparative Example 1 (4), the activity of the untreated catalyst is lower than the decomposition rate of about 20%, whereas in Example 1 (2), the activity of the untreated catalyst is maintained up to the decomposition rate of about 30%. It was.

なお、実施例1、比較例1のいずれも低分解率のときに初期活性を上回っていたが、これは熱によりマイクロジェル又はその融合体の間の距離が離れ、反応物質の拡散速度が向上したためと考えられる。   In addition, both Example 1 and Comparative Example 1 exceeded the initial activity when the decomposition rate was low, but this caused the distance between the microgel or the fusion thereof to be increased by heat, and the diffusion rate of the reactant was improved. It is thought that it was because.

Claims (4)

3〜5nmの細孔径を有する細孔が全細孔に占める容積の割合が4%以上60%以下、全細孔容積が0.15cc/g以上0.35cc/g以下、比表面積が20m/g以上100m/g以下であることを特徴とする、触媒担体用ビニルピリジン樹脂。 The ratio of the volume of pores having a pore diameter of 3 to 5 nm to the total pores is 4% to 60%, the total pore volume is 0.15 cc / g to 0.35 cc / g, and the specific surface area is 20 m 2. A vinyl pyridine resin for a catalyst carrier, wherein the vinyl pyridine resin is / g or more and 100 m 2 / g or less. ビニルピリジンモノマー、架橋剤、ポーラス剤及び重合開始剤を含む油性媒体と水性媒体とを混合して、油性媒体を懸濁重合することによる触媒担体用ビニルピリジン樹脂の製造方法であって、
ポーラス剤は良溶媒と貧溶媒とを組み合わせたものであり、
良溶媒の使用量は、ポーラス剤の全重量に対して50wt%以上90wt%未満であることを特徴とする、触媒担体用ビニルピリジン樹脂の製造方法。
A method for producing a vinylpyridine resin for a catalyst carrier by mixing an oily medium containing a vinylpyridine monomer, a crosslinking agent, a porous agent and a polymerization initiator with an aqueous medium, and subjecting the oily medium to suspension polymerization.
A porous agent is a combination of a good solvent and a poor solvent,
The method for producing a vinyl pyridine resin for a catalyst carrier, wherein the amount of the good solvent used is 50 wt% or more and less than 90 wt% with respect to the total weight of the porous agent.
良溶媒はベンゼン環を有することを特徴とする、請求項2に記載の触媒担体用ビニルピリジン樹脂の製造方法。   The method for producing a vinyl pyridine resin for a catalyst carrier according to claim 2, wherein the good solvent has a benzene ring. 重合開始剤は、主重合開始剤に、主重合開始剤よりも半減温度の低い補助重合開始剤を組み合わせたものであることを特徴とする、請求項2又は3に記載の触媒担体用ビニルピリジン樹脂の製造方法。   The vinyl pyridine for a catalyst carrier according to claim 2 or 3, wherein the polymerization initiator is a combination of the main polymerization initiator and an auxiliary polymerization initiator having a half-temperature lower than that of the main polymerization initiator. Manufacturing method of resin.
JP2010231321A 2010-10-14 2010-10-14 Vinylpyridine resin for catalyst carrier and method for producing the same Active JP5592225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010231321A JP5592225B2 (en) 2010-10-14 2010-10-14 Vinylpyridine resin for catalyst carrier and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010231321A JP5592225B2 (en) 2010-10-14 2010-10-14 Vinylpyridine resin for catalyst carrier and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012081440A true JP2012081440A (en) 2012-04-26
JP5592225B2 JP5592225B2 (en) 2014-09-17

Family

ID=46240883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010231321A Active JP5592225B2 (en) 2010-10-14 2010-10-14 Vinylpyridine resin for catalyst carrier and method for producing the same

Country Status (1)

Country Link
JP (1) JP5592225B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2631010A1 (en) * 2012-02-27 2013-08-28 Chiyoda Corporation Vinylpyridine resin for catalyst carriers and method of manufacturing the same
KR20150018560A (en) * 2012-06-10 2015-02-23 롬 앤드 하아스 컴패니 Mixed salt suspension polymerization process and resins and catalysts produced thereof
EP2876426A2 (en) 2013-11-22 2015-05-27 Chiyoda Corporation Method of evaluating resin degradation using thermal analysis
WO2017159466A1 (en) 2016-03-18 2017-09-21 千代田化工建設株式会社 Vinylpyridine resin for catalyst carriers, production method therefor, and catalyst for methanol carbonylation reaction
US9926397B2 (en) 2012-02-10 2018-03-27 Chiyoda Corporation Vinylpyridine resin for catalyst carriers and method of manufacturing the same
KR101874523B1 (en) * 2017-08-23 2018-07-04 (주)부흥산업사 Hetergenous catalysis for the acetic acid production by methanol carbonylation
CN111848931A (en) * 2020-08-01 2020-10-30 青岛科技大学 Preparation method and application of pyridine group-containing porous organic polymer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325204A (en) * 1995-06-01 1996-12-10 Daicel Chem Ind Ltd Production of carbonate
JPH09234373A (en) * 1995-12-29 1997-09-09 Chiyoda Corp Catalyst for producing carbonic ester and production of carbonic ester using the same
JP2662683B2 (en) * 1993-04-30 1997-10-15 千代田化工建設株式会社 Solid catalyst for carbonylation reaction and method for producing acetic acid using the same
JP3541234B2 (en) * 1995-01-30 2004-07-07 千代田化工建設株式会社 Catalyst carrier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2662683B2 (en) * 1993-04-30 1997-10-15 千代田化工建設株式会社 Solid catalyst for carbonylation reaction and method for producing acetic acid using the same
JP3541234B2 (en) * 1995-01-30 2004-07-07 千代田化工建設株式会社 Catalyst carrier
JPH08325204A (en) * 1995-06-01 1996-12-10 Daicel Chem Ind Ltd Production of carbonate
JPH09234373A (en) * 1995-12-29 1997-09-09 Chiyoda Corp Catalyst for producing carbonic ester and production of carbonic ester using the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9926397B2 (en) 2012-02-10 2018-03-27 Chiyoda Corporation Vinylpyridine resin for catalyst carriers and method of manufacturing the same
EP2631010A1 (en) * 2012-02-27 2013-08-28 Chiyoda Corporation Vinylpyridine resin for catalyst carriers and method of manufacturing the same
US10239963B2 (en) 2012-06-10 2019-03-26 Rohm And Haas Company Mixed salt suspension polymerization process and resins and catalysts produced thereof
KR20150018560A (en) * 2012-06-10 2015-02-23 롬 앤드 하아스 컴패니 Mixed salt suspension polymerization process and resins and catalysts produced thereof
JP2015518919A (en) * 2012-06-10 2015-07-06 ローム アンド ハース カンパニーRohm And Haas Company Mixed salt suspension polymerization method and resin and catalyst produced therefrom
KR102014742B1 (en) * 2012-06-10 2019-08-27 롬 앤드 하아스 컴패니 Mixed salt suspension polymerization process and resins and catalysts produced thereof
US9638684B2 (en) 2013-11-22 2017-05-02 Chiyoda Corporation Method of evaluating a crosslinked vinylpyridine resin
JP2015102377A (en) * 2013-11-22 2015-06-04 千代田化工建設株式会社 Evaluation method of resin
EP2876426A2 (en) 2013-11-22 2015-05-27 Chiyoda Corporation Method of evaluating resin degradation using thermal analysis
WO2017159466A1 (en) 2016-03-18 2017-09-21 千代田化工建設株式会社 Vinylpyridine resin for catalyst carriers, production method therefor, and catalyst for methanol carbonylation reaction
JPWO2017159466A1 (en) * 2016-03-18 2019-01-24 千代田化工建設株式会社 Vinylpyridine resin for catalyst support, process for producing the same, and catalyst for carbonylation reaction of methanol
TWI642480B (en) * 2016-03-18 2018-12-01 千代田化工建設股份有限公司 Vinylpyridine resin for catalyst carrier, method for producing the same, and catalyst for carbonylation reaction of methanol
US11065607B2 (en) 2016-03-18 2021-07-20 Chiyoda Corporation Vinylpyridine resin for catalyst supports, production method therefor, and catalyst for methanol carbonylation reaction
WO2019039648A1 (en) * 2017-08-23 2019-02-28 (주)부흥산업사 Heterogeneous catalyst for producing acetic acid by methanol carbonylation
KR101874523B1 (en) * 2017-08-23 2018-07-04 (주)부흥산업사 Hetergenous catalysis for the acetic acid production by methanol carbonylation
CN111848931A (en) * 2020-08-01 2020-10-30 青岛科技大学 Preparation method and application of pyridine group-containing porous organic polymer
CN111848931B (en) * 2020-08-01 2022-05-20 青岛科技大学 Preparation method and application of pyridine group-containing porous organic polymer

Also Published As

Publication number Publication date
JP5592225B2 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
JP5592225B2 (en) Vinylpyridine resin for catalyst carrier and method for producing the same
Mochizuki et al. Controlled polymerizations using metal–organic frameworks
EP1602670B1 (en) Production method of porous spherical particles of vinyl polymer
JP4633987B2 (en) Method for producing thermally expandable microcapsules
JP2008535963A5 (en)
US4481342A (en) Method of preparing low-density ethylene copolymers
JP2006342245A (en) Porous resin beads
US9926397B2 (en) Vinylpyridine resin for catalyst carriers and method of manufacturing the same
JP4602011B2 (en) Porous resin beads and method for producing the same
WO2017159466A1 (en) Vinylpyridine resin for catalyst carriers, production method therefor, and catalyst for methanol carbonylation reaction
EP2631010B1 (en) Vinylpyridine resin for catalyst carriers and method of manufacturing the same
JP6280334B2 (en) Resin porous particles and water treatment method using the same
JP6309949B2 (en) Mixed salt suspension polymerization method and resin and catalyst produced therefrom
JP2018118919A (en) Method for producing acetic anhydride
CN107417831B (en) Method for polymerizing ethylene and polyethylene
CN107417821B (en) Spherical composite material and supported polyethylene catalyst and preparation method thereof
JP2009280751A (en) Production method of porous polymer particle
CN105085187A (en) Method for preparation of glycol by ethylene carbonate hydrolysis
CN101530770A (en) Method for synthesizing micron-grade monodisperse cross-linked polymer microspheres by polymerization system
JP2009280760A (en) Production method of porous polymer particle
CN105777971B (en) Preparation method of composite porous organic carrier
CN1255456C (en) Method of synthesizing polymer microsphere
BR102012004320A2 (en) VINYLPYRIDINE RESIN AND METHOD FOR MANUFACTURING A VINYLPYRIDINE RESIN
CN114247393A (en) Magnetic polymer microsphere and preparation method and application thereof
CN104193868A (en) Method and process for preparing polyacrylamide polymers with controllable grain sizes, molecular weights and molecular amount distribution

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120710

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140731

R150 Certificate of patent or registration of utility model

Ref document number: 5592225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250