JP2012079602A - Lighting device - Google Patents

Lighting device Download PDF

Info

Publication number
JP2012079602A
JP2012079602A JP2010225308A JP2010225308A JP2012079602A JP 2012079602 A JP2012079602 A JP 2012079602A JP 2010225308 A JP2010225308 A JP 2010225308A JP 2010225308 A JP2010225308 A JP 2010225308A JP 2012079602 A JP2012079602 A JP 2012079602A
Authority
JP
Japan
Prior art keywords
voltage
lighting device
led
circuit
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010225308A
Other languages
Japanese (ja)
Other versions
JP5593189B2 (en
Inventor
Michihiro Kadota
充弘 門田
Hiroyuki Shoji
浩幸 庄司
Atsushi Hatakeyama
篤史 畠山
Takanobu Mimura
隆宣 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2010225308A priority Critical patent/JP5593189B2/en
Priority to TW100134990A priority patent/TWI452934B/en
Priority to CN2011103061234A priority patent/CN102448229A/en
Publication of JP2012079602A publication Critical patent/JP2012079602A/en
Application granted granted Critical
Publication of JP5593189B2 publication Critical patent/JP5593189B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lighting device capable of avoiding an adverse effect on an infrared remote controller by keeping a switching frequency of a step-down circuit at 40 kHz or higher even when a rectification voltage lowers.SOLUTION: A lighting device comprises: a rectification circuit 101 which converts a voltage of an AC power supply 100 into a DC voltage; a step-down circuit 102 which steps down the rectification voltage output from the rectification circuit and feeds power to a LED load 103; a driving circuit 105 which drives a switching element provided in the step-down circuit; a voltage drop detection circuit 106 which detects a rectification voltage drop; and at least one bypass means 104 which is operated according to an output from the voltage drop detection circuit. The LED load is provided with at least one of the LED series bodies to which a plurality of LEDs are connected in series. The bypass means is connected in parallel to some LEDs provided in the LED series body. The voltage drop detection circuit outputs a bypass command signal to the bypass means when the rectification voltage is lower than a set value.

Description

本発明は、交流電源によって駆動する点灯装置に係り、特に、発光ダイオード(以下、LEDと記す)の点灯装置に関する。   The present invention relates to a lighting device driven by an AC power source, and more particularly, to a lighting device for a light emitting diode (hereinafter referred to as LED).

LEDは、環境性に優れた光源として注目されており、スポット照明,自動車の車内照明やヘッドライト,信号機,液晶ディスプレイのバックライトなど幅広い製品に利用されている。また、住宅やオフィス向けの一般照明において、蛍光ランプなどの従来光源からLEDへの置き換えが始まっている。   LEDs are attracting attention as light sources with excellent environmental properties, and are used in a wide range of products such as spot lighting, interior lighting of automobiles, headlights, traffic lights, and backlights of liquid crystal displays. In general lighting for homes and offices, replacement of conventional light sources such as fluorescent lamps with LEDs has begun.

LED点灯装置の一例として、交流電源から整流回路を介して直流電圧(以下、整流電圧と記す)を生成し、この整流電圧を降圧回路によって降圧してLEDに給電する構成がある。この装置では、整流電圧がLED負荷の電圧(以下、出力電圧と記す)よりも高い条件でしかLEDに給電できないものの、装置の構成が簡単であり、また電力変換の効率が高いという利点がある。   As an example of the LED lighting device, there is a configuration in which a DC voltage (hereinafter referred to as a rectified voltage) is generated from an AC power source through a rectifier circuit, and the rectified voltage is stepped down by a step-down circuit to supply power to the LED. Although this device can supply power to the LED only under a condition where the rectified voltage is higher than the voltage of the LED load (hereinafter referred to as output voltage), there is an advantage that the configuration of the device is simple and the efficiency of power conversion is high. .

このようなLED点灯装置として、例えば特許文献1に記載の装置がある。この装置は、直流電源から降圧チョッパを介してLEDに給電する構成であり、降圧チョッパのスイッチング素子に流れる電流のピーク値が一定になるように、かつ、降圧チョッパが電流臨界モードで動作するようにスイッチング素子をオン・オフさせる自励式駆動回路を備える。この装置では、上記の利点があることはもちろん、LED負荷に流れる電流(以下、LED電流と記す)を一定に制御でき、さらに、スイッチング素子のターンオン損失がほとんど発生しないため、電力変換の効率をより一層高くできる。   As such an LED lighting device, there is a device described in Patent Document 1, for example. This device is configured to supply power to an LED from a DC power source via a step-down chopper so that the peak value of the current flowing through the switching element of the step-down chopper becomes constant and the step-down chopper operates in a current critical mode. Includes a self-excited drive circuit for turning on and off the switching element. In addition to the above advantages, this device can control the current flowing through the LED load (hereinafter referred to as the LED current) to be constant, and further, since the turn-on loss of the switching element hardly occurs, the efficiency of power conversion is improved. It can be even higher.

特開2005−294063号公報JP-A-2005-294063

上記の整流回路について、直流出力側に平滑用コンデンサを設けて整流電圧を平滑する構成を考える。このとき、電源高調波の低減を考慮すると、コンデンサの静電容量を十分に大きくできないため、整流電圧は交流電源の周波数で脈動する。整流電圧が低くなり、整流電圧と出力電圧との差が小さくなるほど、降圧回路におけるスイッチング素子のスイッチング周波数が低くなる。スイッチング周波数が40kHzより低くなると、赤外線リモコン機器が誤動作する可能性があるため、降圧回路はスイッチング周波数が常に40kHz以上となるように設計されるべきである。しかし、LED負荷の構成によっては、整流電圧と出力電圧の差が極めて小さくなる状況が発生し、この場合、回路定数の調整といった程度では、スイッチング周波数を40kHz以上に維持できない。スイッチング周波数を40kHz以上に維持できない期間が長ければ、降圧回路を利用しない方法も考えるべきである。しかし、同期間が短い場合、特に、交流電源の電圧が低下したときのみに同期間が発生するような場合、LED点灯装置の小型化,高効率化の観点から、何らかの手段によって上記の問題を解決して降圧回路を利用することが望ましい。   Regarding the above rectifier circuit, consider a configuration in which a smoothing capacitor is provided on the DC output side to smooth the rectified voltage. At this time, considering the reduction of power supply harmonics, the capacitance of the capacitor cannot be increased sufficiently, and the rectified voltage pulsates at the frequency of the AC power supply. The lower the rectified voltage and the smaller the difference between the rectified voltage and the output voltage, the lower the switching frequency of the switching element in the step-down circuit. When the switching frequency is lower than 40 kHz, the infrared remote control device may malfunction, so the step-down circuit should be designed so that the switching frequency is always 40 kHz or higher. However, depending on the configuration of the LED load, a situation may occur in which the difference between the rectified voltage and the output voltage becomes extremely small. In this case, the switching frequency cannot be maintained at 40 kHz or higher by adjusting the circuit constant. If the period during which the switching frequency cannot be maintained above 40 kHz is long, a method not using a step-down circuit should be considered. However, when the synchronization period is short, particularly when the synchronization period occurs only when the voltage of the AC power supply decreases, the above problem may be solved by some means from the viewpoint of miniaturization and high efficiency of the LED lighting device. It is desirable to solve and use a step-down circuit.

本発明の目的は、所定の周波数で通信する機器への悪影響(誤動作など)を回避した点灯装置を提供することにある。   The objective of this invention is providing the lighting device which avoided the bad influence (malfunction etc.) to the apparatus which communicates with a predetermined frequency.

本発明は、バイパス手段が、LED直列体が備える一部のLEDと並列に接続され、電圧低下検出回路が、整流電圧が設定値より低いとき、バイパス手段にバイパス指令信号を出力することを特徴とする。   The present invention is characterized in that the bypass means is connected in parallel with some of the LEDs included in the LED series body, and the voltage drop detection circuit outputs a bypass command signal to the bypass means when the rectified voltage is lower than a set value. And

本発明は、交流電源から整流された整流電圧が発光体(例えば、LED直列体)に印加される電圧に近くなった場合に、整流電圧が発光体に印加される電圧にそれ以上近くならないよう、発光体に印加される電圧を下げることを特徴とする。   In the present invention, when the rectified voltage rectified from the AC power supply becomes close to the voltage applied to the light emitter (for example, the LED series body), the rectified voltage does not become closer to the voltage applied to the light emitter. The voltage applied to the light emitter is lowered.

本発明は、LED群に含まれる一部のLEDに並列に接続された補助スイッチング素子(例えば、MOSFET)と、整流電圧を検出し、整流電圧を設定値(Vdc設定値)と比較し、整流電圧が設定値より大きい場合に補助スイッチング素子をオフし、整流電圧が設定値より小さい場合に補助スイッチング素子をオンする回路(電圧降下検出回路)を備え、電圧設定値は、LED群に印加される電圧よりも高いことを特徴とする。   The present invention detects auxiliary rectification devices (for example, MOSFETs) connected in parallel to some of the LEDs included in the LED group, detects a rectified voltage, compares the rectified voltage with a set value (Vdc set value), and rectifies A circuit (voltage drop detection circuit) that turns off the auxiliary switching element when the voltage is larger than the set value and turns on the auxiliary switching element when the rectified voltage is smaller than the set value is provided. The voltage set value is applied to the LED group. It is characterized by being higher than the voltage.

本発明によれば、バイパス手段は、LED直列体が備える一部のLEDと並列に接続され、電圧低下検出回路は、整流電圧が設定値より低いとき、バイパス手段にバイパス指令信号を出力することにより、整流電圧の低下時においても降圧回路のスイッチング周波数を所定の周波数以上に維持でき、所定の周波数で通信する機器への悪影響(誤動作など)を回避できる。例えば、スイッチング周波数を40kHz以上に維持できれば、赤外線通信機器への悪影響(誤動作など)を回避できる。   According to the present invention, the bypass means is connected in parallel with some of the LEDs included in the LED series body, and the voltage drop detection circuit outputs a bypass command signal to the bypass means when the rectified voltage is lower than the set value. Thus, even when the rectified voltage is lowered, the switching frequency of the step-down circuit can be maintained at a predetermined frequency or more, and adverse effects (such as malfunction) on devices that communicate at the predetermined frequency can be avoided. For example, if the switching frequency can be maintained at 40 kHz or higher, adverse effects (such as malfunctions) on the infrared communication device can be avoided.

または、本発明によれば、交流電源から整流された整流電圧が発光体に印加される電圧に近くなった場合に、整流電圧が発光体に印加される電圧にそれ以上近くならないよう、発光体に印加される電圧を下げることにより、整流電圧の低下時においても降圧回路のスイッチング周波数を所定の周波数以上に維持でき、所定の周波数で通信する機器への悪影響(誤動作など)を回避できる。   Alternatively, according to the present invention, when the rectified voltage rectified from the AC power supply becomes close to the voltage applied to the light emitter, the light emitter is prevented from becoming any closer to the voltage applied to the light emitter. By reducing the voltage applied to, the switching frequency of the step-down circuit can be maintained at a predetermined frequency or higher even when the rectified voltage is reduced, and adverse effects (such as malfunctions) on devices communicating at the predetermined frequency can be avoided.

または、本発明によれば、LED群に含まれる一部のLEDに並列に接続された補助スイッチング素子と、整流電圧を検出し、整流電圧を設定値と比較し、整流電圧が設定値より大きい場合に補助スイッチング素子をオフし、整流電圧が設定値より小さい場合に補助スイッチング素子をオンする回路を備え、電圧設定値は、LED群に印加される電圧よりも高いことにより、整流電圧の低下時においても降圧回路におけるスイッチング素子のスイッチング周波数を所定の周波数以上に維持でき、所定の周波数で通信する機器への悪影響(誤動作など)を回避できる。   Alternatively, according to the present invention, the auxiliary switching element connected in parallel to some of the LEDs included in the LED group and the rectified voltage are detected, the rectified voltage is compared with the set value, and the rectified voltage is greater than the set value. When the auxiliary switching element is turned off and the auxiliary switching element is turned on when the rectified voltage is smaller than the set value, the voltage set value is higher than the voltage applied to the LED group, thereby reducing the rectified voltage. Even at times, the switching frequency of the switching element in the step-down circuit can be maintained at a predetermined frequency or higher, and adverse effects (such as malfunctions) on devices communicating at the predetermined frequency can be avoided.

本発明の第1実施形態におけるLED点灯装置のブロック図である。It is a block diagram of the LED lighting device in 1st Embodiment of this invention. 本発明の第1実施形態におけるLED点灯装置である。It is a LED lighting device in a 1st embodiment of the present invention. 従来のLED点灯装置の動作波形である。It is an operation | movement waveform of the conventional LED lighting device. 従来のLED点灯装置の動作波形である。It is an operation | movement waveform of the conventional LED lighting device. 本発明の第1実施形態におけるLED点灯装置の動作波形である。It is an operation | movement waveform of the LED lighting device in 1st Embodiment of this invention. 本発明の第1実施形態におけるLED点灯装置の動作波形である。It is an operation | movement waveform of the LED lighting device in 1st Embodiment of this invention. 本発明の第1実施形態におけるLED負荷とバイパス手段である。It is the LED load and bypass means in 1st Embodiment of this invention. 本発明の第1実施形態におけるLED負荷とバイパス手段である。It is the LED load and bypass means in 1st Embodiment of this invention. 本発明の第2実施形態におけるLED負荷とバイパス手段である。It is the LED load and bypass means in 2nd Embodiment of this invention. 本発明の第2実施形態におけるLED点灯装置である。It is an LED lighting device in 2nd Embodiment of this invention. 本発明の第2実施形態におけるLED点灯装置の動作波形である。It is an operation | movement waveform of the LED lighting device in 2nd Embodiment of this invention. 本発明におけるバイパス手段の実装形態である。It is the mounting form of the bypass means in this invention. 本発明におけるバイパス手段の実装形態である。It is the mounting form of the bypass means in this invention.

本発明の実施形態について図面を用いて説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の第1実施形態におけるLED点灯装置のブロック図である。図1のLED点灯装置は、交流電源100、交流電源100の電圧を直流電圧(整流電圧)に変換する整流回路101、この整流電圧を降圧してLED(発光ダイオード)負荷103に給電する降圧回路102,LED負荷103を備える。降圧回路102は、スイッチング素子を備える。LED負荷103は、複数のLEDが直列に接続されたLED直列体を少なくとも1個備える。LED点灯装置は、LED直列体が備える一部のLEDと並列に接続されたバイパス手段104を備える。LED負荷103は、LED直列体が多並列に接続されていてもよく、この場合については後で説明する。駆動回路105は、降圧回路102に流れる電流またはLED負荷103に流れる電流を検出し、これに基づいて降圧回路102のスイッチング素子を駆動する。電圧低下検出回路106は、整流回路101の出力である整流電圧を検出し、整流電圧に応じて、バイパス手段104にバイパス指令信号を、駆動回路105に電流設定値をそれぞれ出力する。電圧低下検出回路106が電流設定値に相当する信号を生成し、駆動回路105に出力してもよいし、駆動回路105が電流設定値に相当する信号を生成しておき、電圧低下検出回路106が駆動回路105へ電流設定値の設定を指示する信号を出力するようにしてもよい。   FIG. 1 is a block diagram of an LED lighting device according to the first embodiment of the present invention. The LED lighting device of FIG. 1 includes an AC power source 100, a rectifier circuit 101 that converts the voltage of the AC power source 100 into a DC voltage (rectified voltage), and a step-down circuit that steps down the rectified voltage and supplies power to an LED (light emitting diode) load 103. 102, LED load 103 is provided. The step-down circuit 102 includes a switching element. The LED load 103 includes at least one LED series body in which a plurality of LEDs are connected in series. The LED lighting device includes bypass means 104 connected in parallel to some of the LEDs included in the LED series body. The LED load 103 may include a series of LED series connected in parallel, and this case will be described later. The drive circuit 105 detects the current flowing through the step-down circuit 102 or the current flowing through the LED load 103, and drives the switching element of the step-down circuit 102 based on the detected current. The voltage drop detection circuit 106 detects the rectified voltage that is the output of the rectifier circuit 101, and outputs a bypass command signal to the bypass means 104 and a current setting value to the drive circuit 105 according to the rectified voltage. The voltage drop detection circuit 106 may generate a signal corresponding to the current set value and output the signal to the drive circuit 105. Alternatively, the drive circuit 105 may generate a signal corresponding to the current set value, and the voltage drop detection circuit 106 May output a signal instructing the drive circuit 105 to set the current set value.

電圧低下検出回路106は、電流設定値を可変する場合もあり、その一例として値の小さい第1の電流設定値と値の大きい第2の電流設定値とを切り替える場合がある。なお、電流設定値は、3種類以上であってもよい。駆動回路105が複数の電流設定値を生成しておき、電圧低下検出回路106が駆動回路105へ電流設定値の切り替えを指示する信号を出力してもよい。整流電圧が電圧設定値以上の状態では、電圧低下検出回路106は、バイパス手段104にバイパス指令信号を出力せず、また、駆動回路105に第1の電流設定値を出力する。駆動回路105は、この第1の電流設定値に基づいて降圧回路102を制御する。降圧回路102を制御する方式の一例として、降圧回路102のスイッチング素子に流れる電流のピーク値を第1の電流設定値に一致させるように、スイッチング素子のオン・オフを制御する方式がある。一方、電圧低下検出回路106は、整流電圧が予め記憶する電圧設定値よりも小さくなった場合に、バイパス手段104にバイパス指令信号を出力すると共に、駆動回路105に第2の電流設定値を出力する。バイパス手段104は、LED直列体の一部のLEDをバイパスし、その結果、LED直列体の一部のLEDは点灯せず、残りのLEDのみが点灯する。駆動回路105は、この第2の電流設定値に基づいて降圧回路102を制御する。具体的な制御方式は、第1の電流設定値を用いたときと同様である。   The voltage drop detection circuit 106 may vary the current setting value, and as an example, may switch between a first current setting value having a small value and a second current setting value having a large value. Note that there may be three or more current set values. The drive circuit 105 may generate a plurality of current set values, and the voltage drop detection circuit 106 may output a signal instructing the drive circuit 105 to switch the current set values. In a state where the rectified voltage is equal to or higher than the voltage set value, the voltage drop detection circuit 106 does not output a bypass command signal to the bypass means 104 and outputs a first current set value to the drive circuit 105. The drive circuit 105 controls the step-down circuit 102 based on the first current setting value. As an example of a method for controlling the step-down circuit 102, there is a method for controlling on / off of the switching element so that the peak value of the current flowing through the switching element of the step-down circuit 102 matches the first current set value. On the other hand, the voltage drop detection circuit 106 outputs a bypass command signal to the bypass means 104 and outputs a second current set value to the drive circuit 105 when the rectified voltage becomes smaller than the voltage set value stored in advance. To do. The bypass means 104 bypasses some of the LEDs in the LED series body, and as a result, only some of the LEDs in the LED series body are not lit, and only the remaining LEDs are lit. The drive circuit 105 controls the step-down circuit 102 based on the second current setting value. The specific control method is the same as that when the first current set value is used.

図2は、本発明の第1実施形態におけるLED点灯装置であり、図1の主回路部分を具体的に示したものである。交流電源100に、ダイオードブリッジ107が接続される。ダイオードブリッジ107の直流出力側には、平滑用のコンデンサ108が接続される。平滑用のコンデンサ108と並列に、パワーMOSFET109と電流検出手段113とダイオード110の直列体が接続される。ダイオード110と並列に、チョークコイル111とコンデンサ112の直列体が接続される。コンデンサ112と並列に、LED負荷103が接続される。電圧低下検出回路106の電圧検出用の入力端が、ダイオードブリッジ107の直流出力の正極側に接続され、電流設定用の出力端が駆動回路105に接続され、バイパス指令用の出力端がMOSFET114のゲートに接続される。駆動回路105の電流検出用の入力端が、電流検出手段113に接続され、駆動信号の出力端がパワーMOSFET109のゲートに接続される。図2において、ダイオードブリッジ107と平滑用のコンデンサ108による全波整流回路が、図1の整流回路101に相当する。また、スイッチング素子であるパワーMOSFET109,ダイオード110,チョークコイル111,コンデンサ112,電流検出手段113によって構成される降圧チョッパが、図1の降圧回路102に相当する。パワーMOSFET109の代わりに、バイポーラトランジスタといった他種のスイッチング素子を用いてもよい。LED負荷103の一部には、補助スイッチング素子であるMOSFET114が並列に接続され、このMOSFET114が図1のバイパス手段104に相当する。図2のように、LED負荷103のうちMOSFET114によってバイパスされる部分をLED群116、バイパスされない部分をLED群117とそれぞれ定義しておく。また、交流電源100の電圧をVin、整流電圧をVdc、整流電圧を降圧回路102で降圧した後の出力電圧をVoutと定義する。Voutは、LED負荷103に印加される電圧となる。電圧低下検出回路106は、図1のバイパス指令信号に相当する信号として、MOSFET114の駆動信号を出力する。MOSFET114を駆動しない(オフにする)ことによって、LED群116およびLED群117の全部が点灯する(全点灯)。MOSFET114を駆動する(オンにする)ことによって、LED群116がバイパスされ、LED群117のみが点灯する(部分点灯)。例えば、LED直列体に含まれるLEDの総数が8個であれば、バイパスされるLED群116に含まれるLEDの数は4個でもよいし、2個でもよい。   FIG. 2 shows the LED lighting device according to the first embodiment of the present invention, and specifically shows the main circuit portion of FIG. A diode bridge 107 is connected to the AC power supply 100. A smoothing capacitor 108 is connected to the DC output side of the diode bridge 107. A series body of a power MOSFET 109, a current detection means 113, and a diode 110 is connected in parallel with the smoothing capacitor. A series body of a choke coil 111 and a capacitor 112 is connected in parallel with the diode 110. An LED load 103 is connected in parallel with the capacitor 112. The voltage detection input terminal of the voltage drop detection circuit 106 is connected to the positive side of the direct current output of the diode bridge 107, the current setting output terminal is connected to the drive circuit 105, and the bypass command output terminal is the MOSFET 114. Connected to the gate. The input terminal for current detection of the drive circuit 105 is connected to the current detection means 113, and the output terminal of the drive signal is connected to the gate of the power MOSFET 109. In FIG. 2, a full-wave rectifier circuit including a diode bridge 107 and a smoothing capacitor 108 corresponds to the rectifier circuit 101 of FIG. Further, the step-down chopper constituted by the power MOSFET 109, the diode 110, the choke coil 111, the capacitor 112, and the current detection means 113, which are switching elements, corresponds to the step-down circuit 102 in FIG. Instead of the power MOSFET 109, other types of switching elements such as bipolar transistors may be used. A MOSFET 114 as an auxiliary switching element is connected in parallel to a part of the LED load 103, and this MOSFET 114 corresponds to the bypass means 104 in FIG. As shown in FIG. 2, a portion of the LED load 103 that is bypassed by the MOSFET 114 is defined as an LED group 116, and a portion that is not bypassed is defined as an LED group 117. The voltage of the AC power supply 100 is defined as Vin, the rectified voltage is defined as Vdc, and the output voltage after the rectified voltage is stepped down by the step-down circuit 102 is defined as Vout. Vout is a voltage applied to the LED load 103. The voltage drop detection circuit 106 outputs a drive signal for the MOSFET 114 as a signal corresponding to the bypass command signal in FIG. By not driving (turning off) the MOSFET 114, the LED group 116 and the LED group 117 are all lit (all lit). By driving (turning on) the MOSFET 114, the LED group 116 is bypassed and only the LED group 117 is lit (partial lighting). For example, if the total number of LEDs included in the LED series body is eight, the number of LEDs included in the bypassed LED group 116 may be four or two.

図2のLED点灯装置において、平滑用のコンデンサ108の静電容量は、電源高調波の低減を満足する範囲内でしか大きく設定できない。つまり、コンデンサ108の静電容量は小さい。したがって、整流電圧は完全に平滑されるのではなく、図3に示すように交流電源100の周波数と同一の周波数で変動する。図3において、実線のVdcは整流電圧、破線のVoutは出力電圧、点線のVinは交流電源100の電圧である。図3のように、LED負荷103に含まれるLEDの個数などによっては、Vdcが低くなる場合にVdcとVoutの差が極めて小さくなる状況が発生し得る。例えば、図3の(a)の点では、VdcがVoutに対して十分に大きいが、(b)の点では、VdcとVoutの差が極めて小さい。   In the LED lighting device of FIG. 2, the capacitance of the smoothing capacitor 108 can be set large only within a range satisfying the reduction of power supply harmonics. That is, the capacitance of the capacitor 108 is small. Therefore, the rectified voltage is not completely smoothed, but fluctuates at the same frequency as the frequency of the AC power supply 100 as shown in FIG. In FIG. 3, the solid line Vdc is the rectified voltage, the broken line Vout is the output voltage, and the dotted line Vin is the voltage of the AC power supply 100. As shown in FIG. 3, depending on the number of LEDs included in the LED load 103, a situation may occur where the difference between Vdc and Vout becomes extremely small when Vdc is low. For example, Vdc is sufficiently larger than Vout at the point (a) in FIG. 3, but the difference between Vdc and Vout is extremely small at the point (b).

ここで、バイパス手段104や電圧低下検出回路106が無いもの、すなわち、従来のLED点灯装置を考える。図4の(a)は、VdcがVoutより十分高い(Vdc≫Vout)場合における、降圧チョッパの動作波形であり、(b)はVdcが低くなりVdcとVoutの差が極めて小さい(Vdc≒Vout)場合における、降圧チョッパの動作波形である。図4の縦軸項目として、SWはパワーMOSFET109のオン・オフ状態、IQはパワーMOSFET109の電流、ILはチョークコイル111の電流、ILEDはLED負荷103の電流である。なお、降圧チョッパの制御方式として、パワーMOSFET109に流れる電流のピーク値を制御し、かつ、電流臨界モードで動作させる方式を想定している。ただし、パワーMOSFET109の電流のピーク値を制御する方式であれば、制御方式については問わない。また、コンデンサ112の静電容量は十分大きく、ILEDはILの直流成分になると仮定した。   Here, the thing without the bypass means 104 and the voltage drop detection circuit 106, ie, the conventional LED lighting device, is considered. 4A shows an operation waveform of the step-down chopper when Vdc is sufficiently higher than Vout (Vdc >> Vout), and FIG. 4B shows that the difference between Vdc and Vout is extremely small (Vdc≈Vout). ) Is an operation waveform of the step-down chopper. As a vertical axis item in FIG. 4, SW is an on / off state of the power MOSFET 109, IQ is a current of the power MOSFET 109, IL is a current of the choke coil 111, and ILED is a current of the LED load 103. It is assumed that the step-down chopper is controlled by controlling the peak value of the current flowing through the power MOSFET 109 and operating in the current critical mode. However, the control method is not particularly limited as long as the current peak value of the power MOSFET 109 is controlled. Further, it is assumed that the capacitance of the capacitor 112 is sufficiently large and that the ILED becomes a direct current component of IL.

パワーMOSFET109がオンであるとき、降圧チョッパには、パワーMOSFET109,電流検出手段113,チョークコイル111,LED負荷103とコンデンサ112の並列体の経路で電流が流れ、図4のようにIQ及びILは時間と共に増大する。チョークコイル111にはVdcとVoutの差の電圧(Vdc−Vout)が印加されるため、Vdc−Voutが一定とみなせる期間において、IL及びIQは一定の傾きで増大する。IL及びIQの増加する傾きは、Vdc−Voutに比例し、チョークコイル111の自己インダクタンスに反比例する。電流のピーク値を制御する方式では、IQが電流設定値に達した時点で、パワーMOSFET109をターンオフさせる。尚、詳細については省略するが、パワーMOSFET109がオフした後、IQは流れなくなり、ILは減少していく。ILの減少する傾きは、Voutやチョークコイル111の自己インダクタンスに依存する。Voutが大きいほど、ILの減少する傾きは大きく、Voutが小さいほど、ILの減少する傾きは小さい。パワーMOSFET109を再びターンオンさせるタイミングの一例として、パワーMOSFET109がターンオフしてから所望の時間が経過した時点でターンオンさせる方式や、ILがゼロまで減少したことを検出した時点でターンオンさせる方式などがある。   When the power MOSFET 109 is on, a current flows through the step-down chopper through the path of the power MOSFET 109, current detection means 113, choke coil 111, LED load 103 and capacitor 112 in parallel, and IQ and IL are as shown in FIG. Increase with time. Since the voltage (Vdc−Vout) of the difference between Vdc and Vout is applied to the choke coil 111, IL and IQ increase with a constant slope during a period in which Vdc−Vout can be regarded as constant. Increasing slopes of IL and IQ are proportional to Vdc−Vout and inversely proportional to the self-inductance of the choke coil 111. In the method of controlling the peak value of current, the power MOSFET 109 is turned off when IQ reaches the current set value. Although details are omitted, after the power MOSFET 109 is turned off, IQ stops flowing and IL decreases. The slope of decrease in IL depends on Vout and the self-inductance of the choke coil 111. The greater the Vout, the greater the slope at which IL decreases, and the smaller the Vout, the smaller the slope at which IL decreases. As an example of the timing at which the power MOSFET 109 is turned on again, there are a system in which the power MOSFET 109 is turned on when a desired time has elapsed since the power MOSFET 109 is turned off, and a system in which the power MOSFET 109 is turned on when it is detected that IL has decreased to zero.

上記の理由からVdcが低下すると、Vdc−Voutが小さくなるため、IL及びIQの傾きは小さくなる。このとき、IQがIQ設定値に達するまでの時間、すなわち、パワーMOSFET109のオン時間が長くなるため、パワーMOSFET109のスイッチング周波数は低くなる。特に、Vdc≒Voutとなって動作波形が図4(b)となるとき、スイッチング周波数は同図(a)の場合と比べて極端に低くなる。この場合、チョークコイル111の自己インダクタンスを調整するだけで、スイッチング周波数を40kHz以上に維持することは困難である。スイッチング周波数が40kHzより低くなると、上記したように赤外線リモコン機器に悪影響(誤動作)を及ぼす。図4(b)のVdc≒Voutの状態でスイッチング周波数が40kHz以上になるように設計したとしても、今度は同図(a)のVdc≫Voutの場合においてスイッチング周波数が極端に高くなり、スイッチング損失の異常な増大によってパワーMOSFET109が破損し得る。
尚、リモコンに利用される赤外線のキャリア周波数は38kHzや40kHzであるが、実際には30kHzから40kHzとバラツキがある。
For the above reasons, when Vdc decreases, Vdc−Vout decreases, so that the slopes of IL and IQ decrease. At this time, since the time until IQ reaches the IQ set value, that is, the on-time of the power MOSFET 109 becomes longer, the switching frequency of the power MOSFET 109 becomes lower. In particular, when Vdc≈Vout and the operation waveform is as shown in FIG. 4B, the switching frequency is extremely lower than in the case of FIG. In this case, it is difficult to maintain the switching frequency at 40 kHz or higher simply by adjusting the self-inductance of the choke coil 111. When the switching frequency is lower than 40 kHz, the infrared remote control device is adversely affected (malfunction) as described above. Even if the switching frequency is designed to be 40 kHz or more in the state of Vdc≈Vout in FIG. 4B, the switching frequency becomes extremely high when Vdc >> Vout in FIG. The power MOSFET 109 may be damaged due to an abnormal increase in the current.
The infrared carrier frequency used for the remote control is 38 kHz or 40 kHz, but actually varies from 30 kHz to 40 kHz.

本発明では、補助スイッチング素子のMOSFET114や電圧低下検出回路106を利用して、上記の問題を解決する。電圧低下検出回路106はVdcに対してVdc設定値を持っており、VdcがVdc設定値より低くなったことを検出すると、MOSFET114をオンさせる。これによって、LED負荷103うちLED群116の両端が短絡状態となる。これは、LED負荷103におけるLEDの直列接続数が、LED群116の分だけ減少することと等価であり、LED群116の分だけVoutも低下する。なお、ILEDはMOSFET114にバイパスされて流れるためLED群116には電流が流れず、LED群116は一時的に消灯することになる。Vdc設定値は、MOSFET114をオフされてLED群116およびLED群117に印加されるVoutよりも高い。当然だが、Vdc設定値は、MOSFET114をオンすることでLED群116の分だけ減少した場合のVoutよりも高く、Vdcのピーク値よりも低い。例えば、Vinが100Vacである場合は、Vdcのピーク値は141V程度である。MOSFET114がオフのときにLED負荷103に印加されるVoutは、LED負荷103におけるLEDの直列接続数にもよるが、例えば75V程度であるとする。このとき、Vdc設定値は、LED負荷103に印加されるVoutより5〜10V高い80〜85V程度とする。   In the present invention, the above problem is solved by using the MOSFET 114 of the auxiliary switching element and the voltage drop detection circuit 106. The voltage drop detection circuit 106 has a Vdc setting value with respect to Vdc, and turns on the MOSFET 114 when detecting that Vdc has become lower than the Vdc setting value. As a result, both ends of the LED group 116 in the LED load 103 are short-circuited. This is equivalent to a reduction in the number of LEDs connected in series in the LED load 103 by the amount of the LED group 116, and Vout also decreases by the amount of the LED group 116. Since the ILED is bypassed by the MOSFET 114 and flows, no current flows through the LED group 116, and the LED group 116 is temporarily turned off. The Vdc set value is higher than Vout applied to the LED group 116 and the LED group 117 with the MOSFET 114 turned off. Of course, the Vdc set value is higher than Vout when the MOSFET 114 is turned on and decreased by the amount of the LED group 116, and is lower than the peak value of Vdc. For example, when Vin is 100 Vac, the peak value of Vdc is about 141 V. Vout applied to the LED load 103 when the MOSFET 114 is off depends on the number of LEDs connected in series in the LED load 103, but is about 75V, for example. At this time, the Vdc set value is about 80 to 85 V, which is 5 to 10 V higher than Vout applied to the LED load 103.

本発明の降圧チョッパの動作波形を図5または図6に示す。図5の時間軸は図3に、図6の時間軸は図4にそれぞれ対応する。図5と図6の縦軸項目として、SW2はMOSFET114のオン・オフ状態であり、それ以外の項目は図3または図4と同様である。図6(a)は、VdcがVdc設定値より高く、MOSFET114がオフの場合(全点灯)の動作波形であり、同図(b)は、VdcがVdc設定値より低く、MOSFET114がオンの場合(部分点灯)の動作波形である。   The operation waveform of the step-down chopper of the present invention is shown in FIG. 5 corresponds to FIG. 3, and the time axis of FIG. 6 corresponds to FIG. As the vertical axis items in FIGS. 5 and 6, SW2 is the on / off state of the MOSFET 114, and other items are the same as those in FIG. 3 or FIG. FIG. 6A shows an operation waveform when Vdc is higher than the Vdc set value and the MOSFET 114 is OFF (all lighting), and FIG. 6B shows a case where Vdc is lower than the Vdc set value and the MOSFET 114 is ON. It is an operation waveform of (partial lighting).

図5に示すように、電圧低下検出回路106は、整流電圧であるVdcを検出し、VdcをVdc設定値と比較する。電圧低下検出回路106は、VdcがVdc設定値よりも低いと判定した場合は、MOSFET114に駆動信号を出力してMOSFET114をオンし、LED群116をバイパスする。その結果、Voutは低くなる。電圧低下検出回路106は、VdcがVdc設定値よりも低いと判定した場合は、第1のIQ設定値よりも大きい第2のIQ設定値を駆動回路105に出力する。IQ設定値が大きくなるため、ILEDも大きくなる。このようにIQ設定値を大きくする理由については後で説明する。ただし、電圧低下検出回路106の第2のIQ設定値を出力する制御動作は必須の構成ではない。つまり、電圧低下検出回路106は、VdcがVdc設定値よりも低いと判定した場合にも、第1のIQ設定値を出力してもよい。一方、電圧低下検出回路106は、VdcがVdc設定値よりも高いと判定した場合は、MOSFET114に駆動信号を出力せずMOSFET114をオフし、LED群116をバイパスしないようにする。その結果、Voutは高くなる。電圧低下検出回路106は、VdcがVdc設定値よりも高いと判定した場合は、第2のIQ設定値よりも小さい第1のIQ設定値を駆動回路105に出力する。なお、駆動回路105がIQ設定値に基づいてパワーMOSFET109のオン・オフを制御する動作については、既に説明した図4の場合と同様である。   As shown in FIG. 5, the voltage drop detection circuit 106 detects Vdc, which is a rectified voltage, and compares Vdc with a Vdc set value. When the voltage drop detection circuit 106 determines that Vdc is lower than the Vdc set value, it outputs a drive signal to the MOSFET 114 to turn on the MOSFET 114 and bypass the LED group 116. As a result, Vout is lowered. When the voltage drop detection circuit 106 determines that Vdc is lower than the Vdc set value, the voltage drop detection circuit 106 outputs a second IQ set value larger than the first IQ set value to the drive circuit 105. Since the IQ set value increases, the ILED also increases. The reason why the IQ setting value is increased in this way will be described later. However, the control operation for outputting the second IQ set value of the voltage drop detection circuit 106 is not an essential configuration. That is, the voltage drop detection circuit 106 may output the first IQ setting value even when it is determined that Vdc is lower than the Vdc setting value. On the other hand, when it is determined that Vdc is higher than the Vdc set value, the voltage drop detection circuit 106 does not output a drive signal to the MOSFET 114, turns off the MOSFET 114, and does not bypass the LED group 116. As a result, Vout increases. When the voltage drop detection circuit 106 determines that Vdc is higher than the Vdc set value, the voltage drop detection circuit 106 outputs a first IQ set value smaller than the second IQ set value to the drive circuit 105. Note that the operation in which the drive circuit 105 controls the on / off of the power MOSFET 109 based on the IQ set value is the same as in the case of FIG. 4 already described.

図5または図6のように、MOSFET114をオンさせることで、Vdcが低い状況においてもVdc≒Voutとならず、Vdc≫Voutを維持できる。したがって、図6(b)に示したように、Vdcが低い場合のスイッチング周波数は、図6(a)のVdcが高い場合と比べれば低くなるものの、図4(b)のように極端に低くなることはない。結果として、チョークコイル111の自己インダクタンスを調整する程度で、Vdcが低下してもスイッチング周波数を40kHz以上に維持できるようになる。   As shown in FIG. 5 or FIG. 6, by turning on the MOSFET 114, Vdc≈Vout is not satisfied even in a situation where Vdc is low, and Vdc >> Vout can be maintained. Therefore, as shown in FIG. 6B, the switching frequency when Vdc is low is lower than that when Vdc is high in FIG. 6A, but extremely low as shown in FIG. 4B. Never become. As a result, the switching frequency can be maintained at 40 kHz or higher even when Vdc is reduced by adjusting the self-inductance of the choke coil 111.

電流のピーク値を一定に、すなわち、ILEDを一定に制御する場合、上記の要領でVdcが低いときにVoutを低下させると、出力電力ひいてはLED負荷103の光出力が減少してしまう。そこで、VdcがVdc設定値より低いとき(部分点灯のとき)、図5や図6(b)のように、MOSFET114をオンさせると同時に、一時消灯するLED群116のLEDの個数に応じてIQ設定値を増大させるのが好ましい。これによって、Voutが低下してもILEDが増大するため、出力電力及び光出力を維持することができる。例えば、LED負荷103のLEDの総数が25個で、一時消灯するLED群116のLEDの個数が5個である場合は、第2のIQ設定値を第1のIQ設定値の5/4倍すれば、出力電力及び光出力を維持できる。ただし、VdcがVdc設定値よりも高い期間は、VdcがVdc設定値よりも低い期間よりも十分に長いことから、LED負荷103が部分点灯する期間(LED群116が一時消灯する期間)は、LED負荷103が全点灯する期間よりも短い。よって、LED負荷103が部分点灯するときにILEDを上げなくても、LED負荷103の光出力にあまり影響はない。よって、LED負荷103が部分点灯するときにIQ設定値を上げなくてもよいし、上げるとしても消灯しているLED群116の光出力を完全に補う程度まで上げる必要もない。   When the current peak value is controlled to be constant, that is, the ILED is controlled to be constant, if Vout is decreased when Vdc is low as described above, the output power and thus the light output of the LED load 103 is decreased. Therefore, when Vdc is lower than the Vdc setting value (partial lighting), as shown in FIG. 5 and FIG. 6B, the MOSFET 114 is turned on, and at the same time, the IQ according to the number of LEDs in the LED group 116 that is temporarily turned off. It is preferable to increase the set value. Thereby, even if Vout decreases, the ILED increases, so that the output power and the light output can be maintained. For example, when the total number of LEDs of the LED load 103 is 25 and the number of LEDs in the LED group 116 that is temporarily turned off is 5, the second IQ setting value is 5/4 times the first IQ setting value. Then, output power and optical output can be maintained. However, since the period during which Vdc is higher than the Vdc set value is sufficiently longer than the period during which Vdc is lower than the Vdc set value, the period during which the LED load 103 is partially lit (the period during which the LED group 116 is temporarily turned off) It is shorter than the period when the LED load 103 is fully lit. Therefore, even if the ILED is not raised when the LED load 103 is partially lit, the light output of the LED load 103 is not significantly affected. Therefore, it is not necessary to increase the IQ set value when the LED load 103 is partially lit, and even if it is increased, it is not necessary to increase the light output of the LED group 116 that is extinguished completely.

LED負荷の構成及びバイパス手段の接続形態に関する別例について説明する。まず、図7のように、LED直列体に対してバイパス手段を接続する箇所は問わない。図2に示すように、LED直列体の端部であってもよいし、図7に示すようにLED直列体の中間部であってもよい。次に、図8のLED負荷115のように、LED直列体が2個以上並列に接続される場合、それぞれのLED直列体に対してバイパス手段104とバイパス手段118を接続すればよい。なお、LEDが並列に接続される場合、一般にはLED電流をバランスさせるための回路が挿入されるが、図8では省略した。   Another example regarding the configuration of the LED load and the connection mode of the bypass means will be described. First, as shown in FIG. 7, the place where the bypass means is connected to the LED series body is not limited. As shown in FIG. 2, the end part of the LED series body may be sufficient, and the intermediate part of an LED series body may be sufficient as shown in FIG. Next, when two or more LED series bodies are connected in parallel like the LED load 115 of FIG. 8, the bypass means 104 and the bypass means 118 may be connected to each LED series body. When LEDs are connected in parallel, a circuit for balancing the LED current is generally inserted, but is omitted in FIG.

バイパス手段104の別例として、MOSFETの他にもトランジスタなど他種の補助スイッチング素子を用いてもよい。また、リレーのように機械式の補助スイッチを利用してもよい。   As another example of the bypass means 104, other types of auxiliary switching elements such as transistors may be used in addition to MOSFETs. Further, a mechanical auxiliary switch such as a relay may be used.

バイパス手段104の実装について説明する。以上に説明したLED点灯装置は電子回路であり、LED点灯装置の各部品は回路基板上に実装される。ただし、LED負荷103については回路基板とは別の基板(以下、LED基板と記す)に実装され、回路基板とLED基板はケーブルなどで電気的に接続される。バイパス手段104は回路基板上に実装されることが一般的と言えるが、図12のようにLED基板上に実装されてもよい。図12では、LED基板300上に、表面実装のLEDモジュール301〜304とバイパス手段104である表面実装の補助スイッチング素子305が実装されている。LED基板300には3個の電極306〜308があり、電極306には降圧回路の出力の正極側が、電極307には降圧回路の出力の負極側が、電極308にはバイパス指令信号である補助スイッチング素子305の駆動信号がそれぞれ入力される。点線の内側はLED基板300の配線パターンである。図12では、直列に接続されるLEDモジュール301〜304のうち、LEDモジュール304が補助スイッチング素子によってバイパスされる。なお、LEDモジュールの内部構成として、LEDの個数や接続形態については問わない。   The implementation of the bypass means 104 will be described. The LED lighting device described above is an electronic circuit, and each component of the LED lighting device is mounted on a circuit board. However, the LED load 103 is mounted on a board (hereinafter referred to as an LED board) different from the circuit board, and the circuit board and the LED board are electrically connected by a cable or the like. The bypass means 104 is generally mounted on a circuit board, but may be mounted on an LED board as shown in FIG. In FIG. 12, surface-mounted LED modules 301 to 304 and surface-mounted auxiliary switching elements 305 that are bypass means 104 are mounted on the LED substrate 300. The LED substrate 300 has three electrodes 306 to 308, the electrode 306 has a positive output side of the step-down circuit, the electrode 307 has a negative output side of the output of the step-down circuit, and the electrode 308 has an auxiliary switching signal that is a bypass command signal. A driving signal for the element 305 is input. The inside of the dotted line is the wiring pattern of the LED substrate 300. In FIG. 12, among the LED modules 301 to 304 connected in series, the LED module 304 is bypassed by the auxiliary switching element. In addition, as an internal structure of an LED module, it does not ask | require about the number and connection form of LED.

図13のように、LEDモジュールが複数のLEDと共にバイパス手段を内蔵してもよい。図13では、LEDモジュール315に、LED309〜312とバイパス手段313が内蔵されている。電極314にはバイパス指令信号が入力される。点線はLEDモジュール315内の配線である。図13では、直列に接続されるLED309〜312のうち、LED311と312が補助スイッチング素子305によってバイパスされる。以上で説明したバイパス手段の実装は、本発明の全ての実施形態に対して適用可能である。   As shown in FIG. 13, the LED module may incorporate a bypass unit together with a plurality of LEDs. In FIG. 13, LEDs 309 to 312 and bypass means 313 are built in the LED module 315. A bypass command signal is input to the electrode 314. A dotted line is a wiring in the LED module 315. In FIG. 13, among the LEDs 309 to 312 connected in series, the LEDs 311 and 312 are bypassed by the auxiliary switching element 305. The implementation of the bypass means described above is applicable to all embodiments of the present invention.

実施例1によれば、Vdcが脈動してVdcがVoutに近くなった場合に、例えば点灯させるLEDの数を減らしてVoutを下げ、VdcがVoutにそれ以上近くならないようにして、IQがIQ設定値に到達する時間が長くならないようにすることによって、Vdcの低下時においても降圧回路のスイッチング周波数を所定の周波数以上に維持でき、所定の周波数で通信する機器への悪影響(誤動作など)を回避できる。例えば、スイッチング周波数を40kHz以上に維持できれば、赤外線通信機器への悪影響(誤動作など)を回避できる。   According to the first embodiment, when Vdc pulsates and Vdc becomes close to Vout, for example, the number of LEDs to be lit is reduced to lower Vout so that Vdc does not approach Vout any more and IQ becomes IQ By preventing the time to reach the set value from becoming longer, the switching frequency of the step-down circuit can be maintained at a predetermined frequency or higher even when Vdc decreases, and adverse effects (such as malfunctions) on devices that communicate at the predetermined frequency Can be avoided. For example, if the switching frequency can be maintained at 40 kHz or higher, adverse effects (such as malfunctions) on the infrared communication device can be avoided.

本発明のLED点灯装置は、照明器具や液晶表示装置のバックライトに適用可能である。また、本発明のLED点灯装置は、LED以外の発光体、例えばEL素子にも適用可能である。   The LED lighting device of the present invention can be applied to a backlight of a lighting fixture or a liquid crystal display device. The LED lighting device of the present invention can also be applied to light emitters other than LEDs, such as EL elements.

本発明の第2実施形態について以下に説明するが、第1実施形態と同様の点については説明を省略する。   The second embodiment of the present invention will be described below, but the description of the same points as in the first embodiment will be omitted.

本発明の第2実施形態では、図9のように、1個のLED直列体に対して複数のバイパス手段(104,204,205)が接続される。なお、バイパス手段によってバイパスされないLED、すなわち、バイパス指令信号に依らずLED電流が常に流れるLEDがあってもよい。図10は、本発明の第2実施形態におけるLED点灯装置である。LED負荷103の一部に対して、2個の補助スイッチング素子であるMOSFET114とMOSFET214が接続され、これらが図9のバイパス手段に相当する。図10のように、LED負荷103のうちMOSFET114またはMOSFET214によってバイパスされる部分をLED群116またはLED群216とそれぞれ定義する。   In the second embodiment of the present invention, as shown in FIG. 9, a plurality of bypass means (104, 204, 205) are connected to one LED series body. There may be an LED that is not bypassed by the bypass means, that is, an LED in which the LED current always flows regardless of the bypass command signal. FIG. 10 shows an LED lighting device according to the second embodiment of the present invention. Two auxiliary switching elements MOSFET 114 and MOSFET 214 are connected to a part of the LED load 103, and these correspond to the bypass means of FIG. As shown in FIG. 10, the portion of the LED load 103 that is bypassed by the MOSFET 114 or the MOSFET 214 is defined as an LED group 116 or an LED group 216, respectively.

図11は、本発明の第2実施形態における動作波形であり、時間軸は図3や図5に対応する。図11の縦軸項目について、SW3はMOSFET214のオン・オフ状態であり、それ以外の項目は図5と同様である。図11のように、電圧低下検出回路106は、VdcがVdc設定値より低いことを検出する度に、MOSFET114とMOSFET214を順にオンさせる。どちらのMOSFETを先にオンさせてもVoutが低下するため、Vdcが低下してもVdc≫Voutの関係を維持でき、第1実施形態と同様の効果を得られる。   FIG. 11 shows operation waveforms in the second embodiment of the present invention, and the time axis corresponds to FIG. 3 and FIG. For the vertical axis items in FIG. 11, SW3 is the on / off state of the MOSFET 214, and the other items are the same as in FIG. As shown in FIG. 11, the voltage drop detection circuit 106 turns on the MOSFET 114 and the MOSFET 214 in turn each time it detects that Vdc is lower than the Vdc set value. Even if either MOSFET is turned on first, Vout decreases. Therefore, even if Vdc decreases, the relationship of Vdc >> Vout can be maintained, and the same effect as in the first embodiment can be obtained.

図2の第1実施形態では、Vdcが低下する度にLED群116のみが消灯し、LED群116に含まれないLEDはVdcに依らず常に点灯する。そのため、LED負荷のうちLED群116に含まれるLEDの寿命が、他のLEDより短くなる。第2実施形態では、各LEDの消灯する頻度がより均一となるため、LED負荷の中でLEDの寿命にばらつきが生じにくくなる。   In the first embodiment of FIG. 2, only the LED group 116 is turned off each time Vdc decreases, and LEDs that are not included in the LED group 116 are always lit regardless of Vdc. Therefore, the lifetime of LEDs included in the LED group 116 in the LED load is shorter than other LEDs. In the second embodiment, the frequency at which each LED is turned off becomes more uniform, and therefore, the LED life is less likely to vary in the LED load.

100 交流電源
101 整流回路
102 降圧回路
103,115 LED負荷
104,118,204,205,313 バイパス手段
105 駆動回路
106 電圧低下検出回路
107 ダイオードブリッジ
108,112 コンデンサ
109 パワーMOSFET
110 ダイオード
111 チョークコイル
113 電流検出手段
114,214 MOSFET
116,117,216 LED群
300 LED基板
301,302〜304,315 LEDモジュール
305 補助スイッチング素子
306,307,308,314 電極
309,310〜312 LED
100 AC power supply 101 Rectifier circuit 102 Step-down circuit 103, 115 LED load 104, 118, 204, 205, 313 Bypass means 105 Drive circuit 106 Voltage drop detection circuit 107 Diode bridge 108, 112 Capacitor 109 Power MOSFET
110 Diode 111 Choke coil 113 Current detection means 114, 214 MOSFET
116, 117, 216 LED group 300 LED boards 301, 302 to 304, 315 LED module 305 Auxiliary switching elements 306, 307, 308, 314 Electrodes 309, 310 to 312 LEDs

Claims (14)

交流電源の電圧を直流電圧に変換する整流回路と、前記整流回路の出力である整流電圧を降圧して発光ダイオード負荷(以下、LED負荷と記す)に給電する降圧回路と、前記降圧回路が備えるスイッチング素子を駆動する駆動回路と、前記整流電圧の低下を検出する電圧低下検出回路と、前記電圧低下検出回路の出力によって操作される少なくとも1個のバイパス手段とを備えた点灯装置であって、
前記LED負荷は、複数のLEDが直列に接続されたLED直列体を少なくとも1個備え、
前記バイパス手段は、前記LED直列体が備える一部のLEDと並列に接続され、
前記電圧低下検出回路は、前記整流電圧が設定値より低いとき、前記バイパス手段にバイパス指令信号を出力することを特徴とする点灯装置。
The rectifier circuit that converts the voltage of the AC power source into a DC voltage, the step-down circuit that steps down the rectified voltage that is the output of the rectifier circuit and supplies power to a light emitting diode load (hereinafter referred to as LED load), and the step-down circuit A lighting device comprising: a drive circuit for driving a switching element; a voltage drop detection circuit for detecting a drop in the rectified voltage; and at least one bypass means operated by an output of the voltage drop detection circuit,
The LED load includes at least one LED series body in which a plurality of LEDs are connected in series,
The bypass means is connected in parallel with some of the LEDs included in the LED series body,
The voltage drop detection circuit outputs a bypass command signal to the bypass means when the rectified voltage is lower than a set value.
請求項1に記載の点灯装置において、
前記バイパス手段は、前記LED直列体が備える一部のLEDと並列に接続される補助スイッチング素子を備え、
前記電圧低下検出回路は、前記整流電圧が設定値より低いとき、前記バイパス指令信号として前記補助スイッチング素子の駆動信号を出力することを特徴とする点灯装置。
The lighting device according to claim 1,
The bypass means includes an auxiliary switching element connected in parallel with some of the LEDs included in the LED series body,
The voltage drop detection circuit outputs a drive signal for the auxiliary switching element as the bypass command signal when the rectified voltage is lower than a set value.
請求項1に記載の点灯装置において、
前記LED直列体の1個あたりに、2個以上の前記バイパス手段が接続されることを特徴とする点灯装置。
The lighting device according to claim 1,
Two or more said bypass means are connected per said LED serial body, The lighting device characterized by the above-mentioned.
請求項3に記載の点灯装置において、
前記電圧低下検出回路は、前記整流電圧が設定値より低いことを検出する度に、前記2個以上のバイパス手段に対してバイパス指令信号を順に出力することを特徴とする点灯装置。
The lighting device according to claim 3,
The lighting device according to claim 1, wherein the voltage drop detection circuit sequentially outputs a bypass command signal to the two or more bypass means each time it detects that the rectified voltage is lower than a set value.
請求項1から4の何れかに記載の点灯装置において、
前記駆動回路は、前記降圧回路に流れる電流を検出し、前記電流を電流設定値に従って制御するように前記スイッチング素子を駆動し、
前記電圧低下検出回路は、前記整流電圧が設定値より低いとき、前記電流設定値を大きくすることを特徴とする点灯装置。
The lighting device according to any one of claims 1 to 4,
The drive circuit detects the current flowing through the step-down circuit and drives the switching element to control the current according to a current setting value;
The voltage drop detection circuit increases the current set value when the rectified voltage is lower than a set value.
請求項5に記載の点灯装置において、
前記駆動回路は、前記スイッチング素子がオンであるとき、前記降圧回路に流れる電流が電流設定値に達した時点で前記スイッチング素子をターンオフさせることを特徴とする点灯装置。
The lighting device according to claim 5,
The driving device is configured to turn off the switching element when the current flowing through the step-down circuit reaches a current set value when the switching element is on.
請求項1から6の何れかに記載の点灯装置において、
前記整流回路は、ダイオードブリッジと平滑用のコンデンサとを備え、
前記降圧回路は、ダイオードと前記スイッチング素子に相当するパワーMOSFETとチョークコイルとコンデンサと電流検出手段を備え、
前記駆動回路は、前記パワーMOSFETに流れる電流を検出し、前記パワーMOSFETがオンであるとき、前記パワーMOSFETに流れる電流が電流設定値に達した時点で前記パワーMOSFETをターンオフさせることを特徴とする点灯装置。
The lighting device according to any one of claims 1 to 6,
The rectifier circuit includes a diode bridge and a smoothing capacitor,
The step-down circuit includes a diode, a power MOSFET corresponding to the switching element, a choke coil, a capacitor, and current detection means.
The driving circuit detects a current flowing through the power MOSFET, and turns off the power MOSFET when the current flowing through the power MOSFET reaches a current setting value when the power MOSFET is on. Lighting device.
請求項1から7の何れかに記載の点灯装置において、
前記バイパス手段は、前記LEDが搭載される基板上に実装されることを特徴とする点灯装置。
The lighting device according to any one of claims 1 to 7,
The bypass device is mounted on a substrate on which the LED is mounted.
請求項1から8の何れかに記載の点灯装置において、
前記バイパス手段は、複数のLEDを備えるLEDモジュールに内蔵されることを特徴とする点灯装置。
The lighting device according to any one of claims 1 to 8,
The bypass unit is built in an LED module including a plurality of LEDs.
請求項1から9の何れかに記載の点灯装置において、
前記スイッチング素子のスイッチング周波数は40kHz以上であることを特徴とする点灯装置。
The lighting device according to any one of claims 1 to 9,
The switching device has a switching frequency of 40 kHz or more.
交流電源を整流し降圧して発光体へ供給すると共に、前記発光体に供給する電流を制御する点灯装置において、
前記交流電源から整流された整流電圧が前記発光体に印加される電圧に近くなった場合に、前記整流電圧が前記発光体に印加される電圧にそれ以上近くならないよう、前記発光体に印加される電圧を下げることを特徴とする点灯装置。
In the lighting device for controlling the current supplied to the light emitter while rectifying and stepping down the AC power supply and supplying the light emitter,
When the rectified voltage rectified from the AC power source becomes close to the voltage applied to the light emitter, the rectified voltage is applied to the light emitter so that it does not become closer to the voltage applied to the light emitter. The lighting device characterized by lowering the voltage.
請求項11に記載の点灯装置において、
前記発光体の一部をバイパスすることによって、前記発光体に印加される電圧を下げることを特徴とする点灯装置。
The lighting device according to claim 11,
A lighting device, wherein a voltage applied to the light emitter is lowered by bypassing a part of the light emitter.
請求項11に記載の点灯装置において、
前記発光体に印加される電圧よりも高く設定された電圧設定値より前記整流電圧が小さい場合に、前記整流電圧が前記発光体に印加される電圧に近いことを特徴とする点灯装置。
The lighting device according to claim 11,
The lighting device, wherein the rectified voltage is close to a voltage applied to the light emitter when the rectified voltage is smaller than a voltage set value set higher than a voltage applied to the light emitter.
交流電源と、前記交流電源に接続されたダイオードブリッジと、前記ダイオードブリッジに並列に接続された第1のコンデンサと、前記第1のコンデンサに並列に接続された第1のスイッチング素子と電流検出手段とダイオードの直列体と、前記ダイオードに並列に接続されたチョークコイルと第2のコンデンサの直列体と、前記第2のコンデンサに並列に接続されたLED群と、前記第1のスイッチング素子の電流または前記コイルの電流を検出し、前記第1のスイッチング素子の電流または前記コイルの電流を電流設定値と比較して前記第1のスイッチング素子を駆動する駆動回路とを備えた点灯装置において、
前記LED群に含まれる一部のLEDに並列に接続された第2のスイッチング素子と、 前記第1のコンデンサの電圧を検出し、前記第1のコンデンサの電圧を電圧設定値と比較し、前記第1のコンデンサの電圧が前記電圧設定値より大きい場合に前記第2のスイッチング素子をオフし、前記第1のコンデンサの電圧が前記電圧設定値より小さい場合に前記第2のスイッチング素子をオンする回路を備え、
前記電圧設定値は、前記LED群に印加される電圧よりも高いことを特徴とする点灯装置。
AC power supply, a diode bridge connected to the AC power supply, a first capacitor connected in parallel to the diode bridge, a first switching element connected in parallel to the first capacitor, and current detection means And a series body of diodes, a series body of a choke coil and a second capacitor connected in parallel to the diode, an LED group connected in parallel to the second capacitor, and a current of the first switching element Or a lighting device comprising: a drive circuit that detects the current of the coil and drives the first switching element by comparing the current of the first switching element or the current of the coil with a current setting value;
A second switching element connected in parallel to some of the LEDs included in the LED group; and detecting a voltage of the first capacitor; comparing the voltage of the first capacitor with a voltage setting value; When the voltage of the first capacitor is larger than the voltage setting value, the second switching element is turned off, and when the voltage of the first capacitor is smaller than the voltage setting value, the second switching element is turned on. With a circuit,
The voltage setting value is higher than the voltage applied to the LED group.
JP2010225308A 2010-10-05 2010-10-05 Lighting device Expired - Fee Related JP5593189B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010225308A JP5593189B2 (en) 2010-10-05 2010-10-05 Lighting device
TW100134990A TWI452934B (en) 2010-10-05 2011-09-28 Lighting device
CN2011103061234A CN102448229A (en) 2010-10-05 2011-09-30 Lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010225308A JP5593189B2 (en) 2010-10-05 2010-10-05 Lighting device

Publications (2)

Publication Number Publication Date
JP2012079602A true JP2012079602A (en) 2012-04-19
JP5593189B2 JP5593189B2 (en) 2014-09-17

Family

ID=46010156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010225308A Expired - Fee Related JP5593189B2 (en) 2010-10-05 2010-10-05 Lighting device

Country Status (3)

Country Link
JP (1) JP5593189B2 (en)
CN (1) CN102448229A (en)
TW (1) TWI452934B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254568A (en) * 2012-06-05 2013-12-19 Mitsubishi Electric Corp Led lighting apparatus
WO2017086220A1 (en) * 2015-11-18 2017-05-26 株式会社小糸製作所 Lighting circuit and vehicular lamp
JP2020107527A (en) * 2018-12-27 2020-07-09 パナソニックIpマネジメント株式会社 Lighting device, light source unit and lighting apparatus
JP7370639B1 (en) 2022-04-15 2023-10-30 厦門普為光電科技有限公司 High-efficiency light-emitting diode drive circuit and high-efficiency light-emitting diode lighting device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170238381A1 (en) * 2014-10-15 2017-08-17 Toray Industries, Inc. Three-phase ac/dc converter, photochemical reaction device and method using same, and method for producing lactam
CN106332406B (en) * 2015-07-10 2020-04-10 桂林电子科技大学 LED drive circuit of multichannel independent control
CN111640400A (en) * 2020-06-11 2020-09-08 武汉华星光电技术有限公司 Drive circuit, backlight module and display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008409A (en) * 2000-06-19 2002-01-11 Toshiba Lighting & Technology Corp Led light source device
JP2002373795A (en) * 2001-06-14 2002-12-26 Omron Corp Led backlight device
JP2005072546A (en) * 2003-08-22 2005-03-17 Kanichi Osugi Light emitting diode lamp using dynamo as power supply
JP2009033098A (en) * 2007-06-26 2009-02-12 Panasonic Electric Works Co Ltd Led lighting device and lighting fixture including the same
JP2009302295A (en) * 2008-06-13 2009-12-24 Panasonic Electric Works Co Ltd Light-emitting diode driving device and illumination device for vehicle
JP2010526696A (en) * 2006-11-10 2010-08-05 フィリップス ソリッド−ステート ライティング ソリューションズ インコーポレイテッド Method and apparatus for controlling LEDs connected in series

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4645149B2 (en) * 2004-10-21 2011-03-09 パナソニック電工株式会社 Light emitting diode lighting device and lighting fixture using the same
JP4741942B2 (en) * 2005-12-09 2011-08-10 Necライティング株式会社 LED lighting device
CN101617565B (en) * 2006-11-10 2011-11-02 飞利浦固体状态照明技术公司 Methods and apparatus for controlling series-connected leds
JP2010056314A (en) * 2008-08-28 2010-03-11 Kanazawa Inst Of Technology Driving circuit of light-emitting diode, light-emitting device using the same, and lighting device
TWI495389B (en) * 2008-09-05 2015-08-01 Eldolab Holding Bv Led based lighting application
CN201590932U (en) * 2010-01-21 2010-09-22 陕西西电科大华成电子股份有限公司 LED alternating-current direct driving circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008409A (en) * 2000-06-19 2002-01-11 Toshiba Lighting & Technology Corp Led light source device
JP2002373795A (en) * 2001-06-14 2002-12-26 Omron Corp Led backlight device
JP2005072546A (en) * 2003-08-22 2005-03-17 Kanichi Osugi Light emitting diode lamp using dynamo as power supply
JP2010526696A (en) * 2006-11-10 2010-08-05 フィリップス ソリッド−ステート ライティング ソリューションズ インコーポレイテッド Method and apparatus for controlling LEDs connected in series
JP2009033098A (en) * 2007-06-26 2009-02-12 Panasonic Electric Works Co Ltd Led lighting device and lighting fixture including the same
JP2009302295A (en) * 2008-06-13 2009-12-24 Panasonic Electric Works Co Ltd Light-emitting diode driving device and illumination device for vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254568A (en) * 2012-06-05 2013-12-19 Mitsubishi Electric Corp Led lighting apparatus
WO2017086220A1 (en) * 2015-11-18 2017-05-26 株式会社小糸製作所 Lighting circuit and vehicular lamp
JPWO2017086220A1 (en) * 2015-11-18 2018-08-30 株式会社小糸製作所 Lighting circuit, vehicle lamp
JP2020107527A (en) * 2018-12-27 2020-07-09 パナソニックIpマネジメント株式会社 Lighting device, light source unit and lighting apparatus
JP7126203B2 (en) 2018-12-27 2022-08-26 パナソニックIpマネジメント株式会社 Lighting device, light source unit and lighting fixture
JP7370639B1 (en) 2022-04-15 2023-10-30 厦門普為光電科技有限公司 High-efficiency light-emitting diode drive circuit and high-efficiency light-emitting diode lighting device

Also Published As

Publication number Publication date
TW201233246A (en) 2012-08-01
JP5593189B2 (en) 2014-09-17
TWI452934B (en) 2014-09-11
CN102448229A (en) 2012-05-09

Similar Documents

Publication Publication Date Title
JP5593189B2 (en) Lighting device
TWI434603B (en) Led driving circuit and control circuit
US8680775B2 (en) Lighting driver circuit and light fixture
CN102300365B (en) Led lighting device
JP5554108B2 (en) Overcurrent prevention type power supply device and lighting fixture using the same
JP5991614B2 (en) Light emitting element lighting device and lighting apparatus using the same
WO2011077909A1 (en) Led drive circuit
EP2375554B1 (en) Lighting device and illumination fixture using the same
US10362644B1 (en) Flyback converter with load condition control circuit
US8049436B2 (en) Dimmer and lighting apparatus
JP2008009416A (en) Driving system of liquid crystal display backlight with light emitting diode
JP2008235530A (en) Light emitting diode driving device and illuminator using the same
JP2006222376A (en) Power supply device and illuminator
JP2011077009A (en) Lighting system of tunnel
EP1942706A1 (en) Oled drive device and illumination device using the drive device
KR101472824B1 (en) Power supply unit for led lighting fixtures
JP6167455B2 (en) LED driving device and lighting apparatus
JP6528472B2 (en) LED power supply device and LED lighting device
KR20110028149A (en) Lamp driving circuit reducing power consumption of switching control ic
KR101439899B1 (en) Led lighting control apparatus
WO2013024811A1 (en) Power supply device and lighting device
US9699843B2 (en) Power supply device for LED light
KR101839052B1 (en) Power converter
KR102444432B1 (en) remote power supply apparatus for LED
JP2013134844A (en) Light source lighting device and luminaire

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140804

R150 Certificate of patent or registration of utility model

Ref document number: 5593189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees