JP2012074980A - Optical transmission device and method - Google Patents

Optical transmission device and method Download PDF

Info

Publication number
JP2012074980A
JP2012074980A JP2010219090A JP2010219090A JP2012074980A JP 2012074980 A JP2012074980 A JP 2012074980A JP 2010219090 A JP2010219090 A JP 2010219090A JP 2010219090 A JP2010219090 A JP 2010219090A JP 2012074980 A JP2012074980 A JP 2012074980A
Authority
JP
Japan
Prior art keywords
random number
pseudo
weighted
unit
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010219090A
Other languages
Japanese (ja)
Other versions
JP5631136B2 (en
Inventor
Makoto Honda
真 本田
Shigeto Akutsu
重人 圷
Masahito Takei
政比斗 武井
Satoshi Mashima
智 真嶋
Daisuke Kobayashi
大輔 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Information and Telecommunication Engineering Ltd
Original Assignee
Hitachi Information and Communication Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Information and Communication Engineering Ltd filed Critical Hitachi Information and Communication Engineering Ltd
Priority to JP2010219090A priority Critical patent/JP5631136B2/en
Publication of JP2012074980A publication Critical patent/JP2012074980A/en
Application granted granted Critical
Publication of JP5631136B2 publication Critical patent/JP5631136B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To ensure safety by correcting a distribution shape of quantum shot noise, keeping an influence degree of the quantum noise uniform independently of a distance from a true optical signal level, and extending an optical signal level interval.SOLUTION: An optical transmission device has: a second pseudo-random number generating unit generating a second pseudo-random number sequence using a seed key held by the transmission device; a weighted pseudo-random number generating unit generating a pseudo-random number sequence from the second pseudo-random number sequence, to which an occurrence probability is weighted according to a constant rule; a diffusion unit changing a signal level sent from a modulation level selecting unit selecting a modulation level of a transmission data signal to a higher signal level or a lower signal level depending on the pseudo-random number generated by the weighted pseudo-random number generating unit; and a multivalued optical modulating unit generating a multivalued modulation signal depending on the signal level generated by the diffusion unit. The weighted pseudo-random number generating unit performs weighting in a larger amount as a diffusion amount of quantum shot noise becomes larger, and changes input and output characteristics of the second pseudo-random number sequence so as to form a flat part in a distribution shape of the quantum shot noise.

Description

本発明は、光伝送装置及び方法に係り、特にYuen量子暗号に代表される光強度多値変調を用いた光量子暗号の送信装置及び方法に関する。   The present invention relates to an optical transmission apparatus and method, and more particularly to an optical quantum cryptography transmission apparatus and method using optical intensity multilevel modulation typified by Yuen quantum cryptography.

Yuen量子暗号は光通信量子暗号(Y−00)通信とも呼ばれ、光の量子ゆらぎ(量子ショット雑音)を変調によって拡散させ、盗聴者によって光信号を正確に受信できなくする通信技術であり、共通鍵量子暗号へ適用することが提唱されている。この共通鍵量子暗号は、2値の送信データを搬送する2値の光信号を1つのセット(基底という)とし、この基底を複数M個用意し、何れの基底を使ってデータを送るかは暗号鍵に従う擬似乱数によって不規則に決める。現実的には光M値信号は量子ゆらぎによって識別ができないほど信号間距離が小さく設計されているため、結局、盗聴者は全く受信信号からデータ情報を読みとることができない。   Yuen quantum cryptography is also called optical communication quantum cryptography (Y-00) communication, and is a communication technology that spreads quantum fluctuations (quantum shot noise) of light by modulation and makes it impossible to receive an optical signal accurately by an eavesdropper. Application to common key quantum cryptography has been proposed. In this common key quantum cryptography, a binary optical signal carrying binary transmission data is set as one set (referred to as a base), a plurality of M bases are prepared, and which base is used to transmit data. Randomly determined by pseudo-random numbers according to the encryption key. Actually, the optical M-value signal is designed so that the distance between the signals is so small that it cannot be identified by the quantum fluctuation, so that an eavesdropper cannot read the data information from the received signal at all.

正規の送受信者の光変復調装置は、2値のM個の基底を共通の擬似乱数にしたがって切り換えて通信するため、正規の受信者は信号間距離の大きな2値の信号判定によってデータを読みとることができる。量子ゆらぎによるエラーは無視でき、正規の送受信者間では正確な通信が可能となる。この光変調方式による暗号は、Yuen−2000暗号通信プロトコル(Y−00プロトコルと略称される)によるYuen量子暗号と呼ばれる。Yuen量子暗号を用いた通信の原理、及び送受信装置の構成については、例えば、特許文献1及び特許文献2に開示されている。   Since the optical modulator / demodulator of the authorized transmitter / receiver switches the binary M bases in accordance with a common pseudo-random number and communicates, the authorized receiver reads data by binary signal determination with a large inter-signal distance. Can do. Errors due to quantum fluctuations can be ignored, and accurate communication is possible between authorized senders and receivers. The encryption based on this optical modulation method is called Yuen quantum encryption based on Yuen-2000 encryption communication protocol (abbreviated as Y-00 protocol). The principle of communication using Yuen quantum cryptography and the configuration of a transmission / reception device are disclosed in, for example, Patent Literature 1 and Patent Literature 2.

特開2006−303927公報JP 2006-303927 A 特開2010−114662公報JP 2010-111462 A

光通信量子暗号は光の量子ショット雑音を積極的に利用して、近接した複数の光信号レベルを盗聴者が検出する際に誤りを起こさせることで盗聴を防止する。この場合、受信時に発生する雑音の量や分布形状が安全性に大きく影響する。自然に得られる量子ショット雑音は、図1に示すように、雑音量が小さく、雑音振幅と発生確率の分布は釣鐘状をしている。そのため、複数の光信号レベルに均一に誤りを生じさせることは困難である。そこで、雑音量を拡大し、かつ量子ショット雑音を均一に分布させるように補正することが望まれる。   The optical communication quantum cryptography actively uses the quantum shot noise of light to prevent eavesdropping by causing an error when an eavesdropper detects a plurality of adjacent optical signal levels. In this case, the amount of noise generated during reception and the distribution shape greatly affect the safety. As shown in FIG. 1, the naturally obtained quantum shot noise has a small amount of noise, and the distribution of noise amplitude and occurrence probability has a bell shape. For this reason, it is difficult to uniformly cause errors in a plurality of optical signal levels. Therefore, it is desired to correct the noise amount so that the quantum shot noise is uniformly distributed.

本発明の目的は、量子ショット雑音の分布形状を補正し、真の光信号レベルからの距離によらず量子雑音の影響度を均一に保つことを可能とし、光信号レベル間隔を広げることにより正規受信者への影響を抑え、安全性を確保することにある。   The purpose of the present invention is to correct the distribution shape of the quantum shot noise, to keep the influence of the quantum noise uniform regardless of the distance from the true optical signal level, and to increase the normality by widening the optical signal level interval. It is to secure the safety by suppressing the influence on the recipient.

本発明に係る光伝送装置は、好ましくは、光強度多値変調を用いた光量子暗号を送信する光伝送装置において、
送受信装置間で共有している共有鍵をシード鍵として第1の擬似乱数列を生成する第1の擬似乱数生成部と、
該第1の擬似乱数生成部で生成された第1の擬似乱数列から基底を選択する基底選択部と、
送信すべき2値データと該基底選択部で選択された基底から多値レベルへの基底割付けに合わせて信号レベルを選択する変調レベル選択部と、
送信装置が持つシード鍵から第2の擬似乱数列を生成する第2の擬似乱数生成部と、
該第2の擬似乱数生成部で生成された第2の擬似乱数列から一定のルールで生起確率の重み付けをした擬似乱数列を生成する重み付き擬似乱数生成部と、
該変調レベル選択部から出力される信号レベルを、該重み付き擬似乱数生成部で生成した擬似乱数により上下の信号レベルへ変動させる拡散部と、
該拡散部から出力される信号レベルにより多値光変調信号を生成する多値光変調部と、を有することを特徴とする光伝送装置として構成される。
The optical transmission apparatus according to the present invention is preferably an optical transmission apparatus that transmits optical quantum cryptography using optical intensity multilevel modulation.
A first pseudo-random number generator that generates a first pseudo-random number sequence using a shared key shared between the transmitting and receiving devices as a seed key;
A base selection unit that selects a base from the first pseudo-random number sequence generated by the first pseudo-random number generation unit;
A modulation level selection unit that selects a signal level in accordance with binary data to be transmitted and base allocation from the base selected by the base selection unit to a multilevel level;
A second pseudo-random number generation unit that generates a second pseudo-random number sequence from a seed key possessed by the transmission device;
A weighted pseudo-random number generation unit that generates a pseudo-random number sequence in which the occurrence probability is weighted according to a certain rule from the second pseudo-random number sequence generated by the second pseudo-random number generation unit;
A diffusion unit that changes the signal level output from the modulation level selection unit to upper and lower signal levels by a pseudorandom number generated by the weighted pseudorandom number generation unit;
A multi-level optical modulation unit that generates a multi-level optical modulation signal according to the signal level output from the diffusion unit.

好ましい例では、前記重み付き擬似乱数生成部は、前記拡散部で変動させる量が大きい程その生起確率が大きくなるような重みを、前記第2の擬似乱数生成部で生成される第2の擬似乱数列に付加することにより、同じ変動量が量子雑音のみで発生する場合の確率を補償し、量子雑音の影響度を均一にする。   In a preferred example, the weighted pseudo-random number generation unit generates a second pseudo-random number generated by the second pseudo-random number generation unit with a weight that increases the probability of occurrence as the amount to be varied by the diffusion unit increases. By adding to the random number sequence, the probability when the same fluctuation amount is generated only by the quantum noise is compensated, and the influence degree of the quantum noise is made uniform.

また、好ましくは、前記重み付き擬似乱数生成部は、入力される乱数を2進データに変換する2進変換部と、該2進変換部からの2進データに関連して疑似乱数列を生成するものであって、量子ショット雑音の拡散量が大きくなるほど重み付けを大きくするように、第2の擬似乱数列の入出力特性を非線形に変更するデータをテーブル化して保持する補正テーブルを備える。   Preferably, the weighted pseudo-random number generation unit generates a pseudo-random number sequence in relation to a binary conversion unit that converts an input random number into binary data and the binary data from the binary conversion unit. A correction table is provided that stores data for changing the input / output characteristics of the second pseudo-random number sequence in a non-linear manner so that the weighting increases as the diffusion amount of the quantum shot noise increases.

また、好ましくは、前記重み付き擬似乱数生成部の複雑度を向上するための雑音発生部を更に有し、前記拡散部は、該変調レベル選択部から出力される信号レベルを、該重み付き擬似乱数生成部で生成した擬似乱数と該雑音発生部で発生した雑音信号により上下の信号レベルへ変動させる。   In addition, preferably, it further includes a noise generation unit for improving the complexity of the weighted pseudo random number generation unit, and the spreading unit converts the signal level output from the modulation level selection unit into the weighted pseudo random number generation unit. The signal level is changed to the upper and lower signal levels by the pseudo random number generated by the random number generator and the noise signal generated by the noise generator.

本発明に係る光伝送装置は、好ましくは、光強度多値変調を用いた光量子暗号を送信する光伝送方法において、
送受信装置間で共有している共有鍵をシード鍵として第1の擬似乱数列を生成する第1の擬似乱数生成ステップと、
該生成された第1の擬似乱数列から基底を選択する基底選択ステップと、
送信すべき2値データと、基底選択によって選択された基底から多値レベルへの基底割付けに合わせて信号レベルを選択する変調レベル選択ステップと、
送信装置が持つシード鍵を用いて第2の擬似乱数列を生成する第2の擬似乱数生成ステップと、
該第2の擬似乱数生成ステップで生成された第2の擬似乱数列から一定のルールで生起確率の重み付けをした擬似乱数列を生成する重み付き擬似乱数生成ステップと、
該変調レベル選択から送られる信号レベルを、該重み付き擬似乱数生成ステップで生成した擬似乱数により上下の信号レベルへ変動させる拡散ステップと、
該拡散によって生成される信号レベルにより多値光変調信号を生成する多値光変調ステップを有し、
前記該重み付き擬似乱数生成ステップにおいて、量子ショット雑音の拡散量が大きくなるほど重み付けを大きくして、量子ショット雑音の分布形状に平坦部を形成するように、擬似乱数列の入出力特性を変更することを特徴とする光伝送方法として構成される。
The optical transmission apparatus according to the present invention is preferably an optical transmission method for transmitting an optical quantum cryptography using light intensity multilevel modulation,
A first pseudo-random number generation step of generating a first pseudo-random number sequence using a shared key shared between the transmitting and receiving devices as a seed key;
A base selection step of selecting a base from the generated first pseudorandom number sequence;
A binary level data to be transmitted, and a modulation level selection step for selecting a signal level in accordance with the base allocation from the base selected by the base selection to the multilevel level;
A second pseudo-random number generation step of generating a second pseudo-random number sequence using a seed key possessed by the transmitting device;
A weighted pseudo-random number generation step for generating a pseudo-random number sequence in which the occurrence probability is weighted with a certain rule from the second pseudo-random number sequence generated in the second pseudo-random number generation step;
A diffusion step of changing the signal level sent from the modulation level selection to the upper and lower signal levels by the pseudorandom number generated in the weighted pseudorandom number generation step;
A multi-level light modulation step for generating a multi-level light modulation signal according to the signal level generated by the diffusion;
In the weighted pseudo-random number generation step, the input and output characteristics of the pseudo-random number sequence are changed so as to form a flat portion in the distribution shape of the quantum shot noise by increasing the weight as the diffusion amount of the quantum shot noise increases. It is comprised as an optical transmission method characterized by this.

好ましい例では、前記重み付き擬似乱数生成は、前記拡散で変動させる量が大きい程その生起確率が大きくなるような重みを、前記第2の擬似乱数生成で生成される擬似乱数列に付加することにより、同じ変動量が量子雑音のみで発生する場合の確率を補償し、量子雑音の影響度を均一にする。   In a preferred example, in the weighted pseudorandom number generation, a weight that increases the probability of occurrence as the amount to be varied by the diffusion increases is added to the pseudorandom number sequence generated by the second pseudorandom number generation. Thus, the probability when the same fluctuation amount occurs only with the quantum noise is compensated, and the influence degree of the quantum noise is made uniform.

また、好ましくは、該重み付き擬似乱数生成ステップの複雑度を向上するための雑音発生ステップを更に有し、前記拡散ステップは、該変調レベル選択から送られる信号レベルを、該重み付き擬似乱数生成ステップで生成した擬似乱数および該雑音発生ステップで発生した雑音信号により上下の信号レベルへ変動させる。   Preferably, the method further comprises a noise generation step for improving the complexity of the weighted pseudorandom number generation step, wherein the spreading step uses the signal level sent from the modulation level selection as the weighted pseudorandom number generation. The signal level is changed to upper and lower signal levels by the pseudo random number generated in the step and the noise signal generated in the noise generation step.

本発明によれば、一定の安全性を保ったまま光信号レベル間隔を広げることができ、同一の光信号レベル数での伝送距離を伸ばすことが可能となる(正規受信者への影響低減)。また、一定の安全性を保ったまま光信号レベル間隔を広げることができ、伝送距離を変えずに光信号レベル数を低減することが可能となる(構成の簡略化)。また、雑音の分布形状が平坦なため、光信号レベル間隔の変動に対する安全性の変化を抑圧することが可能となる。   According to the present invention, it is possible to widen the optical signal level interval while maintaining a certain level of safety, and it is possible to extend the transmission distance with the same number of optical signal levels (reduction of influence on authorized receivers). . Further, the optical signal level interval can be widened while maintaining a certain level of safety, and the number of optical signal levels can be reduced without changing the transmission distance (simplification of the configuration). In addition, since the noise distribution shape is flat, it is possible to suppress changes in safety against fluctuations in the optical signal level interval.

一般的な量子ショット雑音の分布状態を示す図。The figure which shows the distribution state of general quantum shot noise. 一実施例により補正された量子ショット雑音の分布状態を示す図。The figure which shows the distribution state of the quantum shot noise correct | amended by one Example. 一実施例によるY−00送信装置の構成例を示すブロック図。The block diagram which shows the structural example of the Y-00 transmission apparatus by one Example. 一実施例による重み付け擬似乱数生成部36の構成例を示すブロック図。The block diagram which shows the structural example of the weighted pseudorandom number generation part 36 by one Example. 実施例1における重み付け擬似乱数生成の例を示す図。FIG. 4 is a diagram illustrating an example of weighted pseudorandom number generation according to the first embodiment. 実施例1における重み付け擬似乱数生成部36の補正データテーブルの構成例を示す図。FIG. 6 is a diagram illustrating a configuration example of a correction data table of the weighted pseudorandom number generation unit 36 according to the first embodiment. 実施例2における重み付け擬似乱数生成の例を示す図。FIG. 10 is a diagram illustrating an example of weighted pseudorandom number generation according to the second embodiment. 実施例2における重み付け擬似乱数生成部36の補正データテーブルの構成例を示す図。FIG. 10 is a diagram illustrating a configuration example of a correction data table of a weighted pseudorandom number generation unit 36 according to the second embodiment. 一実施例によるY−00送信装置の雑音発生部38の構成例を示すブロック図。The block diagram which shows the structural example of the noise generation part 38 of the Y-00 transmission apparatus by one Example. 他の実施例によるY−00送信装置の構成例を示すブロック図。The block diagram which shows the structural example of the Y-00 transmission apparatus by another Example.

以下、図面を参照して本発明の一実施例について説明する。
図1は、Y−00通信における、一般的な量子ショット雑音の分布状態を示す。レーザ光を測定した場合に検出される光子数は、釣鐘状の検出確率(ポアソン分布)に従うため、検出確率は検出の期待値近傍ほど高く、離れるに従って低下する。従って、信号光からの距離が離れた信号レベルほど識別誤りが発生し難いという問題がある。
An embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 shows a general quantum shot noise distribution state in Y-00 communication. The number of photons detected when laser light is measured follows a bell-shaped detection probability (Poisson distribution), so that the detection probability is higher in the vicinity of the expected detection value and decreases as the distance increases. Therefore, there is a problem that a discrimination error is less likely to occur as the signal level is farther from the signal light.

図2は、本発明により補正された量子ショット雑音の分布状態を示す。本発明によれば、釣鐘状の従来の分布(点線)を、矩形状(或いは台形状)の分布(実線)に補正する。即ち、所定の変換則に基づいて光レベルを変調することで、量子ショット雑音を拡散し、分布形状に平坦部(Wで示す部分)を形成する。これにより、一定の範囲Wで信号光からの距離によらず均一に識別誤りが発生することができる。   FIG. 2 shows a distribution state of quantum shot noise corrected according to the present invention. According to the present invention, the conventional bell-shaped distribution (dotted line) is corrected to a rectangular (or trapezoidal) distribution (solid line). That is, by modulating the light level based on a predetermined conversion rule, the quantum shot noise is diffused, and a flat portion (portion indicated by W) is formed in the distribution shape. As a result, it is possible to generate a discrimination error uniformly in a certain range W regardless of the distance from the signal light.

このように、釣鐘状を成した通常の量子ショット雑音(図1)では、期待値近傍の狭い部分で一定の影響度を示し、この範囲が全体の光信号レベル間隔を支配する。一方、本発明は、量子ショット雑音の分布形状の補正を行うことにより、図2に示すように、光信号レベル間隔を広げることが可能となる。伝送距離は光信号振幅に依存し、仮に光信号レベル間隔が10倍になれば、同一の光信号レベル数では光信号振幅も10倍になり伝送距離を伸ばすことができる。   As described above, in the normal quantum shot noise having a bell shape (FIG. 1), a certain degree of influence is shown in a narrow portion near the expected value, and this range dominates the entire optical signal level interval. On the other hand, the present invention can widen the optical signal level interval by correcting the distribution shape of the quantum shot noise as shown in FIG. The transmission distance depends on the optical signal amplitude. If the optical signal level interval becomes 10 times, the optical signal amplitude becomes 10 times at the same number of optical signal levels, and the transmission distance can be extended.

次に、量子ショット雑音の分布形状を平坦形状に補正する具体的な構成について説明する。図3は、一実施例によるY−00送信装置の暗号化部の構成ブロックを示す。
Y−00の暗号化部は、送受信装置間で共有している共有鍵をシード鍵1として擬似乱数列を高速に生成する擬似乱数生成部31、擬似乱数生成部31で生成した擬似乱数列から基底を選択する基底選択部32、送信すべき2値の平文データと基底選択部32で選択された基底から多値レベルへの基底割付け(マッピング)に合わせて信号レベルを選択する変調レベル選択部33、送信装置が持つシード鍵2から擬似乱数列を高速に生成する擬似乱数生成部35、擬似乱数生成部35で生成された擬似乱数列から一定のルールで生起確率の重み付けをした擬似乱数列を生成する重み付き擬似乱数生成部36、重み付き擬似乱数生成部36の複雑度を向上するための雑音発生部38、変調レベル選択部33から出力される信号レベルを、重み付き擬似乱数生成部36で生成した擬似乱数および雑音発生部38で発生した雑音信号により上下の信号レベルへ変動させる拡散部37、拡散部37から出力される信号レベルにより多値光変調信号を生成する多値光変調部34を有して構成される。
ここで、重み付き擬似乱数生成部36の構成については、図4〜図6(実施例1)、図7〜図8(実施例2)を参照し、雑音発生部38の構成については、図9を参照して後述する。
Next, a specific configuration for correcting the distribution shape of quantum shot noise to a flat shape will be described. FIG. 3 shows a configuration block of the encryption unit of the Y-00 transmission apparatus according to an embodiment.
The Y-00 encryption unit generates a pseudo-random number sequence 31 at a high speed using the shared key shared between the transmitting and receiving apparatuses as a seed key 1, and the pseudo-random number sequence generated by the pseudo-random number generation unit 31. A base selection unit 32 for selecting a base, a binary level plaintext data to be transmitted, and a modulation level selection unit for selecting a signal level in accordance with the base allocation (mapping) from the base selected by the base selection unit 32 to a multilevel level 33, a pseudo-random number generation unit 35 that generates a pseudo-random number sequence at high speed from the seed key 2 of the transmission device, and a pseudo-random number sequence that is weighted with a certain rule from the pseudo-random number sequence generated by the pseudo-random number generation unit 35 Weighted pseudo random number generator 36, noise generating unit 38 for improving the complexity of weighted pseudo random number generator 36, and signal level output from modulation level selector 33 are weighted. A multilevel light modulation signal is generated based on a pseudorandom number generated by the pseudorandom number generation unit 36 and a signal level output from the diffusion unit 37 and the signal level output from the diffusion unit 37 to change the signal level up and down by the noise signal generated by the noise generation unit 38. The multi-level light modulator 34 is included.
Here, with respect to the configuration of the weighted pseudo-random number generation unit 36, refer to FIGS. 4 to 6 (Example 1) and FIGS. 7 to 8 (Example 2), and the configuration of the noise generation unit 38 is illustrated in FIG. This will be described later with reference to FIG.

上記の構成により、重み付き擬似乱数生成部36で、例えば拡散部37で変動させる量が大きい程その生起確率が大きくなるような重みを擬似乱数生成部35の擬似乱数生成に付加することにより、同じ変動量が量子雑音のみで発生する場合の確率を補償し、量子雑音の影響度を均一にすることが可能となる。   With the above configuration, the weighted pseudo-random number generation unit 36 adds a weight to the pseudo-random number generation of the pseudo-random number generation unit 35 such that, for example, the greater the amount to be changed by the diffusion unit 37, the greater the occurrence probability. It is possible to compensate the probability when the same fluctuation amount is generated only by the quantum noise, and to make the influence degree of the quantum noise uniform.

ここで、図9を参照して雑音発生部38の構成について説明する。
雑音発生部38は、多値光変調部34と独立に用意した雑音発生用光信号のパワーを制御する光パワー制御部91と、光パワー制御部91からの光パワー制御信号により電気信号を光信号に変換する電気/光変換部92と、出力される光信号を電気信号に変換して雑音信号を出力する光/電気信号変換部93と、出力される雑音信号を平均化し、光パワーを一定にするように監視するローパスフィルタ94を有して構成される。光/電気信号変換部93から出力される、ランダムに変動するアナログ電気信号が雑音信号として拡散部37に与えられる。
光信号には量子揺らぎがあるため、雑音光を電気に変化した場合でも量子ショット雑音が発生し、検出電圧がランダムに変動する。これが雑音信号となる。光/電気変換部93が送受信装置の信号速度よりも十分に広帯域の場合は、発生する雑音信号は真性の乱雑性を持つ雑音となる。
Here, the configuration of the noise generator 38 will be described with reference to FIG.
The noise generation unit 38 is an optical power control unit 91 that controls the power of a noise generation optical signal prepared independently of the multi-level optical modulation unit 34, and an optical signal is transmitted by the optical power control signal from the optical power control unit 91. An electrical / optical conversion unit 92 that converts the signal into an optical signal, an optical / electrical signal conversion unit 93 that converts the output optical signal into an electrical signal and outputs a noise signal, and an average of the output noise signal It has a low-pass filter 94 that monitors to be constant. A randomly varying analog electric signal output from the optical / electrical signal conversion unit 93 is given to the diffusion unit 37 as a noise signal.
Since the optical signal has quantum fluctuations, quantum shot noise occurs even when the noise light is changed to electricity, and the detection voltage varies randomly. This becomes a noise signal. When the optical / electrical converter 93 has a sufficiently wide band than the signal speed of the transmission / reception device, the generated noise signal becomes a noise having intrinsic randomness.

次に、図4を参照して重み付き擬似乱数生成部36の構成について説明する。
重み付き擬似乱数生成部36は、入力データ(乱数)を2進データに変換する2進変換部41と、補正テーブル42を備え、当該補正テーブル42の出力が疑似乱数となる。
補正テーブル42は、擬似乱数列の入出力特性を非線形に変更するデータをテーブル化して保持するものであり、図6にその構成例を示す。−128から+127まで示す2進8ビットの入力データによって、テーブルを索引して、補正データが出力される。
Next, the configuration of the weighted pseudorandom number generator 36 will be described with reference to FIG.
The weighted pseudo random number generation unit 36 includes a binary conversion unit 41 that converts input data (random numbers) into binary data, and a correction table 42, and the output of the correction table 42 is a pseudo random number.
The correction table 42 stores data that changes the input / output characteristics of the pseudo-random number sequence in a non-linear manner, and FIG. 6 shows a configuration example thereof. The table is indexed by binary 8-bit input data from −128 to +127, and correction data is output.

[実施例1]
図5は、重み付き擬似乱数生成部36における重み付け擬似乱数生成の例を示す。図6は、図5の重み付け疑似乱数を生成するためのテーブル構成を示す。
量子ショット雑音を拡散して、分布形状の平坦部Wを形成するには、拡散量が大きくなるほど(即ち±3〜4となるほど)発生確率が大きくなるように、重み付けをすればよい。
そこで、図6に示すテーブルのように、小さな拡散量(拡散量−1〜+1)は少なく、大きな拡散量(拡散量±4)は多くなるように、テーブルの内容を構成している。
このテーブル構成により、擬似乱数列の入出力特性を非線形に変換することができる。
[Example 1]
FIG. 5 shows an example of weighted pseudorandom number generation in the weighted pseudorandom number generator 36. FIG. 6 shows a table configuration for generating the weighted pseudorandom numbers of FIG.
In order to diffuse the quantum shot noise and form the flat portion W having a distributed shape, weighting may be performed so that the probability of occurrence increases as the diffusion amount increases (that is, ± 3 to 4).
Therefore, as in the table shown in FIG. 6, the contents of the table are configured so that the small diffusion amount (diffusion amount −1 to +1) is small and the large diffusion amount (diffusion amount ± 4) is large.
With this table configuration, the input / output characteristics of the pseudo-random number sequence can be converted nonlinearly.

[実施例2]
図7は、重み付き擬似乱数生成部36における重み付け擬似乱数生成の例、図8は、その重み付け疑似乱数を生成するためのテーブル構成を示す。
この例は、拡散量が0と±4だけが生成されるようにテーブルを構成している。
[Example 2]
FIG. 7 shows an example of weighted pseudorandom number generation in the weighted pseudorandom number generation unit 36, and FIG. 8 shows a table configuration for generating the weighted pseudorandom number.
In this example, the table is configured so that only diffusion amounts of 0 and ± 4 are generated.

[実施例3]
図10は、他の実施例によるY−00送信装置の構成例を示す。
図3に示した構成例では、重み付き疑似乱数生成部36からの信号と、雑音発生部38からの雑音信号とによって、平文データを含む変調レベルを拡散する。これに対して、図10の例では、雑音発生部38からの雑音信号を、A/D変換部39´でデジタル信号に変換して、重み付き疑似乱数生成部36´に与える。重み付き疑似乱数生成部36´では、疑似乱数生成部35で生成された疑似乱数と、雑音信号発生部38からの雑音信号を重畳させて重み付き疑似乱数を生成する。拡散部37´では、変調信号を疑似乱数で拡散させて、多値光変調部34における多値光の変調を制御する。
[Example 3]
FIG. 10 shows a configuration example of a Y-00 transmission apparatus according to another embodiment.
In the configuration example shown in FIG. 3, the modulation level including the plaintext data is spread by the signal from the weighted pseudorandom number generation unit 36 and the noise signal from the noise generation unit 38. On the other hand, in the example of FIG. 10, the noise signal from the noise generation unit 38 is converted into a digital signal by the A / D conversion unit 39 ′ and provided to the weighted pseudorandom number generation unit 36 ′. The weighted pseudo random number generation unit 36 ′ generates a weighted pseudo random number by superimposing the pseudo random number generated by the pseudo random number generation unit 35 and the noise signal from the noise signal generation unit 38. The diffusion unit 37 ′ controls the modulation of the multilevel light in the multilevel light modulation unit 34 by diffusing the modulation signal with a pseudo random number.

実施例1では重み付き擬似乱数生成器の出力を利用してデジタル拡散を施した後、雑音発生部38から出力されるアナログ雑音信号を利用して、多値光変調部34の直前でアナログ拡散している。このため、実施例1では広帯域のアナログ回路が必要となる。これに対して、実施例3では、雑音発生部38で発生したアナログ雑音信号をA/D変換部39´でデジタル雑音信号に変換し、これを擬似乱数生成器35の出力と加算して重み付き擬似乱数生成部36´に入力している。このため、一旦A/D変換すれば、従来のY−00技術と同様な技術で実現可能となる。   In the first embodiment, after performing digital diffusion using the output of the weighted pseudo-random number generator, analog diffusion is performed immediately before the multilevel light modulation unit 34 using an analog noise signal output from the noise generation unit 38. is doing. For this reason, the first embodiment requires a wideband analog circuit. On the other hand, in the third embodiment, the analog noise signal generated by the noise generation unit 38 is converted into a digital noise signal by the A / D conversion unit 39 ′, and this is added to the output of the pseudorandom number generator 35 and weighted. This is input to the attached pseudorandom number generator 36 '. For this reason, once A / D conversion is performed, it can be realized by a technique similar to the conventional Y-00 technique.

31:疑似乱数生成部1 32:基底選択部 33:変調レベル選択部 34:多値信号変調部 35:疑似乱数生成部2 36:重み付き疑似乱数生成部 37:拡散部 38:雑音発生部。 31: Pseudorandom number generation unit 1 32: Base selection unit 33: Modulation level selection unit 34: Multi-level signal modulation unit 35: Pseudorandom number generation unit 2 36: Weighted pseudorandom number generation unit 37: Spreading unit 38: Noise generation unit

Claims (7)

光強度多値変調を用いた光量子暗号を送信する光伝送装置において、
送受信装置間で共有している共有鍵をシード鍵として第1の擬似乱数列を生成する第1の擬似乱数生成部と、
該第1の擬似乱数生成部で生成された第1の擬似乱数列から基底を選択する基底選択部と、
送信すべき2値データと該基底選択部で選択された基底から多値レベルへの基底割付けに合わせて信号レベルを選択する変調レベル選択部と、
送信装置が持つシード鍵から第2の擬似乱数列を生成する第2の擬似乱数生成部と、
該第2の擬似乱数生成部で生成された第2の擬似乱数列から一定のルールで生起確率の重み付けをした擬似乱数列を生成する重み付き擬似乱数生成部と、
該変調レベル選択部から出力される信号レベルを、該重み付き擬似乱数生成部で生成した擬似乱数により上下の信号レベルへ変動させる拡散部と、
該拡散部から出力される信号レベルにより多値光変調信号を生成する多値光変調部と、を有することを特徴とする光伝送装置。
In an optical transmission device that transmits optical quantum cryptography using light intensity multilevel modulation,
A first pseudo-random number generator that generates a first pseudo-random number sequence using a shared key shared between the transmitting and receiving devices as a seed key;
A base selection unit that selects a base from the first pseudo-random number sequence generated by the first pseudo-random number generation unit;
A modulation level selection unit that selects a signal level in accordance with binary data to be transmitted and base allocation from the base selected by the base selection unit to a multilevel level;
A second pseudo-random number generation unit that generates a second pseudo-random number sequence from a seed key possessed by the transmission device;
A weighted pseudo-random number generation unit that generates a pseudo-random number sequence in which the occurrence probability is weighted according to a certain rule from the second pseudo-random number sequence generated by the second pseudo-random number generation unit;
A diffusion unit that changes the signal level output from the modulation level selection unit to upper and lower signal levels by a pseudorandom number generated by the weighted pseudorandom number generation unit;
An optical transmission apparatus comprising: a multilevel optical modulation unit that generates a multilevel optical modulation signal based on a signal level output from the diffusion unit.
前記重み付き擬似乱数生成部は、前記拡散部で変動させる量が大きい程その生起確率が大きくなるような重みを、前記第2の擬似乱数生成部で生成される第2の擬似乱数列に付加することにより、同じ変動量が量子雑音のみで発生する場合の確率を補償し、量子雑音の影響度を均一にすること、を特徴とする請求項1の光伝送装置。 The weighted pseudo-random number generation unit adds a weight to the second pseudo-random number sequence generated by the second pseudo-random number generation unit so that the probability of occurrence increases as the amount to be varied by the diffusion unit increases. The optical transmission apparatus according to claim 1, wherein the probability of occurrence of the same fluctuation amount only by quantum noise is compensated to make the influence of the quantum noise uniform. 前記重み付き擬似乱数生成部は、入力される乱数を2進データに変換する2進変換部と、該2進変換部からの2進データに関連して疑似乱数列を生成するものであって、量子ショット雑音の拡散量が大きくなるほど重み付けを大きくするように、第2の擬似乱数列の入出力特性を非線形に変更するデータをテーブル化して保持する補正テーブルを備えること、
を特徴とする請求項1又は2に記載の光伝送装置。
The weighted pseudo-random number generation unit generates a pseudo-random number sequence in relation to the binary data from the binary conversion unit that converts an input random number into binary data, and the binary data from the binary conversion unit. A correction table for storing data that changes the input / output characteristics of the second pseudorandom number in a non-linear manner so as to increase the weighting as the diffusion amount of the quantum shot noise increases,
The optical transmission device according to claim 1, wherein:
前記重み付き擬似乱数生成部の複雑度を向上するための雑音発生部を更に有し、
前記拡散部は、該変調レベル選択部から出力される信号レベルを、該重み付き擬似乱数生成部で生成した擬似乱数と該雑音発生部で発生した雑音信号により上下の信号レベルへ変動させること、
を特徴とする請求項1乃至3のいずれかの項記載の光伝送装置。
A noise generator for improving the complexity of the weighted pseudorandom number generator;
The spreading unit changes the signal level output from the modulation level selection unit to upper and lower signal levels by the pseudo random number generated by the weighted pseudo random number generation unit and the noise signal generated by the noise generation unit,
The optical transmission device according to any one of claims 1 to 3.
光強度多値変調を用いた光量子暗号を送信する光伝送方法において、
送受信装置間で共有している共有鍵をシード鍵として第1の擬似乱数列を生成する第1の擬似乱数生成ステップと、
該生成された第1の擬似乱数列から基底を選択する基底選択ステップと、
送信すべき2値データと、基底選択によって選択された基底から多値レベルへの基底割付けに合わせて信号レベルを選択する変調レベル選択ステップと、
送信装置が持つシード鍵を用いて第2の擬似乱数列を生成する第2の擬似乱数生成ステップと、
該第2の擬似乱数生成ステップで生成された第2の擬似乱数列から一定のルールで生起確率の重み付けをした擬似乱数列を生成する重み付き擬似乱数生成ステップと、
該変調レベル選択から送られる信号レベルを、該重み付き擬似乱数生成ステップで生成した擬似乱数により上下の信号レベルへ変動させる拡散ステップと、
該拡散によって生成される信号レベルにより多値光変調信号を生成する多値光変調ステップを有し、
前記該重み付き擬似乱数生成ステップにおいて、量子ショット雑音の拡散量が大きくなるほど重み付けを大きくして、量子ショット雑音の分布形状に平坦部を形成するように、擬似乱数列の入出力特性を変更することを特徴とする光伝送方法。
In an optical transmission method for transmitting optical quantum cryptography using light intensity multilevel modulation,
A first pseudo-random number generation step of generating a first pseudo-random number sequence using a shared key shared between the transmitting and receiving devices as a seed key;
A base selection step of selecting a base from the generated first pseudorandom number sequence;
A binary level data to be transmitted, and a modulation level selection step for selecting a signal level in accordance with the base allocation from the base selected by the base selection to the multilevel level;
A second pseudo-random number generation step of generating a second pseudo-random number sequence using a seed key possessed by the transmitting device;
A weighted pseudo-random number generation step for generating a pseudo-random number sequence in which the occurrence probability is weighted with a certain rule from the second pseudo-random number sequence generated in the second pseudo-random number generation step;
A diffusion step of changing the signal level sent from the modulation level selection to the upper and lower signal levels by the pseudorandom number generated in the weighted pseudorandom number generation step;
A multi-level light modulation step for generating a multi-level light modulation signal according to the signal level generated by the diffusion;
In the weighted pseudo-random number generation step, the input and output characteristics of the pseudo-random number sequence are changed so as to form a flat portion in the distribution shape of the quantum shot noise by increasing the weight as the diffusion amount of the quantum shot noise increases. An optical transmission method characterized by the above.
前記重み付き擬似乱数生成は、前記拡散で変動させる量が大きい程その生起確率が大きくなるような重みを、前記第2の擬似乱数生成で生成される擬似乱数列に付加することにより、同じ変動量が量子雑音のみで発生する場合の確率を補償し、量子雑音の影響度を均一にすること、を特徴とする請求項5の光伝送方法。 The weighted pseudo-random number generation has the same variation by adding a weight that increases the probability of occurrence as the amount to be varied by the diffusion increases to the pseudo-random number sequence generated by the second pseudo-random number generation. 6. The optical transmission method according to claim 5, wherein the probability when the quantity is generated only by quantum noise is compensated for and the influence degree of quantum noise is made uniform. 該重み付き擬似乱数生成ステップの複雑度を向上するための雑音発生ステップを更に有し、
前記拡散ステップは、該変調レベル選択から送られる信号レベルを、該重み付き擬似乱数生成ステップで生成した擬似乱数および該雑音発生ステップで発生した雑音信号により上下の信号レベルへ変動させること、
を特徴とする請求項5又は6に記載の光伝送方法。
A noise generation step for improving the complexity of the weighted pseudorandom number generation step;
The spreading step changes the signal level sent from the modulation level selection to the upper and lower signal levels by the pseudo random number generated in the weighted pseudo random number generating step and the noise signal generated in the noise generating step,
The optical transmission method according to claim 5 or 6.
JP2010219090A 2010-09-29 2010-09-29 Optical transmission apparatus and method Active JP5631136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010219090A JP5631136B2 (en) 2010-09-29 2010-09-29 Optical transmission apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010219090A JP5631136B2 (en) 2010-09-29 2010-09-29 Optical transmission apparatus and method

Publications (2)

Publication Number Publication Date
JP2012074980A true JP2012074980A (en) 2012-04-12
JP5631136B2 JP5631136B2 (en) 2014-11-26

Family

ID=46170721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010219090A Active JP5631136B2 (en) 2010-09-29 2010-09-29 Optical transmission apparatus and method

Country Status (1)

Country Link
JP (1) JP5631136B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10009113B2 (en) 2016-01-28 2018-06-26 Fujitsu Limited Optical transmitting device, optical communication system and optical transmission method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111525960B (en) 2019-02-01 2022-01-14 华为技术有限公司 Quantum communication method, device and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043297A1 (en) * 2005-10-11 2007-04-19 Matsushita Electric Industrial Co., Ltd. Data transmitting apparatus and data receiving apparatus
JP2007228564A (en) * 2006-01-25 2007-09-06 Matsushita Electric Ind Co Ltd Data transmitting apparatus and data receiving apparatus
JP2007243929A (en) * 2006-02-07 2007-09-20 Matsushita Electric Ind Co Ltd Data transmitting apparatus and method
JP2008042496A (en) * 2006-08-04 2008-02-21 Matsushita Electric Ind Co Ltd Data transmitting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043297A1 (en) * 2005-10-11 2007-04-19 Matsushita Electric Industrial Co., Ltd. Data transmitting apparatus and data receiving apparatus
JP2007228564A (en) * 2006-01-25 2007-09-06 Matsushita Electric Ind Co Ltd Data transmitting apparatus and data receiving apparatus
JP2007243929A (en) * 2006-02-07 2007-09-20 Matsushita Electric Ind Co Ltd Data transmitting apparatus and method
JP2008042496A (en) * 2006-08-04 2008-02-21 Matsushita Electric Ind Co Ltd Data transmitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10009113B2 (en) 2016-01-28 2018-06-26 Fujitsu Limited Optical transmitting device, optical communication system and optical transmission method

Also Published As

Publication number Publication date
JP5631136B2 (en) 2014-11-26

Similar Documents

Publication Publication Date Title
CN108604425B (en) Random number sequence generation device, quantum cipher transmitter, and quantum cipher communication system
US7986783B2 (en) Data transmitting apparatus
US10651887B2 (en) Multiuser communication methods and devices for code division multiple access (CDMA)
CN106254072B (en) Quantum key distribution method
JP6522745B2 (en) Multi-user code division multiple access communication method and corresponding transmitter, receiver
JP4906732B2 (en) Data transmission device, data reception device, and data communication device
US20120328100A1 (en) Optical transmission device and reception device for yuen encryption, optical transmission method and reception method for yuen encryption, and encrypted communication system
WO2016078303A1 (en) Data transmission method and apparatus
US10484209B2 (en) Data transmission method and device
US8107628B2 (en) Data transmitting apparatus and data receiving apparatus
WO2016045384A1 (en) Spread spectrum processing method and apparatus
JP5631136B2 (en) Optical transmission apparatus and method
CN113904770A (en) Quantum noise stream encryption key updating method and device and storage medium
US7869600B2 (en) Optical transmitter and transmitting method for transmitting cryptogram
US7813409B2 (en) Secure network using orthogonal frequency division multiplexing spread spectrum communications
JP6863854B2 (en) Optical receiver and optical communication system
JP2012074982A (en) Communication device
CN114448628B (en) Quantum noise stream encryption communication method, device, equipment and storage medium
JP2007336409A (en) Secure communication system
JP5062642B2 (en) ENCRYPTED OPTICAL TRANSMITTING DEVICE AND RECEIVING DEVICE, ENCRYPTED OPTICAL TRANSMITTING METHOD AND RECEIVING METHOD, AND ENCRYPTED COMMUNICATION SYSTEM
JP2016116121A (en) Optical communication randomization device
JP2006295338A (en) Data transmission apparatus, data reception apparatus, and data communications apparatus
JP7257103B2 (en) Optical transmission device and optical transmission method
JP2013192054A (en) Optical orthogonal frequency multiplex transmission method and optical transmission device and method
JP2013172262A (en) Communication device and communication method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130702

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141007

R150 Certificate of patent or registration of utility model

Ref document number: 5631136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350