JP2012081379A - Method for regenerating adsorbent - Google Patents

Method for regenerating adsorbent Download PDF

Info

Publication number
JP2012081379A
JP2012081379A JP2010227274A JP2010227274A JP2012081379A JP 2012081379 A JP2012081379 A JP 2012081379A JP 2010227274 A JP2010227274 A JP 2010227274A JP 2010227274 A JP2010227274 A JP 2010227274A JP 2012081379 A JP2012081379 A JP 2012081379A
Authority
JP
Japan
Prior art keywords
adsorbent
fraction
sulfur content
sulfur
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010227274A
Other languages
Japanese (ja)
Other versions
JP5706126B2 (en
Inventor
Tomohide Hayasaka
友秀 早坂
Masato Sakamaki
正登 坂巻
Yoshihide Murakami
好英 村上
Noriaki Hosoya
憲明 細谷
Seito Nagamine
誠人 永峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Research Association of Refinery Integration for Group Operation
Original Assignee
Idemitsu Kosan Co Ltd
Research Association of Refinery Integration for Group Operation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd, Research Association of Refinery Integration for Group Operation filed Critical Idemitsu Kosan Co Ltd
Priority to JP2010227274A priority Critical patent/JP5706126B2/en
Publication of JP2012081379A publication Critical patent/JP2012081379A/en
Application granted granted Critical
Publication of JP5706126B2 publication Critical patent/JP5706126B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for regenerating an adsorbent which can prevent remaining of sulfur on the adsorbent and sulfur leakage to raw materials.SOLUTION: The method for regenerating an adsorbent which regenerates an adsorbent for adsorbing sulfur in the raw materials includes a first heating process for heating a regeneration gas and the adsorbent while bringing them into contact with each other to desorb the sulfur from the adsorbent without deteriorating the sulfur, and a second heating process for heating the regeneration gas and the adsorbent after the first heating process while bringing them into contact with each other at a temperature higher than that of the first heating process.

Description

本発明は、吸着剤の再生方法に関する。   The present invention relates to a method for regenerating an adsorbent.

ナフサの熱分解や重質軽油、減圧軽油、常圧残油等の重質油の流動接触分解などの技術開発の発展に伴って、主としてn−ブテン、イソブテン、n−ブタン、イソブタン等の炭素数が4の成分を含有するC4留分(以下、「C4留分」という)は容易に製造でき、市場でも入手できるような状況となっている。C4留分に含まれるジエン成分は水素化することによって除去することができるため、C4留分からジエン成分を除去したC4オレフィン成分を有効に使用する方法が検討されていた。
このような背景から、近年、ナフサを熱分解したり重質軽油、減圧軽油、常圧蒸留残油等の重質油を流動接触分解したりするなどして得られるC4オレフィン成分を重合して、ガソリン基材を製造する方法が各種提供されている。
Carbon such as n-butene, isobutene, n-butane, isobutane, etc., with the development of technology such as thermal decomposition of naphtha and fluid catalytic cracking of heavy oil such as heavy gas oil, vacuum gas oil, and atmospheric residue A C4 fraction containing a component having a number of 4 (hereinafter referred to as “C4 fraction”) can be easily produced and is available on the market. Since the diene component contained in the C4 fraction can be removed by hydrogenation, a method for effectively using the C4 olefin component obtained by removing the diene component from the C4 fraction has been studied.
Against this background, in recent years, C4 olefin components obtained by pyrolyzing naphtha or by fluid catalytic cracking of heavy oil such as heavy gas oil, vacuum gas oil and atmospheric distillation residue are polymerized. Various methods for producing gasoline base materials have been provided.

一般に、重合触媒や反応触媒は、C4留分等の原料に含まれるジエン、硫黄分、水分、含酸素化合物等の微量不純物(数質量ppmオーダー)によって被毒され、これらの触媒の触媒活性は大きく低下する。
そのため、これらの微量不純物を除去するために、種々の除去装置が設置される。そして、微量不純物の濃度が、数質量ppm〜数百質量ppmの場合には、吸着剤を用いた吸着除去方法が採用される(例えば、特許文献1参照)。
特許文献1に記載された吸着除去方法では、原料となる炭化水素油中の硫黄分を除去するために、除去装置内に吸着剤が設けられる。除去装置内に原料を導入し続けると、吸着剤の吸着能力が飽和に近づくため、飽和する前の所定のタイミングで吸着剤の再生がなされる。この吸着剤の再生方法としては、高温の不活性ガスや水素ガスを吸着剤に接触させる方法が用いられる。
通常、吸着剤の再生中にも硫黄分を除去できるよう、2以上の除去装置を順次切り替えて連続的に除去が行われる。すなわち、使用後の除去装置の吸着剤再生を行っている間、新しい吸着剤又は再生済みの吸着剤を備えた別の除去装置に切り替えて、除去処理が行われる。
In general, polymerization catalysts and reaction catalysts are poisoned by trace impurities (on the order of several mass ppm) such as diene, sulfur, moisture, oxygen-containing compounds contained in raw materials such as C4 fractions, and the catalytic activity of these catalysts is Decrease significantly.
Therefore, various removal apparatuses are installed to remove these trace impurities. And when the density | concentration of a trace amount impurity is several mass ppm-several hundred mass ppm, the adsorption removal method using adsorption agent is employ | adopted (for example, refer patent document 1).
In the adsorption removal method described in Patent Document 1, an adsorbent is provided in the removal device in order to remove the sulfur content in the hydrocarbon oil as a raw material. If the raw material is continuously introduced into the removing device, the adsorption capacity of the adsorbent approaches saturation, so that the adsorbent is regenerated at a predetermined timing before saturation. As a method for regenerating the adsorbent, a method in which a high-temperature inert gas or hydrogen gas is brought into contact with the adsorbent is used.
Usually, the removal is continuously performed by sequentially switching two or more removal devices so that the sulfur content can be removed during regeneration of the adsorbent. That is, while the adsorbent regeneration of the removal apparatus after use is performed, the removal process is performed by switching to another removal apparatus having a new adsorbent or a regenerated adsorbent.

特開2003−277768号公報JP 2003-277768 A

しかしながら、特許文献1のように、吸着剤の吸着能力が飽和する前に、使用する除去装置を順次切り替える除去方法を採用し、吸着剤を高温ガスで再生したにもかかわらず、除去装置の後工程に配置される反応装置の触媒活性の低下がみられた。この触媒活性の低下は、硫黄分による触媒の被毒が原因であった。つまり、従来の吸着剤の再生方法では、吸着能力の再生が不十分であり、吸着剤に何らかの形で硫黄分が残留してしまい、原料の吸着処理時に、その残留した硫黄分が当該原料中に流出していたことがわかった。   However, as in Patent Document 1, a removal method that sequentially switches the removal device to be used before the adsorption capability of the adsorbent is saturated is adopted, and the adsorbent is regenerated with a high-temperature gas. A decrease in the catalytic activity of the reactor arranged in the process was observed. This decrease in catalyst activity was caused by poisoning of the catalyst by sulfur. In other words, in the conventional adsorbent regeneration method, the adsorption capacity is not sufficiently regenerated, and some form of sulfur remains in the adsorbent. I found out that it was leaked.

本発明の目的は、吸着剤への硫黄分の残留を防止できる吸着剤の再生方法を提供することである。   An object of the present invention is to provide a method for regenerating an adsorbent capable of preventing the sulfur content from remaining in the adsorbent.

本発明は、
原料中の硫黄分を吸着するための吸着剤を再生する吸着剤の再生方法であって、
再生ガスと前記吸着剤とを接触させながら加熱して前記硫黄分を変質させずに前記吸着剤から脱離させる第一加熱工程と、
この第一加熱工程の後に、第一加熱工程の温度よりも高い温度で前記再生ガスと前記吸着剤とを接触させながら加熱する第二加熱工程と、を備える
ことを特徴とする。
The present invention
An adsorbent regeneration method for regenerating an adsorbent for adsorbing sulfur in a raw material,
A first heating step in which the regeneration gas and the adsorbent are heated in contact with each other and desorbed from the adsorbent without altering the sulfur content;
After the first heating step, a second heating step of heating the regeneration gas and the adsorbent at a temperature higher than the temperature of the first heating step is provided.

また、本発明の吸着剤の再生方法において、
前記原料は、原油の常圧蒸留留分であるナフサ留分を熱分解、又は原油の常圧蒸留留分である重質軽油や常圧蒸留残油、あるいは常圧蒸留残油をさらに減圧蒸留して得られる減圧軽油留分を接触分解して得られるC4留分である
ことが好ましい。
In the adsorbent regeneration method of the present invention,
The raw material is obtained by pyrolyzing a naphtha fraction, which is an atmospheric distillation fraction of crude oil, or by subjecting a heavy gas oil, an atmospheric distillation residue, or an atmospheric distillation residue, which is an atmospheric distillation fraction, to vacuum distillation. The C4 fraction obtained by catalytic cracking of the vacuum gas oil fraction obtained in this manner is preferred.

さらに、本発明の吸着剤の再生方法において、
前記硫黄分は、メルカプタンを含み、
前記吸着剤は、ナトリウムを含むX型ゼオライトを含み、
前記第一加熱工程の加熱温度は、90℃以上140℃以下の温度である
ことが好ましい。
Furthermore, in the regeneration method of the adsorbent of the present invention,
The sulfur content includes mercaptans,
The adsorbent includes X-type zeolite containing sodium,
The heating temperature in the first heating step is preferably 90 ° C. or higher and 140 ° C. or lower.

本発明によれば、吸着剤への硫黄分の残留を防止できる。   According to the present invention, it is possible to prevent the sulfur content from remaining in the adsorbent.

本発明の実施形態に係る吸着剤の再生方法が行われる硫黄分除去装置を有するガソリン基材製造装置の概略図。1 is a schematic view of a gasoline base material production apparatus having a sulfur content removal apparatus in which an adsorbent regeneration method according to an embodiment of the present invention is performed. 前記実施形態に係る吸着剤再生時の加熱工程の温度推移を示す概略図。Schematic which shows the temperature transition of the heating process at the time of adsorbent reproduction | regeneration which concerns on the said embodiment. 原料C4留分のGC/SCDクロマトグラム図。GC / SCD chromatogram of raw material C4 fraction. 室温処理後のC4留分のGC/SCDクロマトグラム図。GC / SCD chromatogram of C4 fraction after room temperature treatment. 90℃処理後のC4留分のGC/SCDクロマトグラム図。The GC / SCD chromatogram figure of C4 fraction after a 90 degreeC process. 120℃処理後のC4留分のGC/SCDクロマトグラム図。The GC / SCD chromatogram figure of C4 fraction after a 120 degreeC process. 150℃処理後のC4留分のGC/SCDクロマトグラム図。The GC / SCD chromatogram figure of C4 fraction after a 150 degreeC process. 220℃処理後のC4留分のGC/SCDクロマトグラム図。The GC / SCD chromatogram figure of C4 fraction after a 220 degreeC process. 従来の吸着剤再生方法における加熱工程の温度推移を示す概略図。Schematic which shows the temperature transition of the heating process in the conventional adsorbent reproduction | regeneration method.

以下、本発明の実施形態を図面に基づいて説明する。
本発明に係る吸着剤の再生方法は、本実施形態において、低硫黄ガソリン基材の製造装置の一部を構成する硫黄分除去装置に設けられた吸着剤に対してなされる。
<低硫黄ガソリン基材製造装置>
図1は、本発明に係る低硫黄ガソリン基材の製造装置の概略図である。
図1に示すように低硫黄ガソリン基材製造装置100は、原油の常圧蒸留留分であるナフサ留分を熱分解又は原油の常圧蒸留留分である重質軽油や常圧蒸留残油、あるいは常圧蒸留残油をさらに減圧蒸留して得られる減圧軽油留分を接触分解して生産されるC4留分に含まれる硫黄分を除去するための硫黄分除去装置200と、硫黄分除去装置200において硫黄分が除去されたC4留分に含まれるジエン成分を除去するためのジエン成分除去装置300と、ジエン成分除去装置300において前記ジエン成分が除去されたC4留分を重合させるための重合装置400と、を備えて構成される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In the present embodiment, the adsorbent regeneration method according to the present invention is applied to an adsorbent provided in a sulfur content removing device that constitutes a part of a low sulfur gasoline base material manufacturing apparatus.
<Low sulfur gasoline base material manufacturing equipment>
FIG. 1 is a schematic view of a low sulfur gasoline base material manufacturing apparatus according to the present invention.
As shown in FIG. 1, the low-sulfur gasoline base material manufacturing apparatus 100 thermally decomposes a naphtha fraction that is an atmospheric distillation fraction of crude oil or heavy gas oil or atmospheric distillation residue that is an atmospheric distillation fraction of crude oil. Alternatively, a sulfur removal device 200 for removing sulfur contained in a C4 fraction produced by catalytic cracking of a vacuum gas oil fraction obtained by further subjecting an atmospheric distillation residue to distillation under reduced pressure, and a sulfur removal A diene component removing device 300 for removing a diene component contained in a C4 fraction from which sulfur content has been removed in the apparatus 200 and a C4 fraction from which the diene component has been removed in the diene component removing device 300 are polymerized. And a polymerization apparatus 400.

〔硫黄分除去装置〕
硫黄分除去装置200は、その内部に設けられた吸着剤とC4留分とを接触させて、C4留分中の硫黄分を吸着剤に吸着させるための工程(硫黄分吸着工程)で用いられる。なお、硫黄分除去装置200は、硫黄分以外の不純物を吸着することもできる。
硫黄分除去装置200は、原油を常圧蒸留して得られる留分であるナフサ留分を熱分解する図示しない熱分解装置や原油の常圧蒸留留分である重質軽油や常圧蒸留残油、あるいは常圧蒸留残油をさらに減圧蒸留して得られる減圧軽油留分の接触分解を実施する図示しない流動接触分解装置に接続されている。熱分解や接触分解によって生産されるC4留分は、硫黄分除去装置200へと供給される。
本実施形態で用いる硫黄分除去装置200の形状については、特に限定されないが、好ましくは、塔形状のものが用いられる。吸着剤とC4留分とを接触させる方式としては、特に制限はなく、固定床式、移動床式、流動床式いずれも採用できるが、固定床式が好ましい。
硫黄分除去装置200は、図1に示すように、硫黄分除去装置200A及び硫黄分除去装置200Bの2つで構成され、これらが並列接続されている。硫黄分除去装置を2基並列に接続することにより、硫黄分の除去能力が低下した装置の吸着剤を再生しながら、他の再生済みもしくは新品の吸着剤を備えた装置に切り替えて運転する方法を採用できる。したがって、低硫黄ガソリン基材製造装置を停止することなく連続して運転することができ、また硫黄分除去装置を最小化することができる。なお、3つ以上の硫黄分除去装置200を並列接続させてもよい。
[Sulfur content removal equipment]
The sulfur content removing device 200 is used in a process (sulfur content adsorption process) for bringing the adsorbent provided therein and the C4 fraction into contact with each other to adsorb the sulfur content in the C4 fraction to the adsorbent. . In addition, the sulfur content removal apparatus 200 can also adsorb impurities other than the sulfur content.
The sulfur removal device 200 is a pyrolysis device (not shown) that thermally decomposes a naphtha fraction that is a fraction obtained by atmospheric distillation of crude oil, a heavy light oil that is an atmospheric distillation fraction of crude oil, or an atmospheric distillation residue. It is connected to a fluid catalytic cracking apparatus (not shown) for carrying out catalytic cracking of a vacuum gas oil fraction obtained by further vacuum distillation of oil or atmospheric distillation residue. The C4 fraction produced by thermal cracking or catalytic cracking is supplied to the sulfur content removing device 200.
Although the shape of the sulfur content removing device 200 used in the present embodiment is not particularly limited, a tower-shaped one is preferably used. The method for bringing the adsorbent into contact with the C4 fraction is not particularly limited, and any of a fixed bed type, a moving bed type, and a fluidized bed type can be adopted, but a fixed bed type is preferred.
As shown in FIG. 1, the sulfur content removing device 200 is composed of two components, a sulfur content removing device 200A and a sulfur content removing device 200B, which are connected in parallel. A method of switching to another refurbished or new apparatus equipped with an adsorbent while regenerating the adsorbent of the apparatus with reduced sulfur content by connecting two sulfur content removing devices in parallel Can be adopted. Therefore, it is possible to continuously operate the low-sulfur gasoline base material production apparatus without stopping, and to minimize the sulfur content removal apparatus. Three or more sulfur content removing devices 200 may be connected in parallel.

(吸着剤)
吸着剤は、C4留分中に含まれる後述の不純物を吸着するものである。吸着剤としては、ナトリウムを含むX型ゼオライトが用いられ、好ましくは、当該X型ゼオライトと活性アルミナとを混合したハイブリッド型吸着剤が用いられる。X型ゼオライトは、初期吸着能力に優れる。ハイブリッド型吸着剤は、初期吸着性能の点においてX型ゼオライト単体よりも劣るが、C4留分と吸着剤とが接触した状態で加熱処理(例えば、吸着剤の加熱再生処理)された場合の吸着性能の点においては、X型ゼオライト単体よりも優れる。すなわち、ハイブリッド型吸着剤は、再生しながら繰り返し使用した場合でも、吸着能力が安定している。そのため、硫黄分除去装置200に充填する吸着剤量の設定が容易になる。本実施形態では、ハイブリッド型吸着剤が用いられる。
ハイブリッド型吸着剤は、硫黄分、水分、窒素分、及び含酸素化合物を吸着する。なお、硫黄分除去装置200の前工程に脱水塔を設置して水分を除去してもよいが、除去できない水分をハイブリッド型吸着剤で吸着してもよい。また、硫黄分除去装置200の前工程(脱水塔が設置される場合には脱水塔の前工程)に水洗塔を設置して窒素分、及び含酸素化合物を水洗除去してもよいが、水洗除去できない窒素分、及び含酸素化合物をハイブリッド型吸着剤で吸着してもよい。
(Adsorbent)
The adsorbent adsorbs impurities described later contained in the C4 fraction. As the adsorbent, X-type zeolite containing sodium is used, and preferably, a hybrid type adsorbent in which the X-type zeolite and activated alumina are mixed is used. X-type zeolite is excellent in initial adsorption capacity. Although the hybrid type adsorbent is inferior to the X-type zeolite alone in terms of initial adsorption performance, the adsorption when the C4 fraction and the adsorbent are in contact with each other is subjected to heat treatment (for example, heat regeneration treatment of the adsorbent). In terms of performance, it is superior to the X-type zeolite alone. That is, the adsorption capacity of the hybrid adsorbent is stable even when it is repeatedly used while being regenerated. Therefore, it becomes easy to set the amount of adsorbent filled in the sulfur content removing device 200. In this embodiment, a hybrid type adsorbent is used.
The hybrid adsorbent adsorbs sulfur, moisture, nitrogen and oxygen-containing compounds. In addition, although a dehydration tower may be installed in the previous process of the sulfur content removal apparatus 200 to remove moisture, moisture that cannot be removed may be adsorbed by a hybrid adsorbent. In addition, a water-washing tower may be installed in a pre-process of the sulfur content removal apparatus 200 (a pre-process of the dehydration tower when a dehydration tower is installed) to remove nitrogen and oxygen-containing compounds with water. Nitrogen components that cannot be removed and oxygen-containing compounds may be adsorbed by a hybrid adsorbent.

(C4留分に含まれる成分)
この硫黄分除去装置200へと供給されるC4留分中には、主としてn−ブテン、イソブテン、n−ブタン、イソブタン、ブタジエン等の炭素数が4の炭化水素成分の他、硫黄分、水分、含酸素化合物が含まれている。これらの内、ブタジエン等のジエン成分、硫黄分、水分、含酸素化合物等によって、重合装置400内の触媒が被毒され、重合反応活性が低下する。つまり、ジエン成分、硫黄分、水分、含酸素化合物等は、不純物(触媒毒)であり、C4留分中から除去する必要がある。
(Components contained in C4 fraction)
In the C4 fraction supplied to the sulfur content removing device 200, in addition to hydrocarbon components having 4 carbon atoms such as n-butene, isobutene, n-butane, isobutane and butadiene, sulfur content, moisture, Contains oxygenates. Of these, the catalyst in the polymerization apparatus 400 is poisoned by diene components such as butadiene, sulfur, moisture, oxygen-containing compounds, and the like, and the polymerization reaction activity decreases. That is, a diene component, a sulfur content, moisture, an oxygen-containing compound, and the like are impurities (catalyst poison) and need to be removed from the C4 fraction.

C4留分中の硫黄分としては、主にメルカプタンが含まれている。メルカプタンは、メルカプト基(−SH)を有する硫黄化合物RSH(Rはアルキル基やアリール基など炭化水素基)であり、チオールまたはチオアルコールとも呼ばれる。C4留分中に含まれるメルカプタン類としては、メチルメルカプタン、エチルメルカプタンなどが挙げられる。   Mercaptan is mainly contained as the sulfur content in the C4 fraction. Mercaptan is a sulfur compound RSH (R is a hydrocarbon group such as an alkyl group or an aryl group) having a mercapto group (—SH), and is also called a thiol or a thioalcohol. Examples of mercaptans contained in the C4 fraction include methyl mercaptan and ethyl mercaptan.

〔硫黄分除去工程〕
次に、硫黄分除去装置200で硫黄分としてのメルカプタンをC4留分中から除去する工程について説明する。ここでは、一方の硫黄分除去装置200AにC4留分を流通させ、その後、硫黄分除去装置200Aの吸着剤を再生する場合を例に挙げて説明する。
C4留分は、硫黄分除去装置200の手前の切替部210Aによって、硫黄分除去装置200Aへ送り込まれる。
硫黄分除去装置200A内で、吸着剤とC4留分とが接触し、硫黄分等の不純物が吸着剤に吸着される。不純物が吸着除去されたC4留分は切替部210Bを通過して、ジエン成分除去装置300へと供給される。
[Sulfur content removal process]
Next, a process of removing mercaptan as a sulfur content from the C4 fraction with the sulfur content removing device 200 will be described. Here, a case where the C4 fraction is circulated through one sulfur content removing device 200A and then the adsorbent of the sulfur content removing device 200A is regenerated will be described as an example.
The C4 fraction is sent to the sulfur content removing device 200A by the switching unit 210A in front of the sulfur content removing device 200.
In the sulfur removing device 200A, the adsorbent and the C4 fraction come into contact with each other, and impurities such as sulfur are adsorbed on the adsorbent. The C4 fraction from which impurities have been adsorbed and removed passes through the switching unit 210B and is supplied to the diene component removal apparatus 300.

吸着剤とC4留分とを接触させる際の温度としては、0℃以上70℃以下、好ましくは、15℃以上40℃以下である。
また、吸着剤とC4留分とを接触させる際の圧力としては、0.02MPa以上2.0MPa以下、好ましくは、0.5MPa以上1.5MPa以下である。
The temperature at which the adsorbent is brought into contact with the C4 fraction is 0 ° C. or higher and 70 ° C. or lower, preferably 15 ° C. or higher and 40 ° C. or lower.
Moreover, as a pressure at the time of making an adsorbent and a C4 fraction contact, it is 0.02 MPa or more and 2.0 MPa or less, Preferably, it is 0.5 MPa or more and 1.5 MPa or less.

硫黄分除去処理後のC4留分中の硫黄分の濃度は、10質量ppmよりも少ないことが好ましい。硫黄分除去工程において、C4留分中の硫黄分濃度が10質量ppmよりも少なくなっていれば、最終的にガソリン基材中に含まれる硫黄分濃度も10質量ppmより少なくなるからである。
また、当該硫黄分の濃度は、1質量ppmよりも少なければ、より好ましい。硫黄分除去工程において、C4留分中の硫黄分濃度が1質量ppmよりも少なくなっていれば、ガソリン基材中に含まれる硫黄分濃度も1質量ppmより少なくなる。したがって、硫黄分濃度がさらに低い高付加価値なガソリン基材を得ることができる。
The concentration of the sulfur content in the C4 fraction after the sulfur content removal treatment is preferably less than 10 ppm by mass. This is because, in the sulfur removal step, if the sulfur concentration in the C4 fraction is less than 10 mass ppm, the sulfur concentration contained in the gasoline base material is finally less than 10 mass ppm.
Moreover, it is more preferable if the concentration of the sulfur content is less than 1 ppm by mass. In the sulfur removal step, if the sulfur concentration in the C4 fraction is less than 1 mass ppm, the sulfur concentration contained in the gasoline base material is also less than 1 mass ppm. Therefore, a high value-added gasoline base material having a lower sulfur content can be obtained.

〔吸着剤再生工程〕
その後、硫黄分吸着工程で不純物の吸着を続け、吸着能力が飽和に達した段階又は飽和に達する前段階で、C4留分の供給を、硫黄分除去装置200Bへ切り替え、硫黄分除去装置200AへのC4留分の供給を停止する。その後、硫黄分除去装置200A内に残留するC4留分等を抜き取る。そして、硫黄分除去装置200A内に、高温の再生ガスを導入し、吸着剤と再生ガスとを接触させ、硫黄分等の不純物を吸着剤から脱離させる。硫黄分除去装置200Aの再生ガス導入方法は、特に限定されないが、例えば、硫黄分除去装置200Aが塔形状の場合には、塔上部より所定の条件で再生ガスを導入するのが好ましい。
再生ガスとして、不活性ガス、副生燃料ガス、天然ガス、水素ガス等を用いることができるが、特に、副生天然ガスは、製油所、工場から容易に入手できる点や経済的観点から好ましい。
[Adsorbent regeneration process]
Thereafter, the adsorption of impurities is continued in the sulfur content adsorption process, and the supply of the C4 fraction is switched to the sulfur content removal device 200B at the stage where the adsorption capacity has reached saturation or before the saturation is reached, to the sulfur content removal device 200A. The supply of the C4 fraction is stopped. Thereafter, the C4 fraction remaining in the sulfur removing device 200A is extracted. Then, a high-temperature regeneration gas is introduced into the sulfur content removing device 200A, the adsorbent and the regeneration gas are brought into contact with each other, and impurities such as sulfur content are desorbed from the adsorbent. The method for introducing the regeneration gas in the sulfur content removal apparatus 200A is not particularly limited. For example, when the sulfur content removal apparatus 200A has a tower shape, it is preferable to introduce the regeneration gas from the upper part of the tower under predetermined conditions.
As the regeneration gas, inert gas, by-product fuel gas, natural gas, hydrogen gas, and the like can be used. In particular, by-product natural gas is preferable from the viewpoint of being easily available from refineries and factories and from an economical viewpoint. .

本発明では、図2に示すように、吸着剤を再生するための加熱工程として、第一加熱工程及び第二加熱工程を設ける。各加熱工程では、所定温度に維持された再生ガスを硫黄分除去装置200内に流通させて、吸着剤を加熱する。
1段階目としての第一加熱工程では、加熱した再生ガスを吸着剤に接触させて吸着剤を加熱し、2段階目としての第二加熱工程では、再生ガス温度を、第一加熱工程よりも高い温度に昇温させて維持し、当該温度で吸着剤を加熱する。第一加熱工程によって、吸着剤に吸着した硫黄分を変質させずに脱離させ、第二加熱工程でその他の不純物(窒素分、及び含酸素化合物)を脱離させる。ここで、硫黄分を変質させずに脱離させるとは、吸着剤に吸着した硫黄分を他の物質に変化させることなく、吸着剤から脱離させることをいう。
第一加熱工程の加熱温度は、90℃以上140℃以下とするのが好ましい。90℃以上とすることで、C4留分中に含まれるメルカプタンが吸着剤から脱離し易くなる。また、140℃以下とすることで、後述するようにメルカプタンから他の硫黄分(ジメチルサルファイドやターシャーリーブチルメルカプタン等。これらを総称して、変質硫黄分ともいう。)が生成されるのを防ぐことができる。
本実施形態では、第一加熱工程の加熱温度を120℃とする。また、本実施形態では、硫黄分等以外の不純物の吸着剤からの脱離を十分に進行させるため、第二加熱工程の温度を270℃とする。
第一加熱工程及び第二加熱工程の加熱時間は、硫黄分除去装置200の装置サイズに依存するため、不純物が吸着剤に残留しない時間を予め確認した上で設定するのが好ましい。
第一加熱工程及び第二加熱工程の再生ガス流量は、硫黄分等の被吸着物質の量及び吸着剤量により適宜最低必要再生ガス量以上を使用するのが好ましい。
In the present invention, as shown in FIG. 2, a first heating step and a second heating step are provided as heating steps for regenerating the adsorbent. In each heating step, the regeneration gas maintained at a predetermined temperature is circulated through the sulfur content removing device 200 to heat the adsorbent.
In the first heating process as the first stage, the heated regeneration gas is brought into contact with the adsorbent to heat the adsorbent, and in the second heating process as the second stage, the regeneration gas temperature is set higher than that in the first heating process. The temperature is raised to and maintained at a high temperature, and the adsorbent is heated at that temperature. In the first heating step, the sulfur content adsorbed on the adsorbent is desorbed without alteration, and in the second heating step, other impurities (nitrogen content and oxygen-containing compound) are desorbed. Here, desorbing without altering the sulfur content means desorbing the sulfur content adsorbed on the adsorbent from the adsorbent without changing to another substance.
The heating temperature in the first heating step is preferably 90 ° C. or higher and 140 ° C. or lower. By setting the temperature to 90 ° C. or higher, mercaptans contained in the C4 fraction can be easily detached from the adsorbent. Moreover, by setting it as 140 degrees C or less, as mentioned later, other sulfur content (Dimethyl sulfide, tert- butyl mercaptan, etc .. These are named generically and it is also called a modified sulfur content) is prevented from producing | generating. be able to.
In the present embodiment, the heating temperature in the first heating step is 120 ° C. In the present embodiment, the temperature of the second heating step is 270 ° C. in order to sufficiently desorb impurities other than the sulfur content from the adsorbent.
Since the heating time of the first heating step and the second heating step depends on the device size of the sulfur content removing device 200, it is preferable to set after confirming in advance the time during which no impurities remain in the adsorbent.
It is preferable that the regeneration gas flow rate in the first heating process and the second heating process is appropriately used in an amount equal to or greater than the minimum necessary regeneration gas amount depending on the amount of the adsorbed substance such as sulfur and the amount of the adsorbent.

硫黄分除去装置200A内の吸着剤を再生している間は、切替部210A及び切替部210Bを切り替え、前記したように再生済み又は新品の吸着剤が設けられた硫黄分除去装置200BにC4留分を供給し、不純物の吸着処理を行う。
その後、硫黄分除去装置200Bの吸着剤の吸着能力が飽和に達したところで、再生処理を終えた硫黄分除去装置200AにC4留分の供給を切り替え、再生された吸着剤に対してC4留分を接触させる。本実施形態では、硫黄分除去装置200A,200Bを24時間サイクルで切り替えながら除去及び再生を行う。
While the adsorbent in the sulfur content removing device 200A is being regenerated, the switching unit 210A and the switching unit 210B are switched, and the sulfur content removing device 200B provided with the regenerated or new adsorbent as described above has a C4 retention. The minute is supplied and the impurity is adsorbed.
Thereafter, when the adsorption capacity of the adsorbent of the sulfur content removal device 200B reaches saturation, the supply of the C4 fraction is switched to the sulfur content removal device 200A that has finished the regeneration process, and the C4 fraction is regenerated with respect to the regenerated adsorbent. Contact. In the present embodiment, removal and regeneration are performed while the sulfur content removing devices 200A and 200B are switched in a 24-hour cycle.

(リークの確認)
なお、硫黄分除去装置200Aで吸着処理されたC4留分への硫黄分のリークを確認する場合は、硫黄分除去装置200の下流側の切替部210Bの手前でC4留分を採取し、硫黄分濃度を測定する。測定は、JIS K2240の硫黄分試験方法(微量電量滴定式酸化法)で行う。
本実施形態の吸着剤再生方法を行い、C4留分への硫黄分のリークを確認した。本実施形態の再生方法を行った場合には、C4留分の流通を開始させてから、24時間経過後も硫黄分は検出されず、リークは発生しなかった。そして、後述する理由から、本実施形態の再生方法を行った場合には、吸着剤への硫黄分の残留が防止されていることが確認された。
(Check for leaks)
In addition, when confirming the leak of the sulfur content to the C4 fraction adsorbed by the sulfur content removal apparatus 200A, the C4 fraction is collected before the switching unit 210B on the downstream side of the sulfur content removal apparatus 200, Measure the concentration. The measurement is carried out by the sulfur content test method (trace coulometric titration method) of JIS K2240.
The adsorbent regeneration method of this embodiment was performed, and leakage of sulfur to the C4 fraction was confirmed. When the regeneration method of the present embodiment was performed, the sulfur content was not detected even after 24 hours from the start of the circulation of the C4 fraction, and no leak occurred. For the reasons described later, it was confirmed that when the regeneration method of the present embodiment is performed, the sulfur content is prevented from remaining in the adsorbent.

以下に、従来の吸着剤再生方法を採用した場合を例に挙げながら、本発明に係る吸着剤の再生方法によって吸着剤への硫黄分の残留、及び原料への硫黄分のリークを防止できる理由について説明する。   The reason why the adsorbent regeneration method according to the present invention can prevent the sulfur content from remaining in the adsorbent and the sulfur content from leaking to the raw material by taking the case of adopting the conventional adsorbent regeneration method as an example below. Will be described.

(従来の吸着剤再生方法)
本実施形態の再生方法と比較するため、従来の再生方法について示す。
従来の再生方法としては、前記特許文献1にも記載されているような1段階の加熱工程で行われる。従来の再生方法における加熱工程の例として、図9に概略図を示す。
ここでは、硫黄分だけでなく窒素分等の不純物等を吸着剤から脱離させることができるよう、吸着剤の再生ガス温度は、本実施形態の第二加熱工程の温度と同じ270℃まで昇温させて維持する。
その他は、上記した本実施形態の吸着剤の再生方法と同様にして、再生工程を終えた硫黄分除去装置200AにC4留分の流通を切り替え、再生された吸着剤に対してC4留分を接触させる。また、硫黄分のリークについても上記した方法と同様にして行う。
(Conventional adsorbent regeneration method)
For comparison with the playback method of this embodiment, a conventional playback method will be described.
As a conventional regeneration method, a one-step heating process as described in Patent Document 1 is performed. As an example of the heating step in the conventional regeneration method, a schematic diagram is shown in FIG.
Here, the regeneration gas temperature of the adsorbent is increased to 270 ° C., which is the same as the temperature in the second heating step of the present embodiment, so that not only sulfur but also impurities such as nitrogen can be desorbed from the adsorbent. Keep warm.
Other than the above, in the same manner as the adsorbent regeneration method of the present embodiment described above, the flow of the C4 fraction is switched to the sulfur content removal device 200A that has completed the regeneration process, and the C4 fraction is then added to the regenerated adsorbent. Make contact. Further, leakage of sulfur content is performed in the same manner as described above.

(従来の吸着剤再生方法を行った場合のリークの確認)
従来の吸着剤再生方法を行い、C4留分への硫黄分のリークを確認した。従来の再生方法を行った場合には、C4留分の流通を開始させてから、十数時間後に硫黄分が検出され始め、徐々に硫黄分濃度が増加した。すなわち、リークが発生していることが分かった。
(Confirmation of leaks when the conventional adsorbent regeneration method is used)
A conventional adsorbent regeneration method was performed, and leakage of sulfur to the C4 fraction was confirmed. In the case of performing the conventional regeneration method, the sulfur content started to be detected ten hours later after the circulation of the C4 fraction was started, and the sulfur content concentration gradually increased. That is, it was found that a leak occurred.

(リークした硫黄分の分析)
リークした硫黄分の組成を、化学発光硫黄検出器(SCD)を用いたガスクロマトグラム法で分析したところ、リークした硫黄分は、ジメチルサルファイド(以下、DMSと称する。)とターシャーリーブチルメルカプタン(以下、TBMと称する。)であった。DMSやTBMは、着臭剤として天然ガスに含まれているため、吸着剤再生ガスとして天然ガスを使用した場合には、DMSやTBMが検出される可能性はあるが、天然ガス中に含まれるDMSやTBMの量に比べ、リークしたDMSやTBMの量が遥かに多かった。そのため、何らかの形でC4留分中に含まれる硫黄分としてのメルカプタンからDMSやTBMが生成されているものと推測された。
(Analysis of leaked sulfur)
The composition of the leaked sulfur was analyzed by gas chromatogram method using a chemiluminescence sulfur detector (SCD). , Referred to as TBM). Since DMS and TBM are contained in natural gas as an odorant, when natural gas is used as an adsorbent regeneration gas, DMS and TBM may be detected, but are contained in natural gas. The amount of leaked DMS and TBM was much larger than the amount of DMS and TBM. Therefore, it was speculated that DMS and TBM were generated from mercaptans as sulfur contained in the C4 fraction in some form.

(DMS及びTBMの生成確認)
DMS及びTBMが、硫黄分除去装置内で、硫黄分としてのメルカプタンから生成されることを確認するため、簡易的な浸漬実験を行った。吸着剤を充填した筒状の反応容器内に、C4留分を入れて密閉し、反応容器を各種温度条件で12時間保持しながら、C4留分を吸着剤に接触させた。温度条件は、室温、90℃、120℃、150℃及び220℃とした。DMSやTBM等の変質硫黄分の生成状況を図4〜図8のGC/SCDクロマトグラムに示す。また、比較のため原料C4留分のGC/SCDクロマトグラムを図3に示した。原料C4留分には、硫黄質量換算で、2.7質量%の硫化カルボニル(COS)、90.0質量%のメチルメルカプタン(CH−SH)、7.3質量%のエチルメルカプタン(C−SH)が含まれていた。
その結果、室温及び90℃では、DMS(CH−SH−CH)及びTBM(t−C−SH)の生成が確認されなかったが、150℃及び220℃ではDMS及びTBMの生成が確認された。
このように、硫黄分としてのメルカプタンを含むC4留分と吸着剤とを220℃のような高温下で接触させた状態が続くと、DMS及びTBMが生成された。すなわち、従来の吸着剤再生方法では、吸着剤の再生ガス温度が270℃であるからDMS及びTBMが生成され、これらがC4留分中にリークする。
(Confirmation of DMS and TBM generation)
In order to confirm that DMS and TBM are produced from mercaptan as the sulfur content in the sulfur content removing device, a simple immersion experiment was conducted. In a cylindrical reaction vessel filled with an adsorbent, the C4 fraction was placed and sealed, and the C4 fraction was brought into contact with the adsorbent while holding the reaction vessel under various temperature conditions for 12 hours. The temperature conditions were room temperature, 90 ° C., 120 ° C., 150 ° C. and 220 ° C. The GC / SCD chromatograms of FIGS. 4 to 8 show the state of production of modified sulfur components such as DMS and TBM. For comparison, a GC / SCD chromatogram of the raw material C4 fraction is shown in FIG. The raw C4 fraction, a sulfur mass conversion, 2.7 wt% of the carbonyl sulfide (COS), 90.0% by weight of methyl mercaptan (CH 3 -SH), 7.3 wt% of ethyl mercaptan (C 2 H 5 -SH) were included.
As a result, formation of DMS (CH 3 —SH—CH 3 ) and TBM (t—C 4 H 9 —SH) was not confirmed at room temperature and 90 ° C., but DMS and TBM were not observed at 150 ° C. and 220 ° C. Generation was confirmed.
As described above, when the C4 fraction containing mercaptan as the sulfur content and the adsorbent were kept in contact at a high temperature such as 220 ° C., DMS and TBM were generated. That is, in the conventional adsorbent regeneration method, since the regeneration gas temperature of the adsorbent is 270 ° C., DMS and TBM are generated, and these leak in the C4 fraction.

(DMS及びTBMの生成メカニズム)
上記検討結果から、DMS及びTBMが生成されるメカニズムは、以下のように推測される。
下記式(1)は、メルカプタンの通常の物理吸着を示す。式(1)において、*は吸着剤の物理吸着点を表す。式(1)は、温度が140℃以下では、右向きの反応が優勢に進み、メルカプタンは吸着剤に吸着されるが、温度が150℃以上なると、左向きの反応が優勢に進むことを示している。すなわち、温度が上がると、物理吸着点からのメルカプタンの脱離が促進される。
(DMS and TBM generation mechanism)
From the above examination results, the mechanism by which DMS and TBM are generated is estimated as follows.
The following formula (1) shows normal physical adsorption of mercaptans. In the formula (1), * represents a physical adsorption point of the adsorbent. Formula (1) shows that when the temperature is 140 ° C. or lower, the rightward reaction proceeds predominately, and mercaptan is adsorbed by the adsorbent, but when the temperature is 150 ° C. or higher, the leftward reaction proceeds predominately. . That is, when the temperature rises, the desorption of mercaptan from the physical adsorption point is promoted.

Figure 2012081379
Figure 2012081379

下記式(2)は、さらに吸着剤に吸着されたメルカプタンが、吸着剤に含まれるナトリウム(以下、Naと称する。)と化学吸着することを示す。式(2)は、高温下(150℃以上)で、右向きに優勢に進むと考えられる。   The following formula (2) indicates that the mercaptan adsorbed on the adsorbent is chemically adsorbed with sodium (hereinafter referred to as Na) contained in the adsorbent. Equation (2) is considered to proceed predominantly to the right at high temperatures (150 ° C. or higher).

Figure 2012081379
Figure 2012081379

下記式(3)は、式(2)で生成したメルカプタンとNaとの反応生成物から、DMS及び硫化水素(以下、HSと称する。)が生成されることを示す。式(3)は、吸着剤再生時の高温(150℃以上)で進行する。 The following formula (3) indicates that DMS and hydrogen sulfide (hereinafter referred to as H 2 S) are produced from the reaction product of mercaptan and Na produced in formula (2). Formula (3) proceeds at a high temperature (150 ° C. or higher) during regeneration of the adsorbent.

Figure 2012081379
Figure 2012081379

下記式(4)及び式(5)は、DMS及びHSがそれぞれ物理吸着点から脱離することを示す。式(4)及び式(5)も、吸着剤再生時の高温(220℃以上)で進行するが、物理吸着点に吸着したDMS及びHSの全量は脱離せずに、一部は吸着して残存する。
残存したDMSは、C4留分が新たに流通された際に、当該C4留分中のメルカプタンによって、物理吸着点を奪われて脱離する。この脱離したDMSは、硫黄分除去装置200内でのC4留分の流通方向に対して下流側に設けられた吸着剤の物理吸着点に、吸着される。このように、DMSは、脱離及び吸着を繰り返しながら、当該下流方向へ移動し、所定時間経過後、硫黄分除去装置からリークすることになる。
The following formulas (4) and (5) indicate that DMS and H 2 S are desorbed from the physical adsorption points, respectively. Formulas (4) and (5) also proceed at a high temperature (220 ° C. or higher) during regeneration of the adsorbent, but the total amount of DMS and H 2 S adsorbed on the physical adsorption point is not desorbed, but partly adsorbed And remain.
The remaining DMS is desorbed from the physical adsorption point by the mercaptan in the C4 fraction when the C4 fraction is newly distributed. The desorbed DMS is adsorbed at the physical adsorption point of the adsorbent provided downstream with respect to the flow direction of the C4 fraction in the sulfur content removal apparatus 200. In this way, DMS moves in the downstream direction while repeating desorption and adsorption, and leaks from the sulfur content removal device after a predetermined time has elapsed.

Figure 2012081379
Figure 2012081379

Figure 2012081379
Figure 2012081379

下記式(6)は、吸着剤再生時に物理吸着点に吸着して残存したHSが、C4留分中のイソブテンと反応し、TBMが生成されることを示す。TBMも、DMSと同様にメルカプタンによって、物理吸着点を奪われ、脱離及び吸着を繰り返しながら当該下流方向へ移動し、所定時間経過後、硫黄分除去装置からリークすることになる。 The following formula (6) shows that H 2 S remaining after adsorbing at the physical adsorption point during the regeneration of the adsorbent reacts with isobutene in the C4 fraction to generate TBM. Similarly to DMS, the TBM is also deprived of its physical adsorption point by mercaptan, moves in the downstream direction while repeating desorption and adsorption, and leaks from the sulfur content removal device after a predetermined time.

Figure 2012081379
Figure 2012081379

以上のような式(1)〜(6)の反応メカニズムに基づけば、吸着剤に吸着されたメルカプタンが吸着剤に含まれるNaと化学吸着しない温度領域でメルカプタンを吸着剤から脱離させれば、DMS及びTBM生成の原因となるHSの生成が抑えられ、吸着剤への変質硫黄分の残留、及び変質硫黄分のリークを防止できるといえる。しかしながら、C4留分に含まれる硫黄分以外の不純物(窒素酸化物等)を物理吸着点から脱離させるには、式(1)のメルカプタンの脱離を優位に進行させるための温度では不十分である。これに対しては、当該硫黄分以外の不純物の脱離を優勢に進行させる加熱工程を別途設ければよいといえる。
このような検討から、吸着剤再生を2段階、すなわち、(i)吸着剤に吸着されたメルカプタンが吸着剤に含まれるNaと化学吸着しない温度領域でメルカプタンの脱離を進行させる第一加熱工程と、(ii)その他の不純物の脱離を優勢に進行させる第二加熱工程とで行えば、吸着剤に吸着した硫黄分の変質(メルカプタンからDMSやTBMへの変質)を防止でき、変質硫黄分の吸着剤への残留を防止でき、さらにC4留分への変質硫黄分のリークも防止できることが見出された。
Based on the reaction mechanism of the above formulas (1) to (6), if mercaptan is desorbed from the adsorbent in a temperature range where the mercaptan adsorbed on the adsorbent is not chemically adsorbed with Na contained in the adsorbent, It can be said that the generation of H 2 S that causes the generation of DMS and TBM is suppressed, and the residual sulfur content in the adsorbent and the leakage of the modified sulfur content can be prevented. However, in order to desorb impurities (nitrogen oxides, etc.) other than sulfur contained in the C4 fraction from the physical adsorption point, the temperature at which the desorption of mercaptan of formula (1) proceeds preferentially is insufficient. It is. For this, it can be said that a heating process for preferentially proceeding with desorption of impurities other than the sulfur content may be provided separately.
From such a study, adsorbent regeneration is performed in two stages, that is, (i) a first heating step in which desorption of mercaptans proceeds in a temperature range in which the mercaptan adsorbed on the adsorbent does not chemically adsorb with Na contained in the adsorbent. And (ii) the second heating step in which desorption of other impurities proceeds predominantly, it is possible to prevent alteration of sulfur content adsorbed on the adsorbent (degradation from mercaptan to DMS or TBM), and altered sulfur. It has been found that it is possible to prevent the remaining of the water in the adsorbent and to prevent the leakage of the modified sulfur to the C4 fraction.

次に、低硫黄ガソリン基材製造装置100を構成する他の装置についても説明する。
〔ジエン成分除去装置〕
ジエン成分除去装置300は、上流側で硫黄分除去装置200に接続されている。硫黄分除去装置200から送り出されたC4留分はジエン成分除去装置300へと供給される。
Next, other devices constituting the low-sulfur gasoline base material manufacturing apparatus 100 will also be described.
[Diene component removal equipment]
The diene component removal apparatus 300 is connected to the sulfur content removal apparatus 200 on the upstream side. The C4 fraction sent out from the sulfur removing device 200 is supplied to the diene component removing device 300.

ジエン成分除去装置300は、C4留分中からジエン成分を溶剤で抽出除去する抽出法、ジエン成分を水素化して除く水素化除去法(水添除去法という場合もある。)、その他の公知の方法を実施することができる。本実施形態では、水素化除去法が用いられる。
抽出法は、高濃度にジエン成分を含む原料からジエン成分を回収して、例えば合成ゴムの原料とするような場合には適しているが、流動接触分解装置から生産されるC4留分のようにジエン濃度が1質量%以下程度の低濃度のジエン原料から抽出回収する場合には抽出塔や溶剤回収設備等の設備費が高額となり経済的ではない。また、エネルギー的にもコスト高となる。そのため、水素化除去法が好適である。
本実施形態では水素化除去法が用いられるため、水素がC4留分とは別の経路からジエン成分除去装置300へと供給される。
水素化除去法は、通常パラジウム/アルミナを触媒として、処理条件として、反応温度を30℃以上150℃以下、圧力を0.1MPa以上3MPa以下、SV(Space
Velocity:空間速度)を0.1hr−1以上10hr−1以下として、公知の固定床反応器等で行うようにすればよい。また、処理条件は、反応温度を50℃以上100℃以下、圧力を0.3MPa以上1.5MPa以下、SVを1hr−1以上5hr−1以下とすることが特に好ましい。
The diene component removal apparatus 300 is an extraction method in which the diene component is extracted and removed from the C4 fraction with a solvent, a hydrogenation removal method in which the diene component is removed by hydrogenation (sometimes referred to as a hydrogenation removal method), and other known methods. The method can be carried out. In this embodiment, a hydrogenation removal method is used.
The extraction method is suitable when the diene component is recovered from the raw material containing the diene component at a high concentration and used as a raw material for synthetic rubber, for example. In the case of extracting and recovering from a diene raw material having a diene concentration of about 1% by mass or less, the equipment costs for the extraction tower, solvent recovery equipment, etc. are high, which is not economical. Further, the cost is high in terms of energy. Therefore, the hydrogenation removal method is suitable.
In this embodiment, since the hydrogenation removal method is used, hydrogen is supplied to the diene component removal apparatus 300 from a different route from the C4 fraction.
In the hydrogenation removal method, usually, palladium / alumina is used as a catalyst, the reaction temperature is 30 ° C. to 150 ° C., the pressure is 0.1 MPa to 3 MPa, SV (Space
Velocity: The space velocity) as 0.1 hr -1 or more 10 hr -1 or less, may be performed by a known fixed-bed reactor and the like. The processing conditions, the reaction temperature 50 ° C. or higher 100 ° C. or less, more 0.3MPa pressure 1.5MPa or less, particularly preferably at 1hr -1 or 5 hr -1 or less SV.

〔重合装置〕
重合装置400は、上流側でジエン成分除去装置300に接続されている。ジエン成分除去装置300から送り出されたC4留分は重合装置400へと供給される。
前記したように重合装置400は、C4留分を重合反応(二量化)させるための装置である。重合反応は、公知の方法を用いて実施することができる。例えば、触媒として、シリカアルミナ、ゼオライト、塩化アルミニウムなどを用い、重合条件として、反応温度を20℃以上180℃以下、圧力を1MPa以上10MPa以下、SVは0.01hr−1以上50hr−1以下として実施すればよい。また、処理条件は、反応温度を50℃以上150℃以下、反応圧力を2MPa以上6MPa以下、SVを0.1hr−1以上10hr−1以下とすることが特に好ましい。
[Polymerization equipment]
The polymerization apparatus 400 is connected to the diene component removal apparatus 300 on the upstream side. The C4 fraction sent out from the diene component removing device 300 is supplied to the polymerization device 400.
As described above, the polymerization apparatus 400 is an apparatus for polymerizing (dimerizing) the C4 fraction. The polymerization reaction can be carried out using a known method. For example, silica alumina, zeolite, aluminum chloride or the like is used as a catalyst, the polymerization conditions are a reaction temperature of 20 ° C. to 180 ° C., a pressure of 1 MPa to 10 MPa, and SV of 0.01 hr −1 to 50 hr −1. Just do it. The processing conditions, the reaction temperature 50 ° C. or higher 0.99 ° C. or less, the reaction pressure 2MPa least 6MPa less, and particularly preferably 0.1 hr -1 or more 10 hr -1 or less SV.

重合装置400の下流側に分留装置(図示せず)が接続されている。この分留装置は重合装置400で重合反応させた重合反応生成物から、イソオクテンを主成分とするガソリン基材と、このガソリン基材に含まれる成分の炭素数よりも少ない炭素数を有する留分(未反応留分)と、当該ガソリン基材に含まれる成分よりも炭素数が多い重合副生成物と、に分留する。すなわち、オクタン価の高いイソオクテン等を主成分とするガソリン基材を分留して回収することができる。
未反応留分は、例えばエチレン製造装置へと供給され、エチレン製造原料として利用される。また、重合副生成物は、例えば流動接触分解装置などに供給され、別途分解ガソリン基材や石油化学の原料として利用される。
A fractionator (not shown) is connected to the downstream side of the polymerization apparatus 400. This fractionation apparatus is a gasoline base material mainly composed of isooctene, and a fraction having a carbon number smaller than the carbon number of components contained in the gasoline base material, from a polymerization reaction product polymerized by the polymerization apparatus 400. (Unreacted fraction) and a polymerization by-product having more carbon atoms than components contained in the gasoline base material. That is, a gasoline base material mainly composed of isooctene having a high octane number can be recovered by fractional distillation.
The unreacted fraction is supplied to, for example, an ethylene production apparatus and used as an ethylene production raw material. Further, the polymerization by-product is supplied to, for example, a fluid catalytic cracker, and is separately used as a cracked gasoline base material or a petrochemical raw material.

<低硫黄ガソリン基材の製造方法>
まず、ナフサ留分の熱分解や重質軽油、常圧蒸留残油、あるいは減圧軽油の接触分解によって生産されるC4留分を硫黄分除去装置200へ供給する。
<Method for producing low-sulfur gasoline base material>
First, the C4 fraction produced by the thermal cracking of the naphtha fraction, the heavy gas oil, the atmospheric distillation residual oil, or the catalytic cracking of the vacuum gas oil is supplied to the sulfur removal device 200.

〔硫黄分除去工程〕
硫黄分除去装置200は、上記した方法でC4留分中の硫黄分及びその他の不純物を除去する。
[Sulfur content removal process]
The sulfur content removing apparatus 200 removes sulfur content and other impurities in the C4 fraction by the above-described method.

〔ジエン成分除去工程〕
次に、ジエン成分除去装置300は、硫黄分除去装置200から送り出されたC4留分中に含まれるジエン成分を除去する。除去する方法としては、前記した水素化除去方法を用いる。
ここで、水素化除去処理後のC4留分中のジエン成分の濃度は、0.1質量%よりも少ないことが好ましい。
なお、C4留分の組成分析は、JIS K2240の組成分析方法(ガスクロマトグラフ法)で分析する。
[Diene component removal step]
Next, the diene component removal apparatus 300 removes the diene component contained in the C4 fraction sent out from the sulfur content removal apparatus 200. As a removal method, the hydrogenation removal method described above is used.
Here, the concentration of the diene component in the C4 fraction after the hydrogenation removal treatment is preferably less than 0.1% by mass.
In addition, the composition analysis of C4 fraction is analyzed by the composition analysis method (gas chromatograph method) of JIS K2240.

〔重合工程〕
次に、重合装置400は、ジエン成分除去装置300ら供給されたC4留分を重合反応(二量化)させる。重合反応は、前記した条件で行うことができる。
重合反応後、分留装置(図示せず)は、イソオクテンを主成分とするガソリン基材と、このガソリン基材に含まれる成分の炭素数よりも少ない炭素数を有する留分(未反応留分)と、当該ガソリン基材に含まれる成分よりも炭素数が多い重合副生成物と、に分留する。
[Polymerization process]
Next, the polymerization apparatus 400 causes the polymerization reaction (dimerization) of the C4 fraction supplied from the diene component removal apparatus 300. The polymerization reaction can be performed under the conditions described above.
After the polymerization reaction, a fractionation device (not shown) includes a gasoline base material mainly composed of isooctene and a fraction (unreacted fraction) having a carbon number smaller than the carbon number of components contained in the gasoline base material. ) And a polymerization by-product having more carbon atoms than the components contained in the gasoline base material.

<実施形態の作用効果>
上記した本実施形態によれば、次のような作用効果を奏することができる。
吸着剤の再生において、第一加熱工程で、吸着剤に吸着されたメルカプタン(硫黄分)を脱離させ、第二加熱工程で、その他の不純物を脱離させるので、吸着剤へのメルカプタン及びその他の不純物の残留を防止できる。
そして、DMSやTBM生成の原因となるHSが生成する温度となる前に、第一加熱工程でメルカプタンを吸着剤から変質させずに脱離させるので、C4留分中にリークするDMSやTBMの生成を防止できる。その結果、硫黄分としてのDMSやTBMのC4留分中へのリークを防止できる。
<Effects of Embodiment>
According to the above-described embodiment, the following operational effects can be achieved.
In adsorbent regeneration, mercaptans (sulfur content) adsorbed on the adsorbent are desorbed in the first heating step, and other impurities are desorbed in the second heating step. It is possible to prevent residual impurities.
And before it reaches the temperature at which H 2 S that causes DMS and TBM formation is generated, mercaptan is desorbed from the adsorbent in the first heating step, so that DMS leaking into the C4 fraction Generation of TBM can be prevented. As a result, leakage of DMS or TBM as a sulfur content into the C4 fraction can be prevented.

また、硫黄分除去装置200によって、硫黄分のリークが防止されるので、触媒毒としての硫黄分が原因となる重合反応の触媒活性の低下を防止できる。   Moreover, since sulfur content leakage is prevented by the sulfur content removing device 200, it is possible to prevent a decrease in the catalytic activity of the polymerization reaction caused by the sulfur content as the catalyst poison.

<変形例>
なお、以上説明した態様は、本発明の一態様を示したものであって、本発明は、前記した実施形態に限定されるものではなく、本発明の目的及び効果を達成できる範囲内での変形や改良が、本発明の内容に含まれるものであることはいうまでもない。また、本発明を実施する際における具体的な構造及び形状等は、本発明の目的及び効果を達成できる範囲内において、他の構造や形状等としても問題はない。
<Modification>
The aspect described above shows one aspect of the present invention, and the present invention is not limited to the above-described embodiment, and is within the scope of achieving the object and effect of the present invention. Needless to say, modifications and improvements are included in the content of the present invention. Further, the specific structure, shape, and the like in carrying out the present invention are not problematic as other structures, shapes, and the like as long as the objects and effects of the present invention can be achieved.

前記実施形態では、ガソリン基材を生成する重合装置の前段側に硫黄分除去装置200が設置された例を挙げて本発明に係る吸着剤の再生方法を説明したが、これに限られない。例えば、プロピレン転換設備に不純物除去装置の一つとして硫黄分除去装置200を設置した場合でも、本発明に係る吸着剤の再生方法を適用できる。プロピレン転換設備のプロピレン合成装置に充填される触媒も、硫黄分等の不純物によって被毒される。そのため、本発明に係る吸着剤の再生方法を適用すれば、プロピレン合成用の原料に硫黄分がリークするのを防止でき、プロピレン合成用の触媒の被毒も防止できる。   In the embodiment, the method for regenerating the adsorbent according to the present invention has been described with reference to an example in which the sulfur content removing device 200 is installed on the upstream side of the polymerization apparatus that generates the gasoline base material. However, the present invention is not limited to this. For example, the adsorbent regeneration method according to the present invention can be applied even when a sulfur content removal device 200 is installed as one of the impurity removal devices in a propylene conversion facility. The catalyst charged in the propylene synthesizer of the propylene conversion facility is also poisoned by impurities such as sulfur. Therefore, if the regeneration method of the adsorbent according to the present invention is applied, it is possible to prevent sulfur from leaking to the raw material for propylene synthesis and to prevent poisoning of the catalyst for propylene synthesis.

また、硫黄分除去装置200の切り替えサイクルも、上記実施形態で説明したような24時間に限られない。C4留分の吸着処理量、装置サイズ、装置数、吸着剤充填量等によって適宜変更がなされる。   Further, the switching cycle of the sulfur content removing device 200 is not limited to 24 hours as described in the above embodiment. Changes are appropriately made depending on the amount of adsorption treatment of C4 fraction, apparatus size, number of apparatuses, adsorbent filling amount, and the like.

その他、吸着剤に吸着した硫黄分を変質させずに脱離させる第一加熱工程を複数の段階に分けてもよい。   In addition, the first heating process in which the sulfur content adsorbed on the adsorbent is desorbed without alteration may be divided into a plurality of stages.

以下、実施例及び参考例を挙げて、本発明をより具体的に説明するが、本発明は実施例等の内容に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example and a reference example are given and this invention is demonstrated more concretely, this invention is not limited to the content of an Example etc. at all.

(実施例1)
上記実施形態で説明した硫黄分除去装置200にてC4留分中の不純物吸着処理及び吸着剤再生処理を行い、硫黄分除去装置200からの硫黄分のリークを調べた。
硫黄分除去装置200A,Bのそれぞれの内部に、
ハイブリッド型吸着剤(UOP社製、型番:AZ−300)を充填した。
減圧軽油を流動接触分解装置で分解して得られる分解生成物を蒸留分離し、その中に含まれるC4留分を硫黄分除去装置200Aへと供給した。硫黄分等の不純物を吸着させる際の条件は、25℃、1.2MPaとした。供給したC4留分中の硫黄分濃度は、35質量ppmであった。なお、C4留分中の硫黄分濃度は前記したJIS K2240の硫黄分試験方法(微量電量滴定式酸化法)によって測定した。
Example 1
Impurity adsorption processing and adsorbent regeneration processing in the C4 fraction were performed in the sulfur content removal apparatus 200 described in the above embodiment, and leakage of sulfur content from the sulfur content removal apparatus 200 was examined.
In each of the sulfur content removing devices 200A and 200B,
A hybrid adsorbent (manufactured by UOP, model number: AZ-300) was filled.
The cracked product obtained by cracking the vacuum gas oil with a fluid catalytic cracking device was separated by distillation, and the C4 fraction contained therein was supplied to the sulfur removing device 200A. The conditions for adsorbing impurities such as sulfur were 25 ° C. and 1.2 MPa. The sulfur concentration in the supplied C4 fraction was 35 ppm by mass. The sulfur concentration in the C4 fraction was measured by the sulfur content test method (trace coulometric titration method) described in JIS K2240.

硫黄分除去装置200AへC4留分を供給してから24時間後に、切替部210A,210Bを切り替えて、硫黄分除去装置200BにC4留分が供給されるようにした。その後、硫黄分除去装置200A内に残った液を抜き、吸着剤の再生を行った。
再生ガスは、天然ガスを用いた。まず、90℃の再生ガスを導入し始め、再生ガス温度を120℃まで昇温させた。そして、第一加熱工程では、70分間、120℃の再生ガスを硫黄分除去装置200A内に導入して吸着剤を加熱した。その後、再生ガス温度を270℃まで昇温させ、第二加熱工程では、420分間、270℃の再生ガスを硫黄分除去装置200A内に導入して吸着剤を加熱した。第一加熱工程及び第二加熱工程でのガス流量は、132kNm/Dとした。実施例1では、90℃の再生ガスを導入し始めてから、吸着剤の再生が終了するまでの時間が560分であった。
24 hours after supplying the C4 fraction to the sulfur content removing device 200A, the switching units 210A and 210B were switched so that the C4 fraction was supplied to the sulfur content removing device 200B. Thereafter, the liquid remaining in the sulfur content removing device 200A was removed, and the adsorbent was regenerated.
Natural gas was used as the regeneration gas. First, 90 ° C. regeneration gas was introduced, and the regeneration gas temperature was raised to 120 ° C. In the first heating step, a regeneration gas at 120 ° C. was introduced into the sulfur content removing device 200A for 70 minutes to heat the adsorbent. Thereafter, the regeneration gas temperature was raised to 270 ° C., and in the second heating step, the regeneration gas at 270 ° C. was introduced into the sulfur content removal apparatus 200A for 420 minutes to heat the adsorbent. The gas flow rate in the first heating step and the second heating step was 132 kNm 3 / D. In Example 1, the time from the start of introducing the regeneration gas at 90 ° C. until the regeneration of the adsorbent was completed was 560 minutes.

そして、硫黄分除去装置200Bでの吸着処理開始から24時間後、C4留分の供給を硫黄分除去装置200Aへと切り替えた。そして、硫黄分除去装置200Aの下流側の切替部210Bの手前で、C4留分を採取し硫黄分濃度を測定し、硫黄分のリーク量の経時変化を確認した。   Then, 24 hours after the start of the adsorption treatment in the sulfur content removing device 200B, the supply of the C4 fraction was switched to the sulfur content removing device 200A. And C4 fraction was extract | collected before the switching part 210B of the downstream of the sulfur content removal apparatus 200A, the sulfur content density | concentration was measured, and the time-dependent change of the leak amount of a sulfur content was confirmed.

(比較例1)
比較例1では、実施例1における吸着剤再生時の再生条件を変更した以外は、同様の条件でC4留分中の不純物吸着処理及び吸着剤再生処理を行い、硫黄分除去装置200からの硫黄分のリークを調べた。比較例1では、実施例1のように2段階の加熱工程を設けずに、90℃の再生ガスを導入し始め、270℃まで昇温させた。その後、420分間、270℃の再生ガスを硫黄分除去装置200A内に導入して吸着剤を加熱した。比較例1では、90℃の再生ガスを導入し始めてから、吸着剤の再生が終了するまでの時間が480分であった。
(Comparative Example 1)
In Comparative Example 1, except that the regeneration conditions during regeneration of the adsorbent in Example 1 were changed, the impurity adsorption treatment and the adsorbent regeneration treatment in the C4 fraction were performed under the same conditions, and the sulfur from the sulfur removing device 200 Checked for leaks in minutes. In Comparative Example 1, without introducing a two-step heating process as in Example 1, the introduction of a regeneration gas at 90 ° C. was started and the temperature was raised to 270 ° C. Thereafter, the regeneration gas at 270 ° C. was introduced into the sulfur content removing device 200A for 420 minutes to heat the adsorbent. In Comparative Example 1, the time from the start of introducing the regeneration gas at 90 ° C. to the end of the regeneration of the adsorbent was 480 minutes.

実施例1では、硫黄分除去装置200Aから硫黄分除去装置200Bへの次の切り替えのタイミング(24時間後)まで、硫黄分は検出されなかった。
一方、比較例1では、硫黄分除去装置200Aに切り替えてから約14時間後に、硫黄分が検出された。ここで検出された硫黄分は、DMS及びTBMであった。
このように、実施例1のように2段階の加熱工程を設けて吸着剤の再生処理を行い、まず硫黄分(メルカプタン)を吸着剤から脱離させ、その後昇温してその他の不純物を吸着剤から脱離させるようにすれば、硫黄分除去装置200A,200Bの切り替え時間(24時間)内での硫黄分のリークを防止できることが分かった。
一方、比較例1のように1段階の加熱工程(270℃)で硫黄分とそれ以外の不純物とをまとめて吸着剤から脱離させようとすると、硫黄分除去装置200A,200Bの切り替え時間(24時間)内に硫黄分がリークしてしまうことが分かった。
In Example 1, the sulfur content was not detected until the next switching timing (after 24 hours) from the sulfur content removing device 200A to the sulfur content removing device 200B.
On the other hand, in Comparative Example 1, the sulfur content was detected about 14 hours after switching to the sulfur content removing device 200A. The sulfur content detected here was DMS and TBM.
Thus, as in Example 1, a two-step heating process is provided to regenerate the adsorbent, first desorbing the sulfur (mercaptan) from the adsorbent, and then raising the temperature to adsorb other impurities. It was found that leakage of the sulfur content within the switching time (24 hours) of the sulfur content removal devices 200A and 200B can be prevented by desorption from the agent.
On the other hand, when the sulfur content and other impurities are collectively desorbed from the adsorbent in a single heating step (270 ° C.) as in Comparative Example 1, the switching time of the sulfur content removal devices 200A and 200B ( It was found that the sulfur content leaks within 24 hours).

本発明に係る吸着剤の再生方法は、原料に含まれる硫黄分を吸着する吸着剤の再生に利用することができる。   The method for regenerating an adsorbent according to the present invention can be used for regenerating an adsorbent that adsorbs a sulfur content contained in a raw material.

100 低硫黄ガソリン基材製造装置
200,200A,200B 硫黄分除去装置
210A,210B 切替部
300 ジエン成分除去装置
400 重合装置
100 Low Sulfur Gasoline Base Material Production Equipment 200, 200A, 200B Sulfur Content Removal Equipment 210A, 210B Switching Unit 300 Diene Component Removal Equipment 400 Polymerization Equipment

Claims (3)

原料中の硫黄分を吸着するための吸着剤を再生する吸着剤の再生方法であって、
再生ガスと前記吸着剤とを接触させながら加熱して前記硫黄分を変質させずに前記吸着剤から脱離させる第一加熱工程と、
この第一加熱工程の後に、第一加熱工程の温度よりも高い温度で前記再生ガスと前記吸着剤とを接触させながら加熱する第二加熱工程と、を備える
ことを特徴とする吸着剤の再生方法。
An adsorbent regeneration method for regenerating an adsorbent for adsorbing sulfur in a raw material,
A first heating step in which the regeneration gas and the adsorbent are heated in contact with each other and desorbed from the adsorbent without altering the sulfur content;
A second heating step of heating the regeneration gas and the adsorbent in contact with each other at a temperature higher than the temperature of the first heating step, after the first heating step. Method.
請求項1に記載の吸着剤の再生方法において、
前記原料は、原油の常圧蒸留留分であるナフサ留分を熱分解、又は原油の常圧蒸留留分である重質軽油や常圧蒸留残油、あるいは常圧蒸留残油をさらに減圧蒸留して得られる減圧軽油留分を接触分解して得られるC4留分である
ことを特徴とする吸着剤の再生方法。
In the regeneration method of the adsorbent according to claim 1,
The raw material is obtained by pyrolyzing a naphtha fraction, which is an atmospheric distillation fraction of crude oil, or by subjecting a heavy gas oil, an atmospheric distillation residue, or an atmospheric distillation residue, which is an atmospheric distillation fraction, to vacuum distillation. A method for regenerating an adsorbent, which is a C4 fraction obtained by catalytic cracking of a vacuum gas oil fraction obtained in this way.
請求項1又は請求項2に記載の吸着剤の再生方法において、
前記硫黄分は、メルカプタンを含み、
前記吸着剤は、ナトリウムを含むX型ゼオライトを含み、
前記第一加熱工程の加熱温度は、90℃以上140℃以下の温度である
ことを特徴とする吸着剤の再生方法。
In the regeneration method of the adsorbent according to claim 1 or 2,
The sulfur content includes mercaptans,
The adsorbent includes X-type zeolite containing sodium,
The heating temperature of said 1st heating process is 90 degreeC or more and 140 degrees C or less temperature. The regeneration method of the adsorption agent characterized by the above-mentioned.
JP2010227274A 2010-10-07 2010-10-07 Adsorbent regeneration method Active JP5706126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010227274A JP5706126B2 (en) 2010-10-07 2010-10-07 Adsorbent regeneration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010227274A JP5706126B2 (en) 2010-10-07 2010-10-07 Adsorbent regeneration method

Publications (2)

Publication Number Publication Date
JP2012081379A true JP2012081379A (en) 2012-04-26
JP5706126B2 JP5706126B2 (en) 2015-04-22

Family

ID=46240831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010227274A Active JP5706126B2 (en) 2010-10-07 2010-10-07 Adsorbent regeneration method

Country Status (1)

Country Link
JP (1) JP5706126B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58159846A (en) * 1981-12-28 1983-09-22 ユ−オ−ピ−・インコ−ポレ−テツド Regeneration method by low-temperature hydrogen stripping of adsorbent
JPS59127629A (en) * 1983-01-10 1984-07-23 Mitsubishi Heavy Ind Ltd Desorption of so2
JPH10102070A (en) * 1996-09-24 1998-04-21 Inst Fr Petrole Production of catalytic cracking gasoline of low sulfur content and system therefor
WO2004108273A1 (en) * 2003-06-06 2004-12-16 Zeochem Ag Method for sulfur compounds removal from contaminated gas and liquid streams
JP2006335866A (en) * 2005-06-01 2006-12-14 Sekiyu Combinat Kodo Togo Unei Gijutsu Kenkyu Kumiai Method for producing low-sulfur light hydrocarbon oil
JP2010111596A (en) * 2008-11-04 2010-05-20 Sekiyu Combinat Kodo Togo Unei Gijutsu Kenkyu Kumiai Apparatus and method for treatment of 4c fraction

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58159846A (en) * 1981-12-28 1983-09-22 ユ−オ−ピ−・インコ−ポレ−テツド Regeneration method by low-temperature hydrogen stripping of adsorbent
JPS59127629A (en) * 1983-01-10 1984-07-23 Mitsubishi Heavy Ind Ltd Desorption of so2
JPH10102070A (en) * 1996-09-24 1998-04-21 Inst Fr Petrole Production of catalytic cracking gasoline of low sulfur content and system therefor
WO2004108273A1 (en) * 2003-06-06 2004-12-16 Zeochem Ag Method for sulfur compounds removal from contaminated gas and liquid streams
JP2006335866A (en) * 2005-06-01 2006-12-14 Sekiyu Combinat Kodo Togo Unei Gijutsu Kenkyu Kumiai Method for producing low-sulfur light hydrocarbon oil
JP2010111596A (en) * 2008-11-04 2010-05-20 Sekiyu Combinat Kodo Togo Unei Gijutsu Kenkyu Kumiai Apparatus and method for treatment of 4c fraction

Also Published As

Publication number Publication date
JP5706126B2 (en) 2015-04-22

Similar Documents

Publication Publication Date Title
US10960343B2 (en) Methods and systems for performing chemical separations
US11186529B2 (en) Advanced oxidative coupling of methane
EP3362425B1 (en) Separation methods and systems for oxidative coupling of methane
WO2009045978A3 (en) Method of producing low sulfur, high octane gasoline
US20110071331A1 (en) Process for converting ethane into liquid alkane mixtures
EP2512637A2 (en) Mercury removal from cracked gas
JPH05508432A (en) Method for Adsorbing Sulfur Species from Propylene/Propane Using Renewable Adsorbents
BRPI0714652A2 (en) processes for regenerating a protective bed of porous solid material used to remove contaminants, and to convert a feed stream
EP0229994B1 (en) Process for the removal of dimethyl ether contained as an impurity in liquid olefinic c3-c5 feeds
KR101089886B1 (en) Process for removal of oxygenates from a paraffin stream
BR112013004518B1 (en) Displacement process for displacement for light oleaginous seperation
US7186328B1 (en) Process for the regeneration of an adsorbent bed containing sulfur oxidated compounds
RU2376339C2 (en) Method of oxidised sulphur chemicals removal from hydrocarbones flow
US6200366B1 (en) Separation of alkenes and alkanes
BR112013004519B1 (en) METHOD AND EQUIPMENT FOR ETHYLENE RECOVERY FROM FLUID CATALYTIC CRACKING RESIDUAL (FCC)
EP1958691A1 (en) A process for the regeneration of an absorbent bed containing sulfur oxidated compounds
WO2012044605A2 (en) Adsorbent regeneration in light olefin recovery process
KR102368270B1 (en) Process for adsorber regeneration
JP5706126B2 (en) Adsorbent regeneration method
KR20160107253A (en) Method for removing sulfur compounds from hydrocarbon streams
US8283507B2 (en) Water gas shift for acetylene converter feed CO control
CN103566706A (en) System and method for removing oxygen-contained compounds in mixed C4 hydrocarbons
CN103930187A (en) Method for naphthalene removal
KR20170069242A (en) Heat exchange process for adsorber regeneration
US20130172650A1 (en) Upgrading light olefins

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150226

R150 Certificate of patent or registration of utility model

Ref document number: 5706126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250