JP2012074266A - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP2012074266A
JP2012074266A JP2010218379A JP2010218379A JP2012074266A JP 2012074266 A JP2012074266 A JP 2012074266A JP 2010218379 A JP2010218379 A JP 2010218379A JP 2010218379 A JP2010218379 A JP 2010218379A JP 2012074266 A JP2012074266 A JP 2012074266A
Authority
JP
Japan
Prior art keywords
flow path
gas
gas flow
layer
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010218379A
Other languages
Japanese (ja)
Other versions
JP5472011B2 (en
Inventor
Tomokazu Hayashi
友和 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010218379A priority Critical patent/JP5472011B2/en
Publication of JP2012074266A publication Critical patent/JP2012074266A/en
Application granted granted Critical
Publication of JP5472011B2 publication Critical patent/JP5472011B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a water discharging property of a fuel cell.SOLUTION: A first passage component 140 of a gas passage layer 40 has first projection parts 141 projecting toward a power generating body layer 35, and second projection parts 142 projecting toward a separator 70, repeatedly. Similarly, a second passage component 240 has first projection parts 241 and second projection parts 242, repeatedly. In the first passage component 140, a first gas passage 143 on the side of the first projection part 141 is a power generating body layer side passage, and its volume is larger than that of the second gas passage 144 which is a separator side passage. In the second passage component 240, a first gas passage 243 on the side of the first projection part 241 is a power generating body layer side passage, and its volume is smaller than that of the second gas passage 244 which is a separator side passage. Then, the first passage component 140 and the second passage component 240 are communicated with each other, so that the second gas passage 144 is positioned inside the second gas passage 244.

Description

本発明は、燃料電池に関し、特に燃料電池内での水分の排出技術に関する。   The present invention relates to a fuel cell, and more particularly to a technique for discharging moisture in the fuel cell.

燃料電池、例えば、固体高分子形燃料電池は、電解質膜を挟んで配置される一対の電極(アノードおよびカソード)にそれぞれ反応ガス(燃料ガスおよび酸化ガス)を供給して電気化学反応を引き起こすことにより、物質の持つ化学エネルギーを電気エネルギーに変換する。   A fuel cell, for example, a polymer electrolyte fuel cell, causes an electrochemical reaction by supplying a reaction gas (a fuel gas and an oxidizing gas) to a pair of electrodes (anode and cathode) arranged with an electrolyte membrane interposed therebetween, respectively. The chemical energy of the substance is converted into electrical energy.

従来、燃料電池において、電解質膜と一対の電極とを含む発電体層とセパレーターとの間にメタルラスやエキスパンドメタルを用いて形成されたガス流路層を設けることにより、反応ガスの拡散性を向上させ、燃料電池の発電効率を向上させる技術が知られている(例えば、下記特許文献1等)。   Conventionally, in a fuel cell, a gas flow path layer formed using a metal lath or expanded metal is provided between a power generator layer including an electrolyte membrane and a pair of electrodes and a separator, thereby improving the diffusibility of the reaction gas. And a technique for improving the power generation efficiency of the fuel cell is known (for example, Patent Document 1 below).

特開2007−214020号公報JP 2007-21040 A 特開2008−287955号公報JP 2008-287955 A

しかしながら、従来の技術では、発電に伴って生成される生成水など、反応ガスに含まれる水分による燃料電池の性能への影響について十分に考慮されておらず、燃料電池の性能に向上の余地があった。かかる問題は、発電体層とセパレーターとの間にガス流路層を備える燃料電池一般に共通する問題であった。   However, the conventional technology does not sufficiently consider the influence of the moisture contained in the reaction gas on the performance of the fuel cell, such as generated water generated by power generation, and there is room for improvement in the performance of the fuel cell. there were. Such a problem is a problem common to fuel cells generally including a gas flow path layer between a power generation layer and a separator.

本発明は、上述した従来の課題の少なくとも一部を解決するためになされたものであり、燃料電池内を流通する反応ガスに含まれる水分の排出性を向上させることを目的とする。   The present invention has been made to solve at least a part of the above-described conventional problems, and an object thereof is to improve the drainage of moisture contained in the reaction gas flowing through the fuel cell.

本発明は、上述の課題の少なくとも一部を解決することを目的としてなされたものであり、以下の構成を採用した。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the following configuration is adopted.

[適用1:燃料電池]
燃料電池であって、
電解質膜を備えた発電体層と、
前記発電体層を間に挟んで配置された一対のセパレーターと、
前記発電体層と前記一対のセパレーターの少なくとも一方との間に配置され、前記発電体層での発電反応に供される反応ガスを前記電解質膜の膜面に沿ったガス流れ方向に流す流路を形成するガス流路層と、を備え
該ガス流路層は、
前記発電体層の側に凸な第1の凸部と前記セパレーターの側に凸な第2の凸部とが流路形成領域において並んだ波形断面の波形要素を前記流路の形成のための要素とし、前記波形要素を繰り返し有する波形要素含有部を、前記ガス流れ方向に沿って複数連設して備え、
前記波形要素含有部のそれぞれは、前記繰り返される前記波形要素における前記第1の凸部の前記波形要素の繰り返しに沿った側方領域を、前記流路を前記発電体層の側でなす発電体層側流路とし、前記波形要素における前記第2の凸部の前記波形要素の繰り返しに沿った側方領域を、前記流路を前記セパレーターの側でなすセパレーター側流路とし、
前記ガス流れ方向に沿って隣り合う二つの前記波形要素含有部は、一方の前記波形要素含有部が前記発電体層側流路の体積を前記セパレーター側流路の体積より大きくし、他方の前記波形要素含有部が前記発電体層側流路の体積を前記セパレーター側流路の体積より小さくすると共に、前記セパレーター側流路を前記ガス流れ方向に沿って重ねている
ことを要旨とする。
[Application 1: Fuel cell]
A fuel cell,
A power generation layer provided with an electrolyte membrane;
A pair of separators arranged with the power generation layer interposed therebetween;
A flow path that is disposed between the power generation layer and at least one of the pair of separators and allows a reaction gas supplied for power generation reaction in the power generation layer to flow in a gas flow direction along the membrane surface of the electrolyte membrane. A gas flow path layer forming the gas flow path layer,
A corrugated element having a corrugated cross section in which a first convex portion projecting toward the power generating layer side and a second convex portion projecting toward the separator are arranged in the flow channel forming region is used for forming the flow channel. A plurality of corrugated element containing portions that repeatedly have the corrugated elements as elements, and are provided continuously along the gas flow direction,
Each of the corrugated element-containing portions includes a power generator that forms a lateral region along the repetition of the corrugated element of the first convex portion in the repeated corrugated element on the side of the power generator layer. A layer-side channel, a side region along the repetition of the corrugated element of the second convex portion in the corrugated element, a separator-side channel that forms the channel on the separator side,
Two of the corrugated element containing portions adjacent to each other in the gas flow direction are such that one corrugated element containing portion makes the volume of the power generator layer side flow path larger than the volume of the separator side flow path, The corrugated element containing part makes the volume of the power generator layer side flow path smaller than the volume of the separator side flow path, and overlaps the separator side flow path along the gas flow direction.

上記構成を備える燃料電池では、発電体層での発電反応に供される反応ガスは、波形要素含有部をガス流れ方向に沿って複数連設したガス流路層の流路を流れる。波形要素含有部は、発電体層の側に凸な第1の凸部とセパレーターの側に凸な第2の凸部とが流路形成領域において並んだ波形断面の波形要素を繰り返し有することから、反応ガスの流路は複数連設された波形要素含有部で次のように形成される。   In the fuel cell having the above-described configuration, the reaction gas used for the power generation reaction in the power generation body layer flows through the flow path of the gas flow path layer in which a plurality of waveform element containing portions are provided along the gas flow direction. Since the corrugated element-containing portion repeatedly has a corrugated element having a corrugated cross section in which the first convex portion projecting toward the power generator layer and the second convex portion projecting toward the separator are arranged in the flow path forming region. The reaction gas flow paths are formed in the following manner by a plurality of corrugated element containing portions.

波形要素含有部のそれぞれは、繰り返される波形要素における第1の凸部の繰り返しに沿った側方領域を、発電体層の側の発電体層側流路とし、この波形要素における第2の凸部の繰り返しに沿った側方領域を、セパレーターの側のセパレーター側流路とする。つまり、発電体層側流路は、発電体層の側で反応ガスの流路をなし、セパレーター側流路は、セパレーターの側で反応ガスの流路をなす。そして、繰り返される波形要素における第1の凸部と第2の凸部とは、前者が発電体層の側に凸で後者がセパレーターの側に凸であることから、発電体層側流路とセパレーター側流路とは、第1の凸部から第2の凸部に延びる或いはこの逆に延びる凸部傾斜部により仕切られることになる。   Each of the waveform element-containing portions has a side region along the repetition of the first convex portion in the repeated waveform element as a power generator layer side flow path on the power generator layer side, and the second convex in this waveform element. A side region along the repetition of the part is defined as a separator-side flow path on the separator side. That is, the power generation layer side flow path forms a reaction gas flow path on the power generation body layer side, and the separator side flow path forms a reaction gas flow path on the separator side. And since the former is convex on the power generator layer side and the latter is convex on the separator side, the first convex portion and the second convex portion in the repeated wave element are The separator-side flow path is partitioned by a convex inclined portion that extends from the first convex portion to the second convex portion or vice versa.

このように流路をなす波形要素含有部は、ガス流れ方向に沿って複数連設されていると共に、ガス流れ方向に沿って隣り合う二つの波形要素含有部は、セパレーター側流路をガス流れ方向に沿って重ねている。このため、セパレーター側流路は、ガスの流れ方向に波形要素含有部の連設範囲、即ちガス流路層の範囲におけるセパレーターの側の反応ガス流路となり、反応ガスは、セパレーター側流路をセパレーターの側においてガスの流れ方向に流れることになる。この場合、セパレーター側流路がガス流れ方向に沿って重なれば、発電体層側流路にあっても、ガス流れ方向に沿って重なることになり、ガスの流れ方向に波形要素含有部の連設範囲(ガス流路層の範囲)における発電体層の側の反応ガス流路となるので、反応ガスは、発電体層側流路を発電体層の側においてガスの流れ方向に流れることになる。   In this way, a plurality of corrugated element-containing portions that form a flow path are connected in series along the gas flow direction, and two corrugated element-containing portions that are adjacent along the gas flow direction flow through the separator-side flow path. Overlapping along the direction. For this reason, the separator side flow path becomes a reaction gas flow path on the separator side in the continuous arrangement range of the waveform element containing portion in the gas flow direction, that is, the range of the gas flow path layer, and the reaction gas flows through the separator side flow path. It will flow in the gas flow direction on the separator side. In this case, if the separator-side flow path overlaps along the gas flow direction, it overlaps along the gas flow direction even in the power generator layer-side flow path. Since the reaction gas flow path is on the power generator layer side in the continuous range (the range of the gas flow path layer), the reaction gas flows in the gas flow direction on the power generator layer side flow path on the power generation layer side. become.

このように反応ガスを流すようにした上記構成の燃料電池は、ガス流れ方向に沿って隣り合う二つの波形要素含有部を、セパレーター側流路がガス流れ方向に沿って重なるように連設しただけではなく、ガス流れ方向に沿って隣り合う二つの波形要素含有部の一方の波形要素含有部については、これを、発電体層側流路の体積をセパレーター側流路の体積より大きくし、他方の波形要素含有部については、発電体層側流路の体積をセパレーター側流路の体積より小さくした。このため、発電体層側流路の体積がセパレーター側流路の体積より大きい、即ち、セパレーター側流路の体積が発電体層側流路の体積より小さい一方の波形要素含有部と、この逆で、セパレーター側流路の体積が発電体層側流路の体積より大きい他方の波形要素含有部とにおける反応ガスの通過は次のようになる。   In the fuel cell having the above-described configuration in which the reaction gas is allowed to flow in this way, two corrugated element-containing portions adjacent to each other in the gas flow direction are continuously arranged so that the separator-side flow path overlaps in the gas flow direction. Not only for the one corrugated element containing part of the two corrugated element containing parts that are adjacent along the gas flow direction, the volume of the power generator layer side flow path is made larger than the volume of the separator side flow path, About the other waveform element containing part, the volume of the electric power generation body layer side flow path was made smaller than the volume of the separator side flow path. For this reason, the volume of the power generator layer-side flow path is larger than the volume of the separator-side flow path, that is, the one corrugated element-containing portion whose volume of the separator-side flow path is smaller than the volume of the power generator layer-side flow path, and vice versa. Thus, the reaction gas passes through the other corrugated element-containing portion in which the volume of the separator-side channel is larger than the volume of the power generator layer-side channel as follows.

セパレーター側流路の体積が発電体層側流路の体積より小さい一方の波形要素含有部は、自身のセパレーター側流路を既述したように隣り合う他方の波形要素含有部のセパレーター側流路に重ねる。しかも、この一方の波形要素含有部は、自身のセパレーター側流路と発電体層側流路とを、第1の凸部と第2の凸部との間で延びる凸部傾斜部で仕切っているので、自身の発電体層側流路についても、他方の波形要素含有部のセパレーター側流路に重ねる。よって、一方の波形要素含有部の発電体層側流路を通過する反応ガスは、この発電体層側流路が他方の波形要素含有部のセパレーター側流路に重なる範囲において、他方の波形要素含有部のセパレーター側流路を通過することになる。こうしたことがガス流れ方向に沿って隣り合う二つの波形要素含有部について起こることから、上記構成の燃料電池によれば、発電体層の水、例えば発電反応により生じた生成水や反応ガス自体に含まれていた水は、一方の波形要素含有部の発電体層側流路を経て他方の波形要素含有部のセパレーター側流路に反応ガスによって運ばれるので、水分の排水性を高めることができる。   One corrugated element-containing portion whose volume of the separator-side flow path is smaller than the volume of the power generator layer-side flow path is the separator-side flow path of the other corrugated element-containing portion adjacent to the separator-side flow path as described above. Overlay on. In addition, the one corrugated element-containing part partitions its separator-side flow path and the power generator layer-side flow path with a convex sloped part extending between the first convex part and the second convex part. Therefore, the own power generator layer-side flow channel is also overlaid on the separator-side flow channel of the other corrugated element-containing portion. Therefore, the reactive gas that passes through the power generator layer side flow path of one waveform element containing portion is in a range in which the power generator layer side flow path overlaps the separator side flow path of the other waveform element containing portion. It passes through the separator-side flow path of the containing part. Since this occurs with respect to the two corrugated element containing portions adjacent to each other in the gas flow direction, according to the fuel cell having the above-described configuration, the water in the power generation layer, for example, the generated water generated by the power generation reaction or the reaction gas itself The contained water is transported by the reaction gas to the separator-side flow path of the other corrugated element-containing part through the power generator layer-side flow path of one corrugated element-containing part, so that the water drainage can be improved. .

なお、隣り合う二つの波形要素含有部において上記構成となればよいので、例えば隣り合う三つの波形要素含有部では、その内の隣り合う二つの波形要素含有部において上記構成となればよい。隣り合う四つ以上の波形要素含有部においても同じである。   In addition, since it should just be the said structure in two adjacent waveform element containing parts, for example, in three adjacent waveform element containing parts, it should just be the said structure in two adjacent waveform element containing parts. The same applies to four or more adjacent waveform element containing portions.

上記した燃料電池は、次のような態様とすることができる。例えば、前記ガス流れ方向に沿って隣り合う二つの前記波形要素含有部を、前記ガスの流れ方向から見て、前記一方の前記波形要素含有部が有する前記セパレーター側流路が前記他方の前記波形要素含有部が有する前記セパレーター側流路の内側に位置するよう隣り合うように連設するようにできる。こうすれば、隣り合う二つの波形要素含有部のセパレーター側流路を容易且つ確実に重なることができると共に、一方の波形要素含有部の発電体層側流路から他方の波形要素含有部のセパレーター側流路への水分の排水を容易且つ確実に図ることができる。   The fuel cell described above can be configured as follows. For example, when the two corrugated element-containing portions adjacent to each other in the gas flow direction are viewed from the gas flow direction, the separator-side flow path of the one corrugated element-containing portion is the other corrugated portion. It can be arranged so that it may be adjacent so that it may be located inside the separator side channel which an element content part has. In this way, the separator-side flow paths of the two adjacent corrugated element-containing portions can be easily and reliably overlapped, and the separator of the other corrugated-element-containing section from the power generator layer-side flow path of the one corrugated element-containing section. It is possible to easily and reliably drain water into the side channel.

この場合、前記ガス流れ方向に沿って隣り合う二つの前記波形要素含有部を連設するに当たり、前記波形要素における前記第1の凸部と前記第2の凸部との間において延びる凸部傾斜部において接合するようにできる。こうすれば、隣り合う二つの波形要素含有部の第1の凸部と第2の凸部を、それぞれの凸部の頂上面が反応ガスの流れ方向に対して水平となるようにできる。よって、隣り合う二つの波形要素含有部の一方の波形要素含有部の第1の凸部と他方の波形要素含有部の第2の凸部とが同じ面となるようにプレスする既存のエキスパンドメタル成型手法に比べ、次の利点がある。   In this case, when connecting the two corrugated element containing portions adjacent to each other in the gas flow direction, the convex portion slope extending between the first convex portion and the second convex portion in the corrugated element. It can be made to join in a part. If it carries out like this, the 1st convex part and 2nd convex part of two adjacent waveform element containing parts can be made so that the top surface of each convex part may become horizontal with respect to the flow direction of a reactive gas. Therefore, the existing expanded metal which presses so that the 1st convex part of one waveform element containing part of the two adjacent waveform element containing parts and the 2nd convex part of the other waveform element containing part may become the same surface. Compared to the molding method, there are the following advantages.

既存のエキスパンドメタル成型手法では、一方の波形要素含有部の第1の凸部と他方の波形要素含有部の第2の凸部とが同じ面となるようにプレスすることから、凸部の頂上面および流路は階段状となる。よって、凸部の頂上面を反応ガスの流れ方向に対して水平となるようにするには、上記のプレス後に、階段状の凸部頂上面を改めて水平とするようプレスする必要がある。これに対し、上記の態様の燃料電池では、隣り合う二つの波形要素含有部が凸部傾斜部において接合した上で、それぞれの凸部の頂上面が反応ガスの流れ方向に対して水平であるので、隣り合う二つの波形要素含有部に適合したプレス刃を有するプレス機にて順送りプレスするだけで、或いは、隣り合う二つの波形要素含有部に適合したプレス刃をロール状に有するロールプレス機にて順送りプレスするだけで製造できるので、生産性の向上、延いてはコスト低減を図ることができる。   In the existing expanded metal molding method, since the first convex portion of one corrugated element-containing portion and the second convex portion of the other corrugated element-containing portion are pressed to be on the same surface, the top of the convex portion The surface and the flow path are stepped. Therefore, in order to make the top surface of the convex portion horizontal with respect to the flow direction of the reaction gas, it is necessary to press the top surface of the step-shaped convex portion to be horizontal again after the above pressing. On the other hand, in the fuel cell of the above aspect, the adjacent two corrugated element containing portions are joined at the convex inclined portion, and the top surface of each convex portion is horizontal with respect to the flow direction of the reaction gas. Therefore, the roll press machine has a press blade suitable for two adjacent corrugated element containing portions in a roll shape only by progressively pressing with a press machine having a press blade suitable for two corrugated element containing portions adjacent to each other. Therefore, it is possible to improve the productivity and to reduce the cost.

また、前記ガス流れ方向に沿って隣り合う二つの前記波形要素含有部のうちの前記一方の前記波形要素含有部については、これを、前記第1の凸部の頂上面を前記ガス流れ方向に沿った幅が広く前記波形要素の繰り返しに沿った幅を狭くした上で、前記発電体層側流路の体積を前記セパレーター側流路の体積より大きくし、前記他方の前記波形要素含有部については、前記第1の凸部の頂上面を前記ガス流れ方向に沿った幅が狭く前記波形要素の繰り返しに沿った幅を広くした上で、前記発電体層側流路の体積を前記セパレーター側流路の体積より小さくすることができる。こうすれば、ガス流れ方向に沿って隣り合う二つの波形要素含有部における第1の凸部の頂上面の並びを、発電体層の側においてガス流れ方向に沿って幅広の頂上面と波形要素の繰り返しに沿って幅広の頂上面の並びとできる。   Moreover, about the said one waveform element containing part of the two said waveform element containing parts adjacent along the said gas flow direction, let this be the top surface of a said 1st convex part in the said gas flow direction. The width of the power generation layer side flow path is made larger than the volume of the separator side flow path after the width along the line is narrowed and the width along the repetition of the waveform elements is reduced. The top surface of the first convex portion has a narrow width along the gas flow direction and a wide width along the repetition of the corrugated element, and the volume of the power generator layer side flow path is set to the separator side. It can be made smaller than the volume of the flow path. In this way, the arrangement of the top surfaces of the first convex portions in the two corrugated element containing portions adjacent to each other in the gas flow direction is made to be the same as the top surface and the corrugated element that are wide along the gas flow direction on the power generator layer side. It is possible to arrange a wide top surface along the repetition.

この場合、前記ガス流れ方向に沿って隣り合う二つの前記波形要素含有部を、前記発電体層の表面に前記第1の凸部の頂上面が当接する際の接触幅を予め定めた接触幅以下となるようにすることができる。こうすれば、次の利点がある。第1の凸部は、その頂上面を発電体層に当接させることから、頂上面が発電体層に当接する当接幅(接触幅)が広くなればなるほど、頂上面が当接する範囲の発電体層に当該範囲周囲から反応ガスが拡散し難くなる。このため、水が当該範囲の発電体層に留まり易くなって、水による濃度過電圧が起き易くなり、この濃度過電圧の回避の上からは、頂上面が発電体層に当接する当接幅(接触幅)を狭くしてガス拡散性を高めることが望ましい。こうした事情から、頂上面が当接する範囲の発電体層へのその周囲からのガス拡散を確保できる接触幅を、上記した予め定めた接触幅とすれば、頂上面が当接する範囲の発電体層のガス拡散性を確保できるので、既述した排水性の向上に加え、水による濃度過電圧の増加を抑制して、電池性能の維持、延いては能力向上を図ることができる。   In this case, the two corrugated element containing portions adjacent to each other in the gas flow direction have a predetermined contact width when the top surface of the first convex portion comes into contact with the surface of the power generation layer. The following can be achieved. This has the following advantages. Since the first convex portion abuts the top surface thereof against the power generation layer, the larger the abutting width (contact width) with which the top surface abuts against the power generation layer, the more the top surface abuts. It becomes difficult for the reaction gas to diffuse from the periphery of the range into the power generation layer. For this reason, water easily stays in the power generation layer in the range, and concentration overvoltage due to water is likely to occur. From the viewpoint of avoiding this concentration overvoltage, the contact width (contact) where the top surface contacts the power generation layer. It is desirable to increase the gas diffusivity by narrowing the (width). From such circumstances, if the contact width that can ensure gas diffusion from the surroundings to the power generator layer in the range where the top surface abuts is the above-described predetermined contact width, the power generator layer in the range where the top surface abuts Therefore, in addition to the improvement in drainage described above, the increase in concentration overvoltage due to water can be suppressed to maintain the battery performance and thus improve the capacity.

また、本発明は、燃料電池の発電反応に供される反応ガスの流路を、発電体層の電解質膜の膜面に沿って形成するガス流路形成部材として適用することもできる。   The present invention can also be applied as a gas flow path forming member that forms a flow path of a reactive gas used for a power generation reaction of a fuel cell along the membrane surface of an electrolyte membrane of a power generation layer.

本実施例の燃料電池スタック100の概略構成を燃料電池20の概略構成と合わせて示す説明図である。2 is an explanatory diagram showing a schematic configuration of a fuel cell stack 100 of the present embodiment together with a schematic configuration of a fuel cell 20. FIG. ガス流路層40の概略構造を示す説明図である。3 is an explanatory diagram showing a schematic structure of a gas flow path layer 40. FIG. 隣り合う第1流路構成体140と第2流路構成体240をガス上流側から見て示す説明図である。It is explanatory drawing which shows the 1st flow path structure 140 and the 2nd flow path structure 240 which adjoin, seeing from a gas upstream side. 隣り合う第1流路構成体140と第2流路構成体240の連設の様子を示す説明図である。It is explanatory drawing which shows the mode of the continuous connection of the 1st flow path structure 140 and the 2nd flow path structure 240 which are adjacent. 発電体層35の表面における凸部頂上面の当接の様子を模式的に示す説明図である。4 is an explanatory view schematically showing a state of contact of the top surface of a convex portion on the surface of a power generation body layer 35. FIG. プレス加工装置300を用いたガス流路層40の製造の様子を模式的に示す説明図である。It is explanatory drawing which shows typically the mode of manufacture of the gas flow path layer 40 using the press work apparatus. 上下のプレス刃構成を概略的に示す説明図である。It is explanatory drawing which shows an upper and lower press blade structure schematically. 第1流路構成体140と第2流路構成体240のプレス成型の様子をプレス刃の噛み合わせと共に示す説明図である。It is explanatory drawing which shows the mode of the press molding of the 1st flow path structure 140 and the 2nd flow path structure 240 with the meshing | engagement of a press blade. 変形例のガス流路層40Aの概略構造を示す説明図である。It is explanatory drawing which shows schematic structure of 40 A of gas flow path layers of a modification. また別の変形例のガス流路層40Bの概略構造を示す説明図である。It is explanatory drawing which shows schematic structure of the gas flow path layer 40B of another modification. ガス流路層40Bにおいて隣り合う第1流路構成体140と第2流路構成体240をガス上流側から見て示す説明図である。It is explanatory drawing which shows the 1st flow path structure 140 and the 2nd flow path structure 240 which are adjacent in the gas flow path layer 40B seeing from a gas upstream side. 多列刃群を有するプレス加工装置300を用いてガス流路層40を多列毎に製造する様子を模式的に示す説明図である。It is explanatory drawing which shows typically a mode that the gas flow path layer 40 is manufactured for every multi-row using the press processing apparatus 300 which has a multi-row blade group.

以下、本発明の実施の形態について、その実施例を図面に基づき説明する。図1は本実施例の燃料電池スタック100の概略構成を燃料電池20の概略構成と合わせて示す説明図である。図示するように、燃料電池スタック100は、固体高分子形の燃料電池20を複数積層し、その両端にターミナルおよびインシュレータ(図示省略)を配置して、これをエンドプレート95,96で挟持して構成される。この燃料電池スタック100では、燃料ガスとしての水素ガスおよび酸化ガスとしての空気が水素供給マニホールド95a、空気供給マニホールド95bから燃料電池20に供給され、その排ガスが水素排出マニホールド95cおよび空気排出マニホールド95dから排出される。また、冷却水が冷却水供給マニホールド95eから燃料電池20に供給され、その排水が冷却水排出マニホールド95fから排出される。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view showing a schematic configuration of a fuel cell stack 100 of this embodiment together with a schematic configuration of a fuel cell 20. As shown in the figure, the fuel cell stack 100 includes a plurality of polymer electrolyte fuel cells 20 stacked, terminals and insulators (not shown) arranged at both ends, and sandwiched between end plates 95 and 96. Composed. In this fuel cell stack 100, hydrogen gas as fuel gas and air as oxidant gas are supplied to the fuel cell 20 from the hydrogen supply manifold 95a and air supply manifold 95b, and the exhaust gas is supplied from the hydrogen discharge manifold 95c and air discharge manifold 95d. Discharged. Further, the cooling water is supplied from the cooling water supply manifold 95e to the fuel cell 20, and the waste water is discharged from the cooling water discharge manifold 95f.

燃料電池20は、発電体層35の両面に、ガス流路層40、60、セパレーター70、80を積層して構成される。発電体層35は、電解質膜・電極接合体としてのMEA(Membrane Electrode Assembly)34の両面にガス拡散層33a、33bを接合して構成される。MEA34は、電解質膜31の表面上に、カソード電極32aとアノード電極32bとを備える。電解質膜31は、湿潤状態で良好なプロトン伝導性を示す固体高分子材料の薄膜である。本実施例では、電解質膜31には、ナフィオン(登録商標)を用いた。カソード電極32aおよびアノード電極32bは、導電性を有する担体上に触媒を担持させた電極であり、本実施例においては、白金触媒を担持したカーボン粒子と、電解質膜31を構成する高分子電解質と同質の電解質とを備えている。   The fuel cell 20 is configured by laminating gas flow path layers 40 and 60 and separators 70 and 80 on both surfaces of a power generation layer 35. The power generation body layer 35 is configured by bonding gas diffusion layers 33a and 33b to both surfaces of an MEA (Membrane Electrode Assembly) 34 as an electrolyte membrane / electrode assembly. The MEA 34 includes a cathode electrode 32 a and an anode electrode 32 b on the surface of the electrolyte membrane 31. The electrolyte membrane 31 is a thin film of a solid polymer material that exhibits good proton conductivity in a wet state. In this embodiment, Nafion (registered trademark) is used for the electrolyte membrane 31. The cathode electrode 32a and the anode electrode 32b are electrodes in which a catalyst is supported on a carrier having conductivity. In this embodiment, carbon particles supporting a platinum catalyst, a polymer electrolyte constituting the electrolyte membrane 31, and With the same electrolyte.

ガス拡散層33a,33bは、ガス透過性を有する導電性部材、例えば、カーボンペーパやカーボンクロス、あるいは金属メッシュや発泡金属によって形成することができる。本実施例においては、ガス拡散層33a,33bは、カーボンペーパを用いた。ガス拡散層33a,33bは、酸化ガスまたは燃料ガスを拡散して、カソード電極32aまたはアノード電極32bの全面に供給する。ガス拡散層33a,33bは、後述するガス流路層40、60と比べて小さい気孔率を有しており、ガス拡散機能の他に、集電機能や、MEA34の保護機能も担っている。なお、このガス拡散層33aおよび33bには、MEA34の水分量を調節する機能などを持たせてもよい。   The gas diffusion layers 33a and 33b can be formed of a conductive member having gas permeability, such as carbon paper or carbon cloth, a metal mesh, or a foam metal. In this embodiment, carbon paper is used for the gas diffusion layers 33a and 33b. The gas diffusion layers 33a and 33b diffuse the oxidizing gas or the fuel gas and supply it to the entire surface of the cathode electrode 32a or the anode electrode 32b. The gas diffusion layers 33a and 33b have a smaller porosity than gas flow path layers 40 and 60 described later, and have a current collecting function and a protection function for the MEA 34 in addition to the gas diffusion function. The gas diffusion layers 33a and 33b may have a function of adjusting the moisture content of the MEA 34.

かかる発電体層35は、その外周に配されたシールガスケット36と一体形成される。シールガスケット36には、水素供給マニホールド30a、空気供給マニホールド30b、水素排出マニホールド30c、空気排出マニホールド30d、冷却水供給マニホールド30e、冷却水排出マニホールド30fを備えている。また、シールガスケット36には、厚み方向に、各マニホールドと発電体層35の外周部とをそれぞれ囲む凸状の部位が形成されており、当該部位は、シールガスケット36の両側に積層されるセパレーター70、80と当接し、マニホールド内や発電体層35内からの流体(燃料ガス、酸化ガス、冷却水)の漏れを抑制するシールとして機能する。   The power generator layer 35 is integrally formed with a seal gasket 36 disposed on the outer periphery thereof. The seal gasket 36 includes a hydrogen supply manifold 30a, an air supply manifold 30b, a hydrogen discharge manifold 30c, an air discharge manifold 30d, a cooling water supply manifold 30e, and a cooling water discharge manifold 30f. The seal gasket 36 is formed with convex portions surrounding each manifold and the outer peripheral portion of the power generation layer 35 in the thickness direction, and the portions are separators laminated on both sides of the seal gasket 36. 70 and 80, and functions as a seal that suppresses leakage of fluid (fuel gas, oxidizing gas, cooling water) from the inside of the manifold and the power generation layer 35.

ガス流路層40、60は、発電体層35にガスを供給するガス流路を形成する。ガス流路層40は、発電体層35のアノード電極32b側とセパレーター70との間(流路形成領域)に配設され、セパレーター70を介して供給された燃料ガス(ここでは水素ガス)を、MEA34の電極面の側方の一方の側から他方の側に向けた流れで流しつつ、燃料ガスを発電体層35のアノード電極32b側に供給する。同様に、ガス流路層60は、酸化ガス(ここでは空気)を発電体層35のカソード電極32a側に供給する。かかるガス流路層40、60は、耐食性と導電性とを有する金属、例えば、ステンレス鋼やチタン、チタン合金などによって形成されるが、本実施例では、ステンレス鋼を用いた。ガス流路層40、60の詳細な構造については後述する。なお、本実施例では、発電体層35の両面にガス流路層40、60を備える構成としたが、発電体層35の片面のみに備える構成としてもよい。   The gas flow path layers 40 and 60 form a gas flow path for supplying gas to the power generation body layer 35. The gas flow path layer 40 is disposed between the anode electrode 32b side of the power generation body layer 35 and the separator 70 (flow path forming region), and receives the fuel gas (here, hydrogen gas) supplied via the separator 70. The fuel gas is supplied to the anode electrode 32b side of the power generation body layer 35 while flowing in a flow from one side of the electrode surface of the MEA 34 toward the other side. Similarly, the gas flow path layer 60 supplies an oxidizing gas (here, air) to the cathode electrode 32a side of the power generation layer 35. The gas flow path layers 40 and 60 are formed of a metal having corrosion resistance and conductivity, for example, stainless steel, titanium, titanium alloy or the like. In this embodiment, stainless steel is used. The detailed structure of the gas flow path layers 40 and 60 will be described later. In the present embodiment, the gas flow path layers 40 and 60 are provided on both sides of the power generation body layer 35. However, the power supply layer 35 may be provided only on one side.

セパレーター70、80は、反応ガスの隔壁として機能する部材であり、同一の構成を有している。以下、セパレーター70について説明する。セパレーター70は、ガス不透過な導電性部材、例えば圧縮カーボンやステンレス鋼から成る部材によって形成される。本実施例では、ステンレス鋼を用いた。セパレーター70は、カソード電極32a側に設けられる平坦なカソード側セパレーター71と、アノード電極32b側に設けられる平坦なアノード側セパレーター73と、それらの間に配置される中間セパレーター72とが一体となって構成される。カソード側セパレーター71は、水素供給マニホールド71a、空気供給マニホールド71b、水素排出マニホールド71c、空気排出マニホールド71d、冷却水供給マニホールド71e、冷却水排出マニホールド71f、空気連通孔75,76を備えている。空気供給マニホールド71bに供給された空気は、中間セパレーター72の空気連通孔72bおよび空気連通孔75を介して、カソード側セパレーター71に面して設けられる他の燃料電池20のガス流路層60(図示省略)に導かれる。また、その排ガスは、空気連通孔76および中間セパレーター72の連通孔(図示省略)を介して、空気排出マニホールド71dに排出される。   Separator 70,80 is a member which functions as a reaction gas partition, and has the same configuration. Hereinafter, the separator 70 will be described. The separator 70 is formed of a gas impermeable conductive member, such as a member made of compressed carbon or stainless steel. In this example, stainless steel was used. In the separator 70, a flat cathode-side separator 71 provided on the cathode electrode 32a side, a flat anode-side separator 73 provided on the anode electrode 32b side, and an intermediate separator 72 disposed therebetween are integrated. Composed. The cathode-side separator 71 includes a hydrogen supply manifold 71a, an air supply manifold 71b, a hydrogen discharge manifold 71c, an air discharge manifold 71d, a cooling water supply manifold 71e, a cooling water discharge manifold 71f, and air communication holes 75 and 76. The air supplied to the air supply manifold 71b passes through the air communication hole 72b and the air communication hole 75 of the intermediate separator 72, and the gas flow path layer 60 of another fuel cell 20 (facing the cathode separator 71). (Not shown). The exhaust gas is discharged to the air discharge manifold 71d through the air communication hole 76 and the communication hole (not shown) of the intermediate separator 72.

同様に、水素供給マニホールド71aに供給された水素は、中間セパレーター72の水素連通孔72aおよびアノード側セパレーター73の連通孔(図示省略)を介して、ガス流路層40に導かれ、ガス流路層40を流れた後、中間セパレーター72およびアノード側セパレーター73の連通孔(図示せず)を介して、水素排出マニホールド71cに排出される。また、中間セパレーター72には、略長方形外形の長辺方向に沿って複数の切欠が形成され、その切欠の両端はそれぞれ、冷却水排出マニホールド71fおよび冷却水供給マニホールド71eと連通している。なお、セパレーター70は、上述した3層構造のものに限るものではない。例えば、カソード側セパレーター71とアノード側セパレーター73との2層構造とし、中間セパレーター72に形成される連通孔に相当する形状をカソード側セパレーター71および/またはアノード側セパレーター73の内側に形成してもよい。   Similarly, the hydrogen supplied to the hydrogen supply manifold 71a is guided to the gas flow path layer 40 through the hydrogen communication hole 72a of the intermediate separator 72 and the communication hole (not shown) of the anode side separator 73, and the gas flow path After flowing through the layer 40, it is discharged to the hydrogen discharge manifold 71c through the communication holes (not shown) of the intermediate separator 72 and the anode side separator 73. The intermediate separator 72 is formed with a plurality of cutouts along the long side direction of a substantially rectangular outline, and both ends of the cutouts communicate with the cooling water discharge manifold 71f and the cooling water supply manifold 71e, respectively. The separator 70 is not limited to the three-layer structure described above. For example, the cathode side separator 71 and the anode side separator 73 may have a two-layer structure, and a shape corresponding to the communication hole formed in the intermediate separator 72 may be formed inside the cathode side separator 71 and / or the anode side separator 73. Good.

次に、ガス流路層40、60について説明する。本実施例においては、ガス流路層40とガス流路層60とは同一の構造を有しているので、以下では、ガス流路層40の構造として説明する。図2はガス流路層40の概略構造を示す説明図である。図2において、ガス流路層40の上方は、燃料電池20におけるセパレーター70側であり、下方は発電体層35側である。図示するように、ガス流路層40は、ガスの流路形成のための第1流路構成体140と第2流路構成体240を、ガスの流れ方向(図におけるガス流P1、P2)に沿って複数連設して備える。第1流路構成体140は、発電体層35の側に凸な第1凸部141とセパレーター70の側に凸な第2凸部142とがガス流P1、P2の方向と交差する交差方向(以下、この交差方向をガス交差方向と称する)に沿って並んだ波形断面の波形要素WSEを流路形成のための要素とし、この波形要素WSEをガス交差方向に沿って繰り返し有する。この波形要素WSEは、流路形成領域において、第1凸部141と第2凸部142とを並べる。第1流路構成体140は、第1凸部141を発電体層35に当接させ、第2凸部142をセパレーター70に当接させることで、ガス交差方向に沿った第1凸部141の側方領域を、第1ガス流路143とし、ガス交差方向に沿った第2凸部142の側方領域を、第2ガス流路144とする。第1ガス流路143は、発電体層35の側で開口した発電体層側流路となり、第2ガス流路144は、セパレーター70の側で開口したセパレーター側流路となり、これらガス流路は凸部傾斜部145で仕切られる。本実施例において、第1流路構成体140は、第1凸部141と第2凸部142を同一ピッチで繰り返し備える。   Next, the gas flow path layers 40 and 60 will be described. In the present embodiment, since the gas flow path layer 40 and the gas flow path layer 60 have the same structure, the structure of the gas flow path layer 40 will be described below. FIG. 2 is an explanatory diagram showing a schematic structure of the gas flow path layer 40. In FIG. 2, the upper side of the gas flow path layer 40 is the separator 70 side in the fuel cell 20, and the lower side is the power generator layer 35 side. As shown in the figure, the gas flow path layer 40 includes a first flow path structure 140 and a second flow path structure 240 for forming a gas flow path, and a gas flow direction (gas flows P1 and P2 in the drawing). A plurality are provided along the line. The first flow path constituting body 140 has an intersecting direction in which a first convex portion 141 convex toward the power generation body layer 35 and a second convex portion 142 convex toward the separator 70 intersect the directions of the gas flows P1 and P2. (Hereinafter, this crossing direction is referred to as a gas crossing direction.) Waveform elements WSE having a waveform cross section arranged along the crossing direction are used as flow path forming elements, and the waveform element WSE is repeatedly provided along the gas crossing direction. This waveform element WSE arranges the 1st convex part 141 and the 2nd convex part 142 in a flow-path formation area. The first flow path constituting body 140 makes the first convex portion 141 along the gas crossing direction by bringing the first convex portion 141 into contact with the power generation body layer 35 and bringing the second convex portion 142 into contact with the separator 70. This side region is referred to as a first gas flow path 143, and the side region of the second protrusion 142 along the gas crossing direction is referred to as a second gas flow path 144. The first gas channel 143 is a power generator layer side channel opened on the power generator layer 35 side, and the second gas channel 144 is a separator side channel opened on the separator 70 side. Are partitioned by a convex slope 145. In the present embodiment, the first flow path structure 140 is repeatedly provided with the first convex portion 141 and the second convex portion 142 at the same pitch.

第2流路構成体240についても同様であり、この第2流路構成体240は、発電体層35の側に凸な第1凸部241とセパレーター70の側に凸な第2凸部242とがガス交差方向に沿って並んだ波形断面の波形要素WSEを流路形成のための要素とし、この波形要素WSEをガス交差方向に沿って繰り返し有する。この第2流路構成体240は、第1凸部241を発電体層35に当接させ、第2凸部242をセパレーター70に当接させることで、ガス交差方向に沿った第1凸部241の側方領域を、第1ガス流路243とし、ガス交差方向に沿った第2凸部242の側方領域を、第2ガス流路244とする。この第2流路構成体240にあっても、第1ガス流路243は、発電体層35の側で開口した発電体層側流路となり、第2ガス流路244は、セパレーター70の側で開口したセパレーター側流路となり、両凸部は同一ピッチで形成されている。   The same applies to the second flow path component 240. The second flow path component 240 includes a first convex portion 241 that protrudes toward the power generation body layer 35 and a second convex portion 242 that protrudes toward the separator 70. And the waveform element WSE of the waveform cross section arranged along the gas crossing direction is used as an element for forming a flow path, and the waveform element WSE is repeatedly provided along the gas crossing direction. The second flow path constituting body 240 has the first convex portion 241 along the gas crossing direction by bringing the first convex portion 241 into contact with the power generation body layer 35 and bringing the second convex portion 242 into contact with the separator 70. A side region of 241 is a first gas flow path 243, and a side region of the second convex part 242 along the gas crossing direction is a second gas flow path 244. Even in the second flow path structure 240, the first gas flow path 243 is a power generation layer side flow path opened on the power generation body layer 35 side, and the second gas flow path 244 is on the separator 70 side. The separator-side flow channel opened at the step is formed, and both convex portions are formed at the same pitch.

図2に示すように、第1流路構成体140は、ガス流P1、P2の方向に幅広とされているので、第1凸部141の頂上面をガス流P1、P2の方向に沿って幅が広くガス交差方向に沿って幅が狭い頂上面とし、発電体層側流路である第1ガス流路143の体積をセパレーター側流路である第2ガス流路144の体積より大きくしている。この第1流路構成体140に連設する第2流路構成体240にあっては、ガス流P1、P2の方向の幅が狭くされているので、第1凸部241の頂上面をガス流P1、P2の方向に沿って幅が狭くガス交差方向に沿って幅が広い頂上面とし、発電体層側流路である第1ガス流路243の体積をセパレーター側流路である第2ガス流路244の体積より小さくしている。   As shown in FIG. 2, since the first flow path structure 140 is wide in the direction of the gas flows P1 and P2, the top surface of the first convex portion 141 extends along the direction of the gas flows P1 and P2. The top surface is wide and narrow along the gas crossing direction, and the volume of the first gas channel 143 that is the power generator layer side channel is larger than the volume of the second gas channel 144 that is the separator side channel. ing. In the second flow path structure 240 that is connected to the first flow path structure 140, the width in the direction of the gas flows P1 and P2 is narrowed. The top surface is narrow along the direction of the flows P1 and P2 and wide along the gas crossing direction, and the volume of the first gas channel 243 that is the power generator layer side channel is the second channel that is the separator side channel. The volume is smaller than the volume of the gas flow path 244.

隣り合う第1流路構成体140と第2流路構成体240は、それぞれの第1凸部と第2凸部との間において延びる凸部傾斜部145、245において接合している。詳しくは、第1流路構成体140の凸部傾斜部145と第2流路構成体240の凸部傾斜部245とは、その軌跡に沿って連設して、ガス流P1、P2の方向に沿って連設する。第1流路構成体140と第2流路構成体240は、ガス流P1、P2の方向に交互に並ぶことから、ある一つの第2流路構成体240は、ガス流P1、P2の上流側と下流側で第1流路構成体140と隣り合い、既述したようにそれぞれの凸部傾斜部145、245でその軌跡において接合する。図3は隣り合う第1流路構成体140と第2流路構成体240をガス上流側から見て示す説明図である。図では、上流側の流路構成体を実線で示し、下流側の流路構成体を波線で示している。   Adjacent first flow path component 140 and second flow path component 240 are joined at convex sloped portions 145 and 245 extending between the first convex portion and the second convex portion. In detail, the convex part inclination part 145 of the 1st flow path structure 140 and the convex part inclination part 245 of the 2nd flow path structure 240 are connected along the locus | trajectory, and the direction of gas flow P1, P2 Continuing along. Since the first flow path structure 140 and the second flow path structure 240 are alternately arranged in the direction of the gas flows P1 and P2, one second flow path structure 240 is upstream of the gas flows P1 and P2. Adjacent to the first flow path constituting body 140 on the side and the downstream side, as described above, the projections are joined at the locus by the respective convex inclined portions 145 and 245. FIG. 3 is an explanatory view showing the first flow path structure 140 and the second flow path structure 240 adjacent to each other as seen from the gas upstream side. In the figure, the upstream flow path structure is indicated by a solid line, and the downstream flow path structure is indicated by a wavy line.

第1流路構成体140と第2流路構成体240は、図3に示すように、ガス上流側から見て、第2ガス流路144が第2ガス流路244の内側に位置するようにしてガス流れ方向に沿って重なるよう、また、第1ガス流路243が第1ガス流路143の内側に位置するようにしてガス流れ方向に沿って重なるよう、隣り合って連設されている。こうした流路の重なりが繰り返されることから、第2ガス流路144と第2ガス流路244の重なり合った流路(セパレーター側流路)、および第1ガス流路143と第1ガス流路243との重なり合った流路(発電体層側流路)は、ガス流路層40においてガス流P1、P2に沿って繋がることになる。   As shown in FIG. 3, the first flow path structure 140 and the second flow path structure 240 are arranged such that the second gas flow path 144 is positioned inside the second gas flow path 244 when viewed from the gas upstream side. Are adjacent to each other so as to overlap in the gas flow direction, and so that the first gas flow path 243 is positioned inside the first gas flow path 143 and overlaps in the gas flow direction. Yes. Since such overlapping of the flow paths is repeated, the flow path where the second gas flow path 144 and the second gas flow path 244 overlap (separator-side flow path), and the first gas flow path 143 and the first gas flow path 243. The flow paths (power generation body layer side flow paths) that overlap with each other are connected along the gas flows P1 and P2 in the gas flow path layer 40.

上記したように両流路構成体を連設するに当たり、本実施例では、第2流路構成体240(最上流側の第2流路構成体240_1)は、これより上流側の第1流路構成体140_1の凸部傾斜部145と凸部傾斜部245を接合させ(図3(A))、凸部傾斜部245は、第1凸部241の右方側となる。また、この第2流路構成体240_1は、これより下流側の第1流路構成体140_2の凸部傾斜部145と凸部傾斜部245を接合させ(図3(B))、凸部傾斜部245は、第1凸部241の左方側となる。こうした接合を図2に示すように第2流路構成体240_6まで維持し、第2流路構成体240_7からはその逆とする。こうすることで、第2流路構成体240_7を境にして、隣り合う第1流路構成体140と第2流路構成体240の連設の様子が異なるようにした。このため、本実施例では、第2ガス流路144と第2ガス流路244の重なり合った流路(セパレーター側流路)、および第1ガス流路143と第1ガス流路243との重なり合った流路(発電体層側流路)を、図2に示すように屈曲させて繋げる。そして、ガス流路層40は、図2に示すように燃料電池20に組み込まれ、この屈曲した経路のガス流P1、P2として水素ガスを流す。ガス流路層60にあっては、上記したガス流路層40と同様の構成を備え、空気を屈曲した経路のガス流P1、P2として流す。   As described above, when the two flow path components are arranged in series, in the present embodiment, the second flow path structure 240 (the second flow path structure 240_1 on the most upstream side) is connected to the first flow stream on the upstream side. The convex slope 145 and the convex slope 245 of the road structure 140_1 are joined (FIG. 3A), and the convex slope 245 is on the right side of the first convex 241. Further, the second flow path constituting body 240_1 joins the convex inclined portion 145 and the convex inclined portion 245 of the first flow path constituting body 140_2 on the downstream side thereof (FIG. 3B), and the convex inclined portion is formed. The part 245 is on the left side of the first convex part 241. Such joining is maintained up to the second flow path component 240_6 as shown in FIG. 2, and vice versa from the second flow path structure 240_7. By doing so, the state in which the first flow path structure 140 and the second flow path structure 240 adjacent to each other are different from each other with the second flow path structure 240_7 as a boundary. For this reason, in this embodiment, the second gas channel 144 and the second gas channel 244 overlap each other (the separator side channel), and the first gas channel 143 and the first gas channel 243 overlap each other. The flow path (power generation layer side flow path) is bent and connected as shown in FIG. Then, the gas flow path layer 40 is incorporated in the fuel cell 20 as shown in FIG. 2, and hydrogen gas flows as the gas flows P1 and P2 of the bent paths. The gas flow path layer 60 has the same configuration as that of the gas flow path layer 40 described above, and flows air as the gas flows P1 and P2 of the bent path.

ここで、上記した流路の重なりとガスの流れる様子について説明する。図4は隣り合う第1流路構成体140と第2流路構成体240の連設の様子を示す説明図である。図示するように、第1流路構成体140は、発電体層35の側に開口した第1ガス流路143の体積をセパレーター70の側に開口した第2ガス流路144より大きくした上で、第2ガス流路144を第2流路構成体240の第2ガス流路244に重ね、第1ガス流路143については、第2流路構成体240の第1ガス流路243に重ねる。   Here, the above-described overlapping of the flow paths and the state of gas flow will be described. FIG. 4 is an explanatory view showing a state in which the first flow path structure 140 and the second flow path structure 240 adjacent to each other are connected. As shown in the figure, the first flow path structure 140 is configured such that the volume of the first gas flow path 143 opened on the power generation body layer 35 side is larger than that of the second gas flow path 144 opened on the separator 70 side. The second gas flow path 144 is overlapped with the second gas flow path 244 of the second flow path structure 240, and the first gas flow path 143 is overlapped with the first gas flow path 243 of the second flow path structure 240. .

これらガス流路については、既述したようにその体積が調整されていることから、図示するように、第1流路構成体140の第1ガス流路143は、第2流路構成体240の第2ガス流路244とも流路一部において重なる。この第2ガス流路244は、体積が大きいことから上流の第2ガス流路144と重なると共に下流の第1ガス流路143とも重なる。第1流路構成体140の第2ガス流路144は、第1流路構成体140の第1ガス流路143と流路一部で重なる第2流路構成体240の第2ガス流路244に重なる。つまり、ガス流路層40は、第1ガス流路143と第1ガス流路243の繋がりで発電体層側流路を形成し、第2ガス流路144と第2ガス流路244の繋がりでセパレーター側流路を形成し、これら流路にガス流P1、P2に沿ってガスを流す。   Since the volumes of these gas flow paths are adjusted as described above, the first gas flow path 143 of the first flow path structure 140 is the second flow path structure 240 as shown in the figure. The second gas flow path 244 also overlaps part of the flow path. Since the second gas flow path 244 has a large volume, it overlaps with the upstream second gas flow path 144 and also with the downstream first gas flow path 143. The second gas flow path 144 of the first flow path structure 140 is a second gas flow path of the second flow path structure 240 that partially overlaps the first gas flow path 143 of the first flow path structure 140. It overlaps with 244. That is, the gas flow path layer 40 forms a power generator layer side flow path by connecting the first gas flow path 143 and the first gas flow path 243, and connects the second gas flow path 144 and the second gas flow path 244. Thus, separator-side flow paths are formed, and gas flows through these flow paths along the gas flows P1 and P2.

ガス流路層40は、隣り合う第1流路構成体140と第2流路構成体240とで既述したようにガス流路を形成することから、発電体層35の表面に次のように第1凸部141と第1凸部241の頂上面を当接させる。図5は発電体層35の表面における凸部頂上面の当接の様子を模式的に示す説明図である。図示するように、第1流路構成体140は、その第1凸部141をガス流P1、P2の方向に対していわゆる縦長に配置させ、第2流路構成体240は、その第1凸部241をガス流P1、P2の方向に対していわゆる横長に配置させる。よって、発電体層35の表面には、第1凸部141の頂上面が当接した縦長の凸部当接部141TSと、第1凸部241の頂上面が当接した横長の凸部当接部241TSとが、ガス流P1、P2の方向に交差するガス交差方向に並ぶことになる。   Since the gas flow path layer 40 forms a gas flow path as described above with the adjacent first flow path structure 140 and the second flow path structure 240, the surface of the power generation body layer 35 is as follows. The top surfaces of the first convex portion 141 and the first convex portion 241 are brought into contact with each other. FIG. 5 is an explanatory view schematically showing a state of contact of the top surface of the convex portion on the surface of the power generation layer 35. As shown in the figure, the first flow path component 140 has its first convex portion 141 arranged in a so-called vertically long direction with respect to the directions of the gas flows P1 and P2, and the second flow channel component 240 has its first convex shape. The part 241 is arranged so-called horizontally long with respect to the directions of the gas flows P1 and P2. Therefore, on the surface of the power generation layer 35, the vertically long convex portion contact portion 141TS in which the top surface of the first convex portion 141 is in contact and the horizontally long convex portion contact in which the top surface of the first convex portion 241 is in contact. The contact portion 241TS is aligned in the gas crossing direction that crosses the directions of the gas flows P1 and P2.

次に、上記したガス流路層40とガス流路層60の製造手法について、ガス流路層40を例に上げて説明する。図6はプレス加工装置300を用いたガス流路層40の製造の様子を模式的に示す説明図である。   Next, a method for manufacturing the gas flow path layer 40 and the gas flow path layer 60 will be described by taking the gas flow path layer 40 as an example. FIG. 6 is an explanatory view schematically showing a state of manufacturing the gas flow path layer 40 using the press working apparatus 300.

図6に示すように、ガス流路層40の製造に当たっては、板状の基材150(例えば、ステンレス鋼板)を用意し、これをプレス加工装置300に送り出す。プレス加工装置300は、従動ローラ310と駆動ローラ320にて基材150をプレス台330に向けて所定ピッチで送りつつ、下刃群と上刃群でプレス加工を行って、ガス流路層40を製造する。   As shown in FIG. 6, when manufacturing the gas flow path layer 40, a plate-like base material 150 (for example, a stainless steel plate) is prepared and sent to the press working apparatus 300. The press working apparatus 300 performs the press working with the lower blade group and the upper blade group while feeding the base material 150 toward the press table 330 at a predetermined pitch by the driven roller 310 and the driving roller 320, and the gas flow path layer 40. Manufacturing.

既述したように、ガス流路層40は、第1流路構成体140と第2流路構成体240とを連設するに当たり、第1流路構成体140の凸部傾斜部145と第2流路構成体240の凸部傾斜部245を接合させるので、両凸部傾斜部の一方端側の第1凸部141と第1凸部241とを同じ面に位置させ、他方端の第2凸部142と第2凸部242についてもこれを同じ面に位置させる。その上で、板状の基材150から第1流路構成体140と第2流路構成体240とが連設するようこれらをプレス成型するため、プレス加工装置300の次のようなプレス刃構成を備える。図7は上下のプレス刃構成を概略的に示す説明図、図8は第1流路構成体140と第2流路構成体240のプレス成型の様子をプレス刃の噛み合わせと共に示す説明図である。   As described above, the gas flow path layer 40 has the first slanted portion 145 and the first slanted portion 145 of the first flow path constituting body 140 and the Since the convex portion inclined portion 245 of the two-channel constituent body 240 is joined, the first convex portion 141 and the first convex portion 241 on one end side of both convex portion inclined portions are positioned on the same surface, and the second end The two convex portions 142 and the second convex portions 242 are also positioned on the same surface. In order to press-mold them so that the first flow path structure 140 and the second flow path structure 240 are continuously provided from the plate-like base material 150, the following press blade of the press working apparatus 300 is used. It has a configuration. FIG. 7 is an explanatory diagram schematically showing the upper and lower press blade configurations, and FIG. 8 is an explanatory diagram showing press molding of the first flow path structure 140 and the second flow path structure 240 together with the engagement of the press blades. is there.

図7に示すように、プレス加工装置300は、第1流路構成体140の成型用の第1下刃340と第1上刃360とを上下に向かい合わせて備え、第2流路構成体240の成型用の第2下刃350と第2上刃370とを上下に向かい合わせて備える。プレス加工装置300は、第1下刃340と第2下刃350を、第1上刃360と第2上刃370を並べて備え、それぞれの上刃・下刃を図示するように機材送り方向に対して左右方向に移動させつつ、上刃についてはこれを上下方向に移動してガス流路層40のプレス成型を行うが、図においては、説明の便宜上、上刃・下刃を分離して示してある。   As shown in FIG. 7, the press working apparatus 300 includes a first lower blade 340 and a first upper blade 360 for molding the first flow path structure 140 so as to face each other, and the second flow path structure. 240, a second lower blade 350 for molding and a second upper blade 370 are provided facing each other vertically. The press working apparatus 300 includes a first lower blade 340 and a second lower blade 350, and a first upper blade 360 and a second upper blade 370 arranged side by side in the equipment feed direction as illustrated in the upper and lower blades. On the other hand, the upper blade is moved in the vertical direction while moving in the left-right direction, and the gas flow path layer 40 is press-molded. However, in the figure, for convenience of explanation, the upper blade and the lower blade are separated. It is shown.

第1下刃340は、基材150の送り方向と交差して、凸部341と凹部342とを所定のピッチで交互に配列して備える。第1上刃360は、基材150の送り方向と交差して、凸部361と凹部362とを所定のピッチで交互に配列して備え、凸部361が凹部342の中央位置となるよう、第1下刃340の上方に位置する。第1下刃340と第1上刃360は、この上下位置関係を維持したまま、図示しないアクチュエータによって、左右方向に往復動可能に構成され、第1上刃360は、図示しないアクチュエータによって上下動される。基材送り方向の第1下刃340と第1上刃360の幅は、ガスの流れ方向に沿った第1流路構成体140の幅とされている。この場合、基材150に、凸部傾斜部145および凸部傾斜部245に相当する部位以外の箇所にスリットが形成されていれば、第1下刃340と第1上刃360には剪断刃は不要となるが、スリット無しの基材150からガス流路層40をプレス成型するのであれば、凸部341および凸部361に剪断刃を備えるようにすればよい。   The first lower blade 340 includes the convex portions 341 and the concave portions 342 alternately arranged at a predetermined pitch so as to intersect the feeding direction of the base material 150. The first upper blade 360 is provided with the convex portions 361 and the concave portions 362 alternately arranged at a predetermined pitch so as to intersect with the feeding direction of the base material 150, so that the convex portions 361 become the center position of the concave portion 342. It is located above the first lower blade 340. The first lower blade 340 and the first upper blade 360 are configured to be able to reciprocate in the left-right direction by an actuator (not shown) while maintaining this vertical positional relationship, and the first upper blade 360 is moved up and down by an actuator (not shown). Is done. The widths of the first lower blade 340 and the first upper blade 360 in the base material feeding direction are the widths of the first flow path constituting body 140 along the gas flow direction. In this case, if slits are formed in the base material 150 at portions other than the portions corresponding to the convex portion inclined portions 145 and the convex portion inclined portions 245, the first lower blade 340 and the first upper blade 360 are sheared blades. However, if the gas flow path layer 40 is press-molded from the base material 150 without slits, the convex portions 341 and the convex portions 361 may be provided with shear blades.

第2下刃350と第2上刃370についても、上記した第1下刃340と第1上刃360と同様の凹凸を備え、基材送り方向の幅については、ガスの流れ方向に沿った第2流路構成体240の幅とされている。剪断刃の有無についても同様である。   The second lower blade 350 and the second upper blade 370 are also provided with the same unevenness as the first lower blade 340 and the first upper blade 360 described above, and the width in the substrate feeding direction is in the gas flow direction. The width of the second flow path component 240 is set. The same applies to the presence or absence of a shearing blade.

ガス流路層40のプレス成型に際しては、プレス加工装置300に基材150をセットし、基材150を、その端部が第1下刃340と第1上刃360との間に位置するまで送り出す。次いで、第1上刃360を第2下刃350に向けて、第2上刃370を第1上刃360に向けて降下させることで、第1下刃340と第1上刃360の噛み合わせ、第2下刃350と第2上刃370の噛み合わせにより、基材150にその端部側において上刃・下刃に倣った凹凸形状が形成される。つまり、第1下刃340と第1上刃360の噛み合わせでは、図8(A)に示すように、凹部342に噛み合う凸部361で押されて第1凸部141が形成され、凹部362に噛み合う凸部341で押されて第2凸部142が第1凸部141に並んで形成される。これにより、第1凸部141と第2凸部142とが凹部・凸部のピッチで交互に並んだ波形要素WSEを繰り返し有する第1流路構成体140がプレス成型される。また、第2下刃350と第2上刃370の噛み合わせでは、図8(B)に示すように、凹部352に噛み合う凸部371で押されて第1凸部241が形成され、凹部372に噛み合う凸部351で押されて第2凸部242が第1凸部241に並んで形成される。これにより、第1凸部241と第2凸部242とが凹部・凸部のピッチで交互に並んだ波形要素WSEを繰り返し有する第2流路構成体240が、第1流路構成体140に並んでプレス成型される。   When the gas flow path layer 40 is press-molded, the base material 150 is set in the press working apparatus 300, and the base material 150 is positioned between the first lower blade 340 and the first upper blade 360. Send it out. Next, the first upper blade 360 is lowered toward the second upper blade 360 and the second upper blade 370 is lowered toward the first upper blade 360, so that the first lower blade 340 and the first upper blade 360 are engaged. By the engagement of the second lower blade 350 and the second upper blade 370, an uneven shape that follows the upper blade and the lower blade is formed on the base 150 at the end side. That is, in the meshing of the first lower blade 340 and the first upper blade 360, as shown in FIG. 8A, the first convex portion 141 is formed by being pushed by the convex portion 361 that meshes with the concave portion 342, and the concave portion 362 is formed. The second convex portion 142 is formed side by side with the first convex portion 141 by being pushed by the convex portion 341 that meshes with the first convex portion 141. As a result, the first flow path component 140 having the waveform elements WSE in which the first convex portions 141 and the second convex portions 142 are alternately arranged at the pitches of the concave portions and the convex portions is press-molded. Further, in the meshing of the second lower blade 350 and the second upper blade 370, as shown in FIG. 8B, the first convex portion 241 is formed by being pushed by the convex portion 371 meshing with the concave portion 352, and the concave portion 372 is formed. The second convex portion 242 is formed side by side with the first convex portion 241 by being pushed by the convex portion 351 that meshes with the first convex portion 241. As a result, the second flow path component 240 having the waveform elements WSE in which the first convex portions 241 and the second convex portions 242 are alternately arranged at the pitches of the concave portions and the convex portions is repeatedly formed in the first flow path structure 140. It is press-molded side by side.

次に、上刃・下刃を元の位置に戻し、基材150を所定ピッチ(基材送り方向の第1流路構成体140の幅と第2流路構成体240の幅の和に相当する長さ)だけ基材送り方向に移動させる。これと並行して、上記の各下刃および各上刃を左右方向の一方に波形要素WSEのピッチだけ移動させた後、改めて上記の各下刃および各上刃の噛み合わせ(プレス)を行うことで、新たに第1流路構成体140と第2流路構成体240とが連設してプレス成型される。かかる工程を繰り返せば、図2に示すガス流路層40が形成される。この場合、既述したように隣り合う第1流路構成体140と第2流路構成体240の連設の様子が異なるようにするには、連設の様子の切り替えの境となる第2流路構成体240の成型後に、上記の各下刃および各上刃の左右方向の移動の様子を変えればよい。   Next, the upper and lower blades are returned to their original positions, and the base material 150 is placed at a predetermined pitch (corresponding to the sum of the width of the first flow path structure 140 and the width of the second flow path structure 240 in the base material feed direction). Move in the substrate feed direction. In parallel with this, the lower blades and the upper blades are moved in the left-right direction by the pitch of the waveform element WSE, and then the lower blades and the upper blades are engaged (pressed) again. Thus, the first flow path structure 140 and the second flow path structure 240 are newly connected and press-molded. If this process is repeated, the gas flow path layer 40 shown in FIG. 2 is formed. In this case, as described above, in order to make the state of the continuous arrangement of the first flow path structure 140 and the second flow path structure 240 adjacent to each other, the second boundary serving as the boundary of the state of the continuous arrangement is changed. What is necessary is just to change the mode of the movement of each said lower blade and each upper blade after the shaping | molding of the flow-path structure 240 in the left-right direction.

以上説明したように、本実施例の燃料電池20は、発電体層35に水素ガスと空気を供給するに当たり、アノード側ではガス流路層40により、カソード側ではガス流路層60によりガス流路を形成する。ガス流路層40は、発電体層35の側に凸な第1凸部141とセパレーター70の側に凸な第2凸部142とがガス流れ方向と交差する交差方向に沿って並んだ波形断面の波形要素WSEをガス交差方向に沿って繰り返し有する第1流路構成体140と、発電体層35の側に凸な第1凸部241とセパレーター70の側に凸な第2凸部242とがガス交差方向に沿って並んだ波形断面の波形要素WSEをガス交差方向に沿って繰り返し有する第2流路構成体240とをガスの流れ方向に連設して、発電体層35の側のガス流路とセパレーター70の側のガス流路を、図2〜図4に示すように形成する。ガス流路層60にあっても同様である。   As described above, the fuel cell 20 according to the present embodiment provides gas flow through the gas flow path layer 40 on the anode side and the gas flow path layer 60 on the cathode side when supplying hydrogen gas and air to the power generation layer 35. Form a road. The gas flow path layer 40 has a waveform in which a first convex portion 141 that is convex toward the power generator layer 35 and a second convex portion 142 that is convex toward the separator 70 are arranged along an intersecting direction intersecting the gas flow direction. The first flow path constituting body 140 that repeatedly has the corrugated element WSE in the cross-section along the gas crossing direction, the first convex portion 241 that protrudes toward the power generation body layer 35, and the second convex portion 242 that protrudes toward the separator 70. And the second flow path component 240 having the waveform elements WSE of the waveform cross section arranged in the gas crossing direction repeatedly in the gas crossing direction in the gas flow direction, The gas flow path and the gas flow path on the separator 70 side are formed as shown in FIGS. The same applies to the gas flow path layer 60.

図4に示すように、第1流路構成体140は、凸部傾斜部145にて第1凸部141から仕切った第1ガス流路143を、発電体層35の側に開口した流路とし、凸部傾斜部145にて第2凸部142から仕切った第2ガス流路144を、セパレーター70の側に開口した流路とする。その上で、第1流路構成体140は、発電体層35の側に開口した第1ガス流路143の体積をセパレーター70の側に開口した第2ガス流路144より大きくする。この第1流路構成体140に隣り合う第2流路構成体240は、凸部傾斜部245にて第1凸部241から仕切った第1ガス流路243を、発電体層35の側に開口した流路とし、凸部傾斜部245にて第2凸部242から仕切った第2ガス流路244を、セパレーター70の側に開口した流路とする。その上で、第2流路構成体240は、第1流路構成体140とは逆に、発電体層35の側に開口した第1ガス流路143の体積をセパレーター70の側に開口した第2ガス流路144より小さくする。   As shown in FIG. 4, the first flow path structure 140 is a flow path in which the first gas flow path 143 partitioned from the first convex part 141 by the convex sloped part 145 is opened to the power generator layer 35 side. The second gas flow channel 144 partitioned from the second convex portion 142 by the convex inclined portion 145 is defined as a flow channel opened to the separator 70 side. In addition, the first flow path structure 140 makes the volume of the first gas flow path 143 opened to the power generation body layer 35 side larger than the second gas flow path 144 opened to the separator 70 side. The second flow path component 240 adjacent to the first flow path structure 140 has the first gas flow path 243 partitioned from the first convex portion 241 by the convex inclined portion 245 on the power generation body layer 35 side. The flow path is an open flow path, and the second gas flow path 244 partitioned from the second convex portion 242 by the convex slope portion 245 is a flow path opened to the separator 70 side. In addition, the second flow path structure 240 opens the volume of the first gas flow path 143 opened to the power generation body layer 35 side to the separator 70 side, contrary to the first flow path structure 140. It is made smaller than the second gas flow path 144.

本実施例の燃料電池20では、ガス流路形成のために隣り合う第1流路構成体140と第2流路構成体240とを連設するに当たり、上記したように流路の体積を調整した上で、図4に示すように、第1流路構成体140の第2ガス流路144を第2流路構成体240の第2ガス流路244に重ねる。また、第1流路構成体140の第1ガス流路143については、これを第2流路構成体240の第1ガス流路243に重ねると共に、第1流路構成体140の第2ガス流路144と重なる第2ガス流路244とも流路一部において重ねる。こうした流路の重ね合わせが、隣り合う流路構成体で繰り返されるので、本実施例の燃料電池20では、反応ガス(水素ガス)は、第1流路構成体140の第1ガス流路143と第2ガス流路144を通過し、第1ガス流路143を通過したガスは、当該流路に続く第2流路構成体240の第1ガス流路243を通過すると共に、第2流路構成体240の第2ガス流路244をも通過する。この第2ガス流路244は、上流の第2ガス流路144と重なると共に下流の第1ガス流路143とも重なる。よって、発電体層側流路である第1ガス流路143において発電体層35の表面を流れたガスは、そのまま下流に発電体層側流路の第1ガス流路143と第1ガス流路243を通過すると共に、セパレーター側流路である第2ガス流路144を流れるガスと合流する。この逆に、セパレーター側流路である第2ガス流路144を流れたガスは、そのまま下流にセパレーター側流路の第2ガス流路144と第2ガス流路244を通過すると共に、発電体層側流路である第1ガス流路143を流れるガスと合流する。つまり、ガス流路層40は、第1ガス流路143と第1ガス流路243の繋がりで形成される発電体層側流路と、第2ガス流路144と第2ガス流路244の繋がりで形成されるセパレーター側流路とにおいてガスを流すに当たり、ガスの合流および分流を起こしつつ、ガス流P1、P2に沿ってガスを流すことになる。ガス流路層60についても同様である。   In the fuel cell 20 of the present embodiment, the volume of the flow path is adjusted as described above when connecting the first flow path structure 140 and the second flow path structure 240 adjacent to each other for gas flow path formation. After that, as shown in FIG. 4, the second gas flow path 144 of the first flow path structure 140 is overlapped with the second gas flow path 244 of the second flow path structure 240. In addition, the first gas flow path 143 of the first flow path structure 140 is overlapped with the first gas flow path 243 of the second flow path structure 240 and the second gas of the first flow path structure 140 is overlapped. The second gas flow path 244 that overlaps the flow path 144 also overlaps in part of the flow path. Since such superposition of the flow paths is repeated in the adjacent flow path structure, in the fuel cell 20 of the present embodiment, the reaction gas (hydrogen gas) is the first gas flow path 143 of the first flow path structure 140. Gas passing through the first gas flow path 143 passes through the first gas flow path 243 of the second flow path structure 240 following the flow path, and the second flow It also passes through the second gas flow path 244 of the path structure 240. The second gas channel 244 overlaps the upstream second gas channel 144 and also the downstream first gas channel 143. Therefore, the gas that flows on the surface of the power generation layer 35 in the first gas flow path 143 that is the power generation layer side flow path is directly downstream of the first gas flow path 143 and the first gas flow in the power generation layer side flow path. The gas passes through the path 243 and merges with the gas flowing through the second gas channel 144 that is the separator-side channel. Conversely, the gas that has flowed through the second gas flow path 144 that is the separator-side flow path passes through the second gas flow path 144 and the second gas flow path 244 of the separator-side flow path as they are, and the power generator. The gas flows through the first gas channel 143 that is the layer side channel. That is, the gas flow path layer 40 includes a power generator layer side flow path formed by the connection of the first gas flow path 143 and the first gas flow path 243, and the second gas flow path 144 and the second gas flow path 244. In flowing the gas in the separator-side flow path formed by the connection, the gas flows along the gas flows P1 and P2 while causing the gas to merge and split. The same applies to the gas flow path layer 60.

こうしたガスの合流および分流がガス流れ方向に沿って隣り合う第1流路構成体140と第2流路構成体240について起こることから、発電体層35の水、例えば発電反応により生じた生成水やガス自体に含まれていた水は、発電体層側流路である第1流路構成体140の第1ガス流路143を経てセパレーター側流路である第2流路構成体240の第2ガス流路244にガスによって運ばれることになる。よって、本実施例の燃料電池20によれば、水分の排水性を高めることができる。なお、発電体層側流路である第2流路構成体240の第1ガス流路243を通過するガスは、そのまま下流の第1流路構成体140の第1ガス流路143を通過するので、発電体層35に運ばれるガスが少なくなるような事態は起きない。   Since such a merging and splitting of gas occurs in the first flow path structure 140 and the second flow path structure 240 that are adjacent to each other in the gas flow direction, water in the power generation body layer 35, for example, generated water generated by a power generation reaction The water contained in the gas itself passes through the first gas flow path 143 of the first flow path structure 140 that is the power generation layer side flow path, and the second flow path structure 240 that is the separator side flow path. The two gas flow paths 244 are carried by the gas. Therefore, according to the fuel cell 20 of the present embodiment, the water drainage can be improved. The gas that passes through the first gas flow path 243 of the second flow path structure 240 that is the power generator layer side flow path passes through the first gas flow path 143 of the downstream first flow path structure 140 as it is. Therefore, a situation in which the amount of gas carried to the power generation layer 35 is reduced does not occur.

また、本実施例の燃料電池20では、第1流路構成体140と第2流路構成体240とを連設するに当たり、ガスの流れ方向から見て、第1流路構成体140が有するセパレーター側流路の第2ガス流路144を、図3に示すように、第2流路構成体240が有するセパレーター側流路の第2ガス流路244の内側に位置するようした。よって、本実施例の燃料電池20によれば、隣り合う第1流路構成体140と第2流路構成体240のセパレーター側流路(第2ガス流路144と第2ガス流路244)を容易且つ確実に重なることができる。しかも、第1流路構成体140の発電体層側流路である第1ガス流路143を第2流路構成体240のセパレーター側流路である第2ガス流路244に確実に重ねるので、水分の排水を容易且つ確実に図ることができる。   In addition, in the fuel cell 20 of the present embodiment, when the first flow path structure 140 and the second flow path structure 240 are connected, the first flow path structure 140 has the first flow path structure 140 as viewed from the gas flow direction. As shown in FIG. 3, the second gas flow path 144 of the separator side flow path is located inside the second gas flow path 244 of the separator side flow path included in the second flow path constituting body 240. Therefore, according to the fuel cell 20 of the present embodiment, the separator-side flow paths (second gas flow path 144 and second gas flow path 244) of the adjacent first flow path structure 140 and second flow path structure 240. Can be easily and reliably overlapped. In addition, the first gas flow path 143 that is the power generation body layer side flow path of the first flow path structure 140 is reliably overlapped with the second gas flow path 244 that is the separator flow path of the second flow path structure 240. The water can be drained easily and reliably.

また、本実施例の燃料電池20では、第1流路構成体140と第2流路構成体240とを連設するに当たり、波形要素WSEにおける第1、第2の凸部の間の第1流路構成体140の凸部傾斜部145と第2流路構成体240の凸部傾斜部245が繋がるようにこの凸部傾斜部において接合するようにした。よって、本実施例の燃料電池20によれば、隣り合う第1流路構成体140と第2流路構成体240のそれぞれの第1凸部141と第1凸部241を、およびそれぞれの第2凸部142と第2凸部242を、その頂上面が反応ガスの流れ方向に対して水平となるようにできる。この結果、本実施例の燃料電池20によれば、図6〜図8で説明したように、プレス加工装置300を用いた単純な順送りプレス成型だけで容易にガス流路層40やガス流路層60を製造でき、生産性の向上と、コスト低下を図ることができる。   Further, in the fuel cell 20 according to the present embodiment, when the first flow path structure 140 and the second flow path structure 240 are connected in series, the first portion between the first and second convex portions of the waveform element WSE. The convex portion inclined portion 145 of the flow path constituting body 140 and the convex portion inclined portion 245 of the second flow path constituting body 240 are joined together at this convex portion inclined portion. Therefore, according to the fuel cell 20 of the present embodiment, the first convex portion 141 and the first convex portion 241 of each of the adjacent first flow path constituting body 140 and the second flow path constituting body 240 are arranged in the first The top surfaces of the two convex portions 142 and the second convex portions 242 can be horizontal with respect to the flow direction of the reaction gas. As a result, according to the fuel cell 20 of the present embodiment, as described with reference to FIGS. 6 to 8, the gas flow path layer 40 and the gas flow path can be easily formed only by simple forward press molding using the press working apparatus 300. The layer 60 can be manufactured, and productivity can be improved and cost can be reduced.

また、本実施例の燃料電池20では、図5に示すように、第1流路構成体140については、これをその第1凸部141がガス流P1、P2の方向に対して縦長に配置させ、第2流路構成体240については、これをその第1凸部241がガス流P1、P2の方向に対して横長に配置させた。よって、発電体層35の表面には、第1凸部141の頂上面が当接した縦長矩形形状の凸部当接部141TSと、第1凸部241の頂上面が当接した横長矩形形状の凸部当接部241TSとが、ガス流P1、P2の方向に交差するガス交差方向に並ぶようにできる。   Further, in the fuel cell 20 of the present embodiment, as shown in FIG. 5, the first flow path component 140 is arranged so that the first convex portion 141 is vertically long with respect to the directions of the gas flows P1 and P2. The second flow path constituting body 240 was disposed so that the first convex portion 241 was horizontally long with respect to the directions of the gas flows P1 and P2. Therefore, the surface of the power generation layer 35 has a vertically long convex shape contact portion 141TS in which the top surface of the first convex portion 141 contacts, and a horizontally long rectangular shape in which the top surface of the first convex portion 241 contacts. The convex contact portions 241TS can be arranged in a gas crossing direction that intersects the gas flows P1 and P2.

そして、本実施例の燃料電池20では、この凸部当接部141TSと凸部当接部241TSとを、これら当接部が発電体層に当接する当接幅(接触幅)が予め定めた接触幅以下となるようにした。よって、次の利点がある。凸部当接部141TSや凸部当接部241TSにおいては、発電体層35に第1凸部141あるいは第1凸部241がその頂上面を当接させる範囲は、上記したような矩形形状範囲であることから、凸部当接部141TSや凸部当接部241TSの当接幅(短寸方向の幅)が広くなればなるほど、凸部当接部141TSや凸部当接部241TSの発電体層にその周囲から反応ガスが拡散し難くなり、水が凸部当接部141TSや凸部当接部241TSの発電体層に留まり易くなって、水による濃度過電圧が起き易くなる。ところが、上記した予め定めた接触幅を、凸部当接部141TSや凸部当接部241TSの上記した当接幅における発電体層へのガス拡散を確保できる接触幅としたので、本実施例の燃料電池20によれば、凸部当接部141TSや凸部当接部241TSの上記した当接幅を狭くして発電体層へのガス拡散を確実に確保できる。このため、本実施例の燃料電池20によれば、既述した排水性の向上に加え、水による濃度過電圧の増加を抑制して、電池性能の維持、延いては能力向上を図ることができる。この場合、ガス拡散を確保できる当接幅は、発電体層35のガス拡散性やガスの供給状況等により実験的に予め定めることができる。   In the fuel cell 20 of the present embodiment, the abutting width (contact width) at which the abutting portions abut on the power generation layer is determined in advance for the projecting portion abutting portion 141TS and the projecting portion abutting portion 241TS. It was made to become below a contact width. Therefore, there are the following advantages. In the convex part abutting part 141TS and the convex part abutting part 241TS, the range in which the first convex part 141 or the first convex part 241 abuts on the top surface of the power generation layer 35 is a rectangular range as described above. Therefore, as the contact width (width in the short dimension direction) of the convex contact part 141TS and the convex contact part 241TS becomes wider, the power generation of the convex contact part 141TS and the convex contact part 241TS. It becomes difficult for the reaction gas to diffuse into the body layer from its surroundings, and water tends to stay in the power generation body layer of the convex contact portion 141TS and the convex contact portion 241TS, and concentration overvoltage due to water tends to occur. However, since the above-described predetermined contact width is the contact width that can ensure gas diffusion to the power generation body layer at the above-described contact width of the convex contact portion 141TS and the convex contact portion 241TS. According to the fuel cell 20, it is possible to ensure the gas diffusion to the power generator layer by narrowing the contact width of the convex contact portion 141TS and the convex contact portion 241TS. For this reason, according to the fuel cell 20 of the present embodiment, in addition to the improvement in drainage described above, the increase in concentration overvoltage due to water can be suppressed to maintain the cell performance and thus improve the capacity. . In this case, the contact width that can ensure gas diffusion can be experimentally determined in advance depending on the gas diffusibility of the power generation layer 35, the gas supply status, and the like.

以上、本発明の実施の形態について説明したが、本発明はこのような実施の形態になんら限定されるものではなく、その要旨を逸脱しない範囲内において種々なる態様での実施が可能である。図9は変形例のガス流路層40Aの概略構造を示す説明図である。この変形例のガス流路層40Aは、第1流路構成体140と第2流路構成体240は、既述した実施例と同じであるものの、第1流路構成体140と第2流路構成体240の接合の様子において相違する。つまり、このガス流路層40Aは、ある第2流路構成体240と、その上流・下流で接合する第1流路構成体140とにおいて、これら流路構成体を同じ側の凸部傾斜部145と凸部傾斜部245で接合させている。このため、第1流路構成体140の第1凸部141と第2凸部142は、各列の第1流路構成体140でガスの流れ方向に並び、第1ガス流路143と第2ガス流路144についても並ぶ。その上で、第2流路構成体240の第1凸部241と第2凸部242、第1ガス流路243および第2ガス流路244についても、各列の第2流路構成体240でガスの流れ方向に並ぶことになる。この変形例のガス流路層40Aであっても、発電体層側流路である第1ガス流路143を通過したガスは、セパレーター側流路である第2ガス流路244と発電体層側流路である第1ガス流路243を通過するので、既述した効果を奏することができる。   Although the embodiments of the present invention have been described above, the present invention is not limited to such embodiments, and can be implemented in various modes without departing from the scope of the present invention. FIG. 9 is an explanatory diagram showing a schematic structure of a gas flow path layer 40A according to a modification. In the gas flow path layer 40A of this modification, the first flow path structure 140 and the second flow path structure 240 are the same as the above-described embodiment, but the first flow path structure 140 and the second flow structure are the same. It differs in the state of joining of the path structure 240. That is, this gas flow path layer 40A includes a second flow path structure 240 and a first flow path structure 140 that is joined upstream and downstream of the flow path layer 40A. 145 and the convex inclined portion 245 are joined. Therefore, the first protrusion 141 and the second protrusion 142 of the first flow path structure 140 are arranged in the gas flow direction in the first flow path structure 140 of each row, and the first gas flow path 143 and the first flow path 140 The two gas flow paths 144 are also arranged. In addition, with respect to the first and second convex portions 241 and 242, the first gas flow channel 243, and the second gas flow channel 244 of the second flow channel constituting body 240, the second flow passage constituting body 240 in each row is also provided. It will line up in the gas flow direction. Even in the gas flow path layer 40A of this modification, the gas that has passed through the first gas flow path 143 that is the power generation body layer side flow path is separated from the second gas flow path 244 that is the separator side flow path and the power generation body layer. Since the first gas flow path 243 that is the side flow path is passed, the effects described above can be achieved.

図10はまた別の変形例のガス流路層40Bの概略構造を示す説明図、図11は隣り合う第1流路構成体140と第2流路構成体240をガス上流側から見て示す説明図である。この変形例のガス流路層40Bは、第1流路構成体140と第2流路構成体240は、既述した実施例と同じであるものの、第1流路構成体140と第2流路構成体240の接合の様子が、また相違する。つまり、図11に示すように、第1流路構成体140と第2流路構成体240は、凸部傾斜部145と凸部傾斜部245同士がその軌跡に沿って連設するのではなく、凸部傾斜部145或いは凸部傾斜部245は、図11における左右方向にオフセットするよう、傾斜部の一部が隣の第1流路構成体140或いは第2流路構成体240の部位と交差して接合し、その接合箇所において隣の流路構成体と接合する。この変形例のガス流路層40Bであっても、発電体層側流路である第1ガス流路143を通過したガスは、セパレーター側流路である第2ガス流路244と発電体層側流路である第1ガス流路243を通過し、セパレーター側流路である第1ガス流路143を通過したガスは、セパレーター側流路である第2ガス流路244と発電体層側流路である第1ガス流路243を通過するので、既述した効果を奏することができる。   FIG. 10 is an explanatory view showing a schematic structure of a gas flow path layer 40B of another modification, and FIG. 11 shows the adjacent first flow path structure 140 and second flow path structure 240 as viewed from the gas upstream side. It is explanatory drawing. In the gas flow path layer 40B of this modification, the first flow path structure 140 and the second flow path structure 240 are the same as those of the above-described embodiment, but the first flow path structure 140 and the second flow structure. The manner of joining the path structure 240 is also different. That is, as shown in FIG. 11, the first flow path constituting body 140 and the second flow path constituting body 240 are not formed by connecting the convex portion inclined portions 145 and the convex portion inclined portions 245 along the locus. The convex portion inclined portion 145 or the convex portion inclined portion 245 has a portion of the inclined portion that is adjacent to the portion of the adjacent first flow path constituting body 140 or the second flow path constituting body 240 so as to be offset in the left-right direction in FIG. It crosses and joins and it joins with the next channel composition object in the joined part. Even in the gas flow path layer 40B of this modification, the gas that has passed through the first gas flow path 143 that is the power generator layer side flow path is separated from the second gas flow path 244 that is the separator side flow path and the power generation body layer. The gas that has passed through the first gas channel 243 that is the side channel and has passed through the first gas channel 143 that is the separator side channel is the second gas channel 244 that is the separator side channel and the power generator layer side Since the first gas flow path 243 that is the flow path is passed, the above-described effects can be obtained.

この他、次のように変形することもできる。既述した実施例では、発電体層35の両側(カソード電極32a側とアノード電極32b側)に、本発明の実施形態としての構成を有するガス流路層を備える構成としたが、かかる構成のガス流路層は、カソード電極32a側、アノード電極32b側のいずれか一方のみに用いられてもよい。   In addition, it can also be modified as follows. In the embodiment described above, the gas flow passage layer having the configuration as the embodiment of the present invention is provided on both sides (the cathode electrode 32a side and the anode electrode 32b side) of the power generation layer 35. The gas flow path layer may be used only on either the cathode electrode 32a side or the anode electrode 32b side.

また、上記の実施例では、上刃・下刃を有するプレス加工装置300を用いてガス流路層40やガス流路層60を製造したが、例えば、図2に示すガス流路層40における第1流路構成体140と第2流路構成体240の並びの順にこれら流路構成体の形成用のプレス刃を上下のロール表面に有するロールプレス装置を用いることもできる。このロールプレス装置であっても、基材150を順送りしてプレスするだけで製造できるので、生産性の向上、延いてはコスト低減を図ることができる。   In the above embodiment, the gas flow path layer 40 and the gas flow path layer 60 are manufactured using the press working apparatus 300 having the upper blade and the lower blade. For example, in the gas flow path layer 40 shown in FIG. It is also possible to use a roll press apparatus having press blades for forming these flow path components on the upper and lower roll surfaces in the order of the first flow path component 140 and the second flow path component 240. Even this roll press apparatus can be manufactured by simply feeding and pressing the substrate 150 in order, so that the productivity can be improved and the cost can be reduced.

この他、ガス流路層40を多列の第1流路構成体140と第2流路構成体240を単位に多列毎に製造することもできる。図12は多列刃群を有するプレス加工装置300を用いてガス流路層40を多列毎に製造する様子を模式的に示す説明図である。図示するように、プレス台330には、基材150の上方に3列の第1上刃360と第2上刃370が配置され、基材150の下方には3列の第1下刃340と第2下刃350が配置されている。この場合、隣り合う第1上刃360と第2上刃370の関係、および第1下刃340と第2下刃350の関係は記述したとおりであり、3列に並んだ第1上刃360と第2上刃370および第1下刃340と第2下刃350は、図2における第1流路構成体140_1〜140_3と第2流路構成体240_1〜240_3を一度のプレスで成形する。つまり、各列の上刃・下刃は、波形要素WSEのピッチに合わせてずれるように並べられている。図12のプレス加工装置300を用いれば、3列の第1流路構成体140と第2流路構成体240を単位に多列毎にガス流路層40を製造でき、既述したロールプレスと同様に、生産性の向上、延いてはコスト低減を図ることができる。   In addition, the gas flow path layer 40 can be manufactured for each multi-row by using the multi-row first flow path structure 140 and the second flow path structure 240 as a unit. FIG. 12 is an explanatory view schematically showing a state in which the gas flow path layer 40 is manufactured for each multi-row using a press working apparatus 300 having a multi-row blade group. As shown in the figure, on the press stand 330, three rows of first upper blades 360 and second upper blades 370 are disposed above the substrate 150, and three rows of first lower blades 340 are disposed below the substrate 150. And the 2nd lower blade 350 is arrange | positioned. In this case, the relationship between the adjacent first upper blade 360 and the second upper blade 370 and the relationship between the first lower blade 340 and the second lower blade 350 are as described, and the first upper blade 360 arranged in three rows. The second upper blade 370, the first lower blade 340, and the second lower blade 350 form the first flow path structure 140_1 to 140_3 and the second flow path structure 240_1 to 240_3 in FIG. 2 with a single press. That is, the upper and lower blades of each row are arranged so as to be shifted in accordance with the pitch of the wave element WSE. If the press processing apparatus 300 of FIG. 12 is used, the gas flow path layer 40 can be manufactured for every multi-row by using the three lines of the first flow path structure 140 and the second flow path structure 240 as a unit. Similarly to the above, it is possible to improve productivity and to reduce costs.

また、隣り合う第1流路構成体140と第2流路構成体240において、上記した流路体積調整を経て第1ガス流路143と第1ガス流路243の重なり、および第2ガス流路144と第2ガス流路244の重なりが確保できればよいので、例えば隣り合う三つの流路構成体では、その内の隣り合う二つの流路構成体において上記構成となればよい。具体的には、第1ガス流路について三つの流路構成体で大中小の関係にありながら、隣り合う二つの流路構成体において上記の体積調整がなされ、その上で、流路が重なるようにすればよい。隣り合う四つ以上の流路構成体においても同じである。   Further, in the adjacent first flow path structure 140 and second flow path structure 240, the first gas flow path 143 and the first gas flow path 243 overlap with each other through the flow path volume adjustment described above, and the second gas flow Since it is only necessary to ensure the overlap between the path 144 and the second gas flow path 244, for example, in the case of three adjacent flow path structures, the above-described structure may be used in two adjacent flow path structures. Specifically, the above-mentioned volume adjustment is made in two adjacent flow path components while the three gas flow channel structures have a large / medium / small relationship with respect to the first gas flow path, and the flow paths overlap with each other. What should I do? The same applies to four or more adjacent flow path components.

この他、第1流路構成体140と第2流路構成体240におけるセパレーター側流路である第2ガス流路144と第2ガス流路244とを、その流路表面において親水性を有するようにすることが好ましい。こうすれば、第1ガス流路143を経てガスが第2ガス流路244に流れるような場合に、流路表面に水膜を形成でき、この水膜が各列の第2ガス流路144や第2ガス流路244に繋がるので、排水性がより高まる。この場合、ガス流路表面に親水性を付与するには、図6のプレス成型に先だって、第2ガス流路144および第2ガス流路244の成型面側に親水処理を施せばよい。   In addition, the second gas channel 144 and the second gas channel 244, which are separator-side channels in the first channel component 140 and the second channel component 240, have hydrophilicity on the channel surfaces. It is preferable to do so. In this way, when gas flows to the second gas flow path 244 via the first gas flow path 143, a water film can be formed on the flow path surface, and this water film is formed in the second gas flow path 144 of each row. In addition, since it is connected to the second gas flow path 244, drainage is further enhanced. In this case, in order to impart hydrophilicity to the gas channel surface, hydrophilic treatment may be performed on the molding surface sides of the second gas channel 144 and the second gas channel 244 prior to press molding in FIG.

また、上記の実施例では固体高分子形燃料電池を例に説明したが、ダイレクトメタノール形燃料電池、リン酸形燃料電池など種々の燃料電池に適用することができる。   In the above embodiments, the polymer electrolyte fuel cell has been described as an example, but the present invention can be applied to various fuel cells such as a direct methanol fuel cell and a phosphoric acid fuel cell.

20…燃料電池
30a…水素供給マニホールド
30b…空気供給マニホールド
30c…水素排出マニホールド
30d…空気排出マニホールド
30e…冷却水供給マニホールド
30f…冷却水排出マニホールド
31…電解質膜
32a…カソード電極
32b…アノード電極
33a…ガス拡散層
34…MEA
35…発電体層
36…シールガスケット
40、40A〜40B…ガス流路層
60…ガス流路層
70…セパレーター
71…カソード側セパレーター
71a…水素供給マニホールド
71b…空気供給マニホールド
71c…水素排出マニホールド
71d…空気排出マニホールド
71e〜71f…冷却水排出マニホールド
72…中間セパレーター
72a…水素連通孔
72b…空気連通孔
73…アノード側セパレーター
75〜76…空気連通孔
95…エンドプレート
95a…水素供給マニホールド
95b…空気供給マニホールド
95c…水素排出マニホールド
95d…空気排出マニホールド
95e〜95f…冷却水排出マニホールド
100…燃料電池スタック
140…第1流路構成体
141…第1凸部
141TS…凸部当接部
142…第2凸部
143…第1ガス流路
144…第2ガス流路
145…凸部傾斜部
150…基材
240…第2流路構成体
241…第1凸部
241TS…凸部当接部
242…第2凸部
243…第1ガス流路
244…第2ガス流路
245…凸部傾斜部
300…プレス加工装置
310…従動ローラ
320…駆動ローラ
330…プレス台
340…第1下刃
341…凸部
342…凹部
350…第2下刃
351…凸部
352…凹部
360…第1上刃
361…凸部
362…凹部
370…第2上刃
371…凸部
372…凹部
WSE…波形要素
DESCRIPTION OF SYMBOLS 20 ... Fuel cell 30a ... Hydrogen supply manifold 30b ... Air supply manifold 30c ... Hydrogen discharge manifold 30d ... Air discharge manifold 30e ... Cooling water supply manifold 30f ... Cooling water discharge manifold 31 ... Electrolyte membrane 32a ... Cathode electrode 32b ... Anode electrode 33a ... Gas diffusion layer 34 ... MEA
35 ... Power generation layer 36 ... Seal gasket 40, 40A to 40B ... Gas passage layer 60 ... Gas passage layer 70 ... Separator 71 ... Cathode side separator 71a ... Hydrogen supply manifold 71b ... Air supply manifold 71c ... Hydrogen discharge manifold 71d ... Air discharge manifolds 71e to 71f ... Cooling water discharge manifold 72 ... Intermediate separator 72a ... Hydrogen communication hole 72b ... Air communication hole 73 ... Anode-side separator 75-76 ... Air communication hole 95 ... End plate 95a ... Hydrogen supply manifold 95b ... Air supply Manifold 95c ... Hydrogen discharge manifold 95d ... Air discharge manifold 95e to 95f ... Cooling water discharge manifold 100 ... Fuel cell stack 140 ... First flow path component 141 ... First convex portion 141TS ... Convex portion abutting portion 142 2nd convex part 143 ... 1st gas flow path 144 ... 2nd gas flow path 145 ... Convex part inclined part 150 ... Base material 240 ... 2nd flow path structure 241 ... 1st convex part 241TS ... Convex part contact part 242 ... 2nd convex part 243 ... 1st gas flow path 244 ... 2nd gas flow path 245 ... Convex part inclined part 300 ... Press processing apparatus 310 ... Driven roller 320 ... Drive roller 330 ... Press stand 340 ... 1st lower blade 341 ... Convex part 342 ... Concave part 350 ... Second lower blade 351 ... Convex part 352 ... Concave part 360 ... First upper blade 361 ... Convex part 362 ... Concave part 370 ... Second upper blade 371 ... Convex part 372 ... Concave element WSE ... Waveform element

Claims (5)

燃料電池であって、
電解質膜を備えた発電体層と、
前記発電体層を間に挟んで配置された一対のセパレーターと、
前記発電体層と前記一対のセパレーターの少なくとも一方との間に配置され、前記発電体層での発電反応に供される反応ガスを前記電解質膜の膜面に沿ったガス流れ方向に流す流路を形成するガス流路層と、を備え
該ガス流路層は、
前記発電体層の側に凸な第1の凸部と前記セパレーターの側に凸な第2の凸部とが流路形成領域において並んだ波形断面の波形要素を前記流路の形成のための要素とし、前記波形要素を繰り返し有する波形要素含有部を、前記ガス流れ方向に沿って複数連設して備え、
前記波形要素含有部のそれぞれは、前記繰り返される前記波形要素における前記第1の凸部の前記波形要素の繰り返しに沿った側方領域を、前記流路を前記発電体層の側でなす発電体層側流路とし、前記波形要素における前記第2の凸部の前記波形要素の繰り返しに沿った側方領域を、前記流路を前記セパレーターの側でなすセパレーター側流路とし、
前記ガス流れ方向に沿って隣り合う二つの前記波形要素含有部は、一方の前記波形要素含有部が前記発電体層側流路の体積を前記セパレーター側流路の体積より大きくし、他方の前記波形要素含有部が前記発電体層側流路の体積を前記セパレーター側流路の体積より小さくすると共に、前記セパレーター側流路を前記ガス流れ方向に沿って重ねている
燃料電池。
A fuel cell,
A power generation layer provided with an electrolyte membrane;
A pair of separators arranged with the power generation layer interposed therebetween;
A flow path that is disposed between the power generation layer and at least one of the pair of separators and allows a reaction gas supplied for power generation reaction in the power generation layer to flow in a gas flow direction along the membrane surface of the electrolyte membrane. A gas flow path layer forming the gas flow path layer,
A corrugated element having a corrugated cross section in which a first convex portion projecting toward the power generating layer side and a second convex portion projecting toward the separator are arranged in the flow channel forming region is used for forming the flow channel. A plurality of corrugated element containing portions that repeatedly have the corrugated elements as elements, and are provided continuously along the gas flow direction,
Each of the corrugated element-containing portions includes a power generator that forms a lateral region along the repetition of the corrugated element of the first convex portion in the repeated corrugated element on the side of the power generator layer. A layer-side channel, a side region along the repetition of the corrugated element of the second convex portion in the corrugated element, a separator-side channel that forms the channel on the separator side,
Two of the corrugated element containing portions adjacent to each other in the gas flow direction are such that one corrugated element containing portion makes the volume of the power generator layer side flow path larger than the volume of the separator side flow path, The corrugated element-containing portion makes the volume of the power generator layer side flow path smaller than the volume of the separator side flow path, and overlaps the separator side flow path along the gas flow direction.
前記ガス流れ方向に沿って隣り合う二つの前記波形要素含有部は、前記ガスの流れ方向から見て、前記一方の前記波形要素含有部が有する前記セパレーター側流路が前記他方の前記波形要素含有部が有する前記セパレーター側流路の内側に位置するよう隣り合っている請求項1に記載の燃料電池。   The two corrugated element-containing portions adjacent to each other in the gas flow direction have the separator-side flow path of the one corrugated element-containing portion as the other corrugated element-containing portion when viewed from the gas flow direction. The fuel cell according to claim 1, wherein the fuel cells are adjacent to each other so as to be located inside the separator-side flow path of the portion. 前記ガス流れ方向に沿って隣り合う二つの前記波形要素含有部は、前記波形要素における前記第1の凸部と前記第2の凸部との間において延びる凸部傾斜部において接合している請求項2に記載の燃料電池。   The two corrugated element containing portions adjacent to each other in the gas flow direction are joined at a convex slope portion extending between the first convex portion and the second convex portion in the corrugated element. Item 3. The fuel cell according to Item 2. 前記ガス流れ方向に沿って隣り合う二つの前記波形要素含有部のうちの前記一方の前記波形要素含有部は、前記第1の凸部の頂上面を前記ガス流れ方向に沿った幅が広く前記波形要素の繰り返しに沿った幅を狭くした上で、前記発電体層側流路の体積を前記セパレーター側流路の体積より大きくし、前記他方の前記波形要素含有部は、前記第1の凸部の頂上面を前記ガス流れ方向に沿った幅が狭く前記波形要素の繰り返しに沿った幅を広くした上で、前記発電体層側流路の体積を前記セパレーター側流路の体積より小さくしている請求項1ないし請求項3のいずれかに記載の燃料電池。   Of the two corrugated element containing portions adjacent to each other in the gas flow direction, the one corrugated element containing portion has a wide width along the gas flow direction on the top surface of the first convex portion. After narrowing the width along the repetition of the corrugated element, the volume of the power generator layer side flow path is made larger than the volume of the separator side flow path, and the other corrugated element containing part is the first convex The top surface of the section is narrow in width along the gas flow direction and wide along the repetition of the waveform element, and the volume of the power generator layer side flow path is made smaller than the volume of the separator side flow path. The fuel cell according to any one of claims 1 to 3. 前記ガス流れ方向に沿って隣り合う二つの前記波形要素含有部は、前記発電体層の表面に前記第1の凸部の頂上面が当接する際の接触幅を予め定めた接触幅以下としている請求項4に記載の燃料電池。   The two corrugated element containing portions adjacent to each other in the gas flow direction have a contact width when the top surface of the first convex portion is in contact with the surface of the power generation layer not more than a predetermined contact width. The fuel cell according to claim 4.
JP2010218379A 2010-09-29 2010-09-29 Fuel cell Active JP5472011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010218379A JP5472011B2 (en) 2010-09-29 2010-09-29 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010218379A JP5472011B2 (en) 2010-09-29 2010-09-29 Fuel cell

Publications (2)

Publication Number Publication Date
JP2012074266A true JP2012074266A (en) 2012-04-12
JP5472011B2 JP5472011B2 (en) 2014-04-16

Family

ID=46170227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010218379A Active JP5472011B2 (en) 2010-09-29 2010-09-29 Fuel cell

Country Status (1)

Country Link
JP (1) JP5472011B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021773A1 (en) * 2016-07-25 2018-02-01 주식회사 엘지화학 Separation plate, and fuel cell stack comprising same
CN108028397A (en) * 2015-07-31 2018-05-11 株式会社Lg化学 Separator and the fuel cell pack including the separator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277539A (en) * 2008-05-15 2009-11-26 Toyota Motor Corp Fuel cell
JP2010170984A (en) * 2008-08-27 2010-08-05 Toyota Motor Corp Fuel cell
JP2011165559A (en) * 2010-02-12 2011-08-25 Toyota Auto Body Co Ltd Fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277539A (en) * 2008-05-15 2009-11-26 Toyota Motor Corp Fuel cell
JP2010170984A (en) * 2008-08-27 2010-08-05 Toyota Motor Corp Fuel cell
JP2011165559A (en) * 2010-02-12 2011-08-25 Toyota Auto Body Co Ltd Fuel cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108028397A (en) * 2015-07-31 2018-05-11 株式会社Lg化学 Separator and the fuel cell pack including the separator
EP3331076A4 (en) * 2015-07-31 2018-06-06 LG Chem, Ltd. Separator plate and fuel cell stack comprising same
JP2018525775A (en) * 2015-07-31 2018-09-06 エルジー・ケム・リミテッド Separator plate and fuel cell stack including the same
US10714780B2 (en) 2015-07-31 2020-07-14 Lg Chem, Ltd. Separator having a plurality of riblet elements connected by a plurality of connecting bars, and fuel cell stack comprising the same
CN108028397B (en) * 2015-07-31 2021-05-25 株式会社Lg化学 Separator and fuel cell stack including the same
WO2018021773A1 (en) * 2016-07-25 2018-02-01 주식회사 엘지화학 Separation plate, and fuel cell stack comprising same
JP2019526148A (en) * 2016-07-25 2019-09-12 エルジー・ケム・リミテッド Separator plate and fuel cell stack including the same
US10930941B2 (en) 2016-07-25 2021-02-23 Lg Chem, Ltd. Separator, and fuel cell stack comprising the same

Also Published As

Publication number Publication date
JP5472011B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP4678359B2 (en) Fuel cell
JP5227543B2 (en) Fuel cell
US10601064B2 (en) Fluid distribution device for distributing at least two fluids of a fuel cell
JP5261440B2 (en) Fuel cell stack
JP5123279B2 (en) Fuel cell
EP2549573A1 (en) Polymer electrolyte fuel cell and fuel cell stack equipped with same
US9660275B2 (en) Fuel cell including gas flow path layer
JP5621709B2 (en) Fuel cell, expanded metal for fuel cell, manufacturing apparatus and manufacturing method thereof
US9806360B2 (en) Unit cell for solid-oxide fuel cell and solid-oxide fuel cell using same
JP7081517B2 (en) Fuel cell separator
CN104247116B (en) Fuel cell stack
CA2728271C (en) Fuel cell stack
JP5472011B2 (en) Fuel cell
JP4268400B2 (en) Fuel cell
JP2012199093A (en) Manufacturing apparatus and manufacturing method of fuel cell and expand metal therefor
JP4639744B2 (en) Fuel cell
JP2004335179A (en) Fuel cell
JP2006331861A (en) Method and facility for manufacturing fuel cell
JP2020053265A (en) Fuel cell stack and porous body channel plate
JP2009224272A (en) Fuel cell
JP2012038569A (en) Fuel cell
JP7189504B2 (en) fuel cell device
JP2011044399A (en) Fuel cell
JP2011181442A (en) Method and apparatus for manufacturing gas passage forming member for fuel cell, and method for manufacturing fuel cell
JP2006309964A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R151 Written notification of patent or utility model registration

Ref document number: 5472011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151