JP2012080707A - Apparatus for estimating equipment data - Google Patents

Apparatus for estimating equipment data Download PDF

Info

Publication number
JP2012080707A
JP2012080707A JP2010225536A JP2010225536A JP2012080707A JP 2012080707 A JP2012080707 A JP 2012080707A JP 2010225536 A JP2010225536 A JP 2010225536A JP 2010225536 A JP2010225536 A JP 2010225536A JP 2012080707 A JP2012080707 A JP 2012080707A
Authority
JP
Japan
Prior art keywords
data
equation
equipment data
observation
equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010225536A
Other languages
Japanese (ja)
Inventor
Takanari Tanabe
隆也 田辺
Yasuyuki Tada
泰之 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2010225536A priority Critical patent/JP2012080707A/en
Publication of JP2012080707A publication Critical patent/JP2012080707A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for estimating equipment data capable of supplying equipment data with high accuracy at a time point when data for a state of a power system is required.SOLUTION: An observation data measuring apparatus 11 measures time-adjusted observation data of each node belonging to a power system. Equation generating means 15 generates equations where the size of bus voltage, phase, active power, and reactive power at each node among the observed data measured by the observation data measuring apparatus 11 are used as constants, while equipment data are used as variables. Equipment data calculating means 16 solves the equations generated by the equation generating means 15 so as to calculate equipment data with high accuracy.

Description

本発明は、電力系統の潮流計算を行う際に使用する電力系統の設備データを推定する設備データ推定装置に関する。   The present invention relates to a facility data estimation apparatus that estimates facility data of a power system used when calculating a power flow of the power system.

電力系統の系統状態を把握するには、電力系統の潮流状態を把握する必要があり、そのために、母線電圧の大きさ及び位相の観測あるいは推定計算を行っている。推定計算では、電力系統解析用設備データ(以下、設備データ)から計算される値と、電力系統観測データ(以下、観測データ)との偏差が最も小さくなるような状態を求めている。   In order to grasp the grid state of the power system, it is necessary to grasp the power flow state of the power system. For this purpose, the magnitude and phase of the bus voltage are observed or estimated. In the estimation calculation, a state where the deviation between the value calculated from the power system analysis facility data (hereinafter referred to as facility data) and the power system observation data (hereinafter referred to as observation data) is minimized is obtained.

電力系統の潮流の推定計算(以下、潮流計算)は、負荷や発電機などの電力消費・供給源をノードとし、ノード間の設備(送電線、変圧器、調相設備など)をブランチとし、ノードの電圧・電流の関係よりノード間のブランチ電力を求めている。   Power system tidal current estimation (hereinafter tidal current calculation) uses power and supply sources such as loads and generators as nodes, and facilities between nodes (transmission lines, transformers, phase adjustment equipment, etc.) as branches. The branch power between the nodes is obtained from the relationship between the node voltage and current.

この潮流計算においては、ノードに対する計算条件として、各々のノードの有効電力P、無効電力Q、電圧V、電圧位相角θのうち2つが既知で、残りの2つが未知であるとして扱われ、これら既知・未知の要素を組み合わせることによって、潮流方程式を作成してノードの電圧の大きさ及び位相を求めている。この潮流方程式の解を求めるには、例えば、ニュートン・ラプソン法が採用されている(例えば、特許文献1参照)。   In this power flow calculation, as the calculation conditions for the nodes, two of the active power P, reactive power Q, voltage V, and voltage phase angle θ of each node are known and the remaining two are treated as unknown. By combining known and unknown elements, a power flow equation is created to determine the magnitude and phase of the node voltage. In order to obtain the solution of the tidal current equation, for example, the Newton-Raphson method is employed (see, for example, Patent Document 1).

すなわち、電力系統の設備データを既知とし、また、既知の有効電力P、無効電力Q、電圧V、電圧位相角θを用いて、未知のノード電圧を変数としてブランチ電力を計算し、この計算したブランチ電力と観測されるノード電力との偏差が最も小さくなるような状態のノード間の電圧及び位相を求め、その求めたノード間の電圧及び位相の関係よりノード間のブランチ電力を求めている。また、設備データは、設備毎の設計値、工場試験値、部分的には実測値等を既知の値として用いている。   That is, the power system equipment data is known, and the branch power is calculated using the unknown node voltage as a variable using the known active power P, reactive power Q, voltage V, and voltage phase angle θ. The voltage and phase between nodes in such a state that the deviation between the branch power and the observed node power is minimized is obtained, and the branch power between the nodes is obtained from the relationship between the obtained voltage and phase between the nodes. In addition, the facility data uses design values, factory test values, and partially measured values for each facility as known values.

一般に、iノードとjノードとの間のブランチの潮流方程式は(1)式で記述することができる。

Figure 2012080707
In general, the power flow equation of the branch between the i node and the j node can be described by the equation (1).
Figure 2012080707

これを一般式としてベクトル表記すると(2)式で示される。   When this is expressed as a general expression as a vector, it is expressed by expression (2).

[数2]
p=f(v) …(2)
vは、ノード電圧の大きさ及び位相角からなる電圧ベクトルであり、pは、発電機母線への注入有効電力、それ以外の母線においては母線への注入有効・無効電力からなる指定値ベクトルである。
[Equation 2]
p = f (v) (2)
v is a voltage vector made up of the magnitude and phase angle of the node voltage, and p is a specified value vector made up of active and reactive power injected into the generator bus, and in other buses, the effective and reactive power injected into the bus. is there.

潮流計算では、(2)式で示される各ノードの方程式を連立方程式とし、設備データ(送電線等で構成される系統のアドミタンス行列)及び指定値ベクトルpを固定値として与え、電圧ベクトルvを変数として数値計算により解いている。   In the tidal current calculation, the equation of each node shown in the equation (2) is a simultaneous equation, the facility data (the admittance matrix of the system composed of transmission lines, etc.) and the specified value vector p are given as fixed values, and the voltage vector v is Solved by numerical calculation as a variable.

図3は、従来の電力系統の系統状態を把握する手順の説明図である。電力系統のノードにおける観測データ(母線電圧の大きさ及び位相)を得る(S1)。この観測データは測定誤差や同期ずれを含んだデータである。一方、設備データは、設備毎の設計値、工場試験値、部分的には実測値等の値として得る(S2)。この設備データは、モデル化誤差等の誤差を含んだデータである。   FIG. 3 is an explanatory diagram of a procedure for grasping a system state of a conventional power system. Observation data (the magnitude and phase of the bus voltage) at the node of the power system is obtained (S1). This observation data is data including measurement errors and synchronization deviations. On the other hand, the equipment data is obtained as values such as design values, factory test values, and partially measured values for each equipment (S2). This facility data is data including errors such as modeling errors.

そこで、この電力系統各所の観測データ(母線電圧の大きさ及び位相)と、設備データを用いて計算した電力系統各所の系統状態データ(母線電圧の大きさ及び位相)とを比較し、観測データと系統状態データとが一致するように、設備データを補正する(S3)。   Therefore, the observation data (the magnitude and phase of the bus voltage) at each location of the power system are compared with the system state data (the magnitude and phase of the bus voltage) calculated at each location of the power system using the equipment data. The equipment data is corrected so that the system state data matches the system state data (S3).

前述したように、観測データは測定誤差や同期ずれを含んだデータであり、観測データの精度としては不十分であるので、(2)式を用いて、系統状態の推定計算を行う(S4)。その際には、設備データあるいは補正された設備データを用いて系統状態の推定計算を行い、観測される観測データ(母線電圧の大きさ及び位相)と、計算により求めた系統状態データ(母線電圧の大きさ及び位相)との偏差が最も小さくなるような状態の電圧の大きさ及び位相を求める。これにより、系統状態データの精度を向上させている。   As described above, the observation data is data including a measurement error and a synchronization error, and the accuracy of the observation data is insufficient. Therefore, the estimation of the system state is performed using the equation (2) (S4). . In that case, the system state is estimated by using the equipment data or the corrected equipment data, the observed data (the magnitude and phase of the bus voltage) and the system state data (bus voltage) obtained by the calculation The magnitude and phase of the voltage in such a state that the deviation from the phase is minimized. This improves the accuracy of the system state data.

そして、求めた電圧の大きさ及び位相を基に各々のノードのブランチ電力や電力系統全体の潮流状態を求めて系統状態を把握し(S5)、さらには、観測断面(観測データを求めた条件下)での系統状態データから系統解析を行いその系統解析データを提供している(S6)。   Then, based on the magnitude and phase of the obtained voltage, the branch power of each node and the power flow state of the entire power system are obtained to grasp the system state (S5), and further, the observation cross section (condition for obtaining the observation data) The system analysis is performed from the system state data in (below) and the system analysis data is provided (S6).

特開平8−47174号公報JP-A-8-47174

しかし、従来においては、系統各所の観測データと設備データからの計算結果(系統状態データ)との比較・補正により、設備データの精度を向上させているが、部分的な修正であるため、系統全体で整合の取れたデータになるとは限らない。また、ある観測断面(観測データを求めた条件下)での一時的な観測データに基づく補正であるため、他の観測断面で精度が高いデータになるとは限らない。つまり、系統状態データの求めたい時点での同期の取れた設備データとならない。   However, in the past, the accuracy of the equipment data has been improved by comparing and correcting the observation data of each part of the system and the calculation results (system state data) from the equipment data. The data is not always consistent as a whole. In addition, since the correction is based on temporary observation data in a certain observation section (under the condition for obtaining observation data), the data is not necessarily highly accurate in other observation sections. That is, the equipment data is not synchronized at the time when the system state data is desired.

そのような設備データを基に推定した、ある観測断面の系統状態データや系統解析データには、観測データの誤差と設備データの誤差との双方の誤差が含まれてしまう。また、その分離が難しいため、系統解析データの精度向上には限界がある。   The system state data and system analysis data of a certain observation cross section estimated based on such equipment data include both errors of observation data and equipment data. Moreover, since the separation is difficult, there is a limit to improving the accuracy of the system analysis data.

本発明の目的は、系統状態データを求めたい時点の精度の良い設備データを提供できる設備データ推定装置を提供するものである。   The objective of this invention is providing the equipment data estimation apparatus which can provide the equipment data with sufficient precision at the time of calculating | requiring system state data.

請求項1の発明に係る設備データ推定装置は、電力系統の各ノードの時間合わせした観測データを計測する観測データ計測装置と、前記観測データ計測装置で計測した観測データのうち各ノードの母線電圧の大きさ・位相、有効電力、無効電力を固定値とし設備データを変数とした方程式を作成する方程式作成手段と、前記方程式作成手段で作成した方程式を解いて前記設備データを演算する設備データ演算手段とを備えたことを特徴とする。   The facility data estimation device according to the invention of claim 1 is an observation data measuring device that measures time-aligned observation data of each node of a power system, and a bus voltage of each node among the observation data measured by the observation data measuring device. Equation creation means for creating an equation with fixed values of magnitude / phase, active power, reactive power and equipment data as variables, and facility data calculation for computing the equipment data by solving the equation created by the equation creation means Means.

請求項2の発明に係る設備データ推定装置は、請求項1の発明において、前記方程式作成手段は、前記方程式として、潮流方程式を作成し、前記設備データ演算手段は、前記潮流方程式で求めた状態と、前記観測データ計測装置で測定された観測データとの偏差が最も小さくなる状態での前記設備データを演算することを特徴とする。   The equipment data estimation device according to the invention of claim 2 is the state of the invention of claim 1, wherein the equation creating means creates a power flow equation as the equation, and the equipment data computing means is obtained by the power flow equation. And the equipment data in a state where the deviation from the observation data measured by the observation data measuring device is the smallest.

請求項3の発明に係る設備データ推定装置は、請求項1の発明において、前記方程式作成手段は、前記方程式として前記ノードに流入する電流を求める回路方程式を作成し、前記設備データ演算手段は、前記回路方程式で求めた流入電流と、前記観測データ計測装置で測定された流入電流との偏差が最も小さくなる状態での前記設備データを演算することを特徴とする。   The equipment data estimation device according to the invention of claim 3 is the invention according to claim 1, wherein the equation creating means creates a circuit equation for obtaining a current flowing into the node as the equation, and the equipment data calculating means comprises: The facility data is calculated in a state where the deviation between the inflow current obtained by the circuit equation and the inflow current measured by the observation data measuring device is minimized.

本発明によれば、電力系統の各ノードの時間合わせした高精度の観測データを計測し、各ノードの母線電圧の大きさ・位相、有効電力、無効電力を固定値とし設備データを変数とした方程式を作成し、その方程式を解いて設備データを求めるので、系統状態を求めたい時点での同期の取れた設備データを求められる。これにより、設備の経年、利用状況、気象条件などによる変化が加味された時点での設備データが提供でき、電力系統全体の実態を反映した観測時の設備データの取得が期待できる。   According to the present invention, time-accurate high-precision observation data of each node of the power system is measured, and the bus voltage magnitude / phase, active power, and reactive power of each node are fixed values, and the equipment data is a variable. Since the equation is created and the equipment data is obtained by solving the equation, it is possible to obtain the synchronized equipment data at the time when the system state is desired. As a result, it is possible to provide equipment data at the time when changes due to aging, usage conditions, weather conditions, etc. of the equipment are taken into account, and it is expected to obtain equipment data at the time of observation reflecting the actual state of the entire power system.

本発明の実施形態に係る設備データ推定装置のブロック構成図。The block block diagram of the equipment data estimation apparatus which concerns on embodiment of this invention. 本発明の実施形態の電力系統の系統状態を把握する手順の説明図。Explanatory drawing of the procedure which grasps | ascertains the system state of the electric power system of embodiment of this invention. 従来の電力系統の系統状態を把握する手順の説明図。Explanatory drawing of the procedure which grasps | ascertains the system state of the conventional electric power system.

以下、本発明の実施形態を説明する。図1は本発明の実施形態に係る設備データ推定装置のブロック構成図である。観測データ計測装置11は電力系統の各ノードに設置され、各ノードの未知量を検出する。例えば、発電機については端子電圧V及び有効電力Pは既知であり、負荷については有効電力P及び無効電力Qは既知であるので、発電機ノードにおいては未知量である無効電力、位相を検出し、負荷ノードにおいては未知量である電圧の大きさ及び位相を検出する。位相は基準となるスラックノードの電圧位相を基準に対する位相角である。   Embodiments of the present invention will be described below. FIG. 1 is a block configuration diagram of an equipment data estimation apparatus according to an embodiment of the present invention. The observation data measuring device 11 is installed in each node of the power system and detects an unknown amount of each node. For example, since the terminal voltage V and the active power P are known for the generator and the active power P and the reactive power Q are known for the load, the reactive power and phase, which are unknown quantities, are detected at the generator node. In the load node, the magnitude and phase of an unknown voltage are detected. The phase is a phase angle with respect to the reference voltage phase of the slack node.

観測データ計測装置11は、GPS(Global Positioning System)や高精度時間プロトコルIEEE1588などの分散クロック同期を利用して電力ネットワーク全体の絶対時間を定義し、位相を直接観測するPMU(Phasor Measurement Unit)を搭載している。   The observation data measuring device 11 defines a PMU (Phasor Measurement Unit) for directly observing the phase by defining the absolute time of the entire power network using distributed clock synchronization such as GPS (Global Positioning System) and high precision time protocol IEEE1588. It is installed.

例えば、IEEE1588は、イーサネット(登録商標)などのマルチキャスト対応ネットワークを介して接続されるクロックを同期するための標準プロトコルであり、マイクロ秒以下の同期化精度の精密時間プロトコルによる測定システムである。このような高精度の測定システムを利用し、状態把握に十分な精度の必要箇所の同期観測データを取得する。   For example, IEEE 1588 is a standard protocol for synchronizing clocks connected via a multicast-compatible network such as Ethernet (registered trademark), and is a measurement system based on a precise time protocol with a synchronization accuracy of microseconds or less. By using such a high-accuracy measurement system, synchronous observation data of necessary locations with sufficient accuracy for grasping the state is acquired.

つまり、観測データ計測装置11は、電力ネットワークの各部で検出した位相を絶対時間で時間合わせして観測データを計測する。この観測データ計測装置11で計測された観測データは、演算制御装置12の入力処理部13により取り込まれ、記憶装置14に記憶される。   That is, the observation data measuring device 11 measures the observation data by matching the phases detected by the respective parts of the power network with the absolute time. Observation data measured by the observation data measuring device 11 is taken in by the input processing unit 13 of the arithmetic and control device 12 and stored in the storage device 14.

この観測データを利用すれば、直接、系統の状態を精度良く(測定系の誤差だけで)把握することが可能となるので、(2)式の連立方程式による潮流計算(状態推定計算)は不要となる。   By using this observation data, it is possible to grasp the state of the grid directly and accurately (only with errors in the measurement system), so power flow calculation (state estimation calculation) using the simultaneous equations of equation (2) is unnecessary. It becomes.

本発明の実施の形態では、精度の良い設備データを得るために、逆に、(2)式の電圧ベクトルvを固定して設備データを変数yとした(3)式の潮流方程式を用いて、設備データyを求める。   In the embodiment of the present invention, in order to obtain highly accurate facility data, conversely, the voltage vector v in equation (2) is fixed and the facility data is set as variable y, using the power flow equation in equation (3). The facility data y is obtained.

[数3]
p=f(y) …(3)
そこで、方程式作成手段15は、(3)式で示される各ノードの連立方程式を作成する。すなわち、観測データ計測装置11で計測した観測データのうち各ノードの母線電圧の大きさ・位相、有効電力、無効電力を固定値とし設備データyを変数とした連立方程式を作成する。
[Equation 3]
p = f (y) (3)
Therefore, the equation creating means 15 creates simultaneous equations for each node represented by the equation (3). That is, a simultaneous equation in which the magnitude and phase of the bus voltage at each node, the active power, and the reactive power are fixed values among the observation data measured by the observation data measuring device 11 and the facility data y is a variable is created.

電圧ベクトルvは、観測データ計測装置11で計測したノード電圧の大きさ及び位相角からなる電圧ベクトル、pは、発電機母線への注入有効電力、それ以外の母線においては母線への注入有効・無効電力からなる指定値ベクトルである。そして、設備データ算出手段16は、(4)式を制約条件とした以下の最適化問題を解く。

Figure 2012080707
The voltage vector v is a voltage vector composed of the magnitude and phase angle of the node voltage measured by the observation data measuring device 11, p is the effective power injected into the generator bus, and the effective injection into the bus for other buses. It is a specified value vector consisting of reactive power. Then, the facility data calculation means 16 solves the following optimization problem with the expression (4) as a constraint condition.
Figure 2012080707

ただし、wiは重み係数、zi=pi−fi(y)、i=1,2,…nである。nは方程式の数(=母線の数×2)であり、ziは設備データyから計算される状態と観測データとの偏差である。   However, wi is a weighting coefficient, zi = pi-fi (y), i = 1, 2,... N. n is the number of equations (= number of buses × 2), and zi is the deviation between the state calculated from the equipment data y and the observation data.

これにより、観測データにより合致した(系統全体の実態を反映した)設備データyを取得する。観測データは、運用状況(経年、利用率、気象条件等)による変化が加味されたデータであるので、設備データについても運用状況(経年、利用率、気象条件等)による変化が加味されたデータが取得できる。   As a result, the facility data y that matches the observation data (reflects the actual state of the entire system) is acquired. Observation data is data that takes into account changes due to operational status (age, usage rate, weather conditions, etc.), so equipment data also takes into account changes due to operational status (age, usage rate, weather conditions, etc.) Can be obtained.

設備データ演算手段15で演算された設備データは記憶装置14に記憶されるとともに、必要に応じて出力処理部17にて出力装置18に出力される。出力装置18は、例えば表示装置や印刷装置などである。   The facility data calculated by the facility data calculation means 15 is stored in the storage device 14 and is output to the output device 18 by the output processing unit 17 as necessary. The output device 18 is, for example, a display device or a printing device.

以上の説明では、方程式として、潮流方程式を作成して設備データを計算するようにしたが、潮流方程式に代えて、ノードに流入する電流を求める回路方程式を作成するようにしてもよい。回路方程式は、(5)式に示される。   In the above description, the tidal current equation is created as the equation and the equipment data is calculated. However, instead of the tidal equation, a circuit equation for obtaining the current flowing into the node may be created. The circuit equation is shown in equation (5).

[数5]
I=YV …(5)
Iはノードに流入する電流、Yは設備データ、Vは高精度に測定した電圧ベクトルである。この場合も、回路方程式で求めた流入電流YVと、観測データ計測装置で測定された流入電流Iとの偏差が最も小さくなる状態での設備データを演算することになる。(4)式のziにzi=Ii−Yi・Viを適用することになる。
[Equation 5]
I = YV (5)
I is a current flowing into the node, Y is equipment data, and V is a voltage vector measured with high accuracy. Also in this case, the facility data in a state where the deviation between the inflow current YV obtained by the circuit equation and the inflow current I measured by the observation data measuring device is minimized is calculated. (4) zi = Ii−Yi · Vi is applied to zi in the equation.

次に、図2は本発明の実施形態の電力系統の系統状態を把握する手順の説明図である。観測データ計測装置11で電力系統のノードにおける高精度に時間合わせした観測データを得る(S11)。この観測データは、潮流状態の把握に十分な精度の必要箇所の同期の取れたデータである。   Next, FIG. 2 is an explanatory diagram of a procedure for grasping the system state of the power system according to the embodiment of the present invention. Observation data measuring device 11 obtains observation data time-aligned with high accuracy at the nodes of the power system (S11). This observation data is the synchronized data of the necessary parts with sufficient accuracy for grasping the tidal current state.

一方、設備データは、設備毎の設計値、工場試験値、部分的には実測値等の値として得る(S12)。この設備データは、モデル化誤差等の誤差を含んだデータである。   On the other hand, the equipment data is obtained as values such as design values, factory test values, and partially measured values for each equipment (S12). This facility data is data including errors such as modeling errors.

そこで、この電力系統各所の高精度の観測データを用いて、(3)式及び(4)式により設備データを推定計算する(S13)。この設備データは、同期の取れた観測データを使用して推定計算したものであるから、運用状況(経年、利用率、気象条件等)による変化が加味されたデータであり、全体的・各断面での修正が可能なデータである。   Therefore, the equipment data is estimated and calculated by the equations (3) and (4) using the highly accurate observation data of each place in the power system (S13). Since this equipment data is estimated and calculated using synchronized observation data, it is data that takes into account changes due to operational conditions (age, utilization, weather conditions, etc.). It is data that can be corrected.

前述したように、観測データは、直接、系統の状態を精度良く(測定系の誤差だけで)把握できるデータであるので、(2)式の連立方程式による潮流計算(状態推定計算)は不要となる(S14)。   As mentioned above, the observation data is data that can directly grasp the state of the system with high accuracy (only with measurement system errors), so tidal current calculation (state estimation calculation) using the simultaneous equations of (2) is unnecessary. (S14).

そして、観測データから各々のノードのブランチ電力や電力系統全体の潮流状態を求めて系統状態を把握し(S15)、さらには、観測断面(観測データを求めた条件下)での系統状態データから系統解析を行い、精度の良い設備データを含めてその系統解析データを提供している(S16)。   Then, the branch power of each node and the power flow state of the entire power system are obtained from the observation data to grasp the system state (S15), and further from the system state data in the observation section (conditions for obtaining the observation data). System analysis is performed, and the system analysis data including accurate equipment data is provided (S16).

本発明の実施の形態では、分散クロック同期を利用した測定システムを利用することにより、状態推定計算が不要となり、直接、系統の状態を精度良く把握できる。また、設備データは高精度な観測データを用いて計算するので、より精緻な系統解析データを得ることができる。   In the embodiment of the present invention, by using a measurement system using distributed clock synchronization, state estimation calculation is not required, and the state of the system can be directly grasped with high accuracy. Moreover, since equipment data is calculated using highly accurate observation data, more precise system analysis data can be obtained.

11…観測データ計測装置、12…演算制御装置、13…入力処理部、14…記憶装置、15…方程式作成手段、16…設備データ算出手段、17…出力処理部、18…出力装置 DESCRIPTION OF SYMBOLS 11 ... Observation data measuring device, 12 ... Arithmetic control device, 13 ... Input processing part, 14 ... Memory | storage device, 15 ... Equation preparation means, 16 ... Equipment data calculation means, 17 ... Output processing part, 18 ... Output device

Claims (3)

電力系統の各ノードの時間合わせした観測データを計測する観測データ計測装置と、
前記観測データ計測装置で計測した観測データのうち各ノードの母線電圧の大きさ・位相、有効電力、無効電力を固定値とし設備データを変数とした方程式を作成する方程式作成手段と、
前記方程式作成手段で作成した方程式を解いて前記設備データを演算する設備データ演算手段と、
を備えたことを特徴とする設備データ推定装置。
An observation data measuring device that measures the observation data of each node of the power system,
An equation creating means for creating an equation having a fixed value for the magnitude and phase of the bus voltage of each node among the observation data measured by the observation data measuring device, active power, reactive power, and facility data as variables,
Facility data computing means for computing the equipment data by solving the equation created by the equation creating means;
An equipment data estimation device comprising:
前記方程式作成手段は、前記方程式として、潮流方程式を作成し、前記設備データ演算手段は、前記潮流方程式で求めた状態と、前記観測データ計測装置で測定された観測データとの偏差が最も小さくなる状態での前記設備データを演算することを特徴とする請求項1記載の設備データ推定装置。   The equation creating means creates a tidal current equation as the equation, and the equipment data calculating means has the smallest deviation between the state obtained by the tidal current equation and the observation data measured by the observation data measuring device. The equipment data estimation apparatus according to claim 1, wherein the equipment data in a state is calculated. 前記方程式作成手段は、前記方程式として前記ノードに流入する電流を求める回路方程式を作成し、前記設備データ演算手段は、前記回路方程式で求めた流入電流と、前記観測データ計測装置で測定された流入電流との偏差が最も小さくなる状態での前記設備データを演算することを特徴とする請求項1記載の設備データ推定装置。   The equation creating means creates a circuit equation for obtaining the current flowing into the node as the equation, and the facility data calculating means is configured to obtain the inflow current obtained from the circuit equation and the inflow measured by the observation data measuring device. The equipment data estimation device according to claim 1, wherein the equipment data in a state in which a deviation from the current is the smallest is calculated.
JP2010225536A 2010-10-05 2010-10-05 Apparatus for estimating equipment data Pending JP2012080707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010225536A JP2012080707A (en) 2010-10-05 2010-10-05 Apparatus for estimating equipment data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010225536A JP2012080707A (en) 2010-10-05 2010-10-05 Apparatus for estimating equipment data

Publications (1)

Publication Number Publication Date
JP2012080707A true JP2012080707A (en) 2012-04-19

Family

ID=46240293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010225536A Pending JP2012080707A (en) 2010-10-05 2010-10-05 Apparatus for estimating equipment data

Country Status (1)

Country Link
JP (1) JP2012080707A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019087292A1 (en) * 2017-10-31 2020-08-06 株式会社日立製作所 Power system stability analysis device, stabilization device and method
KR20210074581A (en) * 2019-12-12 2021-06-22 한국전력공사 Method for modeling real time frequency and voltage variations due to network topology reconfiguration and electronic device thereof
WO2022193531A1 (en) * 2021-03-16 2022-09-22 南京邮电大学 Source-storage-load distributed cooperative voltage control method and system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019087292A1 (en) * 2017-10-31 2020-08-06 株式会社日立製作所 Power system stability analysis device, stabilization device and method
KR20210074581A (en) * 2019-12-12 2021-06-22 한국전력공사 Method for modeling real time frequency and voltage variations due to network topology reconfiguration and electronic device thereof
KR102600051B1 (en) 2019-12-12 2023-11-08 한국전력공사 Method for modeling real time frequency and voltage variations due to network topology reconfiguration and electronic device thereof
WO2022193531A1 (en) * 2021-03-16 2022-09-22 南京邮电大学 Source-storage-load distributed cooperative voltage control method and system

Similar Documents

Publication Publication Date Title
Shi et al. An adaptive method for detection and correction of errors in PMU measurements
Ghiocel et al. Phasor-measurement-based state estimation for synchrophasor data quality improvement and power transfer interface monitoring
Singh et al. Decentralized dynamic state estimation in power systems using unscented transformation
US7904261B2 (en) Method and system for using phasor measurements in state estimation of power systems
US8812256B2 (en) System and apparatus for measuring the accuracy of a backup time source
Mugnier et al. Model-less/measurement-based computation of voltage sensitivities in unbalanced electrical distribution networks
Romano et al. A high-performance, low-cost PMU prototype for distribution networks based on FPGA
TWI479159B (en) Method for estimating voltage stability
Wu et al. Three-phase instrument transformer calibration with synchronized phasor measurements
US20150168465A1 (en) Method and apparatus for electric power system distribution state estimations
JP5322716B2 (en) Distributed power output estimation apparatus and method for distribution system
EP3564687B1 (en) Determination of power transmission line parameters using asynchronous measurements
US20180348266A1 (en) Synchrophasor measurement method for power systems
Angelos et al. Improving state estimation with real-time external equivalents
Colangelo et al. Architecture and characterization of a calibrator for PMUs operating in power distribution systems
JP2012080707A (en) Apparatus for estimating equipment data
Romano DFT-based synchrophasor estimation algorithms and their integration in advanced phasor measurement units for the real-time monitoring of active distribution networks
Pardo-Zamora et al. Methodology for power quality measurement synchronization based on GPS pulse-per-second algorithm
Asprou et al. The effect of PMU measurement chain quality on line parameter calculation
KR101664010B1 (en) An Estimation Method of Line Parameter based on Synchrophasor Measurements in Power System
Foroutan et al. Generator model validation and calibration using synchrophasor data
CN107171327A (en) A kind of Power Network Status Estimation method and apparatus
Menon et al. Towards a commercial-grade tool for disturbance-based model validation and calibration
Cataliotti et al. Uncertainty evaluation of a backward/forward load flow algorithm for a MV smart grid
Ipach et al. A modified branch-current based algorithm for fast low voltage distribution grid state estimation using smart meter data