JP2012075266A - Polymer bushing insulator - Google Patents

Polymer bushing insulator Download PDF

Info

Publication number
JP2012075266A
JP2012075266A JP2010218923A JP2010218923A JP2012075266A JP 2012075266 A JP2012075266 A JP 2012075266A JP 2010218923 A JP2010218923 A JP 2010218923A JP 2010218923 A JP2010218923 A JP 2010218923A JP 2012075266 A JP2012075266 A JP 2012075266A
Authority
JP
Japan
Prior art keywords
electric field
polymer
insulator
field relaxation
relaxation layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010218923A
Other languages
Japanese (ja)
Other versions
JP5606252B2 (en
Inventor
Kayo Shiozawa
加代 塩澤
Tsutomu Sumimoto
勉 住本
Nobuyuki Sema
信幸 瀬間
Hitoshi Niidate
均 新舘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
SWCC Showa Cable Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SWCC Showa Cable Systems Co Ltd filed Critical SWCC Showa Cable Systems Co Ltd
Priority to JP2010218923A priority Critical patent/JP5606252B2/en
Publication of JP2012075266A publication Critical patent/JP2012075266A/en
Application granted granted Critical
Publication of JP5606252B2 publication Critical patent/JP5606252B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulators (AREA)
  • Cable Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polymer bushing insulator which suppresses generation of corona discharge, and can obtain higher operation voltage, as compared with the conventional one.SOLUTION: A polymer bushing insulator 10 comprises: an inner conductor 20; an insulator 30 which covers an outer periphery of the inner conductor 20; a polymer coated body 40 which covers the outer periphery of the insulator 30 and has a plurality of pleat portions 41 formed at the outer periphery in a longitudinal direction so as to be apart from each other; a shielding metal fitting 50 which is embedded in the insulator 30 in a concentric manner to the inner conductor 20 at a base end side of the polymer coated body 40; and an electric field relaxing layer 60 which is arranged on the interface of the insulator 30 and the polymer coated body 40, and in which the base end is connected to the shielding metal fitting 50. The electric field relaxing layer 60 has a uniform part 61, an end part 62 having an arc face formed thereon, and a taper part 63 that is formed at a position at which the uniform part 61 and the end part 62 are continuously provided, and has a taper face formed to be inclined so that the inner diameter becomes small toward the end side.

Description

本発明は、ポリマー套管に関し、特に、エポキシブッシング等の絶縁体とシリコーンゴム等のポリマー被覆体との界面に電界緩和層を備えたポリマー套管に関する。   The present invention relates to a polymer cannula, and more particularly to a polymer cannula provided with an electric field relaxation layer at the interface between an insulator such as an epoxy bushing and a polymer covering such as silicone rubber.

近時、套管の軽量化、スリム化、縮小化、套管種類の共通化及び作業工程の簡略化などを図る観点から、エポキシブッシング等の絶縁体の表面にシリコーンゴム等のポリマー被覆体を直接モールドした固体絶縁構造(完全乾式)のポリマー套管が使用されている。   Recently, from the viewpoint of reducing the weight of the cannula, slimming, reducing the size of the cannula, standardizing the cannula type and simplifying the work process, a polymer covering such as silicone rubber has been applied to the surface of an insulator such as an epoxy bushing. A directly molded solid insulating structure (fully dry) polymer sleeve is used.

しかしながら、このような構成のポリマー套管においては、電界が高くなるとポリマー套管の外表面においてコロナ放電が発生し、当該コロナ放電が長期間に亘って生じた場合には、ポリマー被覆体が化学的な侵食を受け劣化(エロージョン)するおそれがある。   However, in the polymer sleeve having such a configuration, when the electric field is high, a corona discharge is generated on the outer surface of the polymer sleeve, and when the corona discharge is generated over a long period of time, the polymer coating is not chemically treated. There is a risk of degradation (erosion) due to erosion.

コロナの発生を防止する技術として、絶縁体とポリマー被覆体との界面に電界緩和層を設ける方法や(例えば、特許文献1参照)、気中表面の電界強度を下げつつ電界緩和層の発熱を抑えることができる技術として、絶縁体の下端部近傍に大径部を設け、かつ、大径部とポリマー被覆体との界面に電界緩和層を設ける方法(例えば、特許文献2参照)が知られている。   As a technique for preventing the generation of corona, there is a method of providing an electric field relaxation layer at the interface between the insulator and the polymer coating (for example, see Patent Document 1), and heat generation of the electric field relaxation layer while reducing the electric field strength on the air surface. As a technique that can be suppressed, a method is known in which a large-diameter portion is provided in the vicinity of the lower end portion of the insulator and an electric field relaxation layer is provided at the interface between the large-diameter portion and the polymer coating (see, for example, Patent Document 2). ing.

特開2005−117806号公報JP 2005-117806 A 特開2009−005514号公報JP 2009-005514 A 特開2007−188735号公報JP 2007-188735 A

このような従来のポリマー套管にあっては、コロナ放電の特性をより向上させたり、運転電圧のさらなる高電圧化を図ったりする場合には、上述したように、絶縁体とポリマー被覆体の界面に電界緩和層を設けることで、ポリマー套管の大径化をある程度防止できる。しかしながら、それ以上の性能向上を求める場合には、ポリマー被覆体の外径を太くする必要があり、その結果、ポリマー套管の重量が重くなるという難点があった。また、ポリマー套管が太くなると、ポリマー套管の投影断面積が大きくなり、ひいては汚損耐電圧特性の向上を図るために、長尺のポリマー套管を使用しなければならないという難点があった。   In such a conventional polymer sleeve, in order to further improve the characteristics of corona discharge or to further increase the operating voltage, as described above, the insulator and the polymer coating are used. By providing an electric field relaxation layer at the interface, the diameter of the polymer cannula can be prevented to some extent. However, when further improvement in performance is required, it is necessary to increase the outer diameter of the polymer coating, and as a result, the weight of the polymer sleeve increases. Further, when the polymer sleeve becomes thick, the projected cross-sectional area of the polymer sleeve increases, and there is a problem that a long polymer sleeve must be used in order to improve the fouling withstand voltage characteristics.

本発明は、従来に比してコロナ放電の発生をさらに抑制し、運転電圧のさらなる高電圧化を図ることができるポリマー套管を提供することを目的とする。   An object of the present invention is to provide a polymer cannula that can further suppress the generation of corona discharge as compared with the prior art and can further increase the operating voltage.

本発明のポリマー套管の一つの態様は、内部導体と、前記内部導体の外周を覆う硬質の絶縁体と、前記絶縁体の外周を覆い、外周に複数の襞部が長手方向に離間して形成されたポリマー被覆体と、前記ポリマー被覆体の基端側において、前記内部導体と同心状に前記絶縁体に埋設された遮蔽金具と、前記絶縁体と前記ポリマー被覆体との界面に配置され、基端が前記遮蔽金具に接続された電界緩和層と、を具備し、前記電界緩和層は、前記遮蔽金具との接続位置から先端側に向かって形成され、厚みがほぼ均一な均一部と、円弧面が形成される先端部と、前記均一部と前記先端部とが連設する位置に形成され、先端側に向かって内径が小さくなるように傾斜したテーパ面が形成されているテーパ部と、を具備する。   One aspect of the polymer sleeve of the present invention includes an inner conductor, a hard insulator that covers the outer periphery of the inner conductor, and an outer periphery of the insulator, and a plurality of flanges are spaced apart in the longitudinal direction on the outer periphery. The formed polymer covering, and on the base end side of the polymer covering, are disposed at the interface between the insulating body and the polymer covering, and a shielding fitting embedded in the insulator concentrically with the inner conductor. An electric field relaxation layer having a base end connected to the shielding metal fitting, and the electric field relaxation layer is formed from the connection position with the shielding metal fitting toward the distal end side, and has a uniform portion having a substantially uniform thickness. , A tip portion where an arc surface is formed, and a tapered portion formed at a position where the uniform portion and the tip portion are connected to each other, and a tapered surface inclined so that the inner diameter decreases toward the tip side And.

本発明によれば、電界緩和層を、均一部と、円弧面が形成される先端部と、均一部と先端部とが連設する位置に形成され、先端側に向かって内径が小さくなるように傾斜したテーパ面が形成されているテーパ部と、を具備する構成としたので、電界緩和層の先端部近傍における電界を低減できる。この結果、電界緩和層の先端部近傍におけるコロナ放電を抑制できる。   According to the present invention, the electric field relaxation layer is formed at a position where the uniform portion, the tip portion where the circular arc surface is formed, and the uniform portion and the tip portion are continuously provided, and the inner diameter becomes smaller toward the tip side. Since the taper portion is formed with a tapered surface, the electric field in the vicinity of the tip portion of the electric field relaxation layer can be reduced. As a result, corona discharge in the vicinity of the tip portion of the electric field relaxation layer can be suppressed.

実施の形態のポリマー套管の構成を示す部分断面図The fragmentary sectional view which shows the structure of the polymer cannula of embodiment 実施の形態のポリマー套管の電界緩和層の先端部付近を拡大して示した断面図Sectional drawing which expanded and showed the vicinity of the front-end | tip part of the electric field relaxation layer of the polymer sleeve of embodiment 電界緩和層の先端部付近の比較例を示した断面図Sectional view showing a comparative example near the tip of the electric field relaxation layer 他の実施の形態のポリマー套管の電界緩和層の先端部付近を拡大して示した断面図Sectional drawing which expanded and showed the vicinity of the front-end | tip part of the electric field relaxation layer of the polymer sleeve of other embodiment

先ず、本発明に至った過程について説明する。   First, the process that led to the present invention will be described.

本発明の発明者らは、電界緩和層を備えたポリマー套管において、どの位置でコロナ放電が発生し易いかを検討した。検討の結果、電界緩和層の先端近傍に電界が集中し、運転電圧が高電圧のときに、電界緩和層の先端近傍におけるポリマー被覆体の襞部表面で気中放電が発生し易いことをつきとめた。すなわち、襞部表面の電界を下げることがコロナ放電の発生を抑制することに繋がることをつきとめた。そして、発明者らは、電界緩和層の先端の形状及び配置がコロナ放電を抑制する上で非常に重要であると考え、本発明に至った。   The inventors of the present invention examined at which position corona discharge is likely to occur in a polymer sleeve having an electric field relaxation layer. As a result of investigation, it was found that when the electric field is concentrated near the tip of the electric field relaxation layer and the operating voltage is high, air discharge is likely to occur on the surface of the buttocks of the polymer coating near the tip of the electric field relaxation layer. It was. In other words, it has been found that lowering the electric field on the buttock surface leads to suppressing the generation of corona discharge. Then, the inventors considered that the shape and arrangement of the tip of the electric field relaxation layer is very important in suppressing corona discharge, and reached the present invention.

本発明の一つの特徴は、電界緩和層を、(i)遮蔽金具との接続位置から先端側に向かって形成され厚みがほぼ均一な均一部と、(ii)円弧面が形成された先端部と、(iii)前記均一部と前記先端部とが連設する位置に形成され、先端に行くに従って内径が小さくなるように傾斜したテーパ面が形成されているテーパ部と、からなるように構成したことである。これにより、電界緩和層の先端部近傍における電界を低減でき、その結果、当該先端部近傍のポリマー被覆体の襞部表面の電界を低減でき、ひいてはポリマー套管におけるコロナ放電を抑制できる。これにより、電界緩和層全体としての体積の増加を抑制しつつ、電界緩和層の先端部の円弧面の半径を大きくすることができるので、無駄な材料を消費せずに、電界緩和層の先端部近傍におけるコロナ放電をより低減できる。   One feature of the present invention is that the electric field relaxation layer includes (i) a uniform portion having a substantially uniform thickness formed from the connection position with the shielding metal fitting toward the tip side, and (ii) a tip portion having an arcuate surface formed. And (iii) a tapered portion that is formed at a position where the uniform portion and the tip portion are connected to each other, and has a tapered surface that is inclined so that the inner diameter decreases toward the tip. It is that. Thereby, the electric field in the vicinity of the tip of the electric field relaxation layer can be reduced, and as a result, the electric field on the surface of the buttocks of the polymer covering near the tip can be reduced, and corona discharge in the polymer cannula can be suppressed. As a result, it is possible to increase the radius of the arc surface of the tip portion of the electric field relaxation layer while suppressing an increase in the volume of the electric field relaxation layer as a whole. Corona discharge in the vicinity of the portion can be further reduced.

また本発明の一つの特徴は、ポリマー被覆体が、襞部が形成されている肉厚部と、襞部が形成されていない肉薄部とを有し、電界緩和層の先端を、ポリマー被覆体の肉厚部に隣接して配置したことである。これにより、電界が集中する電界緩和層先端部を、襞部の肉厚部によって絶縁補強できるので、電界緩和層の先端部近傍におけるコロナ放電をより低減できる。   One feature of the present invention is that the polymer cover has a thick part where a collar part is formed and a thin part where a collar part is not formed, and the tip of the electric field relaxation layer is connected to the polymer cover. It is arrange | positioning adjacent to the thick part of. Thereby, since the electric field relaxation layer front end portion where the electric field concentrates can be insulated and reinforced by the thick portion of the flange portion, corona discharge near the front end portion of the electric field relaxation layer can be further reduced.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

[1]ポリマー套管の全体構成
図1に、本発明の実施の形態に係るポリマー套管の全体構成を示す。図1は、中央部付近を断面で示した部分断面図である。図1のポリマー套管10は機器用ブッシングとして用いられている。ここで、ポリマー套管10は、図中下側で変圧器等の機器等のケースに固定される。具体的には、図1のポリマー套管10では、後述する遮蔽金具50のフランジ部51の基端面が機器等のケース(不図示)の先端面に気密に固定される。図中下側を基端側と呼び、図中上側を先端側と呼ぶことにする。
[1] Overall Configuration of Polymer Cannula FIG. 1 shows an overall configuration of a polymer cannula according to an embodiment of the present invention. FIG. 1 is a partial cross-sectional view showing the vicinity of the central portion in cross section. The polymer sleeve 10 of FIG. 1 is used as a device bushing. Here, the polymer sleeve 10 is fixed to a case of a device such as a transformer on the lower side in the drawing. Specifically, in the polymer cannula 10 of FIG. 1, a proximal end surface of a flange portion 51 of a shielding metal fitting 50 described later is airtightly fixed to a distal end surface of a case (not shown) such as a device. The lower side in the figure is called the base end side, and the upper side in the figure is called the front end side.

ポリマー套管10は、内部導体20と、絶縁体30と、ポリマー被覆体40と、遮蔽金具50と、電界緩和層60と、を有する。なお、ポリマー套管10では、課電時の電位は、内部導体20が高電圧側、遮蔽金具50が接地側である。   The polymer sleeve 10 includes an inner conductor 20, an insulator 30, a polymer cover 40, a shielding fitting 50, and an electric field relaxation layer 60. In the polymer sleeve 10, the potential at the time of voltage application is that the inner conductor 20 is on the high voltage side and the shielding fitting 50 is on the ground side.

内部導体20は、銅などの通電に適した金属製の棒体で形成されている。また、内部導体20はポリマー套管10の中心に配置される。また、機器用ブッシングとして用いられる図1のポリマー套管10では、内部導体20の両端部(先端部21及び基端部22)は、絶縁体30から露出した状態で形成される。内部導体20は、露出する基端部22で、図示しないが機器内の高電圧導体に接続される。また、内部導体20は、露出する先端部21で、図示しないが架空線や引き込み線などに接続される。   The inner conductor 20 is formed of a metal rod suitable for energization such as copper. The inner conductor 20 is disposed at the center of the polymer sleeve 10. Further, in the polymer sleeve 10 of FIG. 1 used as a device bushing, both end portions (the distal end portion 21 and the proximal end portion 22) of the inner conductor 20 are formed in a state of being exposed from the insulator 30. The internal conductor 20 is connected to a high-voltage conductor in the device (not shown) at the exposed base end 22. The internal conductor 20 is connected to an overhead wire or a lead-in wire (not shown) at the exposed tip 21.

絶縁体30は、内部導体20の外周を覆うように設けられている。絶縁体30は、機械的強度の高い材料、例えば、エポキシ樹脂やFRPなどの硬質プラスチック樹脂、で形成されている。絶縁体30は、内部導体20の先端部21及び基端部22を露出させた状態で、モールドにより内部導体20及び遮蔽金具50と一体的に形成される。絶縁体30の遮蔽金具50の先端側近傍は、絶縁体30の先端部近傍(後述する小径部12に相当する部分)に比べて大径に形成されている(後述する大径部11に相当する部分)。絶縁体30の基端部は、図1の機器用ブッシングの構造においては、遮蔽金具50より基端側において下部ブッシング31を形成する。下部ブッシング31は、ポリマー套管10を機器のケースに設置した際に機器の内側に配置される。下部ブッシング31は、絶縁体30と同材料で一体的に形成される。図1のポリマー套管10を機器のケースに固定した場合、下部ブッシング31は機器内に配設される。また、図1の実施の形態では、機器内(不図示)の下部ブッシング31の外周はSF(六弗化硫黄)ガス等の絶縁ガスで覆われる。 The insulator 30 is provided so as to cover the outer periphery of the inner conductor 20. The insulator 30 is formed of a material having high mechanical strength, for example, a hard plastic resin such as an epoxy resin or FRP. The insulator 30 is integrally formed with the inner conductor 20 and the shielding metal fitting 50 by molding in a state where the distal end portion 21 and the proximal end portion 22 of the inner conductor 20 are exposed. The vicinity of the distal end side of the shielding metal fitting 50 of the insulator 30 is formed with a larger diameter than the vicinity of the distal end portion of the insulator 30 (the portion corresponding to the small diameter portion 12 described later) (corresponding to the large diameter portion 11 described later). Part to do). The base end portion of the insulator 30 forms a lower bushing 31 on the base end side from the shielding metal fitting 50 in the structure of the device bushing of FIG. The lower bushing 31 is disposed inside the device when the polymer sleeve 10 is installed in the device case. The lower bushing 31 is integrally formed of the same material as the insulator 30. When the polymer sleeve 10 of FIG. 1 is fixed to the case of the device, the lower bushing 31 is disposed in the device. In the embodiment of FIG. 1, the outer periphery of the lower bushing 31 in the device (not shown) is covered with an insulating gas such as SF 6 (sulfur hexafluoride) gas.

ポリマー被覆体40は、遮蔽金具50において絶縁体30から露出する部分(図1ではフランジ部51)より先端側の絶縁体30の基端部から先端部に至る絶縁体30の外周を覆い、かつ、それ自身の外周に複数の襞部41が長手方向に離間して形成されている。ポリマー被覆体40は、電気絶縁性能に優れた材料、例えば、シリコーンポリマーなどの高分子絶縁材料、で形成されている。   The polymer covering 40 covers the outer periphery of the insulator 30 from the base end portion to the tip end portion of the insulator 30 on the distal end side of the portion (flange portion 51 in FIG. 1) exposed from the insulator 30 in the shielding metal fitting 50, and A plurality of flange portions 41 are formed on the outer periphery of the heel portion 41 so as to be spaced apart in the longitudinal direction. The polymer covering 40 is formed of a material having excellent electrical insulation performance, for example, a polymer insulating material such as a silicone polymer.

遮蔽金具50は、ポリマー被覆体40の基端側において、内部導体20と同心状に絶縁体30に埋設されている。遮蔽金具50は、ポリマー套管10を所定の取り付け箇所に固定するためポリマー被覆体40よりも基端側において径方向外方に向けて突出したフランジ部51と、絶縁体30に埋設された電界緩和用の円筒部52と、を有する。よって、ここでは遮蔽金具50は電界緩和の機能を有する。所定の取り付け箇所としては、図1のポリマー套管10では機器のケース(不図示)となる。円筒部52は、外面が電界緩和層60に対向するように、フランジ部51から直角に立ち上げられている。なお、円筒部52は直角で立ち上がる構造に限定される必要は無く、電界緩和の機能を有していればよく、遮蔽金具50としては本発明の効果を有する限り任意の形状でよい。   The shielding metal fitting 50 is embedded in the insulator 30 concentrically with the internal conductor 20 on the proximal end side of the polymer coating 40. The shielding metal fitting 50 includes a flange portion 51 projecting radially outward on the proximal end side of the polymer covering body 40 and an electric field embedded in the insulator 30 in order to fix the polymer cannula 10 at a predetermined attachment location. And a cylindrical portion 52 for relaxation. Therefore, the shielding metal fitting 50 has a function of electric field relaxation here. As a predetermined attachment location, the polymer sleeve 10 shown in FIG. 1 is a device case (not shown). The cylindrical portion 52 is raised at a right angle from the flange portion 51 so that the outer surface faces the electric field relaxation layer 60. The cylindrical portion 52 need not be limited to a structure that rises at a right angle, as long as it has a function of electric field relaxation, and the shielding metal fitting 50 may have any shape as long as it has the effect of the present invention.

電界緩和層60は、絶縁体30とポリマー被覆体40との界面に配置されている。電界緩和層60の基端は、遮蔽金具50に電気的に接続されている。電界緩和層60は、酸化亜鉛(ZnO)層又は高誘電率層で形成されている。例えば、電界緩和層60は、エラストマー材料に酸化亜鉛粉末を充填した酸化亜鉛層である。また、例えば、電界緩和層60は、カーボンブラック等の導電性フィラーを充填したゴム等の比誘電率が10以上の高誘電率層であってもよい。電界緩和層60を製造する順序としては、内部導体20及び遮蔽金具50とともにモールドにより一体的に形成した絶縁体30の外周に、基端側で遮蔽金具50に電気的に接触するように電界緩和層60をモールドにより一体的に形成し、その後、電界緩和層60の外周及び電界緩和層60が外周に形成されていない絶縁体30の先端部側の外周に、ポリマー被覆体40をモールドにより一体的に形成する。   The electric field relaxation layer 60 is disposed at the interface between the insulator 30 and the polymer cover 40. The base end of the electric field relaxation layer 60 is electrically connected to the shielding metal fitting 50. The electric field relaxation layer 60 is formed of a zinc oxide (ZnO) layer or a high dielectric constant layer. For example, the electric field relaxation layer 60 is a zinc oxide layer in which an elastomer material is filled with zinc oxide powder. Further, for example, the electric field relaxation layer 60 may be a high dielectric constant layer having a relative dielectric constant of 10 or more, such as rubber filled with a conductive filler such as carbon black. The electric field relaxation layer 60 is manufactured in the order of electric field relaxation so that the outer periphery of the insulator 30 integrally formed by molding together with the inner conductor 20 and the shielding metal fitting 50 is in electrical contact with the shielding metal fitting 50 on the base end side. The layer 60 is integrally formed by molding, and then the polymer covering 40 is integrally formed by molding on the outer periphery of the electric field relaxation layer 60 and the outer periphery of the insulator 30 where the electric field relaxation layer 60 is not formed on the outer periphery. Form.

因みに、本実施の形態の場合、ポリマー套管10は、遮蔽金具50の先端側近傍の大径部11と、大径部11よりも先端側の小径部12とによって構成されており、少なくとも大径部11における絶縁体30とポリマー被覆体40との界面に電界緩和層60が形成されている。これにより、ポリマー套管10の気中表面の電界強度を下げることができ、かつ、電界緩和層60の発熱を抑えることができる。   Incidentally, in the case of the present embodiment, the polymer cannula 10 is constituted by the large-diameter portion 11 in the vicinity of the distal end side of the shielding metal fitting 50 and the small-diameter portion 12 on the distal end side with respect to the large-diameter portion 11, and at least large. An electric field relaxation layer 60 is formed at the interface between the insulator 30 and the polymer coating 40 in the diameter portion 11. Thereby, the electric field intensity of the air surface of the polymer sleeve 10 can be lowered, and the heat generation of the electric field relaxation layer 60 can be suppressed.

なお、絶縁体30、ポリマー被覆体40及び電界緩和層60は、モールドにより一体的に形成されている。   The insulator 30, the polymer coating 40, and the electric field relaxation layer 60 are integrally formed by molding.

[2]電界緩和層
次に、電界緩和層60について詳細に説明する。
[2] Electric field relaxation layer Next, the electric field relaxation layer 60 will be described in detail.

電界緩和層60は、電界緩和層60の先端付近を拡大した図2に示すように、遮蔽金具50との接続位置から先端側に向かって絶縁体30の外周に形成され、厚みがほぼ均一な均一部61と、円弧面62aが形成された先端部62と、均一部61と先端部62とが連設する位置に形成され、先端側に向かってその内径が小さくなるように傾斜したテーパ面63aが形成されているテーパ部63と、からなる。ここで、円弧面62aが形成される先端部62の形状としては、図2のように先端部62全体が円弧状の場合の他、先端部62の内側だけが円弧状の場合で他の先端部62はフラット(軸方向に直角)な場合、及び、先端部62の内側と外側が円弧状で厚みの中央がフラット(軸方向に直角)な場合を含むものとする。   As shown in FIG. 2 in which the vicinity of the distal end of the electric field relaxation layer 60 is enlarged, the electric field relaxation layer 60 is formed on the outer periphery of the insulator 30 from the connection position with the shielding metal fitting 50 toward the distal end side, and has a substantially uniform thickness. The uniform part 61, the tip part 62 formed with the circular arc surface 62a, and the tapered surface formed at a position where the uniform part 61 and the tip part 62 are connected to each other and inclined so that the inner diameter decreases toward the tip side. And a tapered portion 63 in which 63a is formed. Here, as the shape of the tip portion 62 where the arc surface 62a is formed, the tip portion 62 as a whole is arcuate as shown in FIG. The portion 62 includes a case where the portion 62 is flat (perpendicular to the axial direction) and a case where the inside and outside of the tip end portion 62 are arc-shaped and the center of thickness is flat (perpendicular to the axial direction).

ここで、均一部61の厚みをdとし、断面円弧状(つまり円弧面)とされている先端部62の円弧面62aの円弧の半径をrとした場合、半径rはr>dとするのがより好ましい。この構成によるポリマー套管の電界解析の結果、図2の電界緩和層60の先端部近傍におけるポリマー被覆体40の襞部41表面の電界強度は、図3の電界緩和層60の先端部近傍におけるポリマー被覆体40の襞部41表面の電界強度に比べて低くなることがわかった。このことから、r>dとすることにより、電界緩和層60全体としての体積の増加を抑制しつつ、電界緩和層60の先端部62の円弧面62aの半径を大きくすることができるので、単に電界緩和層60を厚く形成する場合に比べて、無駄な材料を消費せずに、電界緩和層60の先端部62近傍におけるコロナ放電を低減できる。すなわち、電界緩和層60は酸化亜鉛(ZnO)層又は高誘電率層で形成されるため、電界緩和層60を形成する材料費が高価となるため、電界緩和層60の体積の増加を抑制したい。そこで、本実施の形態によって、電界緩和層60の全長において厚みdを厚く形成しなくとも、電界緩和層60の先端部62近傍におけるコロナ放電を低減できる。因みに、例えば、厚みdは5[mm]、半径rは6[mm]である。   Here, assuming that the thickness of the uniform portion 61 is d and the radius of the arc of the arc surface 62a of the tip 62 having a circular arc shape (that is, an arc surface) is r, the radius r is r> d. Is more preferable. As a result of the electric field analysis of the polymer cannula with this configuration, the electric field strength on the surface of the collar portion 41 of the polymer covering 40 in the vicinity of the tip of the electric field relaxation layer 60 in FIG. It turned out that it becomes low compared with the electric field strength of the collar part 41 surface of the polymer coating 40. From this, by setting r> d, the radius of the arc surface 62a of the tip 62 of the electric field relaxation layer 60 can be increased while suppressing an increase in the volume of the electric field relaxation layer 60 as a whole. Compared to the case where the electric field relaxation layer 60 is formed thick, corona discharge in the vicinity of the tip 62 of the electric field relaxation layer 60 can be reduced without consuming unnecessary materials. That is, since the electric field relaxation layer 60 is formed of a zinc oxide (ZnO) layer or a high dielectric constant layer, the material cost for forming the electric field relaxation layer 60 is expensive, so it is desired to suppress an increase in the volume of the electric field relaxation layer 60. . Therefore, according to the present embodiment, the corona discharge in the vicinity of the front end portion 62 of the electric field relaxation layer 60 can be reduced without forming the thickness d thick in the entire length of the electric field relaxation layer 60. For example, the thickness d is 5 [mm] and the radius r is 6 [mm].

なお、r≦dとされたポリマー套管では、r>dとされたポリマー套管に比べてポリマー被覆体の襞部表面の電界強度は高いことがわかった。r≦dとされたポリマー套管では、均一部61の先端側にテーパ部63を設けて、電界緩和層60の先端側の厚みを均一部61に比べて厚くした場合でも、円弧の半径rが小さいため、電界緩和層60の先端に電界が集中し、ひいてはポリマー被覆体40の襞部41表面の電界の低減効果は小さい。この結果、図3の比較例のように電界緩和層60の厚さが均一で単に先端に円弧面62aを形成したポリマー套管と比べて、ポリマー被覆体40の襞部41表面の電界強度は変わらなかった。   In addition, it was found that the electric field strength on the heel surface of the polymer coating was higher in the polymer sleeve in which r ≦ d than in the polymer sleeve in which r> d. In the polymer sleeve in which r ≦ d, even when the tapered portion 63 is provided on the distal end side of the uniform portion 61 so that the thickness of the distal end side of the electric field relaxation layer 60 is larger than that of the uniform portion 61, the radius r of the arc Therefore, the electric field is concentrated on the tip of the electric field relaxation layer 60, and as a result, the effect of reducing the electric field on the surface of the flange 41 of the polymer coating 40 is small. As a result, the electric field strength of the surface of the collar portion 41 of the polymer covering 40 is higher than that of the polymer sleeve having the uniform thickness of the electric field relaxation layer 60 and the arc surface 62a formed at the tip as in the comparative example of FIG. It didn't change.

図4に示すように、ポリマー套管10の電界緩和層60の先端を、ポリマー被覆体40の襞部41が形成されている肉厚部に隣接して配置すれば、より好ましい。つまり、図2の例では、電界緩和層60の先端を、ポリマー被覆体40の襞部41が形成されていない肉薄部に隣接して配置した場合を示したが、図4に示した配置は、図2に示した配置よりも、電界が集中する電界緩和層60の先端部62を、襞部41の肉厚部によって絶縁補強できる。同じr>dの条件で電界解析を行うと、図2の場合に比べて図4の場合の方がポリマー被覆体40の襞部41表面の電界強度は低くなることがわかった。よって、ポリマー套管10におけるコロナ放電をより一層低減できる。   As shown in FIG. 4, it is more preferable that the tip of the electric field relaxation layer 60 of the polymer cannula 10 is disposed adjacent to the thick part where the flange 41 of the polymer coating 40 is formed. That is, in the example of FIG. 2, the case where the tip of the electric field relaxation layer 60 is disposed adjacent to the thin portion where the flange portion 41 of the polymer coating 40 is not formed is illustrated, but the arrangement illustrated in FIG. As compared with the arrangement shown in FIG. 2, the distal end portion 62 of the electric field relaxation layer 60 where the electric field is concentrated can be insulated and reinforced by the thick portion of the flange portion 41. When the electric field analysis was performed under the same condition of r> d, it was found that the electric field strength on the surface of the collar portion 41 of the polymer covering 40 was lower in the case of FIG. 4 than in the case of FIG. Therefore, corona discharge in the polymer sleeve 10 can be further reduced.

特に、図4の構成でr>dとした場合は、r>dの効果と肉厚部に隣接して配置した効果の双方の効果が得られるため、コロナ放電を低減するのに非常に有用である。   In particular, when r> d in the configuration of FIG. 4, both the effect of r> d and the effect of being disposed adjacent to the thick portion can be obtained, which is very useful for reducing corona discharge. It is.

[3]他の実施の形態
上述した実施の形態では、本発明を、大径部11と小径部12とを有するポリマー套管10に適用した場合について述べたが、本発明はこれに限らず、外径が長手方向に亘って同一であるストレートタイプのポリマー套管に適用した場合にも同様の効果を得ることができる。
[3] Other Embodiments In the above-described embodiments, the case where the present invention is applied to the polymer sleeve 10 having the large diameter portion 11 and the small diameter portion 12 has been described. However, the present invention is not limited to this. The same effect can be obtained when applied to a straight type polymer sleeve having the same outer diameter in the longitudinal direction.

また、上述した実施の形態では、ポリマー套管10を機器用ブッシングとして用いた場合について述べたが、壁貫通ブッシング(特許文献3参照)として用いられるポリマー套管の構造でもよいし、絶縁体30の基端側にケーブル端末の接続部を有するケーブル終端接続部に用いられるポリマー套管の構造でもよい。また、ケーブル終端接続部に用いられるポリマー套管としては、当業者にとっていずれも既知である、ストレスコーンを絶縁体30内に受容する所謂インナーコーンタイプと、RBJ(ゴムブロックジョイント)の絶縁方式のようにゴムブロックを絶縁体の外周に覆うことによりポリマー套管とケーブルを接続する所謂アウターコーンタイプとがあるが、本発明はいずれにも適用できるため、これらの構造は特に限定されない。つまり、本発明のポリマー套管は、図1のように機器(GIS(ガス絶縁開閉装置)や変圧器等)に接続される機器用ブッシングに適用してもよいし、壁貫通ブッシングに適用してもよいし、ケーブルと接続するケーブル終端接続部に適用してもよい。   In the above-described embodiment, the case where the polymer cannula 10 is used as a device bushing has been described. However, a structure of a polymer cannula used as a through-wall bushing (see Patent Document 3) or an insulator 30 may be used. The structure of the polymer sleeve used for the cable terminal connection part which has a connection part of a cable terminal in the base end side of this may be sufficient. Further, as the polymer sleeve used for the cable terminal connection portion, a so-called inner cone type for receiving a stress cone in the insulator 30 and an insulation system of RBJ (rubber block joint), both known to those skilled in the art. As described above, there is a so-called outer cone type in which the rubber sleeve is covered on the outer periphery of the insulator to connect the polymer sleeve and the cable, but the present invention can be applied to any of them, and these structures are not particularly limited. In other words, the polymer sleeve of the present invention may be applied to a bushing for equipment connected to equipment (such as a GIS (gas insulated switchgear) or a transformer) as shown in FIG. Alternatively, the present invention may be applied to a cable terminal connection portion connected to a cable.

本発明のポリマー套管は、ポリマー被覆体からのコロナ放電の発生を抑制できる効果を有し、例えばケーブル終端接続部やブッシング(機器用ブッシングや壁貫通ブッシング等)として有用である。   The polymer sleeve of the present invention has an effect of suppressing the generation of corona discharge from the polymer coating, and is useful as, for example, a cable terminal connection portion or a bushing (such as a device bushing or a wall penetration bushing).

10 ポリマー套管
11 大径部
12 小径部
20 内部導体
30 絶縁体
40 ポリマー被覆体
41 襞部
50 遮蔽金具
51 フランジ部
52 円筒部
60 電界緩和層
61 均一部
62 先端部
62a 円弧面
63 テーパ部
63a テーパ面
DESCRIPTION OF SYMBOLS 10 Polymer sleeve 11 Large diameter part 12 Small diameter part 20 Inner conductor 30 Insulator 40 Polymer coating body 41 Gutter part 50 Shielding metal fitting 51 Flange part 52 Cylindrical part 60 Electric field relaxation layer 61 Uniform part 62 Tip part 62a Arc surface 63 Tapered part 63a Tapered surface

Claims (5)

内部導体と、
前記内部導体の外周を覆う硬質の絶縁体と、
前記絶縁体の外周を覆い、外周に複数の襞部が長手方向に離間して形成されたポリマー被覆体と、
前記ポリマー被覆体の基端側において、前記内部導体と同心状に前記絶縁体に埋設された遮蔽金具と、
前記絶縁体と前記ポリマー被覆体との界面に配置され、基端が前記遮蔽金具に接続された電界緩和層と、
を具備し、
前記電界緩和層は、
前記遮蔽金具との接続位置から先端側に向かって形成され、厚みがほぼ均一な均一部と、
円弧面が形成される先端部と、
前記均一部と前記先端部とが連設する位置に形成され、先端側に向かって内径が小さくなるように傾斜したテーパ面が形成されているテーパ部と、
を具備する、
ポリマー套管。
An inner conductor,
A hard insulator covering the outer periphery of the inner conductor;
Covering the outer periphery of the insulator, and a polymer covering formed with a plurality of flanges spaced apart in the longitudinal direction on the outer periphery;
On the base end side of the polymer covering, a shielding fitting embedded in the insulator concentrically with the inner conductor;
An electric field relaxation layer disposed at an interface between the insulator and the polymer covering, and having a base end connected to the shielding fitting;
Comprising
The electric field relaxation layer is
A uniform part that is formed from the connection position with the shielding metal fitting toward the front end side, and has a substantially uniform thickness,
A tip where an arc surface is formed;
A taper part formed at a position where the uniform part and the tip part are continuously provided, and a tapered surface inclined so that the inner diameter decreases toward the tip side;
Comprising
Polymer sleeve.
前記電界緩和層は、前記均一部の厚みをdとし、前記円弧面の半径をrとした場合、r>dとされている、
請求項1に記載のポリマー套管。
When the thickness of the uniform portion is d and the radius of the circular arc surface is r, the electric field relaxation layer has r> d.
The polymer sleeve according to claim 1.
前記遮蔽金具は、
前記ポリマー被覆体よりも径方向外方に向けて突出したフランジ部と、
前記絶縁体に埋設された電界緩和用の円筒部と、
を有する、
請求項1又は請求項2に記載のポリマー套管。
The shielding metal fitting is
A flange portion projecting radially outward from the polymer covering,
A cylindrical portion for electric field relaxation embedded in the insulator;
Having
The polymer cannula according to claim 1 or claim 2.
前記ポリマー被覆体は、前記襞部が形成されている肉厚部と、前記襞部が形成されていない肉薄部とを有し、
前記電界緩和層は、先端が、前記ポリマー被覆体の前記肉厚部に隣接している、
請求項1から請求項3のいずれか一項に記載のポリマー套管。
The polymer covering has a thick part where the collar part is formed, and a thin part where the collar part is not formed,
The electric field relaxation layer has a tip adjacent to the thick part of the polymer covering,
The polymer cannula according to any one of claims 1 to 3.
前記電界緩和層は酸化亜鉛層又は高誘電率層で構成される、
請求項1から請求項4のいずれか一項に記載のポリマー套管。
The electric field relaxation layer is composed of a zinc oxide layer or a high dielectric constant layer.
The polymer cannula according to any one of claims 1 to 4.
JP2010218923A 2010-09-29 2010-09-29 Polymer sleeve Expired - Fee Related JP5606252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010218923A JP5606252B2 (en) 2010-09-29 2010-09-29 Polymer sleeve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010218923A JP5606252B2 (en) 2010-09-29 2010-09-29 Polymer sleeve

Publications (2)

Publication Number Publication Date
JP2012075266A true JP2012075266A (en) 2012-04-12
JP5606252B2 JP5606252B2 (en) 2014-10-15

Family

ID=46170864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010218923A Expired - Fee Related JP5606252B2 (en) 2010-09-29 2010-09-29 Polymer sleeve

Country Status (1)

Country Link
JP (1) JP5606252B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103269066A (en) * 2013-04-26 2013-08-28 浙江省开化七一电力器材有限责任公司 Shielding arc extinction device
JP2014045553A (en) * 2012-08-24 2014-03-13 Exsym Corp Epoxy unit, and polymer bushing
WO2016121360A1 (en) * 2015-01-28 2016-08-04 昭和電線ケーブルシステム株式会社 Polymer cannula
EP3561978A1 (en) * 2018-04-27 2019-10-30 Silec Cable Insulator for a cable end
JP2023078809A (en) * 2021-11-26 2023-06-07 昭和電線ケーブルシステム株式会社 Polymer bushing insulator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60193214A (en) * 1984-03-14 1985-10-01 三菱電機株式会社 Gas bushing
JP2000224746A (en) * 1999-02-03 2000-08-11 Mitsubishi Cable Ind Ltd Bushing for cable terminal
JP2003304632A (en) * 2002-04-08 2003-10-24 Showa Electric Wire & Cable Co Ltd Polymer bushing and cable terminal connecting part using the bushing
JP2008509641A (en) * 2004-08-06 2008-03-27 ズユートカベル・ゲー・エム・ベー・ハー Air termination box
JP2009005514A (en) * 2007-06-22 2009-01-08 Swcc Showa Cable Systems Co Ltd Polymer bushing, and cable end connection therewith

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60193214A (en) * 1984-03-14 1985-10-01 三菱電機株式会社 Gas bushing
JP2000224746A (en) * 1999-02-03 2000-08-11 Mitsubishi Cable Ind Ltd Bushing for cable terminal
JP2003304632A (en) * 2002-04-08 2003-10-24 Showa Electric Wire & Cable Co Ltd Polymer bushing and cable terminal connecting part using the bushing
JP2008509641A (en) * 2004-08-06 2008-03-27 ズユートカベル・ゲー・エム・ベー・ハー Air termination box
JP2009005514A (en) * 2007-06-22 2009-01-08 Swcc Showa Cable Systems Co Ltd Polymer bushing, and cable end connection therewith

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014045553A (en) * 2012-08-24 2014-03-13 Exsym Corp Epoxy unit, and polymer bushing
CN103269066A (en) * 2013-04-26 2013-08-28 浙江省开化七一电力器材有限责任公司 Shielding arc extinction device
EP3252899A4 (en) * 2015-01-28 2018-07-04 Swcc Showa Cable Systems Co., Ltd. Polymer cannula
JP2016140195A (en) * 2015-01-28 2016-08-04 昭和電線ケーブルシステム株式会社 Polymer bushing
CN107210597A (en) * 2015-01-28 2017-09-26 昭和电线电缆系统株式会社 Polymer sleeve pipe
KR101840615B1 (en) 2015-01-28 2018-03-20 쇼와 전선 케이블 시스템 주식회사 Polymer bushing
WO2016121360A1 (en) * 2015-01-28 2016-08-04 昭和電線ケーブルシステム株式会社 Polymer cannula
TWI650773B (en) * 2015-01-28 2019-02-11 日商昭和電線電纜系統股份有限公司 Polymer sleeve
US10283242B2 (en) 2015-01-28 2019-05-07 Swcc Showa Cable Systems Co., Ltd. Polymer bushing
EP3561978A1 (en) * 2018-04-27 2019-10-30 Silec Cable Insulator for a cable end
FR3080708A1 (en) * 2018-04-27 2019-11-01 Silec Cable ISOLATOR FOR AN END OF CABLE
US11374337B2 (en) 2018-04-27 2022-06-28 Silec Cable Insulator for a cable end
JP2023078809A (en) * 2021-11-26 2023-06-07 昭和電線ケーブルシステム株式会社 Polymer bushing insulator
JP7495386B2 (en) 2021-11-26 2024-06-04 Swcc株式会社 Polymer sleeve

Also Published As

Publication number Publication date
JP5606252B2 (en) 2014-10-15

Similar Documents

Publication Publication Date Title
KR101195207B1 (en) Polymer bushing and cable termination using the same
TWI650773B (en) Polymer sleeve
EP2572421B1 (en) A high voltage direct current cable termination apparatus
US7990687B2 (en) Gas-insulated switchgear
US8525025B2 (en) High voltage direct current cable termination apparatus
US8754329B2 (en) High voltage direct current cable termination apparatus
JP2009005514A5 (en)
JP5606252B2 (en) Polymer sleeve
JP4778336B2 (en) Synthetic material end of DC electric cable
JP2005117806A (en) Polymer bushing and cable end connections using same
US8609987B2 (en) High voltage direct current cable termination apparatus
JP2005117806A5 (en)
US20090266600A1 (en) High voltage dc bushing and device comprising such high voltage bushing
US8124878B2 (en) Apparatus for electrical screening of a high-voltage bushing
CN108878077B (en) High voltage insulator arrangement and gas insulation system comprising a high voltage insulator arrangement
JP7495386B2 (en) Polymer sleeve
US5969291A (en) Overhead-line mast with insulated mast head
JP4373970B2 (en) Polymer sleeve and cable termination connection using the same
JP7393460B2 (en) bushing
JP2019122112A (en) Power cable termination connection portion
US20110247853A1 (en) Gas bushing
JP2011250509A (en) Air termination joint
JP4892053B2 (en) Polymer sleeve
JP2015133838A (en) Apparatus direct connection terminal and assembly method for apparatus direct connection terminal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140826

R150 Certificate of patent or registration of utility model

Ref document number: 5606252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees