JP2012076177A - Boring tool - Google Patents
Boring tool Download PDFInfo
- Publication number
- JP2012076177A JP2012076177A JP2010223002A JP2010223002A JP2012076177A JP 2012076177 A JP2012076177 A JP 2012076177A JP 2010223002 A JP2010223002 A JP 2010223002A JP 2010223002 A JP2010223002 A JP 2010223002A JP 2012076177 A JP2012076177 A JP 2012076177A
- Authority
- JP
- Japan
- Prior art keywords
- calibration
- value
- drilling
- distance
- jig
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Percussive Tools And Related Accessories (AREA)
- Drilling And Boring (AREA)
Abstract
Description
本発明は穿孔工具に関し、特に先端工具により被穿孔材が穿孔された深さを測定可能な穿孔工具に関する。 The present invention relates to a drilling tool, and more particularly to a drilling tool capable of measuring a depth at which a material to be drilled is drilled by a tip tool.
従来からドリルビットを回転させると共にドリルビットに打撃力を加えて被穿孔材を穿孔するハンマドリル等の穿孔工具が知られている。穿孔工具は打撃力を発生させるために、モータと、シリンダと、シリンダ内に配置されたピストンと、モータの回転力をピストンの往復運動に変換する運動変換機構と、ピストンにより駆動される打撃子と、打撃子が衝突する中間子とを備えている。また、穿孔工具の先端部には先端工具が装着され、打撃子が中間子に衝突することにより、中間子を介して打撃力が先端工具に伝達されるように構成されている。また、モータの回転力が先端工具に伝達されて先端工具はその軸心を中心として回転するように構成されている。 Conventionally, a drilling tool such as a hammer drill that rotates a drill bit and applies a striking force to the drill bit to drill a material to be drilled is known. In order to generate a striking force, the drilling tool generates a striking force, a motor, a cylinder, a piston disposed in the cylinder, a motion conversion mechanism for converting the rotational force of the motor into a reciprocating motion of the piston, and a striking element driven by the piston. And a meson which the striker collides with. Further, a tip tool is mounted on the tip of the drilling tool, and the striking force is transmitted to the tip tool via the intermediate when the striker collides with the meson. Further, the rotational force of the motor is transmitted to the tip tool so that the tip tool rotates about its axis.
また、穿孔工具には先端工具の延出方向に平行に延出するゲージが設けられている。先端工具が被穿孔材に対して穿孔してゆき、所望の深さまで穿孔したときにゲージの延出端が被穿孔材の表面に当接することで、所望の深さまで穿孔したことを穿孔工具のユーザが認識できるように構成されている。このようなハンマドリルは、例えば特開2009−241229号公報(特許文献1)に記載されている。特許文献1に示されるようなハンマドリルでは穿孔の際にゲージが邪魔になることがあるため、ゲージを用いた穿孔工具として、センサにより被穿孔材までの距離を測定する穿孔工具が提案されている。
Further, the drilling tool is provided with a gauge extending in parallel with the extending direction of the tip tool. When the tip tool drills into the material to be drilled and drills to the desired depth, the extended end of the gauge contacts the surface of the material to be drilled. It is configured to be recognized by the user. Such a hammer drill is described in, for example, Japanese Patent Application Laid-Open No. 2009-241229 (Patent Document 1). In a hammer drill as shown in
センサによる距離の測定では、出荷時に校正を行い、その校正結果に基づき測定を行っている。しかし、長期の使用等により、センサの感度等が変化して正しい測定結果を表示できず、正確な先行深さに穿孔できないおそれがあった。そこで、本発明は、ゲージを備えていない構成で正確な穿孔深さに穿孔することができる穿孔工具を提供することを目的とする。 In the distance measurement by the sensor, calibration is performed at the time of shipment, and measurement is performed based on the calibration result. However, due to long-term use, etc., the sensitivity of the sensor may change, so that the correct measurement result cannot be displayed, and there is a possibility that the drilling cannot be performed to an accurate leading depth. Then, an object of this invention is to provide the drilling tool which can drill to the exact drilling depth by the structure which is not equipped with a gauge.
上記目的を達成するために、本発明は、穿孔用ビットが装着される装着部と、該装着部を保持するハウジングと、該ハウジングに設けられた距離測定センサと、該距離測定センサと接続され、該距離測定センサにより対象物までの距離を測定する演算部と、該演算部での測定結果を、校正値に校正して該演算部に記憶させる校正手段と、を備えた穿孔工具を提供する。 In order to achieve the above object, the present invention provides a mounting portion to which a drilling bit is mounted, a housing for holding the mounting portion, a distance measurement sensor provided in the housing, and the distance measurement sensor. A drilling tool comprising: a calculation unit that measures a distance to an object by the distance measurement sensor; and a calibration unit that calibrates a measurement result of the calculation unit to a calibration value and stores the calibration value in the calculation unit. To do.
また該装着部には校正治具を装着可能であり、該校正手段は、該校正治具を該装着部に装着すると共に測定対象物に該校正治具を当接させた状態で該校正を実施可能であることが好ましい。 In addition, a calibration jig can be attached to the attachment part, and the calibration means attaches the calibration jig to the attachment part and performs the calibration in a state where the calibration jig is in contact with a measurement object. It is preferred that it be feasible.
これらのような構成によると、センサの感度が変化したとしても、構成することができるので、正確な穿孔深さに穿孔することができる。 According to such a configuration, the sensor can be configured even if the sensitivity of the sensor is changed, so that the drilling can be performed to an accurate drilling depth.
また該校正治具は、所定形状の該穿孔用ビットであることが好ましい。このような構成によると、通常使用している穿孔用ビットにより校正することができ、特殊な治具を用いることなく容易に校正を行うことができる。 The calibration jig is preferably a drill bit having a predetermined shape. According to such a configuration, the calibration can be performed using a drilling bit that is normally used, and calibration can be easily performed without using a special jig.
また該校正治具は、所定形状を成す専用治具であってもよい。このような構成によると、専用治具であるため、正確に校正を行うことができる。 The calibration jig may be a dedicated jig having a predetermined shape. According to such a configuration, since it is a dedicated jig, calibration can be performed accurately.
また該専用治具は、該測定対象物に当接する平面と、該平面と直交する方向に延び該装着部に装着される軸部とを備えていることが好ましい。 Moreover, it is preferable that this exclusive jig is provided with the plane contact | abutted to this measurement object, and the axial part extended in the direction orthogonal to this plane, and with which this mounting part is mounted | worn.
このような構成によると、穿孔工具の測定対象物に対する位置を正確に規定することができ、校正の精度を増すことができる。 According to such a configuration, the position of the drilling tool relative to the measurement object can be accurately defined, and the accuracy of calibration can be increased.
また該校正手段は、該測定結果に基づき該校正値を導出する校正値導出手段と、該校正値導出手段により導出した該校正値を該演算部に入力する入力手段とを、備えることが好ましい。また該校正値導出手段は、該測定結果に基づき校正値を示す表から構成され、該入力手段は、該校正値を該演算部に入力する入力端末から構成されていることが好ましい。
このような構成によると、容易に校正値を導出でき、かつ容易に校正値を演算部に入力することができる。
The calibration unit preferably includes a calibration value deriving unit that derives the calibration value based on the measurement result, and an input unit that inputs the calibration value derived by the calibration value deriving unit to the arithmetic unit. . The calibration value deriving means is preferably composed of a table indicating calibration values based on the measurement results, and the input means is preferably composed of an input terminal for inputting the calibration values to the arithmetic unit.
According to such a configuration, the calibration value can be easily derived and the calibration value can be easily input to the calculation unit.
また上記課題を解決するために、穿孔用ビットが装着される装着部と、該装着部を保持するハウジングと、該ハウジングに設けられた距離測定センサと、該距離測定センサと接続され該距離測定センサにより対象物までの距離を測定する演算部と、を備える穿孔工具において測定距離を校正する方法であって、該装着部に校正治具を装着する治具装着工程と、該校正治具を装着した状態で、測定対象物までの距離を測定する距離測定工程と、該距離測定工程により測定した測定値を、校正値に校正して該演算部に入力する入力工程と、を有する穿孔工具の測定距離校正方法を提供する。 In order to solve the above problems, a mounting portion to which a drilling bit is mounted, a housing for holding the mounting portion, a distance measurement sensor provided in the housing, and the distance measurement sensor connected to the distance measurement sensor. A method of calibrating a measurement distance in a drilling tool comprising a calculation unit that measures a distance to an object by a sensor, a jig mounting step of mounting a calibration jig on the mounting unit, and the calibration jig A drilling tool comprising: a distance measuring step for measuring a distance to a measurement object in a mounted state; and an input step for calibrating the measured value measured by the distance measuring step to a calibration value and inputting the calibration value to the calculation unit Provide a measuring distance calibration method.
上記方法において、該測定値に基づいて該校正値を導出する校正値導出工程を更に有することが好ましい。 The method preferably further includes a calibration value deriving step of deriving the calibration value based on the measurement value.
以上の構成及び方法より本発明は、ゲージを備えていない構成において、校正を可能として正確な穿孔深さに穿孔することができる穿孔工具を提供することができる。 From the above configuration and method, the present invention can provide a drilling tool that can be calibrated and drilled to an accurate drilling depth in a configuration that does not include a gauge.
本発明による穿孔工具の実施の形態について図1乃至図15を参照しながら説明する。図1に示すように、穿孔工具1は被穿孔材Wに穿孔するロータリーハンマドリルであり、ハンドル部10と、モータハウジング20と、ギヤハウジング60とによりハウジングが構成されている。以下においては、図1における右側(穿孔ビット2の先端側)を穿孔工具1の前端側として前後方向を定義し、前後方向と直交する方向であってハンドル部10がモータハウジング20から延出される方向を下側として上下方向を定義して説明する。また被穿孔材Wは、穿孔工具1の前端側に位置する。ハウジングの先後方向におけるハウジングの長さ、即ち図1における左右方向における長さは30cm〜40cm程度である。
An embodiment of a drilling tool according to the present invention will be described with reference to FIGS. As shown in FIG. 1, the
ハンドル部10は、プラスチックで一体成型されて略U字状をなしており、その上部には、モータハウジング20の一部であって後述のモータ21を収容しているモータ収容部20Aが規定され、モータハウジング20の一部をなしている。ハンドル部10の後部10A下部には、電源ケーブル11が取付けられていると共に、後述のモータ21等に接続されるスイッチ機構12が内蔵されている。スイッチ機構12には、作業者によって操作可能なトリガ13が機械的に接続されている。トリガ13を操作することにより、インバータ回路部102への電源供給又は停止が切り替えられる。また、ハンドル部10の後部10Aであってトリガ13よりもすぐ下の部分は、後部10Aを穿孔工具1のユーザが把持したときに、中指と薬指によって把持される部分たる把持部10Cをなす。
The
ハンドル部10の前部10Bにおいて、その上部には先端方向に指向する距離センサ14が設けられている。距離センサ14は、波長は850nm程度の赤外線センサにより構成されており、先端・後端方向における距離センサ14から被穿孔材Wまでの間の距離:Xを測定値として測定可能である。
In the
距離センサ14は、図2に示すようにその略全体が樹脂製のカバー14Aにより覆われている。カバー14Aの後部はゴムからなる弾性部材14Bを介してハンドル部10の前部10Bの上部に固定されている。距離センサ14は後述のマイコン110(図4)に電気的に接続されている。また、距離センサ14は後述の入力部23の穴深さ設定ボタン117(図4)に電気的に接続されており、穴深さ設定ボタン117においては後述のように所望の穿孔深さを入力可能である。入力される穿孔深さの値は、より具体的には、3cm〜6cm程度である。
As shown in FIG. 2, the
モータハウジング20には、その外表面であって上方位置に入力端末(入力手段)である入力部23が設けられ、その内部にモータ21が収納されている。入力部23は、図3に示されるように、デジタル表示される表示部23Aと、深さ制御機能オン・オフボタン116と、穴深さ設定ボタン117と、原点位置設定ボタン118と深さ補正処理オン・オフボタン23Bとを備えている。深さ制御機能オン・オフボタン116は、後述する穴深さ設定ボタン117により設定された穴の深さで穿孔を行うか(深さ制御機能オン)、当該設定された穴の深さに係らず穿孔を行うか(深さ制御機能オフ)、の切換えを行っている。また制御機能オン・オフボタン116は、長押しすることにより、後述のマイコン110が校正モードに入る、校正モード切替ボタンとしても機能する。
The
穴深さ設定ボタン117は、穿孔しようとする穴の深さの設定を行っており、UPボタン117AとDOWNボタン117Bとを有している。原点位置設定ボタン118は、穿孔しようとする穴に対する原点位置に穿孔工具1をセットしたときに押圧することで原点位置の設定を行うと共に、長押し(五秒以上)することにより、後述の校正モードのオン・オフを切り替えている。深さ補正処理オン・オフボタン23Bは後述の補正値(Ls)を用いるか否かの設定を行っている。これらボタンは、それぞれ後述のマイコン110に接続されている。
The hole
図1に示されるモータ21は三相直流ブラシレスモータにより構成されており、後述のマイコン110により回転の制御が行われる。モータ21は前端側へ延出されて前後方向を軸方向とする出力軸22を備えており出力軸22は回転駆動力を出力する。出力軸22の基部には軸流ファン22Aが出力軸22と同軸的に一体回転可能に設けられている。
The
ギヤハウジング60は樹脂成型されて構成されており、モータハウジング20の前端側に設けられている。ギヤハウジング60内には、第一中間シャフト61が、出力軸22を延ばすように同軸的に配置され、軸受63により回転可能に支承されている。第一中間シャフト61の後端は出力軸22と連結している。第一中間シャフト61の先端には第四ギヤ61Aが設けられている。また、ギヤハウジング60内には、出力軸22と平行に第二中間シャフト72が、軸受72Bによってその軸心を中心に回転可能に支承されている。
The
第二中間シャフト72の後端部には、第四ギヤ61Aと噛合する第五ギヤ71が同軸固定されている。第二中間シャフト72の前端側にはギヤ部72Aが形成され、後述する第六ギヤ73と噛合している。ギヤハウジング60内であって第二中間シャフト72の上方の位置には、シリンダ74が設けられている。シリンダ74は第二中間シャフト72と平行に延びて回転可能に支承されている。第六ギヤ73はシリンダ74の外周に固定され、上述したギヤ部72Aとの噛合により、シリンダ74はその軸心を中心として回転可能である。
A
シリンダ74の前端側には工具保持部15が設けられており、後述の穿孔ビット2が着脱自在に取付けられる。第二中間シャフト72の中間部分には、バネによって後端側へ付勢されるクラッチ76がスプライン係合されており、クラッチ76は、ギヤハウジング60に設けられた図示せぬチェンジレバによってハンマドリル・モードとドリルモードとを切換え可能である。クラッチ76のモータ21側には、回転運動を往復運動に変換する運動変換部80が第二中間シャフト72に回転可能に外装されている。運動変換部80の腕部80Aは、第二中間シャフト72の回転により穿孔工具1の前後方向に往復動作可能に設けられている。
A
シリンダ74内にはピストン82が設けられている。ピストン82は、第二中間シャフト72と平行な方向に往復運動可能且つシリンダ74内で摺動可能に装着されている。ピストン82内には打撃子83が内装されており、シリンダ74内であってピストン82と打撃子83の間には空気室84が画成される。打撃子83の空気室側の反対位置には、中間子85がシリンダ74内にピストン82の運動方向に摺動可能に支承されている。中間子85の打撃子側反対位置には、先端工具である穿孔ビット2が位置している。よって打撃子83は中間子85を介して穿孔ビット2を打撃可能である。
A
クラッチ76がハンマドリル・モードに切換えられているときには、クラッチ76により第二中間シャフト72と運動変換部80とが結合している。運動変換部80は、ピストンピン81を介して、シリンダ74内に設けられたピストン82と連動するように接続されるように構成されている。
When the clutch 76 is switched to the hammer drill mode, the second
穿孔ビット2はドリルビットであり、図1に示されるように、丸棒状を成し螺旋状の溝が切られた胴部2Aと、その胴部の先端に位置する先細り形状の先端部2Bを備えており、先端部2Bが先頭となって被穿孔材Wに孔を穿孔可能に構成されている。よって穿孔された孔の最深部は、先細り形状の先端部2Bが回転して規定される円錐形状を雄型とする略すり鉢状に形成されている。また穿孔ビット2は、工具保持部15に対して着脱可能であり、交換可能である。
The
次に、図4を用いて、演算部(制御部)であるマイコン110を含む制御回路部と、インバータ回路部102及びモータ21の回路構成について説明する。制御回路部は、スイッチ操作検出回路111と、印加電圧設定回路112と、距離深さ設定回路113と、原点位置設定回路114と、回転子位置検出回路115と、制御信号出力回路119と、増幅回路Aと、増幅回路Bと、を備えている。
Next, the circuit configuration of the control circuit unit including the
スイッチ操作検出回路111は、トリガ13の押込の有無を検出し、その検出結果をマイコン110へ出力する。印加電圧設定回路112は、トリガ13から出力された目標値信号に応じて、インバータ回路部102のスイッチング素子Q1〜Q6を駆動するためのPWM駆動信号のPWMデューティを設定し、マイコン110へ出力する。
The switch
距離深さ設定回路113には穴深さ設定ボタン117が接続されており、深さ制御機能オンの状態で孔深さ設定ボタン117より入力された値まで穿孔ビット2で穿孔した時に、モータ21への電力供給を停止する信号をマイコン110に出力するように構成されている。原点位置設定回路114には、原点位置設定ボタン118が接続されており、原点位置設定ボタン118が押された時に、穿孔ビット2で穿孔する孔の原点設定に係る信号をマイコン110に出力している。回転子位置検出回路115は、ホールIC21Aから出力された回転位置検出信号に基づいてモータ21のロータの回転位置を検出し、マイコン110へ出力する。増幅回路A及び増幅回路Bには、距離センサ14が接続されている。
A hole
マイコン110は、印加電圧設定回路112からの出力に基づいてPWMデューティーの目標値を算出する。また、回転子位置検出回路115からの出力に基づいて、適切に通電するステータ巻線を決定し、出力切替信号H1〜H3およびPWM駆動信号H4〜H6を生成する。PWM駆動信号H4〜H6はPWMデューティーの目標値の大きさに基づいてデューティー幅が決定されて出力される。制御信号出力回路119は、マイコン110で生成された出力切替信号H1〜H3及びPWM駆動信号H4〜H6をインバータ回路部102に出力する。
The
インバータ回路部102には、商用電源からの交流電力が整流回路101を介して給電される。インバータ回路部102では、出力切替信号H1〜H3およびPWM駆動信号H4〜H6に基づきスイッチング素子が駆動されて、通電されるステータ巻線が決定される。さらにPWM駆動信号はPWMデューティーの目標値でスイッチングされている。これにより、モータ21の三相のステータ巻線(U、V、W)に電気角120°の三相交流電圧が順に印加されることとなる。またインバータ回路部102では、制御信号出力回路119を介してマイコン110からの信号に基づき、出力軸22の回転を停止するようにスイッチング素子を駆動することが可能である。
The
増幅回路Aでは、距離センサ14から出力された電圧を第一の増幅率で増幅可能である。また、増幅回路Bでは、距離センサ14から出力された電圧を第一の増幅率よりも大きな第二の増幅率で増幅可能である。増幅回路A及び増幅回路Bにおいては、穿孔工具1の動作時に常時電圧が増幅され出力される。
In the amplifier circuit A, the voltage output from the
また、マイコン110は、ROM等の記憶手段である記憶装置120を備えており、この記憶装置120内には、図5のグラフに基づく数式A(Y=e/X+f)である数式プログラムと、図7のフローチャートで説明され図示せぬ後述のマップを備えた有効深さ導出手段である有効深さ導出プログラム120Bと、図8のフローチャートで説明される回転停止プログラム120Cと、図11のフローチャートで説明される変化率予測処理プログラム120Dと、図11のフローチャートで説明される校正手段である校正プログラム120Eとが記憶されている。ここで数式プログラム120Aにおいて、Y:増幅回路A及び増幅回路Bの出力結果、X:測定距離(上述の、前後方向における距離センサ14から被穿孔材Wまでの間の距離)、e、f:校正により求められる係数である。よってマイコン110においては、増幅回路A及び増幅回路Bの出力結果(センサ出力電圧:Y)から、測定距離:Xを算出し、この測定結果を表示部23Aに表示している。また有効深さ導出プログラム120Bに含まれる図示せぬマップには、穿孔ビット2の各径に応じた標準的な長さと、その長さに応じた補正値(後述のすり鉢形状を成す最新部の深さ=先端部2Bの長さ(Ls))とが記憶されている。また記憶手段120は、後述する各々のフローチャートにおいて、各種値を記憶する記憶手段として機能している。
Further, the
以上の構成の穿孔工具1のモータ21の駆動時には、モータ21の回転出力が第一中間シャフト61、第四ギヤ61A、及び第五ギヤ71を介して第二中間シャフト72に伝わる。第二中間シャフト72の回転は、ギヤ部72Aと第六ギヤ73との噛合によりシリンダ74に伝わり、穿孔ビット2に回転力が伝えられる。クラッチ76をハンマドリル・モードに移動させると、クラッチ76が運動変換部80と結合し、第二中間シャフト72の回転駆動力が運動変換部80に伝わる。運動変換部80では回転駆動力がピストンピン81を介してピストン82の往復運動に変換される。ピストン82の往復運動により打撃子83とピストン82との間に画成された空気室84中の空気の圧力は上昇及び低下を繰り返し、打撃子83に打撃力を付与する。打撃子83が前進して中間子85の後端面に衝突し、中間子85を介して打撃力が図示せぬ穿孔ビット2に伝達される。このようにしてハンマドリル・モードでは図示せぬ穿孔ビット2に回転力と打撃力が同時に付与される。
When the
クラッチ76がドリルモードにあるときは、クラッチ76は第二中間シャフト72と運動変換部80との接続を断ち、第二中間シャフト72の回転駆動力のみがギヤ部72A、第六ギヤ73を介してシリンダ74に伝達される。よって、穿孔ビット2には回転力のみが付与される。
When the clutch 76 is in the drill mode, the clutch 76 disconnects the connection between the second
上述の、ハンマドリル・モード若しくはドリルモードにおいては、穿孔ビット2の中心軸(穿孔ビット2の前後方向と平行な軸)と被穿孔材Wの平面とが直交するように穿孔工具1を保持すると共に、深さ制御機能オン・オフボタン116を押してマイコン110を深さ制御機能オン状態にする。この状態で、UPボタン117AとDOWNボタン117Bとを操作して、穿孔深さを設定し、原点位置設定ボタン118を操作して原点位置を設定し、その後にトリガ13を引いて穿孔を行う。穿孔中においては、距離センサ14によって穿孔深さを常に検出しており、その穿孔深さが設定値に達したところでマイコン110により、自動的にモータ21への電源供給が停止される。
In the above-described hammer drill mode or drill mode, the
上述の距離センサ14により検出する値である測定距離Xは、上述の図5のグラフにかかる数式Aにより算出される。この値は、原点位置から距離センサ14がどれだけ被穿孔材Wに近づいたか、により算出される値である。原点位置(X=L0)は、穿孔ビット2の中心軸と被穿孔材Wの平面とが直交する状態で穿孔ビット2の先端部2B先端を被穿孔材Wに当接させた時の距離センサ14で検出した値である。この原点位置に基づき距離センサ14で検出した測定値(X=L1)から、穿孔ビット2における穿孔深さ(実深さ:L)は、L=L0−L1の式により算出される。この実深さ:Lは、図6に示されるように、穿孔ビット2で被穿孔材Wに穿孔した孔における、開口からすり鉢形状位置の最深部まで(図6におけるL=Ld+Ls)に該当する。
The measurement distance X, which is a value detected by the above-described
この孔に、例えば孔の内径及び実深さ:Lと略同径及び略同長のアンカを埋設する際には、すり鉢形状位置にアンカを挿入することができないため、アンカの端部が孔の開口から距離:Lsほど突出するおそれがある。従って、深さ制御機能をオンにして設定値:Ldで穿孔する際には、実際に形成される孔の穿孔深さである実深さ:Lではなく、穿孔ビット2の先端部2Bにより形成されるすり鉢形状を成す部分の深さ(Ls)を除した穿孔深さ(有効深さ:L−Ls=L0−L1−Ls)について考慮する必要がある。
For example, when an anchor having the same diameter and length as L is embedded in the hole, the anchor cannot be inserted into the mortar-shaped position. There is a possibility of projecting by a distance Ls from the opening. Therefore, when drilling at the set value: Ld with the depth control function turned on, it is not formed by the actual depth: L which is the drilling depth of the actually formed hole, but by the
具体的には、図7のフローチャートに示されるように、先ずS101において、深さ制御機能オン・オフボタン116が押されたか否かを判断する。S101において深さ制御機能オン・オフボタン116が押されたと判断された場合(S101:YES)には、S102へ進んで初期位置(L0)を設定し、次にS103へ進んでUPボタン117AとDOWNボタン117Bとにより穿孔深さの設定値(Ld)を設定し、S104へと進む。またS101において深さ制御機能オン・オフボタン116が押されていないと判断された場合(S101:NO)には、S105へ進んで、深さ制御機能を使用せずに、トリガ13の操作に基づく手動の穿孔深さ調整を行う。S105の後は、S101へとループする。
Specifically, as shown in the flowchart of FIG. 7, first, in S101, it is determined whether or not the depth control function on / off
S104において初期位置(L0)、設定値(Ld)の設定を完了していなければ(S104:NO)、S102へとループする。S104において初期位置(L0)、設定値(Ld)の設定を完了していれば(S104:YES)、S106へと進み、深さ補正処理オン・オフボタン23Bが押されたか否かを判断する。S106において、深さ補正処理オン・オフボタン23Bが押された場合(S106:YES)にはS107へと進み、深さ補正処理オン・オフボタン23Bが押されなかった場合(S106:NO)にはS111へと進む。
If the initial position (L0) and the setting value (Ld) have not been set in S104 (S104: NO), the process loops to S102. If the initial position (L0) and the setting value (Ld) have been set in S104 (S104: YES), the process proceeds to S106, and it is determined whether or not the depth correction processing on / off
S106でYESと判断した場合には、記憶装置120に記憶されている有効深さ導出プログラム120Bから図示せぬマップを呼び出し、S107へと進み、トリガ13を操作して、モータ21に電力を供給し穿孔ビット2を回転させる。そしてS108へと進み、穿孔開始時の測定値である現在位置(X=L1=L0)、即ち原点位置(L0)から装着された穿孔ビット2の種類を特定し、その特定した種類に応じた上述の補正値(Ls)を用いて穿孔深さ:L0−L1−Lsを算出する。次にS109へと進み、穿孔深さが設定値に到達したか(L0−L1−Ls=Ldになったか)を検出する。S109では所定深さに到達した場合のみ(S109:YES)、S110に進み、モータ21への電源供給を停止し、S106へとループして、次の作業に備える。
If YES is determined in S106, a map (not shown) is called from the effective
また、S106でNOと判断した場合には、S111に進んでUPボタン117AとDOWNボタン117Bとにより、補正値(Ls)を手動入力し、その後にS112へと進み、トリガ13を操作して、モータ21に電力を供給し穿孔ビット2を回転させる。そしてS113へ進んで穿孔深さが設定値に到達したか(L0−L1−Ls=Ldになったか)を検出する。S113では所定深さに到達した場合のみ(S113:YES)、S110に進み、モータ21への電源供給を停止し、S106へとループして、次の作業に備える。
If NO is determined in S106, the process proceeds to S111, the correction value (Ls) is manually input by the
このように穿孔深さ(有効深さ)を導出することにより、穿孔した孔に挿入する物、例えばアンカ等を挿入するために必要な孔の深さより、実際に穿設される穿孔深さ(実深さ)の方が深くなる。よって実際に穿孔された深さ(実深さ:L)が、作業者の望む穿孔深さ(設定値:Ld)より深くなり、アンカ等を挿入した際に、穿孔内からアンカが突出することを抑制することができる。 By deriving the drilling depth (effective depth) in this way, the drilling depth actually drilled (from the depth of the hole necessary for inserting an object to be inserted into the drilled hole, such as an anchor, etc.) Actual depth) is deeper. Therefore, the actual drilling depth (actual depth: L) is deeper than the operator's desired drilling depth (setting value: Ld), and when the anchor is inserted, the anchor protrudes from the drilling hole. Can be suppressed.
またS108において、穿孔ビット2の種類を特定し、図示せぬ表からその特定した種類に応じた上述の補正値(Ls)を特定している。このような構成によると、補正値の導出が容易になり、より簡易に有効穿孔深さを導出することができる。
In S108, the type of the puncturing
上記フローにおいては、S106〜S113が有効深さ導出手段、有効深さ導出工程に該当し、S108が補正値導出手段、補正値導出工程に該当する。 In the above flow, S106 to S113 correspond to the effective depth deriving means and effective depth deriving step, and S108 corresponds to the correction value deriving means and correction value deriving step.
上述の有効深さ導出プログラム120B(図7のフローチャート)により、補正値(Ls)を考慮して少なくともアンカ等を確実に挿入可能な孔を穿孔することができる。しかし、穿孔の終了時については、単にモータ21への電源供給の停止のみであり、この状態では、慣性力によりモータ21への電源供給停止時から更に穿孔ビット2が回転してより深い位置まで穿孔するおそれがある。よってこれを防止するために、穿孔終了時にモータ21にブレーキをかけて、確実に穿孔ビット2の回転を停止させる。
With the above-described effective
具体的には、図8のフローチャートに示されるように、S201において、トリガ13を引いて良いか判断する。S201において、すでに原点位置(L0)、穿孔深さである設定値(Ld)が入力されていれば(S201:YES)、トリガ13を引いてS204へ進み、入力されていなければ(S201:NO)、トリガ13を引かずにS201、S202と進んで原点位置(L0)、設定値(Ld)を設定する。
Specifically, as shown in the flowchart of FIG. 8, it is determined in S201 whether the
S204でモータ21へ電力供給して穿孔を開始し、次にS205で距離センサ14により現在の測定値である現在位置(L1)を検出・記憶する。次にS206へ進んで、穿孔深さが設定値になったか否か(L0−L1≧Ld)を判断する。設定値に穿孔深さが到達した場合(S206:YES)には、S207へ進み、モータ21にブレーキをかけるべくマイコン110からインバータ回路部102へと信号を出力し、モータ21の回転を強制的に停止させる(ブレーキ手段)。そしてS208へと進み、トリガ13が引かれた状態から元に戻されたと判断した後に、S201へとループし、一連のフローを終了する。
In S204, power is supplied to the
このようにモータ21の回転を、穿孔深さが設定値Ldに達したと同時に強制的に停止することにより、設定値に到達した後に穿孔ビット2の回転を停止することができる。よって設定値に到達した後に、更に穿孔作業が行われることは無く、正確な穿孔深さに穿孔することができる。
Thus, by forcibly stopping the rotation of the
また図8に示されるフローチャートでは、穿孔深さが設定値(Ld)に到達した時を基準として穿孔ビット2の回転(モータ21の回転)を強制的に停止させたが、これに限らず、停止する時を予測し穿孔深さが設定値(Ld)に到達する前にモータ21を停止させてもよい。具体的には、図9のフローチャートに示されるように、S206とS207の間に、S206.1〜S206.5のフローを追加する。以下、S206.1〜S206.5のフローについて説明する。S206.1〜S206.5以外のフローについては、図8のフローチャートと同一であるため説明は省略する。
In the flowchart shown in FIG. 8, the rotation of the drill bit 2 (rotation of the motor 21) is forcibly stopped based on the time when the drilling depth reaches the set value (Ld). The time to stop may be predicted and the
先ずS206で未だ設定距離に到達していない状態(S206:NO)で、S206.1へと進み、前回の記憶タイミング(S205での記憶時)から0.2sec経過したかを判断する。0.2sec経過していないと判断した場合(S206.1:NO)には、S205へとループする。0.2sec経過したと判断した場合(S206.1:YES)は、S206.1へと進み、現在位置(L1)を位置(L2)として記憶すると共に、現在位置(L1)に対応した現在時刻(T1)を時刻(T2)として記憶する。次にS206.3に進み、現在位置(L1)及び現在時刻(T1)と、記憶した位置(L2)及び時刻(T2)とから穿孔ビット2が被穿孔材Wに対して掘り進む速度である穿孔速度を算出する。
First, in S206, in a state where the set distance has not yet been reached (S206: NO), the process proceeds to S206.1, and it is determined whether 0.2 sec has elapsed from the previous storage timing (at the time of storage in S205). If it is determined that 0.2 sec has not elapsed (S206.1: NO), the process loops to S205. If it is determined that 0.2 sec has elapsed (S206.1: YES), the process proceeds to S206.1, where the current position (L1) is stored as the position (L2) and the current time corresponding to the current position (L1). (T1) is stored as time (T2). Next, the process proceeds to S206.3, and the drilling speed is a speed at which the
そしてS206.4で、算出した穿孔速度に基づき、モータ21を止めたとしても穿孔ビット2が掘り進むと想定されるオフセット量:Lofを算出する。この算出は、予め実験等により割り出した、穿孔速度とオフセット量(Lof)と図示せぬ関係式、若しくは図示せぬ表から導出するものである。
Then, in S206.4, based on the calculated drilling speed, an offset amount: Lof, which is assumed that the
オフセット量(Lof)を算出した後にS206.5へ進み、設定値(Ld)からオフセット量(Lof)を引いた値(Ld−Lof)に穿孔深さ(L0−L1)が到達したか否か(L0−L1+Lof≧Ld)を判断する。ここで到達していないと判断した場合(S206.5:NO)には、S205へとループする。到達したと判断した場合(S206.5:YES)には、S207へと進む。 After calculating the offset amount (Lof), the process proceeds to S206.5, and whether or not the drilling depth (L0-L1) has reached the value (Ld-Lof) obtained by subtracting the offset amount (Lof) from the set value (Ld) Judge (L0−L1 + Lof ≧ Ld). If it is determined that it has not been reached (S206.5: NO), the process loops to S205. If it is determined that it has been reached (S206.5: YES), the process proceeds to S207.
このように予測してモータ21を停止させることにより、設定値Ldより穿孔深さが大きくなることは確実に防がれる。この図9のフローチャートに係る制御は、薄板等の穿孔ビット2の誤貫通が発生する可能性が高い被穿孔材Wに穿孔する際に特に有効である。図9のフローチャートに係る制御では、図8のフローチャートと同一のブレーキ手段(S207)を用いたが、S207のフローの後の穿孔ビット2の動作を予測可能であるならば、S207を、単にモータ21への電力供給を遮断するのみ(電力遮断手段)の制御としてもよい。
By predicting the
また図8、図9のいずれのフローチャートによる制御も、モータ21の制御、即ち電気的な制御のみで穿孔ビット2の回転を停止しているため、穿孔工具1において構成部品の増加を招くことは無い。
Further, in the control according to the flowcharts of FIGS. 8 and 9, since the rotation of the
上記の穿孔深さを算出するには、上述のように、赤外線センサである距離センサ14を用い、距離センサ14で実際に測定した実測値を測定値(現在位置)(L1)として演算を行っている。具体的には、距離センサ14から照射した赤外線の反射に応じて距離を測定しているが、穿孔作業が進んで粉塵が発生すると、粉塵で赤外線を乱反射して正確な距離の測定ができなくなるおそれがある。
In order to calculate the above-described drilling depth, as described above, the
これを回避するために、図10に示されるように、特定の時点(時刻0)における、その前二秒間における検出距離と時間との関係から線形近似(一次近似)により平均変化率直線を算出する。そして算出した平均変化率直線から、時刻0より未来の変化率直線である仮想的なグラフ(仮想線):AL1を定義し、仮想線(AL1)の値:l1を距離センサ14で測定した測定値(現在位置:l1)として使用する。
In order to avoid this, as shown in FIG. 10, an average rate-of-change straight line is calculated by linear approximation (primary approximation) from the relationship between the detection distance and time in the previous two seconds at a specific time (time 0). To do. Then, from the calculated average rate of change straight line, a virtual graph (virtual line): AL1 that is a rate of change line of the future from
このグラフ作成後においては、実際に距離センサ14から出力される生データである実測値と、仮想線(AL1)の値とを比較し、実測値が仮想線(AL1)の数値から10%以上異なる場合には、実測値を破棄して演算に使用せず、実測値が仮想線(AL1)の数値から10%内の範囲に位置するならば、実測値を記憶しておき、再度算出する仮想線の演算に使用する。ここで仮想線(AL1)の数値から10%とは、時刻0で平均変化率直線(仮想線(AL1))と交わり平均変化率直線の変化率から10%増した変化率を備える直線(AL2)をいう。故に、図10のグラフにおいて、直線(AL2)から下側に距離センサ14の実測値が位置する場合は、その実測値を破棄し、直線(AL2)から上側に距離センサ14の実測値が位置する場合は、その実測値を記憶する。尚、穿孔開始から、二秒後までの間では、原点位置と、少なくとも最も最初に測定された実測値とを基にして仮想線を線形近似(一次近似)により算出する。
After creating this graph, the actual measurement value that is actually raw data output from the
具体的には、図11のフローチャートに示されるように、先ずS301で、深さ制御機能オン・オフボタン116が押されたか否かを判断する。S301において深さ制御機能オン・オフボタン116が押されていないと判断された場合(S301:NO)には、S302へ進んで、深さ制御機能を使用せずに、トリガ13の操作に基づく手動の穿孔深さ調整を行う。S301において深さ制御機能オン・オフボタン116が押されたと判断された場合(S301:YES)には、S303へ進んで初期位置(L0)を設定し、次にS304へ進んでUPボタン117AとDOWNボタン117Bとにより穿孔深さの設定値(Ld)を設定し、S305へと進み、初期位置(L0)、設定値(Ld)が設定されているかを確認し、確認したら(S305:YES)、S306へと進む。
Specifically, as shown in the flowchart of FIG. 11, first, in S301, it is determined whether or not the depth control function on / off
S306でトリガ13を引いて穿孔を開始し、S307へ進んで現在位置(L1)の検出・記憶を開始する。そしてS308へ進んで穿孔開始時(S306の時)から現在時点までの記憶した各時刻における現在位置(L1)から仮想線を算出し、仮想線の値(l1)を現在位置(l1)とする。次にS309へと進み、実測値である現在位置(L1)がS308で求めた仮想線の10%以上の範囲にあるか、を判断する。S309で距離センサ14において現在位置(L1)が仮想線の10%以上に有ると判断した場合(S309:YES)は、S310へと進んで演算に使用するデータから実測値である現在位置(L1)のデータを除外し、S308へとループする。現在位置(L1)が仮想線の10%未満と判断した場合(S309:NO)は、S311へと進む。
In S306, the
S311では、トリガ13が引かれて穿孔開始してから二秒経過したかを判断する。二秒経過していないと判断した場合(S311:NO)は、S308へとループする。二秒経過したと判断した場合(S311:YES)は、S312へと進み、記憶した直前二秒間の現在位置(L1)のデータから、線形近似により平均変化率直線を求め、この平均変化率直線を時刻0から延長した線である仮想線(AL1)を定義し、仮想線の値(l1)を現在位置(l1)とする。次にS313へと進み、実測値である現在位置(L1)がS312で求めた仮想線(AL1)の変化率の10%以上の範囲にあるか、を判断する。S313で距離センサ14において現在位置(L1)が仮想線(AL1)の10%以上に有ると判断した場合(S313:YES)、即ち図10のグラフにおいて、現在位置(L1)が直線(AL2)より下側に位置している場合には、S314へと進んで演算に使用するデータから実測値である現在位置(L1)のデータを除外し、S312へとループする。現在位置(L1)が仮想線の10%未満と判断した場合(S313:NO)は、実測値である現在位置(L1)のデータを除外せず、S315へと進む。S315においては、平均変化率直線(仮想線(AL1))の値(l1)である現在位置(l1)が、Ld=L0−l1を満たす位置に到達したかを判断する。S315でLd=L0−l1を満たす位置に到達したと判断した場合(S315:YES)には、S316へ進んでモータ21の回転を停止させる。またS315でLd=L0−l1を満たす位置に到達していないと判断した場合(S315:NO)には、S317へと進み、設定値(Ld)を変更するか否かを判断する。設定値(Ld)を変更すると判断した場合(S317:YES)には、S318へと進み、設定値(Ld)を変更した後にS306へとループする。設定値(Ld)を変更しないと判断した場合(S317:NO)には、S312へと進み、作業を続行する。
In S311, it is determined whether two seconds have elapsed since the
このように、仮想線を定義し、仮想線により定められる値(l1)を現在位置(l1)として選考作業を進めることにより、粉塵等で距離センサ14の精度が低下した場合であっても、所定の深さの孔を穿孔する穿孔作業を続行することができる。上記フローチャートにおいて、S312では、直前二秒から、直後二秒の仮想線を定義したが、この秒数については、穿孔工具1の性能、作業環境等から、適宜変更してもよい。また仮想線の10%を閾値として用いたが、この値も前述の秒数と同様に適宜変更可能である。
In this way, even if the accuracy of the
また図11に示されるフローチャートでは、例えば穿孔ビット2が被穿孔材Wを貫通して穿孔工具1が被穿孔材Wと急激に近接する等の異常な状態については考慮していない。よってこのような異常な状態が発生した場合に、モータ21への電力を遮断する電力遮断手段を備えていてもよい。具体的には、回転子位置検出回路115でモータ21の回転数を検出すると共に、S313で現在位置(L1)が仮想線の10%以上にあるかを判断する。そしてS313:YESと判断すると共に、モータ21の回転数の異常を検出した場合に、モータ21への電力供給を停止する。一般に被穿孔材Wを穿孔ビット2が貫通した場合には、モータ21への負荷が無くなりモータ21の回転数が急上昇する。よってこの急激な回転数増加をモータ21の異常として検出し、かつS313:YESと判断することにより、穿孔ビット2が被穿孔材Wを貫通したとして穿孔動作を停止することができる。尚、この電力遮断手段としては、モータ21の回転数の他に、モータ21の電流量等によってモータ21の異常回転を検出してもよい。
Further, in the flowchart shown in FIG. 11, for example, an abnormal state in which the
また図11のフローチャートにおいて、S308〜S314は、粉塵等の発生で距離センサ14による測定の精度低下を補完するフローである。よって距離センサ14の精度が低下しない状態ならば、これらフローを実施する必要はない。よってS307のフローの次に、S308〜S314のフローを実施するか否かを判断するフロー(異常値排除制御手段)を設けてもよい。上記フローチャートにおいて、S312が平均穿孔速度算出手段、仮想穿孔深さ予測手段に該当し、S313、S314が異常値排除手段に該当する。またS315が仮想穿孔深さ認識手段に該当する。
Further, in the flowchart of FIG. 11, S308 to S314 are flows for complementing a decrease in accuracy of measurement by the
距離センサ14の特性が経年変化した場合、図5のグラフに示される数式Aでは、正確な値が算出されないおそれがある。よってこの場合には、校正を行うべく新たな数式Aを算出する。具体的には、図12、図13に示されるように、穿孔ビット2(図1)の代わりに第一校正治具201及び第二校正治具202を工具保持部15に装着し、これら第一校正治具201及び第二校正治具202を校正に係る測定対象の板材Wsに当接された状態で距離センサ14により距離測定を行い、上記数式Aにおける係数e、係数fを新たに算出する。第一校正治具201は、板材Wsと面当接する平面201Bを備えた平板部201Aと、平板部201Aに接続され平面201Bと直交する方向に延びる軸部201Cとを備えており、軸部201Cによって工具保持部15に装着される。また軸部201Cは、第一校正治具201が工具保持部15に装着された状態で、平面201Bから距離センサ14までの距離が、350mmになるようにその軸方向長さが定められている。第二校正治具202は、第一校正治具201の平板部201Aと略同形状を成し平面202Bを備えた平板部202Aと、平板部202Aに接続され平面201Bと直交する方向に延びる軸部202Cとを備えており、軸部202Cによって工具保持部15に装着される。また軸部202Cは、第二校正治具202が工具保持部15に装着された状態で、平面202B(板材Wsの平面202Bと当接している面)から距離センサ14までの距離が、250mmになるようにその軸方向長さが定められている。
When the characteristics of the
上述の第一校正治具201及び第二校正治具202を用いて校正を行うには、図14のフローチャートに示される様に、先ずS401でトリガ13が引かれたか否かを判断する。S401でトリガ13が引かれたと判断した場合(S401:YES)には、S402〜S404で示される通常の穿孔作業へと進む。
In order to perform calibration using the
S401でトリガ13が引かれていないと判断した場合(S401:NO)は、S405へ進み、原点位置設定ボタン118が押されたか否かを判断する。S405において、原点位置設定ボタン118が押されていないと判断した場合(S405:NO)には、S401へとループする。S405において、原点位置設定ボタン118が押されたと判断した場合(S405:YES)には、S406へと進み、原点位置設定ボタン118が押された時間を判断する。S406において原点位置設定ボタン118の押された時間が5秒未満である場合(S406:NO)には、S407へと進んで原点位置(X=L0)を設定し、S401へとループする。S406において原点位置設定ボタン118の押された時間が5秒以上である場合(S406:YES)には、S408へと進んで校正モードを開始する。
If it is determined in S401 that the
S408からS409へと進んで記憶装置120から図5に示される距離変換数式である数式Aを読み出し、次にS410に進み、第一校正治具201を装着した状態で距離センサ14が検出する距離に応じた距離データL1(数式AのXに代入する値)とこれに対応する距離センサ14の出力電圧データVm1(数式AのYに代入する値)を記憶する。次にS411に進み、第二校正治具202を装着した状態で距離センサ14が検出する距離に応じた距離データL2(数式AのXに代入する値)とこれに対応する距離センサ14の出力電圧データVm2(数式AのYに代入する値)を記憶し、S412へと進む(一回目のS412)。
Proceeding from S408 to S409, the mathematical expression A which is the distance conversion mathematical formula shown in FIG. 5 is read from the
S412において原点位置設定ボタン118が五秒以上押されたと判断された場合(S412:YES)にはS413へと進んで校正モードを終了し、その後S401へとループする。S412において原点位置設定ボタン118の押された時間が5秒未満である場合(S412:NO)には、S414へと進んで距離センサ14から出力される出力V0(V01)を検出する。
If it is determined in S412 that the origin
このS414においては、予め第一校正治具201を工具保持部15に装着する(治具装着工程)と共に平面201Bを板材Wsに押し当てた状態で距離センサ14による測定(距離測定工程)を行う。この状態において距離センサ14から板材Wsまでの距離は、350mmになる。
In S414, the
次にS415へと進んで、出力V0を数式AのYに代入してXを算出し、S416へ進んでこの値を表示部23Aに表示する。次にS417へ進んで、現在の数値(350mm)を入力すべく、UPボタン117AとDOWNボタン117Bを操作する(入力工程)。S417において作業者が操作の必要が無いと判断した場合(S417:NO)、即ち、S416における表示部23Aの値が現在の数値(350mm)と同一若しくは略同一の場合には、S412にループする。S417からS412にループした場合の説明については、後述のS426と合わせて後ほど説明する。
Next, the process proceeds to S415, X is calculated by substituting the output V0 into Y of Formula A, and the process proceeds to S416 to display this value on the
S417において作業者が操作の必要があると判断した場合(S417:YES)には、S418へと進んでUPボタン117AとDOWNボタン117Bを操作し表示部23Aの表示を現在の数値(350mm)に変更する。次に、S419へ進んで、S414で検出した値V0が、Vm1とVm2との平均値より大きいか否か、即ちS410とS411とで記憶した出力電圧データVm1とVm2のいずれかに近いかを判断する。ここでS414で検出した値V0は、第一校正治具201を装着した状態での測定結果であり、Vm1に近い値であるため(S419:NO)、S420へ進み、V01を新たなVm1と記憶し、S421へ進んで表示部23Aに表示されている入力された値(350mm)を新たなL1と記憶する。
If it is determined in S417 that the operator needs to operate (S417: YES), the process proceeds to S418 to operate the
次にS424へと進み、数式Aの(X、Y)に、S420、S421で記憶した新たな(L1,Vm1)と、S411で記憶した(L2、Vm2)をそれぞれ代入し、S425へ進んで、新たな係数e、係数fを算出する。そしてS426へと進んで、新たな係数e、fを用いた新たな数式Aを記憶し、S412へとループする(二回目のS412)。 Next, the process proceeds to S424, and the new (L1, Vm1) stored in S420 and S421 and (L2, Vm2) stored in S411 are respectively substituted for (X, Y) of Formula A, and the process proceeds to S425. The new coefficient e and coefficient f are calculated. Then, the process proceeds to S426, a new mathematical expression A using new coefficients e and f is stored, and the process loops to S412 (second S412).
S426及びS417から二回目のS412へとループした際に、校正作業が必要ないと判断した場合には、二回目のS412において原点位置設定ボタン118を五秒以上長押しすること(S412:YES)により、上述のようにS413へと進み校正モードを終了する。
When it is determined that no calibration work is necessary when looping from S426 and S417 to the second S412, the origin
また第二校正治具202で更に校正を必要とする時には、工具保持部15から第一校正治具201を外して第二校正治具202を装着し、原点位置設定ボタン118を押さずに(S412:NO)、S414へと進む。S414〜S418については、第一校正治具201の場合と同じであるので省略する。次にS419へ進んで、第二校正治具202に係るS414で検出した値V0が、Vm1とVm2との平均値より大きいか否か、即ちS420とS411とで記憶した出力電圧データVm1とVm2のいずれかに近いかを判断する。ここでS414で検出した値V0は、第二校正治具202を装着した状態での測定結果であり、Vm2に近い値であるため(S419:YES)、S422へ進み、V01を新たなVm2と記憶し、S423へ進んで表示部23Aに表示されている入力された値(250mm)を新たなL2と記憶する。
Further, when further calibration is required by the
次にS424へと進み、数式Aの(X、Y)に、S420、S421で記憶した新たな(L1,Vm1)と、S422、S423で記憶した新たな(L2、Vm2)をそれぞれ代入し、S425へ進んで、新たな係数e、fを算出する。そしてS426へと進んで、新たな係数e、係数fを用いた新たな数式Aを記憶し、S412へとループする(三回目のS412)。 Next, the process proceeds to S424, and the new (L1, Vm1) stored in S420 and S421 and the new (L2, Vm2) stored in S422 and S423 are assigned to (X, Y) of Formula A, respectively. Proceeding to S425, new coefficients e and f are calculated. Then, the process proceeds to S426, a new mathematical expression A using the new coefficient e and coefficient f is stored, and the process loops to S412 (third S412).
三回目のS412においては、第一校正治具201による校正と、第二校正治具202による校正とを経ているため、原点位置設定ボタン118を五秒以上長押しし(S412:YES)、校正モードを終了する。
In the third S412, since the calibration by the
このように、数式Aの係数e、係数fを校正することにより、距離センサ14の感度が変化したとしても正確な値を導出することができ、従来のようなゲージを備えないセンサ式の穿孔工具1においても、正確な穿孔深さを保持することができる。
In this way, by calibrating the coefficient e and the coefficient f in Formula A, an accurate value can be derived even if the sensitivity of the
本実施の形態においては、専用治具である第一校正治具201、第二校正治具202を用いたがこれに限らず、予め長さが判明している所定長の穿孔ビットを治具として用いてもよい。また穿孔用ビットを治具として用いる場合には、各穿孔用ビットを工具保持部15に装着したのに対応した距離センサ14から板材Wsまでの距離が記載された表(校正値導出手段、校正値導出工程)を備えていることが好ましい。この表を用いることにより、所定長の穿孔用ビットを治具として用いた際に、上記のフローチャートにおけるS417で入力する値を容易に判別することができ、校正作業を易化することができる。この表は、穿孔工具1と別体であってもよいし、穿孔工具1と一体、例えばハンドル部10や、モータハウジング20に記載されていてもよい。
In the present embodiment, the
また上記フローチャートにおいては、S412の後に直ちにS413においてセンサ出力V0を検出していたが、これに限らず、図15のフローチャートに示されるように、S412の後に、S412.1として、いずれかの校正治具を装着した状態で穿孔工具1を移動させ距離センサ14から板材Wsまでの測定距離を変化させたことを確認するフローを入れてもよい。このフローをいれることにより、作業者の校正に係る手順を明確にすることができる。
In the above flowchart, the sensor output V0 is detected immediately in S413 after S412. However, the present invention is not limited to this. As shown in the flowchart of FIG. 15, any calibration is performed as S412.1 after S412. A flow for confirming that the measurement distance from the
本実施の形態では穿孔工具1はロータリーハンマドリルであったが、ロータリーハンマドリルに限定されない。被穿孔材に対して穿孔する工具であればいずれも本発明を適応することができる。
In this embodiment, the
本発明は、被穿孔材に対して先端工具によって所望の深さまで穿孔する穿孔工具の分野において特に有用である。 The present invention is particularly useful in the field of drilling tools for drilling a drilled material to a desired depth with a tip tool.
1・・穿孔工具 2・・穿孔ビット 2A・・胴部 2B・・先端部
10・・ハンドル部 10A・・後部 10B・・前部 10C・・把持部
11・・電源ケーブル 12・・スイッチ機構 13・・トリガ 14・・距離センサ
14A・・カバー 14B・・弾性部材 15・・工具保持部
20・・モータハウジング 20A・・モータ収容部 21・・モータ
22・・出力軸 22A・・軸流ファン 23・・入力部 23A・・表示部
60・・ギヤハウジング 61・・第一中間シャフト 61A・・第四ギヤ
63・・軸受 71・・第五ギヤ 72・・第二中間シャフト 72A・・ギヤ部
72B・・軸受 73・・第六ギヤ 74・・シリンダ 76・・クラッチ
80・・運動変換部 80A・・腕部 81・・ピストンピン 82・・ピストン
83・・打撃子 84・・空気室 85・・中間子 101・・整流回路
102・・インバータ回路部 110・・マイコン 111・・スイッチ操作検出回路
112・・印加電圧設定回路 113・・距離深さ設定回路
114・・原点位置設定回路 115・・回転子位置検出回路
116・・制御機能オン・オフボタン 117・・穴深さ設定ボタン
117A・・UPボタン 117B・・DOWNボタン
118・・原点位置設定ボタン 119・・制御信号出力回路
120・・記憶装置 120A・・数式プログラム
120B・・導出プログラム 120C・・回転停止プログラム
120D・・変化率予測処理プログラム 120E・・校正プログラム
201・・第一校正治具 201A・・平板部 201B・・平面 201C・・軸部
202・・第二校正治具 202A・・平板部 202B・・平面 202C・・軸部
1 ..
DESCRIPTION OF SYMBOLS 11 ...
22 ....
60 ··
116 .. Control function ON /
117A ··
Claims (9)
該装着部を保持するハウジングと、
該ハウジングに設けられた距離測定センサと、
該距離測定センサと接続され、該距離測定センサにより対象物までの距離を測定する演算部と、
該演算部での測定結果を、校正値に校正して該演算部に記憶させる校正手段と、を備えることを特徴とする穿孔工具。 A mounting portion to which a drilling bit is mounted;
A housing for holding the mounting portion;
A distance measuring sensor provided in the housing;
An arithmetic unit connected to the distance measuring sensor and measuring the distance to the object by the distance measuring sensor;
A drilling tool comprising: calibration means for calibrating a measurement result in the computing unit to a calibration value and storing the calibration value in the computing unit.
該校正手段は、該校正治具を該装着部に装着すると共に測定対象物に該校正治具を当接させた状態で該校正を実施可能であることを特徴とする請求項1に記載の穿孔工具。 A calibration jig can be attached to the attachment part,
2. The calibration device according to claim 1, wherein the calibration unit is capable of performing the calibration in a state where the calibration jig is mounted on the mounting portion and the calibration jig is in contact with a measurement object. Drilling tool.
該装着部に校正治具を装着する治具装着工程と、
該校正治具を装着した状態で、測定対象物までの距離を測定する距離測定工程と、
該距離測定工程により測定した測定値を、校正値に校正して該演算部に入力する入力工程と、を有することを特徴とする穿孔工具の測定距離校正方法。 A mounting portion to which a drilling bit is mounted, a housing for holding the mounting portion, a distance measuring sensor provided in the housing, and a distance measuring sensor connected to the distance measuring sensor to measure a distance to an object. A method for calibrating a measurement distance in a drilling tool comprising:
A jig mounting step of mounting a calibration jig on the mounting portion;
A distance measuring step of measuring the distance to the measurement object with the calibration jig mounted;
An input step of calibrating the measurement value measured in the distance measurement step into a calibration value and inputting the calibration value into the calculation unit, and a measurement distance calibration method for a drilling tool.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010223002A JP2012076177A (en) | 2010-09-30 | 2010-09-30 | Boring tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010223002A JP2012076177A (en) | 2010-09-30 | 2010-09-30 | Boring tool |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012076177A true JP2012076177A (en) | 2012-04-19 |
Family
ID=46237011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010223002A Pending JP2012076177A (en) | 2010-09-30 | 2010-09-30 | Boring tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012076177A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006088306A (en) * | 2004-09-27 | 2006-04-06 | Matsushita Electric Works Ltd | Rotary tool |
JP2009244048A (en) * | 2008-03-31 | 2009-10-22 | Ngk Insulators Ltd | Gas sensor, control device thereof and method of measuring nox concentration |
JP2009267097A (en) * | 2008-04-25 | 2009-11-12 | Nikon Corp | Calibration method of spectral width measuring equipment, calibration apparatus of spectral width measuring equipment, narrow-band laser apparatus, light exposure apparatus, and method of manufacturing electronic device |
JP2010113856A (en) * | 2008-11-04 | 2010-05-20 | Mitsubishi Electric Corp | Heating cooker |
-
2010
- 2010-09-30 JP JP2010223002A patent/JP2012076177A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006088306A (en) * | 2004-09-27 | 2006-04-06 | Matsushita Electric Works Ltd | Rotary tool |
JP2009244048A (en) * | 2008-03-31 | 2009-10-22 | Ngk Insulators Ltd | Gas sensor, control device thereof and method of measuring nox concentration |
JP2009267097A (en) * | 2008-04-25 | 2009-11-12 | Nikon Corp | Calibration method of spectral width measuring equipment, calibration apparatus of spectral width measuring equipment, narrow-band laser apparatus, light exposure apparatus, and method of manufacturing electronic device |
JP2010113856A (en) * | 2008-11-04 | 2010-05-20 | Mitsubishi Electric Corp | Heating cooker |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5796816B2 (en) | Power tools | |
US20130186661A1 (en) | Power Tool | |
EP2544861B1 (en) | Impact tool | |
JP6008319B2 (en) | Impact rotary tool | |
JP5618257B2 (en) | Electric tool | |
EP2826596A2 (en) | Impact rotation tool and impact rotation tool attachment | |
US20210078146A1 (en) | Electric work machine | |
US20140158390A1 (en) | Electric tool | |
AU2016250420A1 (en) | Position feedback control method and power tool | |
JP5716949B2 (en) | Drilling tool | |
JP6331082B2 (en) | Electric tool | |
US12023787B2 (en) | Electric powered work machine, job-site electrical system, and method of diagnosing electric powered work machine | |
US20200130156A1 (en) | Electric tool | |
JP5489079B2 (en) | Drilling tool | |
EP2558249A1 (en) | Drilling device | |
EP3804911B1 (en) | Boring tool | |
JP6915515B2 (en) | Strike work machine | |
JP2012071409A (en) | Power tool | |
JP2012076177A (en) | Boring tool | |
JP6277541B2 (en) | Impact rotary tool and control device for impact rotary tool | |
CN111585501A (en) | Electric working machine | |
JP5696522B2 (en) | Drilling tool | |
WO2013065217A1 (en) | Electric power tool | |
JP2012171068A (en) | Power tool | |
JP2016010843A (en) | Electric power tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130218 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131211 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131216 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140414 |