JP2012079816A - Piezoelectric element - Google Patents

Piezoelectric element Download PDF

Info

Publication number
JP2012079816A
JP2012079816A JP2010221739A JP2010221739A JP2012079816A JP 2012079816 A JP2012079816 A JP 2012079816A JP 2010221739 A JP2010221739 A JP 2010221739A JP 2010221739 A JP2010221739 A JP 2010221739A JP 2012079816 A JP2012079816 A JP 2012079816A
Authority
JP
Japan
Prior art keywords
piezoelectric element
external electrode
reinforcing plate
reinforcing
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010221739A
Other languages
Japanese (ja)
Other versions
JP5604251B2 (en
Inventor
Kazumasa Asumi
一将 阿隅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2010221739A priority Critical patent/JP5604251B2/en
Publication of JP2012079816A publication Critical patent/JP2012079816A/en
Application granted granted Critical
Publication of JP5604251B2 publication Critical patent/JP5604251B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a piezoelectric element capable of preventing fatigue breakdowns at spots of an external electrode which are not selected, preventing cracks from occurring in the piezoelectric element by being constrained by a reinforcing plate, and maintaining electrical connection even if selective fatigue breakdowns occur in the reinforcing plate and the external electrode.SOLUTION: A rectangular piezoelectric element 100, which expands and contracts by applying voltage, comprises: piezoelectric layers 111 and internal electrodes 112 alternately laminated; layer surfaces formed in parallel to laminate surfaces; stress relaxation layers 117 to relax stresses caused by expansion and contraction; external electrodes 115 disposed on the side face; reinforced parts 121, which are bonded to the external electrodes 115, to reinforce the external electrodes 115; connecting parts 122 to connect the reinforced parts 121 which are divided by the stress relaxation layers 117 without being constrained by the external electrodes 115; and a metal reinforcing plate 120 formed in such a thickness that fatigue breakdowns occur selectively at the reinforced parts 121 near the stress relaxation layers 117.

Description

本発明は、圧電層と内部電極とが交互に積層され、電圧の印加により伸縮する矩形の圧電素子に関する。   The present invention relates to a rectangular piezoelectric element in which piezoelectric layers and internal electrodes are alternately stacked and expands and contracts when a voltage is applied.

積層型の圧電素子は、圧電層と交互に積層された内部電極に電圧を印加することで伸縮させることができ、たとえばシリコンウエハを保持したステージの位置決めに応用されている。伸縮の際には、内部電極が重なりあい電界がかかる活性部の変形に対し、電界が掛からない非活性部には大きな引っ張り応力が発生し易く、破壊が生じるおそれがある。このため非活性部に応力緩和層を設け、応力を緩和する構造が提案されている。   A laminated piezoelectric element can be expanded and contracted by applying a voltage to internal electrodes alternately laminated with piezoelectric layers, and is applied to, for example, positioning a stage holding a silicon wafer. During expansion and contraction, the internal electrode overlaps and deformation of the active part to which an electric field is applied is likely to cause a large tensile stress in the non-active part to which an electric field is not applied, which may cause destruction. For this reason, a structure has been proposed in which a stress relaxation layer is provided in the inactive portion to relieve stress.

しかし、応力緩和層部分には大きな変形が生じるため、内部電極を接続する外部電極が疲労破壊を起こしうる。この対策として、外部電極にリード線を埋めたり、伸縮性のある導電性接着剤を用いて波線状のリード線を付けたり、リード線を複数付けたりする技術が提案されている。   However, since a large deformation occurs in the stress relaxation layer portion, the external electrode connecting the internal electrodes can cause fatigue failure. As countermeasures, techniques have been proposed in which lead wires are embedded in external electrodes, wavy lead wires are attached using a stretchable conductive adhesive, or a plurality of lead wires are attached.

たとえば、特許文献1記載の積層型圧電素子は、あらかじめ溝を切った板で外部電極を補強しつつ、外部電極付近に掛かる応力を緩和している。また、特許文献2記載の積層型圧電素子は、予定亀裂位置で疲労破壊が起きても電圧が供給されるように複数の電線をつないでいる。   For example, the multilayer piezoelectric element described in Patent Document 1 relieves stress applied in the vicinity of the external electrode while reinforcing the external electrode with a plate having a groove cut in advance. In addition, the multilayer piezoelectric element described in Patent Document 2 connects a plurality of electric wires so that a voltage is supplied even if fatigue failure occurs at a planned crack position.

特開2010−74033号公報JP 2010-74033 A 特開2010−109057号公報JP 2010-109057 A

上記のように、従来の積層型圧電素子には、応力緩和層部分の外部電極が疲労破壊を起こしうるという問題がある。図8は、従来の圧電素子600を示す正面図である。外部電極615にリード線620を接着して補強しているが、応力緩和層617の位置で外部電極615およびリード線620が破壊されている。   As described above, the conventional multilayer piezoelectric element has a problem that the external electrode in the stress relaxation layer portion can cause fatigue failure. FIG. 8 is a front view showing a conventional piezoelectric element 600. The lead wire 620 is bonded to the external electrode 615 for reinforcement, but the external electrode 615 and the lead wire 620 are broken at the position of the stress relaxation layer 617.

しかし、これに対し厚いリード線を用いて対処すると、リード線の拘束によって外部電極付近にクラックが生じうる。図9は、従来の圧電素子700を示す正面図である。外部電極715に厚いリード線720を接着しているが、リード線720の拘束によって外部電極715付近にクラック741が生じている。   However, if this is dealt with using a thick lead wire, cracks may occur in the vicinity of the external electrode due to the restraint of the lead wire. FIG. 9 is a front view showing a conventional piezoelectric element 700. Although the thick lead wire 720 is bonded to the external electrode 715, a crack 741 is generated near the external electrode 715 due to the restraint of the lead wire 720.

上記の特許文献1記載の圧電素子のように、あらかじめ外部電極を補強する板に溝を切っておき、外部電極付近に掛かる応力を緩和することも考えられるが、必ずしも応力緩和層付近に切れ目が存在しないため、そこを基点に疲労破壊を起こし破断しうる。また、特許文献2記載のように電圧が供給されるようにリード線をつなぐことも考えられるが、作製作業が煩雑になる。   As in the piezoelectric element described in Patent Document 1, it is conceivable to cut a groove in a plate that reinforces the external electrode in advance to relieve the stress applied to the vicinity of the external electrode. Since it does not exist, fatigue fracture can occur from that point and break. Moreover, although it is conceivable to connect the lead wires so that a voltage is supplied as described in Patent Document 2, the manufacturing work becomes complicated.

本発明は、このような事情に鑑みてなされたものであり、外部電極における選択されていない箇所の疲労破壊を防止するとともに、補強板が圧電素子を拘束してクラックが生じるのを防止し、補強板および外部電極に選択的な疲労破壊が生じても電気的接続を維持できる圧電素子を提供すること目的とする。   The present invention has been made in view of such circumstances, and prevents fatigue destruction of unselected locations in the external electrode and prevents the reinforcing plate from restraining the piezoelectric element from causing cracks, An object of the present invention is to provide a piezoelectric element that can maintain electrical connection even when selective fatigue failure occurs in a reinforcing plate and external electrodes.

(1)上記の目的を達成するため、本発明の圧電素子は、圧電層と内部電極とが交互に積層され、電圧の印加により伸縮する矩形の圧電素子であって、積層面に平行に層面が形成され、伸縮による応力を緩和する応力緩和層と、側面に設けられた外部電極と、前記外部電極に接着され、前記外部電極を補強する補強部、および前記外部電極に拘束されずに前記応力緩和層で区切られる前記補強部を連結する連結部を有し、前記応力緩和層付近で、前記補強部が選択的に疲労破壊しうる程度に薄く形成された金属製の補強板と、を備えることを特徴としている。   (1) In order to achieve the above object, a piezoelectric element of the present invention is a rectangular piezoelectric element in which piezoelectric layers and internal electrodes are alternately stacked and expands and contracts by application of a voltage, and the layer surface is parallel to the stacked surface. Is formed, a stress relaxation layer that relieves stress due to expansion and contraction, an external electrode provided on a side surface, a reinforcing portion that is bonded to the external electrode and reinforces the external electrode, and is not restrained by the external electrode. A metal reinforcing plate having a connecting portion that connects the reinforcing portions separated by a stress relaxation layer, and is formed thin enough to selectively fatigue breakage of the reinforcing portion in the vicinity of the stress relaxation layer; It is characterized by providing.

このように、補強板が外部電極に接着されていることで、外部電極における選択されていない箇所の疲労破壊を防止できる。その一方で、補強部が選択的に疲労破壊しうることで補強板の拘束により生じる素子本体のクラックの発生を防止できる。そして、連結部が外部電極に拘束されずに補強部を連結するため、補強板および外部電極に選択的な疲労破壊が生じても電気的接続を維持でき、圧電素子を駆動できる。   As described above, since the reinforcing plate is bonded to the external electrode, it is possible to prevent fatigue failure of a non-selected portion of the external electrode. On the other hand, generation of cracks in the element body caused by restraint of the reinforcing plate can be prevented because the reinforcing portion can selectively undergo fatigue failure. And since a connection part connects a reinforcement part without being restrained by an external electrode, even if a selective fatigue failure arises in a reinforcement board and an external electrode, an electrical connection can be maintained and a piezoelectric element can be driven.

(2)また、本発明の圧電素子は、前記連結部のそれぞれがアーチ状に形成され、前記補強部と一体に形成されていることを特徴としている。このように連結部のそれぞれがアーチ状に形成され、外部電極には接着されていないため、連結部には疲労破壊は及ばない。   (2) Further, the piezoelectric element of the present invention is characterized in that each of the connecting portions is formed in an arch shape and is formed integrally with the reinforcing portion. Since each of the connecting portions is formed in an arch shape and is not bonded to the external electrode in this way, the connecting portion does not suffer fatigue failure.

(3)また、本発明の圧電素子は、前記連結部が、前記積層方向に沿って前記補強部の左右交互に配置されていることを特徴としている。これにより、伸縮の際にかかる応力のバランスをとることができる。   (3) Moreover, the piezoelectric element of the present invention is characterized in that the connecting portions are alternately arranged on the left and right of the reinforcing portions along the stacking direction. Thereby, it is possible to balance the stress applied during expansion and contraction.

(4)また、本発明の圧電素子は、前記補強板が、リン青銅製または銅製であって、厚さ0.2mm以下であることを特徴としている。これにより、補強板は選択的な疲労破壊を起こすことができ、素子本体の破壊を防止できる。   (4) Moreover, the piezoelectric element of the present invention is characterized in that the reinforcing plate is made of phosphor bronze or copper and has a thickness of 0.2 mm or less. Thereby, the reinforcing plate can cause selective fatigue failure, and can prevent the element body from being destroyed.

(5)また、本発明の圧電素子は、前記補強板が、SUS製であって、厚さ0.1mm以下であることを特徴としている。これにより、補強板は選択的な疲労破壊を起こすことができ、素子本体の破壊を防止できる。   (5) Moreover, the piezoelectric element of the present invention is characterized in that the reinforcing plate is made of SUS and has a thickness of 0.1 mm or less. Thereby, the reinforcing plate can cause selective fatigue failure, and can prevent the element body from being destroyed.

本発明によれば、外部電極における選択されていない箇所の疲労破壊を防止するとともに、補強板が圧電素子を拘束してクラックが生じるのを防止し、補強板および外部電極に選択的な疲労破壊が生じても電気的接続を維持できる。   According to the present invention, the fatigue failure of the non-selected portion of the external electrode is prevented, and the reinforcement plate restrains the piezoelectric element from being cracked. Even if this occurs, electrical connection can be maintained.

本発明に係る圧電素子を示す斜視図である。It is a perspective view which shows the piezoelectric element which concerns on this invention. 素子本体を示す正面図である。It is a front view which shows an element main body. 本発明に係る圧電素子を示す断面図である。It is sectional drawing which shows the piezoelectric element which concerns on this invention. 本発明に係る圧電素子の作製方法を示す概略図である。It is the schematic which shows the preparation methods of the piezoelectric element which concerns on this invention. (a)本発明に係る圧電素子の使用時の態様を示す正面図である。(b)圧電体の使用時の態様を示す正面図である。(A) It is a front view which shows the aspect at the time of use of the piezoelectric element which concerns on this invention. (B) It is a front view which shows the aspect at the time of use of a piezoelectric material. (a)比較例の圧電素子を示す正面図である。(b)比較例の圧電体を示す正面図である。(A) It is a front view which shows the piezoelectric element of a comparative example. (B) It is a front view which shows the piezoelectric material of a comparative example. 補強板の材質と厚みについての実験結果を示す表である。It is a table | surface which shows the experimental result about the material and thickness of a reinforcement board. 従来の圧電素子を示す正面図である。It is a front view which shows the conventional piezoelectric element. 従来の圧電素子を示す正面図である。It is a front view which shows the conventional piezoelectric element.

次に、本発明の実施の形態について、図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては同一の参照番号を付し、重複する説明は省略する。   Next, embodiments of the present invention will be described with reference to the drawings. In order to facilitate understanding of the description, the same reference numerals are given to the same components in the respective drawings, and duplicate descriptions are omitted.

(圧電素子の構造)
図1は、圧電素子100を示す斜視図、図2は、素子本体110を示す正面図、図3は、圧電素子100を示す断面図である。図1および図3において、矢印Fは正面に向かう方向を示している。また、図3は、図1に示す面Sによる断面を示している。なお、図面では、長手方向の両端側を省略して圧電素子100を示している。
(Piezoelectric element structure)
FIG. 1 is a perspective view showing the piezoelectric element 100, FIG. 2 is a front view showing the element body 110, and FIG. 3 is a cross-sectional view showing the piezoelectric element 100. In FIG. 1 and FIG. 3, an arrow F indicates a direction toward the front. FIG. 3 shows a cross section taken along the plane S shown in FIG. In the drawings, the piezoelectric element 100 is shown by omitting both end sides in the longitudinal direction.

図1〜図3に示すように、圧電素子100は、圧電層111と内部電極112とが交互に積層されて矩形に形成されている。そして、内部電極112に電圧を印加することで伸縮する。圧電素子100は、圧電層111、内部電極112、外部電極115、応力緩和層117、補強板120を備えている。   As shown in FIGS. 1 to 3, the piezoelectric element 100 has a rectangular shape in which piezoelectric layers 111 and internal electrodes 112 are alternately stacked. And it expands and contracts by applying a voltage to the internal electrode 112. The piezoelectric element 100 includes a piezoelectric layer 111, an internal electrode 112, an external electrode 115, a stress relaxation layer 117, and a reinforcing plate 120.

圧電素子100は、圧電層111と内部電極112が一体焼成される単位素子105が連結された素子本体110に補強板120を接着して形成されている。単位素子105の連結は接着剤で行うが、必ずしも限定されない。また、連結せず単一の単位素子105のみで圧電素子100を形成してもよい。   The piezoelectric element 100 is formed by adhering a reinforcing plate 120 to an element body 110 to which a unit element 105 in which a piezoelectric layer 111 and an internal electrode 112 are integrally fired is connected. The unit elements 105 are connected by an adhesive, but are not necessarily limited. Alternatively, the piezoelectric element 100 may be formed by only a single unit element 105 without being connected.

圧電層111は、たとえばPZTのような圧電体により形成されている。一連の内部電極112に挟まれている圧電体は、分極処理により分極されている。圧電層111の一層は、実際には30μm〜100μm程度であり、非常に薄いが、図では簡略化して模式的に示している。   The piezoelectric layer 111 is formed of a piezoelectric material such as PZT. The piezoelectric body sandwiched between the series of internal electrodes 112 is polarized by a polarization process. One layer of the piezoelectric layer 111 is actually about 30 μm to 100 μm and is very thin, but is schematically shown in the drawing.

内部電極112は、圧電層111と交互に積層され、圧電体に埋設されている。内部電極112に電圧を印加し、圧電体に電界をかけることで、圧電素子100を駆動することができる。   The internal electrodes 112 are alternately stacked with the piezoelectric layers 111 and are embedded in the piezoelectric body. The piezoelectric element 100 can be driven by applying a voltage to the internal electrode 112 and applying an electric field to the piezoelectric body.

外部電極115は、圧電素子100の側面で内部電極112の取り出し部分に接続されている。外部電極115は、AgやAg/Pd等のペーストを印刷し、焼き付けることで形成できる。外部電極115を介して内部電極112に電圧が印加される。   The external electrode 115 is connected to the lead-out portion of the internal electrode 112 on the side surface of the piezoelectric element 100. The external electrode 115 can be formed by printing and baking a paste such as Ag or Ag / Pd. A voltage is applied to the internal electrode 112 via the external electrode 115.

応力緩和層117は、活性領域の周囲の領域に、積層面に平行、すなわち伸縮方向に垂直に層面が形成されている。その結果、圧電素子100の伸縮による応力を緩和する。なお、単位素子105の結合部分117aも応力緩和の作用を有するため、機能的には応力緩和層117とみなすことができる。   The stress relaxation layer 117 has a layer surface in a region around the active region that is parallel to the laminated surface, that is, perpendicular to the expansion and contraction direction. As a result, stress due to expansion and contraction of the piezoelectric element 100 is relieved. In addition, since the coupling portion 117a of the unit element 105 also has a stress relaxation function, it can be functionally regarded as the stress relaxation layer 117.

なお、圧電素子100は、加工代として積層方向の両端部に設けられた保護層と電圧の印加により駆動する活性層とに区分できる。さらに、活性層は、内部電極の積層方向への投影が重なり合う中央の活性領域と内部電極が外部とショートしないように設けられた周囲の領域とに区分できる。活性領域は、圧電素子100において実際に駆動する領域である。活性領域は電圧により駆動するが、その周囲の領域は、電圧の印加により変形せず応力が生じるため、応力緩和層117が必要となる。   The piezoelectric element 100 can be divided into a protective layer provided at both ends in the stacking direction and an active layer that is driven by application of a voltage as a processing allowance. Further, the active layer can be divided into a central active region where projections in the stacking direction of the internal electrodes overlap and a peripheral region provided so that the internal electrodes do not short-circuit with the outside. The active region is a region that is actually driven in the piezoelectric element 100. The active region is driven by a voltage, but the surrounding region is not deformed by the application of the voltage and a stress is generated. Therefore, the stress relaxation layer 117 is necessary.

補強板120は、金属製であり、補強部121および連結部122を備えている。補強部121は、帯状に形成され、外部電極115に接着され、外部電極115を補強している。このように、補強部121が外部電極115に接着されていることで、外部電極115のクラックを防止できる。補強部121は、応力緩和層117付近で、選択的に疲労破壊しうる程度に薄く形成されている。その一方で、補強部121が選択的に疲労破壊することで、補強板120が素子本体110を拘束せず、素子破壊が生じるのを防止できる。なお、選択的に生じさせる疲労破壊は、上記のクラックとは異なる。   The reinforcing plate 120 is made of metal and includes a reinforcing portion 121 and a connecting portion 122. The reinforcing portion 121 is formed in a band shape and is bonded to the external electrode 115 to reinforce the external electrode 115. As described above, since the reinforcing portion 121 is bonded to the external electrode 115, the external electrode 115 can be prevented from cracking. The reinforcing portion 121 is formed in the vicinity of the stress relaxation layer 117 so as to be thin enough to selectively cause fatigue failure. On the other hand, since the reinforcing portion 121 selectively fatigues and breaks, the reinforcing plate 120 does not restrain the element main body 110 and can prevent the element from being broken. Note that the fatigue failure that is selectively generated is different from the above-described crack.

連結部122は、外部電極115に拘束されずに応力緩和層117で区切られる補強部121を連結している。これにより、補強板120および外部電極115に選択的な疲労破壊が生じても電気的接続を維持でき、圧電素子100を駆動できる。連結部122のそれぞれはアーチ状に形成され、補強部121と一体に形成されている。このような構造で外部電極115に接着されていないため、連結部122には疲労破壊は及ばない。   The connecting part 122 connects the reinforcing part 121 separated by the stress relaxation layer 117 without being constrained by the external electrode 115. Thereby, even if selective fatigue failure occurs in the reinforcing plate 120 and the external electrode 115, electrical connection can be maintained and the piezoelectric element 100 can be driven. Each of the connecting portions 122 is formed in an arch shape and is formed integrally with the reinforcing portion 121. Since the structure is not bonded to the external electrode 115, the connecting portion 122 is not damaged by fatigue.

連結部122は、積層方向に沿って補強部121の左右交互に配置されていることが好ましい。これにより、伸縮の際に偏りなく応力がかかる。なお、連結部122の形状は必ずしもアーチ状でなくてもよく、外側に膨らんでおり、補強部121との間に空隙123があればよい。空隙により、疲労破壊が外側の端部まで及ばない。   It is preferable that the connection part 122 is arrange | positioned alternately at the right and left of the reinforcement part 121 along the lamination direction. As a result, stress is applied evenly during expansion and contraction. In addition, the shape of the connection part 122 does not necessarily need to be an arch shape, it swells outside, and the space | gap 123 should just exist between the reinforcement parts 121. FIG. Due to the voids, fatigue failure does not extend to the outer edge.

補強板120は、リン青銅製または銅製であることが好ましい。その場合、厚さを0.2mm以下とすることにより、補強板は選択的な疲労破壊を起こすことができる。補強板120は、SUS製であってもよい。この場合には、厚さは0.1mm以下であることが疲労破壊を生じさせるには好適である。   The reinforcing plate 120 is preferably made of phosphor bronze or copper. In that case, the reinforcing plate can cause selective fatigue failure by setting the thickness to 0.2 mm or less. The reinforcing plate 120 may be made of SUS. In this case, the thickness is preferably 0.1 mm or less in order to cause fatigue failure.

(作製方法)
次に、上記のような構成を有する圧電素子100の作製方法を説明する。図4は、圧電素子100の作製方法を示す概略図である。
(Production method)
Next, a method for manufacturing the piezoelectric element 100 having the above configuration will be described. FIG. 4 is a schematic view showing a method for manufacturing the piezoelectric element 100.

単位素子105は、圧電層111と内部電極112とを積層して焼成することで形成される。一方、補強板120の材料となる金属板は好適な厚さのものを選び、外部電極115より幅広で、かつ単位素子105を連結した素子本体110の長さを有するように加工する。また、素子本体110に貼付したときに応力緩和層117の位置で外側(側面側)に膨らむように連結部122を設ける。また、補強板120はエッチングで作製するのが望ましい。   The unit element 105 is formed by laminating and baking the piezoelectric layer 111 and the internal electrode 112. On the other hand, the metal plate used as the material of the reinforcing plate 120 is selected to have a suitable thickness, and is processed so as to be wider than the external electrode 115 and have the length of the element body 110 to which the unit elements 105 are connected. Further, the connecting portion 122 is provided so as to swell outward (side surface side) at the position of the stress relaxation layer 117 when it is attached to the element body 110. The reinforcing plate 120 is preferably produced by etching.

そして、単位素子105を連結し、外部電極115に重なる領域130に、補強部121を半田付けで接着する。このようにして、単位素子105を連結して得られた素子本体110の所定の位置に補強板120を接着することで圧電素子100を形成することができる。なお、半田に変えて導電性接着剤を用いて接着してもよい。   Then, the unit elements 105 are connected, and the reinforcing portion 121 is bonded to the region 130 that overlaps the external electrode 115 by soldering. In this way, the piezoelectric element 100 can be formed by bonding the reinforcing plate 120 to a predetermined position of the element body 110 obtained by connecting the unit elements 105. Note that, instead of solder, a conductive adhesive may be used for bonding.

(使用態様)
次に、圧電素子100を実際に使用する際の態様を説明する。図5(a)は、圧電素子100の使用時の態様を示す正面図である。図5(b)は、使用時の素子本体110を示す正面図である。
(Usage mode)
Next, a mode when the piezoelectric element 100 is actually used will be described. FIG. 5A is a front view showing an aspect when the piezoelectric element 100 is used. FIG. 5B is a front view showing the element body 110 in use.

図5(a)に示すように、圧電素子100を伸縮させることで、応力緩和層117部分の変位が大きくなり、その部分の補強部122に疲労破壊141が生じる。疲労破壊141は予め生じさせておいてもよい。また、その際には、図5(b)に示すように、外部電極115の応力緩和層117と重なる部分にも疲労破壊142が生じている。   As shown in FIG. 5A, when the piezoelectric element 100 is expanded and contracted, the displacement of the stress relaxation layer 117 increases, and the fatigue failure 141 occurs in the reinforcing portion 122 of that portion. The fatigue failure 141 may be generated in advance. Further, at that time, as shown in FIG. 5B, the fatigue failure 142 occurs also in the portion of the external electrode 115 that overlaps the stress relaxation layer 117.

選択的に疲労破壊141を生じさせることで、補強部121は、外部電極115を補強しつつ、応力緩和層117の位置では応力を緩和している。一方では、外部電極115の疲労破壊で分断された電気的接続を、連結部122が維持している。すなわち、連結部122が繋がっていることで通電している。   By selectively causing fatigue failure 141, the reinforcing portion 121 reinforces the external electrode 115 and relieves stress at the position of the stress relieving layer 117. On the other hand, the connecting portion 122 maintains the electrical connection that is disconnected due to fatigue failure of the external electrode 115. That is, it is energized because the connecting part 122 is connected.

[実施例]
圧電素子の補強板の材料および厚さについて実験を行った。補強板の材料は、リン青銅、銅、SUS304を用いた。厚さは、0.05mm、0.1mm、0.15mm、0.2mm、0.3mmのものを用意した。また、補強部の幅が0.2mmのものと0.4mmのものをそれぞれ用意した。このような補強板を用いて圧電素子を作製した。なお、リン青銅、銅の補強板は半田付けで外部電極に接着し、SUSの補強板は導電性接着剤で接着した。
[Example]
Experiments were conducted on the material and thickness of the reinforcing plate of the piezoelectric element. The material of the reinforcing plate was phosphor bronze, copper, or SUS304. Thicknesses of 0.05 mm, 0.1 mm, 0.15 mm, 0.2 mm, and 0.3 mm were prepared. Moreover, the thing of the width of the reinforcement part 0.2mm and the thing of 0.4mm were each prepared. A piezoelectric element was manufactured using such a reinforcing plate. The phosphor bronze and copper reinforcing plates were bonded to the external electrodes by soldering, and the SUS reinforcing plates were bonded to each other with a conductive adhesive.

このようにして作製した圧電素子を伸縮させたところ、薄い補強板を用いた実施例の圧電素子100では、補強板120に疲労破壊141が生じ、応力が緩和されるとともに、素子本体110内には破壊が生じなかった。一方、以下に説明するように厚い補強板を用いた比較例の圧電素子500は素子本体110内部に破壊が生じた。   When the piezoelectric element manufactured in this way is expanded and contracted, in the piezoelectric element 100 of the embodiment using the thin reinforcing plate, the fatigue failure 141 occurs in the reinforcing plate 120, the stress is relieved, and the element body 110 includes No destruction occurred. On the other hand, as described below, the piezoelectric element 500 of the comparative example using a thick reinforcing plate was broken inside the element body 110.

図6(a)は、比較例の圧電素子500を示す正面図である。図6(b)は、比較例の素子本体110を示す正面図である。図6に示すように、厚い補強板520を用いた場合には、補強板520の応力緩和層117付近には疲労破壊が生じなかった。また、外部電極115の端部付近から、外部電極115をむしり取ろうとしたときにできるようなクラック541が生じた。たとえば、リン青銅製の0.3mmの補強板の場合には素子破壊が生じたため、補強部を単位素子105ごとに分割した形状の補強板も試したが、素子破壊を防止できなかった。また、補強部なしで、全体形状をサインカーブ状とした補強板も試したが、同様に素子破壊が生じた。   FIG. 6A is a front view showing a piezoelectric element 500 of a comparative example. FIG. 6B is a front view showing the element body 110 of the comparative example. As shown in FIG. 6, when the thick reinforcing plate 520 was used, fatigue failure did not occur in the vicinity of the stress relaxation layer 117 of the reinforcing plate 520. In addition, a crack 541 was generated from the vicinity of the end of the external electrode 115, which could be generated when the external electrode 115 was peeled off. For example, in the case of a 0.3 mm reinforcing plate made of phosphor bronze, element destruction occurred. Therefore, a reinforcing plate having a shape in which the reinforcing portion is divided for each unit element 105 was also tried, but element destruction could not be prevented. Further, a reinforcing plate having a sine curve as a whole without a reinforcing portion was also tested, but element destruction occurred in the same manner.

図7は、補強板の材質と厚みについての実験結果を示す表である。図7に示すように、
リン青銅製または銅製の補強板120を用いる場合、厚さを0.2mm以下とすることにより、補強板は選択的な疲労破壊を起こすことができ、単位素子105内の破壊を防止できることが実証された。また、SUS製の補強板120を用いる場合には、厚さを0.1mm以下とすることにより、補強板は選択的な疲労破壊を起こすことができ、単位素子105内の破壊を防止できることが実証された。なお、補強部の幅は実験結果に影響しなかった。
FIG. 7 is a table showing experimental results regarding the material and thickness of the reinforcing plate. As shown in FIG.
When using a phosphor bronze or copper reinforcing plate 120, it is proved that the reinforcing plate can cause selective fatigue failure by preventing the destruction in the unit element 105 by setting the thickness to 0.2 mm or less. It was done. In addition, when the SUS reinforcing plate 120 is used, the reinforcing plate can cause selective fatigue failure by preventing the damage in the unit element 105 by setting the thickness to 0.1 mm or less. Proven. The width of the reinforcing part did not affect the experimental results.

100 圧電素子
105 単位素子
110 素子本体
111 圧電層
112 内部電極
115 外部電極
117 応力緩和層
117a 結合部分
120 補強板
121 補強部
122 連結部
130 半田付けの領域
141、142 疲労破壊
DESCRIPTION OF SYMBOLS 100 Piezoelectric element 105 Unit element 110 Element main body 111 Piezoelectric layer 112 Internal electrode 115 External electrode 117 Stress relaxation layer 117a Connection part 120 Reinforcement plate 121 Reinforcement part 122 Connection part 130 Soldering area 141, 142 Fatigue failure

Claims (5)

圧電層と内部電極とが交互に積層され、電圧の印加により伸縮する矩形の圧電素子であって、
積層面に平行に層面が形成され、伸縮による応力を緩和する応力緩和層と、
側面に設けられた外部電極と、
前記外部電極に接着され、前記外部電極を補強する補強部、および前記外部電極に拘束されずに前記応力緩和層で区切られる前記補強部を連結する連結部を有し、前記応力緩和層付近で、前記補強部が選択的に疲労破壊しうる程度に薄く形成された金属製の補強板と、を備えることを特徴とする圧電素子。
Piezoelectric layers and internal electrodes are alternately stacked, and are rectangular piezoelectric elements that expand and contract by application of voltage,
A layer surface is formed in parallel to the laminated surface, and a stress relaxation layer that relieves stress due to expansion and contraction,
An external electrode provided on the side surface;
A reinforcing portion that is bonded to the external electrode and reinforces the external electrode; and a connecting portion that connects the reinforcing portion that is bound by the stress relieving layer without being constrained by the external electrode, and near the stress relieving layer A piezoelectric element comprising: a metal reinforcing plate formed so thin that the reinforcing portion can be selectively fatigued.
前記連結部のそれぞれはアーチ状に形成され、前記補強部と一体に形成されていることを特徴とする請求項1記載の圧電素子。   2. The piezoelectric element according to claim 1, wherein each of the connecting portions is formed in an arch shape and is formed integrally with the reinforcing portion. 前記連結部は、前記積層方向に沿って前記補強部の左右交互に配置されていることを特徴とする請求項1または請求項2記載の圧電素子。   3. The piezoelectric element according to claim 1, wherein the connecting portions are alternately arranged on the left and right of the reinforcing portions along the stacking direction. 前記補強板は、リン青銅製または銅製であって、厚さ0.2mm以下であることを特徴とする請求項1から請求項3のいずれかに記載の圧電素子。   The piezoelectric element according to any one of claims 1 to 3, wherein the reinforcing plate is made of phosphor bronze or copper and has a thickness of 0.2 mm or less. 前記補強板は、SUS製であって、厚さ0.1mm以下であることを特徴とする請求項1から請求項3のいずれかに記載の圧電素子。   The piezoelectric element according to any one of claims 1 to 3, wherein the reinforcing plate is made of SUS and has a thickness of 0.1 mm or less.
JP2010221739A 2010-09-30 2010-09-30 Piezoelectric element Active JP5604251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010221739A JP5604251B2 (en) 2010-09-30 2010-09-30 Piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010221739A JP5604251B2 (en) 2010-09-30 2010-09-30 Piezoelectric element

Publications (2)

Publication Number Publication Date
JP2012079816A true JP2012079816A (en) 2012-04-19
JP5604251B2 JP5604251B2 (en) 2014-10-08

Family

ID=46239739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010221739A Active JP5604251B2 (en) 2010-09-30 2010-09-30 Piezoelectric element

Country Status (1)

Country Link
JP (1) JP5604251B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015531168A (en) * 2012-08-09 2015-10-29 エプコス アクチエンゲゼルシャフトEpcos Ag A method for filling at least one cavity of a multilayer device with a filler and a multilayer device.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005529495A (en) * 2002-06-07 2005-09-29 ピーアイ セラミック ゲーエムベーハー ケラミッシェ テクノロジー ウント バウエレメント Monolithic multilayer actuator manufacturing method, monolithic multilayer actuator made from piezoelectric ceramic or electrostrictive material, and external electrical contacts for monolithic multilayer actuator
JP2006203070A (en) * 2005-01-21 2006-08-03 Tdk Corp Lamination piezoelectric element
JP2007189099A (en) * 2006-01-13 2007-07-26 Ngk Insulators Ltd Laminated piezoelectric element and manufacturing method thereof
JP2008060147A (en) * 2006-08-29 2008-03-13 Ngk Spark Plug Co Ltd Laminated piezoelectric actuator
JP2008211054A (en) * 2007-02-27 2008-09-11 Tdk Corp Laminated piezoelectric element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005529495A (en) * 2002-06-07 2005-09-29 ピーアイ セラミック ゲーエムベーハー ケラミッシェ テクノロジー ウント バウエレメント Monolithic multilayer actuator manufacturing method, monolithic multilayer actuator made from piezoelectric ceramic or electrostrictive material, and external electrical contacts for monolithic multilayer actuator
JP2006203070A (en) * 2005-01-21 2006-08-03 Tdk Corp Lamination piezoelectric element
JP2007189099A (en) * 2006-01-13 2007-07-26 Ngk Insulators Ltd Laminated piezoelectric element and manufacturing method thereof
JP2008060147A (en) * 2006-08-29 2008-03-13 Ngk Spark Plug Co Ltd Laminated piezoelectric actuator
JP2008211054A (en) * 2007-02-27 2008-09-11 Tdk Corp Laminated piezoelectric element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015531168A (en) * 2012-08-09 2015-10-29 エプコス アクチエンゲゼルシャフトEpcos Ag A method for filling at least one cavity of a multilayer device with a filler and a multilayer device.
US9595390B2 (en) 2012-08-09 2017-03-14 Epcos Ag Method for filling at least one cavity of a multi-layer component with a filling material, and multi-layer component

Also Published As

Publication number Publication date
JP5604251B2 (en) 2014-10-08

Similar Documents

Publication Publication Date Title
JP5431170B2 (en) Piezo laminate and method for producing piezo laminate
JP5584066B2 (en) Multilayer piezoelectric structure
CN110098317B (en) Laminated piezoelectric ceramic component and piezoelectric device
JP5604250B2 (en) Piezoelectric element
JP5604251B2 (en) Piezoelectric element
JP7163570B2 (en) Laminated piezoelectric element and vibration device
WO2009130863A1 (en) Multilayer piezoelectric actuator
JP6047358B2 (en) Multiplexed element and manufacturing method thereof
JP2005294761A (en) Stacked piezoelectric element
JP5635319B2 (en) Piezoelectric element and manufacturing method thereof
JP6708961B2 (en) Piezoelectric element
WO2016158730A1 (en) Piezoelectric power generating element and piezoelectric power generating device
JP2019040948A (en) Stacked piezoelectric element
JP2017188628A (en) Piezoelectric element, manufacturing method thereof, and piezoelectric actuator
US11930713B2 (en) Piezoelectric element and vibrating device
JP5589395B2 (en) Piezoelectric actuator
JP2013012656A (en) Piezoelectric element
JP2005011913A (en) Ceramic multilayered electromechanical transducing element and its manufacturing method
JP2018056162A (en) Piezoelectric actuator
JP6898167B2 (en) Laminated piezoelectric element
WO2018051698A1 (en) Piezoelectric power generation device
JP5825656B2 (en) Piezoelectric actuator and coupled piezoelectric actuator
JP2005026583A (en) Ceramic laminated electromechanical sensing element
JP2011258681A (en) Laminated piezoelectric actuator and manufacturing method therefor
JP2018006680A (en) Piezoelectric element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140825

R150 Certificate of patent or registration of utility model

Ref document number: 5604251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250