JP2012078308A - Hydraulic tester of steel pipe and method for measuring pipe length after steel pipe hydraulic test - Google Patents

Hydraulic tester of steel pipe and method for measuring pipe length after steel pipe hydraulic test Download PDF

Info

Publication number
JP2012078308A
JP2012078308A JP2010226303A JP2010226303A JP2012078308A JP 2012078308 A JP2012078308 A JP 2012078308A JP 2010226303 A JP2010226303 A JP 2010226303A JP 2010226303 A JP2010226303 A JP 2010226303A JP 2012078308 A JP2012078308 A JP 2012078308A
Authority
JP
Japan
Prior art keywords
steel pipe
pipe
laser
steel
water pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010226303A
Other languages
Japanese (ja)
Inventor
Shuichi Sato
周一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010226303A priority Critical patent/JP2012078308A/en
Publication of JP2012078308A publication Critical patent/JP2012078308A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

PROBLEM TO BE SOLVED: To reflect a hydraulic tester on optimization of the next process condition by adding a scaling function to a series of test processes of the hydraulic tester.SOLUTION: Migration length of both head parts 1, 2 in a hydraulic test are measured by a pulse generator system, laser type position sensors 4, 4for detecting pipe end positions of a steel pipe are installed at the respective head parts, the respective head parts are moved to match laser optical paths of the laser type position sensors to a predetermined origin before setting of the steel pipe 3, pieces of the migration length of the respective head parts are measured from a point of time when the laser optical paths are matched to the predetermined origin to a point of time when the respective laser type position sensors detect the pipe end positions of the steel pipe when the respective head parts are separated from the steel pipe via the hydraulic test, and pipe length of the steel pipe is calculated by using this measurement result.

Description

本発明は、鋼管の水圧試験機及び鋼管水圧試験後の管長計測方法に関し、詳しくは、鋼管製造プロセスの中で、管長計測専用の別工程を経ることによる製造時間増加を抑制する、鋼管の水圧試験機及び鋼管水圧試験後の管長計測方法に関するものである。得られた管長は鋼管の中間切断、面取等の次工程の操業条件最適化に活用される。   TECHNICAL FIELD The present invention relates to a steel pipe water pressure tester and a pipe length measurement method after a steel pipe water pressure test. The present invention relates to a test machine and a pipe length measurement method after a steel pipe water pressure test. The obtained pipe length is used for optimizing the operating conditions of the next process such as intermediate cutting and chamfering of steel pipes.

鋼管の水圧試験機では、水圧試験に供する鋼管(以下、単に管ともいう)を固定し、その両端を閉鎖蓋でシールした後、管内部に試験水を注入、圧力を付加することにより試験を行う。規格によっては、印加水圧を降伏点付近まで上げるため、管の真円度の変化に加えて、管長が変化する。そのため、工程順序に関わらず、水圧後の寸法変化は重要な品質管理項目である。   In a water tester for steel pipes, a steel pipe (hereinafter also simply referred to as a pipe) for use in a water pressure test is fixed, sealed at both ends with a closure lid, and then tested by injecting test water into the pipe and applying pressure. Do. Depending on the standard, in order to raise the applied water pressure to near the yield point, the tube length changes in addition to the change in the roundness of the tube. Therefore, the dimensional change after water pressure is an important quality control item regardless of the process sequence.

鋼管の検尺(管長計測と同義)に関する従来技術として、例えば特許文献1ではパルス型メジャリング設備とレーザユニットを用いた移動中の鋼管等の被搬送材の長さ測定方法が提案されている。   For example, Patent Document 1 proposes a method for measuring the length of a material to be transported such as a moving steel pipe using a pulse measuring facility and a laser unit as a conventional technique related to a steel pipe measuring scale (synonymous with pipe length measurement). .


特開平4−166704号公報JP-A-4-166704

従来の技術では水圧試験機と管長計測機とが離れている場合、又は鋼管の切断精度向上が難しい場合、管長精度が悪いまま面取等の工程に入るため、最終管長が管長公差に入らない場合があるという課題があった。管長は目視での検査が困難なため、製品として仕上げた後の最終工程である管長計測工程が終わるまで管長不良が判明せず、判明時には不良品の再製造など大きな能率低下をもたらす。   In the conventional technology, when the water pressure tester and the pipe length measuring machine are separated, or when it is difficult to improve the cutting accuracy of the steel pipe, the final pipe length does not fall within the pipe length tolerance because the pipe length accuracy is poor and the process such as chamfering is entered. There was a problem that there was a case. Since the tube length is difficult to visually inspect, the tube length measurement is not revealed until the tube length measurement process, which is the final process after finishing as a product, and the efficiency is greatly reduced, such as remanufacturing defective products.

この問題の解決には管長計測機を増設し、管長計測工程を追加する案があるが、工程追加による製造に掛かる時間の増加や、設備コストの増加が避けられないというデメリットがあるのが課題であった。本発明は水圧試験機の一連の試験工程の中に検尺機能を付加することにより、上記課題を解決し、次工程条件の最適化に反映させることを可能にすることを目的とする。   To solve this problem, there is a plan to add a pipe length measuring machine and add a pipe length measuring process. However, there is a disadvantage that an increase in manufacturing time and an increase in equipment cost are inevitable due to the additional process. Met. An object of the present invention is to solve the above-mentioned problems by adding a measuring function to a series of test processes of a hydraulic pressure tester, and to reflect the results in optimization of the next process condition.

本発明は、上記課題を解決するためになされたものであり、その要旨構成は以下のとおりである。
(1)互いに対向する方向に移動可能とした両ヘッド部で鋼管の両端部を抱持密閉して前記鋼管の管内に水圧を印加可能とした鋼管の水圧試験機において、各ヘッド部の移動距離をパルスジェネレータ方式で計測可能とし、かつ各ヘッド部に前記鋼管の管端位置を検出するためのレーザ式位置センサを設置したことを特徴とする鋼管の水圧試験機。
(2)前記(1)に記載された鋼管の水圧試験機を用い、鋼管のセット前に各ヘッド部を移動させてそのレーザ式位置センサのレーザ光路を所定の原点に一致させ、その時点から、水圧試験を経て各ヘッド部を鋼管から離間させる際に各レーザ式位置センサが鋼管の管端位置を検出した時点まで、各ヘッド部の移動距離を計測し、この計測結果を用いて鋼管の管長を算出することを特徴とする鋼管水圧試験後の管長測定方法。
The present invention has been made to solve the above problems, and the gist of the present invention is as follows.
(1) In a water tester for steel pipes, in which both ends of the steel pipe are held and sealed with both head parts movable in directions facing each other and water pressure can be applied to the pipe of the steel pipe, the moving distance of each head part A water pressure tester for steel pipes, characterized in that a laser-type position sensor for detecting the pipe end position of the steel pipe is installed in each head part.
(2) Using the water tester for steel pipes described in (1) above, each head part is moved before setting the steel pipes so that the laser beam path of the laser type position sensor coincides with a predetermined origin, and from that time point Then, when moving each head part away from the steel pipe through the water pressure test, the moving distance of each head part is measured until each laser type position sensor detects the pipe end position of the steel pipe. A pipe length measurement method after a steel pipe hydraulic test, characterized in that the pipe length is calculated.

本発明によれば、鋼管の精整工程の処理能率を低下させることなく、又、管長計測機を増設することなく、鋼管の水圧試験直後の管長計測が可能である。これにより、水圧試験後直ちに管長不良を発見できる為、次工程以降オンラインで操業条件の最適化が可能となり、工場全体の生産能率向上に寄与する。   According to the present invention, it is possible to measure the pipe length immediately after the water pressure test of the steel pipe without reducing the processing efficiency of the steel pipe refining process and without adding a pipe length measuring machine. As a result, pipe length defects can be found immediately after the water pressure test, enabling optimization of the operating conditions online after the next process, which contributes to improving the production efficiency of the entire factory.

本発明の実施形態の1例を示す立体図3D view showing an example of an embodiment of the present invention 本発明の実施形態の1例を示す側面図The side view which shows an example of embodiment of this invention

図1、図2はそれぞれ本発明の実施形態の1例を示す立体図、側面図である。図示のように、水圧試験機は、互いに対向する方向に移動可能とされた2つのヘッド部1,2を有し、これらは鋼管3の一端部、他端部を夫々抱持密閉し、鋼管3の管内に水圧を印加することが可能である。
ヘッド部1,2には夫々、鋼管3の管端(一端、他端)の位置を検出するためのレーザ式位置センサ4,4が設置されている。レーザ式位置センサ4,4は夫々投光部Aから受光部Bへのレーザ光の送波経路(レーザ光路L1,L2)が設定してある。この例では、レーザ光路L1,L2はその位置を夫々ヘッド部1,2の鋼管端部装入口位置と一致させているが、これに限らず、適宜、ヘッド部の鋼管端部装入口位置よりヘッド部外方の位置にずらしてもよい。
1 and 2 are a three-dimensional view and a side view, respectively, showing an example of an embodiment of the present invention. As shown in the figure, the hydraulic pressure testing machine has two head portions 1 and 2 that are movable in directions opposite to each other, and these hold and seal one end portion and the other end portion of the steel pipe 3 respectively. It is possible to apply water pressure in the three tubes.
Laser-type position sensors 4 1 and 4 2 for detecting the positions of the pipe ends (one end and the other end) of the steel pipe 3 are installed in the head portions 1 and 2, respectively. The laser type position sensors 4 1 and 4 2 each have a laser beam transmission path (laser beam paths L 1 and L 2) from the light projecting unit A to the light receiving unit B. In this example, the positions of the laser light paths L1 and L2 are made to coincide with the positions of the steel pipe end loading / unloading positions of the head portions 1 and 2, respectively. You may shift to the position outside a head part.

レーザ式位置センサ4,4は各々、これを設置した側のヘッド部1,2と共に移動する際、夫々のレーザ光路L1,L2が、鋼管3の管端を通過した瞬間に受光部Bの受光量が急増することで、鋼管3の管端位置を検出する。尚、レーザ光路L1,L2は、鋼管3の管軸との直交平面内で管中心を通る水平線に沿わせるのが好ましい。
そして、水圧試験機は、各ヘッド部の移動距離をパルスジェネレータ方式で計測できるようにしてある。
When the laser type position sensors 4 1 and 4 2 move together with the head units 1 and 2 on the side where the laser type position sensors 4 1 and 4 2 are installed, the light receiving unit B at the moment when the respective laser beam paths L 1 and L 2 pass through the tube end of the steel pipe 3. The pipe end position of the steel pipe 3 is detected by rapidly increasing the amount of received light. The laser light paths L1 and L2 are preferably along a horizontal line passing through the center of the tube in a plane orthogonal to the tube axis of the steel tube 3.
The water pressure tester can measure the moving distance of each head portion by a pulse generator method.

ここで用いるパルスジェネレータ方式は、2つのヘッド部の個々について、それが所定単位距離だけ移動するごとに1つのパルスを発生するように設定したパルスジェネレータからのパルスを、パルスカウンタで所定のカウント開始時点(累積パルス数がゼロ)から所定のカウント終了時点まで逐次カウントし、カウントした累積パルス数を移動距離に変換する方式である。その変換式は、移動距離=累積パルス数×所定単位距離、である。所定単位距離は、鋼管の管長公差以内とする。尚、各ヘッド部について、その移動が、前進(対向相手に近づく向きの移動)である場合、パルスはマイナスにカウントされ、後退(対向相手から離れる向きの移動)である場合、パルスはプラスにカウントされる。   The pulse generator system used here starts counting a pulse from the pulse generator set to generate one pulse for each of the two head units by a predetermined unit distance. This is a method of sequentially counting from a point in time (the number of accumulated pulses is zero) to a predetermined count end point and converting the counted number of accumulated pulses into a moving distance. The conversion formula is moving distance = accumulated pulse number × predetermined unit distance. The predetermined unit distance shall be within the pipe length tolerance of the steel pipe. For each head part, if the movement is forward (movement toward the opposite party), the pulse is counted negative, and if it is backward (movement away from the opposite party), the pulse is positive. Be counted.

本発明では、上記水圧試験機を用い、鋼管のセット前に各ヘッド部を移動させてそのレーザ式位置センサのレーザ光路を所定の原点に一致させ、その時点から、水圧試験を経て各ヘッド部を鋼管から離間させる際に各レーザ式位置センサが鋼管の端部位置を検出した時点まで、各ヘッド部の移動距離を計測し、この計測結果を用いて鋼管の管長を算出する。以下、具体的手順を説明する。
(1)まず、鋼管3のセット前に、各ヘッド部1,2を、そのレーザ光路L1,L2が所定の原点に一致するように、移動させる。この原点としては、特に限定されないが、例えばヘッド部1,2間の最大許容間隔(水圧試験機の設備仕様から定まる)の中点などとされる。レーザ光路L1,L2が前記原点に一致した時点で、パルスカウンタを初期化(累積パルス数をゼロクリア)する。尚、パルスジェネレータはパルスカウンタの初期化前に起動させておくが、常時動作させておいてもよい。
(2)通常通り、水圧試験機に鋼管3をセットし、水圧試験を行う。鋼管セットから水圧試験にかけての間、各ヘッド部の移動に即応してそのヘッド部側のパルスジェネレータが上述のとおりパルスを発し、これがパルスカウンタで逐次カウントされ、累積されて、累積パルス数が保存される。
(3)水圧試験後、ヘッド部1,2を鋼管3から離間させるにあたり、各ヘッド部1,2を後退させる直前の状態(図1(a)、図2(a))において、各ヘッド部1,2についての累積パルス数(これをn1,n2とする)を記録する。1パルスに対応させた所定単位距離をΔxで表すと、2つのレーザ光路L1,L2の間隔Cは、C=(n1+n2)×Δx、であるから、この式を演算してCを求める。
(4)パルスカウンタを再初期化し、通常通り、ヘッド部1,2を後退させる。このとき、水圧試験機は図1(a)、図2(a)の状態から図2(c)の状態まで移行するが、その途中で、図1(b)、図2(b)の状態をとる。すなわち、レーザ光路L1,L2が鋼管3の一端、他端を夫々通過し、レーザ式位置センサ4,4が鋼管3の管端位置を検出する。そこで、この管端位置検出時点における累積パルス数(これをm1、m2とする)を記録する。このとき、パルスカウンタの再初期化時点(ヘッド部後退開始時点)から前記管端位置検出時点までの間のヘッド部1,2の移動距離a,bは、夫々、a=m1×Δx、b=m2×Δx、である。そこで、この式を演算してa,bを求める。
(5)明らかに、管長はC+a+bで表わされるから、この式を演算して管長を求める。
In the present invention, the above-described water pressure tester is used to move each head part before setting the steel pipe so that the laser optical path of the laser type position sensor coincides with a predetermined origin, and from that point on, each head part undergoes a water pressure test. The distance of movement of each head part is measured until each laser type position sensor detects the end position of the steel pipe when separating the steel pipe from the steel pipe, and the pipe length of the steel pipe is calculated using this measurement result. A specific procedure will be described below.
(1) First, before setting the steel pipe 3, the heads 1 and 2 are moved so that the laser light paths L1 and L2 coincide with a predetermined origin. The origin is not particularly limited, but may be, for example, the midpoint of the maximum allowable interval between head units 1 and 2 (determined from the equipment specifications of the hydraulic pressure tester). When the laser light paths L1 and L2 coincide with the origin, the pulse counter is initialized (the number of accumulated pulses is cleared to zero). The pulse generator is started before the pulse counter is initialized, but may be always operated.
(2) As usual, the steel pipe 3 is set in a water pressure tester and a water pressure test is performed. During the time from the steel pipe set to the water pressure test, the pulse generator on the head side emits pulses as described above in response to the movement of each head, which is sequentially counted and accumulated by the pulse counter, and the accumulated number of pulses is stored. Is done.
(3) In the state (FIGS. 1 (a) and 2 (a)) immediately before the heads 1 and 2 are retracted, the heads 1 and 2 are separated from the steel pipe 3 after the water pressure test. Record the cumulative number of pulses for 1 and 2 (referred to as n1 and n2). When a predetermined unit distance corresponding to one pulse is represented by Δx, the interval C between the two laser light paths L1 and L2 is C = (n1 + n2) × Δx, and C is obtained by calculating this equation.
(4) The pulse counter is reinitialized, and the head units 1 and 2 are moved backward as usual. At this time, the hydraulic pressure tester shifts from the state shown in FIGS. 1A and 2A to the state shown in FIG. 2C, but in the middle of the state shown in FIGS. 1B and 2B. Take. That is, the laser optical paths L1 and L2 pass through one end and the other end of the steel pipe 3, respectively, and the laser type position sensors 4 1 and 4 2 detect the pipe end position of the steel pipe 3. Therefore, the number of accumulated pulses at the time of tube end position detection (which are referred to as m1 and m2) is recorded. At this time, the movement distances a and b of the head units 1 and 2 from the re-initialization time of the pulse counter (head portion retraction start time) to the tube end position detection time are a = m1 × Δx, b, respectively. = M2 × Δx. Therefore, this expression is calculated to obtain a and b.
(5) Obviously, the tube length is represented by C + a + b, and this equation is calculated to obtain the tube length.

尚、上記手順において、(4)のパルスカウンタの再初期化を省略することもできる。その場合は、前記管端位置検出時点における累積パルス数(これをN1,N2とする)を用い、管長=(N1+N2)×Δx、を演算して管長を求めることができる。
又、上述の例では両ヘッド部に共通する1つの原点を設けたが、各ヘッド部ごとに前記最大許容間隔の中点との間に個別に原点を設けてもよい。その場合は、これら2つの原点間の距離を既知量L0とすると、上記手順で求めたC+a+b、或いは(N1+N2)×Δxの演算結果にL0を加算することで、管長を求めることができる。
In the above procedure, the re-initialization of the pulse counter (4) can be omitted. In that case, the tube length can be obtained by calculating the tube length = (N1 + N2) × Δx using the cumulative number of pulses at the time of detection of the tube end position (referred to as N1 and N2).
In the above-described example, one origin common to both head portions is provided. However, the origin may be individually provided between each head portion and the midpoint of the maximum allowable interval. In this case, assuming that the distance between these two origins is a known amount L0, the tube length can be obtained by adding L0 to the calculation result of C + a + b or (N1 + N2) × Δx obtained in the above procedure. .

又、本発明のようにレーザ式位置センサで鋼管の管端位置を検出する場合、鋼管に管端傾き、管端バリなどの端部形状不整があると、管端位置を誤検出する可能性がある。かかる誤検出に起因する後工程への管長計測値の誤報によるトラブルの発生頻度を抑えるためには、接触式位置センサを、レーザ式位置センサのレーザ光路と同じ位置で鋼管外周線と接触するような配置形態で各ヘッド部に併設し、レーザ式と接触式の両センサで管端位置検出を行い、両センサ間での管端位置検出時点の時差が大きすぎた場合、管端検出異常のアラート(警報)を出すようにするとよい。   In addition, when the pipe end position of a steel pipe is detected by a laser type position sensor as in the present invention, the pipe end position may be erroneously detected if the steel pipe has an end shape irregularity such as a pipe end tilt or a pipe end burr. There is. In order to reduce the frequency of troubles due to misreporting of tube length measurement values in subsequent processes due to such false detection, the contact position sensor should be brought into contact with the outer circumference of the steel pipe at the same position as the laser beam path of the laser position sensor. If the pipe end position is detected by both laser and contact sensors, and the time difference between the pipe end position detection points is too large between the two sensors, An alert should be issued.

1 両ヘッド部のうち一のヘッド部
2 両ヘッド部のうち他のヘッド部
3 鋼管
,4 レーザ式位置センサ
L1,L2 レーザ光路
DESCRIPTION OF SYMBOLS 1 Head part of both head parts 2 Other head part of both head parts 3 Steel pipes 4 1 and 4 2 Laser type position sensors L1 and L2 Laser optical path

Claims (2)

互いに対向する方向に移動可能とした両ヘッド部で鋼管の両端部を抱持密閉して前記鋼管の管内に水圧を印加可能とした鋼管の水圧試験機において、各ヘッド部の移動距離をパルスジェネレータ方式で計測可能とし、かつ各ヘッド部に前記鋼管の管端位置を検出するためのレーザ式位置センサを設置したことを特徴とする鋼管の水圧試験機。   In a hydraulic testing machine for steel pipes, both ends of the steel pipe can be held and sealed with both head parts movable in directions opposite to each other, and water pressure can be applied to the pipe of the steel pipe. A water pressure tester for a steel pipe, characterized in that a laser-type position sensor for detecting the pipe end position of the steel pipe is installed in each head part. 請求項1に記載された鋼管の水圧試験機を用い、鋼管のセット前に各ヘッド部を移動させてそのレーザ式位置センサのレーザ光路を所定の原点に一致させ、その時点から、水圧試験を経て各ヘッド部を鋼管から離間させる際に各レーザ式位置センサが鋼管の端部位置を検出した時点まで、各ヘッド部の移動距離を計測し、この計測結果を用いて鋼管の管長を算出することを特徴とする鋼管水圧試験後の管長測定方法。   Using the water tester for steel pipes according to claim 1, each head part is moved before setting the steel pipes so that the laser beam path of the laser type position sensor coincides with a predetermined origin, and from that time, the water pressure test is performed. After that, when each head part is separated from the steel pipe, the movement distance of each head part is measured until each laser type position sensor detects the end position of the steel pipe, and the pipe length of the steel pipe is calculated using this measurement result. The pipe length measuring method after the steel pipe water pressure test characterized by the above-mentioned.
JP2010226303A 2010-10-06 2010-10-06 Hydraulic tester of steel pipe and method for measuring pipe length after steel pipe hydraulic test Pending JP2012078308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010226303A JP2012078308A (en) 2010-10-06 2010-10-06 Hydraulic tester of steel pipe and method for measuring pipe length after steel pipe hydraulic test

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010226303A JP2012078308A (en) 2010-10-06 2010-10-06 Hydraulic tester of steel pipe and method for measuring pipe length after steel pipe hydraulic test

Publications (1)

Publication Number Publication Date
JP2012078308A true JP2012078308A (en) 2012-04-19

Family

ID=46238701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010226303A Pending JP2012078308A (en) 2010-10-06 2010-10-06 Hydraulic tester of steel pipe and method for measuring pipe length after steel pipe hydraulic test

Country Status (1)

Country Link
JP (1) JP2012078308A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104634665A (en) * 2014-09-12 2015-05-20 北京航空航天大学 Pipe liquid filling bulging test method and device
CN114486550A (en) * 2020-10-27 2022-05-13 中国石油化工股份有限公司 Free bulging test method and system for downhole variable-temperature patching pipe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104634665A (en) * 2014-09-12 2015-05-20 北京航空航天大学 Pipe liquid filling bulging test method and device
CN114486550A (en) * 2020-10-27 2022-05-13 中国石油化工股份有限公司 Free bulging test method and system for downhole variable-temperature patching pipe

Similar Documents

Publication Publication Date Title
RU2719299C2 (en) Automatic system and method for measurement and machining of pipe elements ends
KR101864247B1 (en) Production control method and device for checking the traversability of pipes
CN107200042A (en) A kind of train wheel diameter wears away high-precision online test method and its detection means with circularity
KR101747051B1 (en) Nondestructive inspection method for pipe to correct residual magnetization effect
US20100039102A1 (en) Device and process for nondestructive and noncontact detection of faults in a test piece
CN102027362B (en) Method for the nondestructive testing of pipes
US20150336145A1 (en) Apparatus to detect the deformity in thickness of tubular elements and corresponding method
CN109765296B (en) Three-dimensional positioning method for ultrasonic detection of internal defects of thick-wall pipe
CA2694470A1 (en) Process for the destruction-free testing of pipes
JP2015175761A (en) Surface flaw detection method and surface flaw detection device
EP4007887A1 (en) Apparatus and method of measuring the inner diameter of a tube along the respective production line
JP2013134218A (en) Method of measuring shape of end of tube with screw
JP5614312B2 (en) Periodic defect detection method and periodic defect detection apparatus
JP2012078308A (en) Hydraulic tester of steel pipe and method for measuring pipe length after steel pipe hydraulic test
RU2696909C1 (en) Method and device for hot measurement, during rolling, size of metal profiles
CN100427935C (en) Fault positioning method in complicate welding structure
CN110006992B (en) Pass-through vortex sensor and detection method
CN106017282A (en) Cylinder deformation degree correcting equipment with synchronous detection and correction
US20030136925A1 (en) Method to detect defects in the shape of a rolled product and relative device
CN101738158B (en) Method for measuring tyre size
CN107654848A (en) A kind of pipeline location and direction detection method
JPS58160805A (en) Method for measuring size and shape of large-diameter steel pipe
CN109839063A (en) A kind of method of on-line checking gear wheel tooth alignment error
JP2005157960A (en) Number counting method and number counting device for round bar
JP2016031310A (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130702