JP2012072940A - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
JP2012072940A
JP2012072940A JP2010216858A JP2010216858A JP2012072940A JP 2012072940 A JP2012072940 A JP 2012072940A JP 2010216858 A JP2010216858 A JP 2010216858A JP 2010216858 A JP2010216858 A JP 2010216858A JP 2012072940 A JP2012072940 A JP 2012072940A
Authority
JP
Japan
Prior art keywords
water
ozone
liquid contact
ozone concentration
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010216858A
Other languages
Japanese (ja)
Inventor
Koji Yamanaka
弘次 山中
Yasumitsu Sumida
康光 澄田
Osamu Nakamori
理 中森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2010216858A priority Critical patent/JP2012072940A/en
Publication of JP2012072940A publication Critical patent/JP2012072940A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioning device that prevents bacteria from generating in washing water regardless of chloride concentration in the washing water for air purification, and reduces electricity cost more than conventional technologies.SOLUTION: The air conditioning device includes: a casing 1; a gas-liquid contact means 3 for spraying the washing water to the air taken in the casing 1 for gas-liquid contact; a water tank 2 for receiving the washing water at below the gas-liquid contact means 3; a pump 7 and a pipe 8 composing a circulation line for sending the washing water present in the water tank 2 to the gas-liquid contact means 3; and an ozone generation device 9 for generating power by using the flow of the washing water in the circulation line, and generating ozone with the power and dissolving the ozone in the washing water.

Description

本発明は、空気調和装置に関し、特に、洗浄水を用いて空気を浄化する手段を備えた空気調和装置に関する。   The present invention relates to an air conditioner, and more particularly to an air conditioner provided with means for purifying air using cleaning water.

従来、住宅用などの空気調和装置は、空気内の粉塵や臭気や不快なガス成分等などを除去するため、フィルタなどの浄化手段が使用されている。しかし、フィルタの目詰まり等が発生し、浄化能力が損なわれる。   2. Description of the Related Art Conventionally, air conditioning apparatuses for residential use have used purification means such as filters in order to remove dust, odors, unpleasant gas components, and the like in the air. However, the filter is clogged and the purification ability is impaired.

そこで、特許文献1に開示されているような、洗浄水と空気とを接触させることで空気を浄化する空気洗浄手段を備えた空気調和装置が提案されている。この空気調和装置では、装置内に洗浄水を散布するシャワーを設け、外部から装置内に取り込んだ空気を該洗浄水に通過させ、これによって浄化された空気を装置外に送出している。   Then, the air conditioning apparatus provided with the air washing | cleaning means which purifies air by making washing water and air contact as disclosed in patent document 1 is proposed. In this air conditioner, a shower for spraying cleaning water is provided in the apparatus, air taken into the apparatus from the outside is passed through the cleaning water, and air purified thereby is sent out of the apparatus.

上記シャワーからの洗浄水は節水のために循環利用されているが、洗浄水中に菌が発生する恐れがある。そのため、特許文献2に開示されているように、水の電解を行って菌の発生を抑えることも実施されている。   The washing water from the shower is circulated and used for saving water, but there is a possibility that bacteria may be generated in the washing water. Therefore, as disclosed in Patent Document 2, electrolysis of water is also performed to suppress the generation of bacteria.

図4はこのような従来の空気調和装置の構成を模式的に示したものである。この図に示すように、筐体51の空気取込み口52から外の空気が主送風機(F)53の吸い込み力によって筐体51内部に取り込まれ、筐体51内部を空気吐出口54に向かって流れる。この過程にシャワー等の散水手段55が配置され、筐体51内部に取り込まれた外気が散水手段55からの水で浄化される。散水手段55からの水は筐体51の下部のタンク56で受け、再び散水手段55にポンプ(P)57で送られる。タンク56内には、直流電源58と接続された一対の電極板59が収容されており、これにより、タンク56内の洗浄水を電解して塩素成分(次亜塩素酸)等を発生させて水中における菌の発生を抑えている。   FIG. 4 schematically shows the configuration of such a conventional air conditioner. As shown in this figure, outside air is taken into the housing 51 by the suction force of the main blower (F) 53 from the air intake port 52 of the housing 51, and the inside of the housing 51 is directed toward the air discharge port 54. Flowing. In this process, watering means 55 such as a shower is disposed, and the outside air taken into the housing 51 is purified with water from the watering means 55. Water from the sprinkling means 55 is received by the tank 56 at the lower part of the casing 51 and sent again to the sprinkling means 55 by a pump (P) 57. A pair of electrode plates 59 connected to a direct current power source 58 is accommodated in the tank 56, whereby the cleaning water in the tank 56 is electrolyzed to generate chlorine components (hypochlorous acid) and the like. We suppress outbreak of bacteria in water.

再表2008−053871号公報Table 2008-038771 特開2007−151750号公報JP 2007-151750 A

しかしながら、洗浄水を電解することで菌の発生を抑制する手法では、次のような課題があった。   However, the technique for suppressing the generation of bacteria by electrolyzing the wash water has the following problems.

地域ごとに水道水にもともとに含まれている塩素(次亜塩素酸)の量が異なっており、このような水道水を装置の運転コスト低減の為に洗浄水として使用すると、使用する水中の塩素濃度が低い場合や、運転途中に除菌に必要な塩素量が不足してしまう場合に塩素の補充が必要になる。   The amount of chlorine (hypochlorous acid) originally contained in tap water varies from region to region, and if such tap water is used as washing water to reduce the operating cost of the equipment, When the chlorine concentration is low, or when the amount of chlorine necessary for sterilization becomes insufficient during operation, chlorine supplementation is necessary.

さらに、電解のための電力および電解用の直流電源装置も必要であることから電気費用も高くなる。   Furthermore, since electric power for electrolysis and a DC power supply device for electrolysis are also required, the electric cost is increased.

そこで本発明は、上述したような課題に鑑み、空気浄化用の洗浄水に含まれる塩素濃度に関わらず洗浄水における菌の発生を抑制でき、かつ従来技術よりも電気費用を低減できる空気調和装置を提供することを目的とする。   Therefore, in view of the problems as described above, the present invention is an air conditioner that can suppress the generation of bacteria in the wash water regardless of the chlorine concentration contained in the wash water for air purification, and can reduce the electric cost compared to the prior art. The purpose is to provide.

本発明は、筐体と、筐体の内部に取り込んだ空気に洗浄水を散布して接触させる気液接触手段と、気液接触手段の下方にて前記洗浄水を受け入れる水槽と、水槽内の洗浄水を気液接触手段へ送る循環ラインと、を有する空気調和装置に係る。この態様において本発明は、洗浄水の流れを利用して電力を発生させ、この電力でオゾンを生成して洗浄水の中に溶解させるオゾン生成装置をさらに備えたことを特徴とする。   The present invention includes a housing, gas-liquid contact means for spraying and bringing cleaning water into contact with air taken into the housing, a water tank for receiving the cleaning water below the gas-liquid contact means, And a circulation line for sending cleaning water to the gas-liquid contact means. In this aspect, the present invention is characterized by further comprising an ozone generator that generates electric power by using the flow of the cleaning water, generates ozone by the electric power, and dissolves the ozone in the cleaning water.

本発明によれば、洗浄水における菌の発生をオゾンによって抑えるものであるため、空気浄化用の洗浄水に含まれる塩素濃度に関わらず洗浄水の除菌が可能となる。また、オゾン生成の電力を洗浄水の水流により自己発電で賄うため、従来技術よりも電気費用を低減できる。   According to the present invention, since the generation of bacteria in the wash water is suppressed by ozone, the wash water can be sterilized regardless of the concentration of chlorine contained in the wash water for air purification. Moreover, since the electric power for ozone generation is covered by self-power generation using the flow of cleaning water, the electric cost can be reduced as compared with the conventional technology.

本発明による第1の実施形態の空気調和装置の構成を示す模式図。The schematic diagram which shows the structure of the air conditioning apparatus of 1st Embodiment by this invention. 本発明による第2の実施形態の空気調和装置の構成を示す模式図。The schematic diagram which shows the structure of the air conditioning apparatus of 2nd Embodiment by this invention. 本発明による第3の実施形態の空気調和装置の構成を示す模式図。The schematic diagram which shows the structure of the air conditioning apparatus of 3rd Embodiment by this invention. 気液接触式空気浄化機能と電解式除菌機能を有する従来の空気調和装置の構成を模式的に示した図。The figure which showed typically the structure of the conventional air conditioning apparatus which has a gas-liquid contact type air purification function and an electrolysis type | system | group sanitization function.

以下、本発明の実施の形態について図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1の実施形態)
図1は本発明による第1の実施形態の空気調和装置の構成を示す模式図である。
(First embodiment)
FIG. 1 is a schematic diagram showing a configuration of an air conditioner according to a first embodiment of the present invention.

本実施形態の空気調和装置は、図1で示すように筐体1の内部に以下に述べる構成を有する。筐体1内の下部に水槽2を有し、その上方に、空気を浄化する気液接触手段3と、主送風機4とが、この順で設置されている。水槽2と気液接触手段3との間で、筐体1の側壁には空気取込み口5が設けられ、また、気液接触手段3の上方には空気吐出口6が設けられており、空気取込み口5から筐体1外の空気が主送風機(F)4の吸い込み力によって筐体1内部に取り込まれ、筐体1内部を空気吐出口6に向かって流れる。   The air conditioning apparatus of this embodiment has the structure described below inside the housing | casing 1, as shown in FIG. The water tank 2 is provided in the lower part in the housing | casing 1, The gas-liquid contact means 3 which purifies air, and the main air blower 4 are installed in that order in the upper part. Between the water tank 2 and the gas-liquid contact means 3, an air intake port 5 is provided on the side wall of the housing 1, and an air discharge port 6 is provided above the gas-liquid contact means 3. Air outside the housing 1 is taken into the housing 1 by the suction force of the main blower (F) 4 from the intake port 5, and flows inside the housing 1 toward the air discharge port 6.

主送風機4は、空気吐出口6の手前に設置され、気液接触手段3によって浄化された空気を空気吐出口6から筐体1の外へ供給する。   The main blower 4 is installed in front of the air discharge port 6 and supplies the air purified by the gas-liquid contact means 3 from the air discharge port 6 to the outside of the housing 1.

気液接触手段3は、空気取込み口5から筐体1内部に取り込まれた空気を洗浄水と接触させることで浄化する。このため、気液接触手段3は、気液接触部31と、気液接触部31の上方に設けられた洗浄水を散布する散水手段32とを有している。気液接触部31には、支持体(不図示)が備えられ、ラシヒリング、レッシングリング、ポールリング、サドル、スルザーパッキン等の充填材が充填されている。なお、気液接触部31は、充填材がハニカム状や繊維を編んだようなもので、気液接触部31と一体型となっていてもよい。この気液接触部31では、散水手段32から散布された洗浄水が充填材の表面に付着し、充填材の表面で、筐体1内部に取り込まれた空気との気液接触が行われる。   The gas-liquid contact means 3 purifies the air taken into the housing 1 from the air intake 5 by bringing it into contact with the washing water. For this reason, the gas-liquid contact means 3 has the gas-liquid contact part 31 and the water sprinkling means 32 which spreads the wash water provided above the gas-liquid contact part 31. The gas-liquid contact portion 31 includes a support (not shown) and is filled with a filler such as a Raschig ring, a lessing ring, a pole ring, a saddle, or a sulzer packing. In addition, the gas-liquid contact part 31 may be an integral type with the gas-liquid contact part 31 in which the filler is like a knitted honeycomb or a fiber. In the gas-liquid contact portion 31, the cleaning water sprayed from the sprinkling means 32 adheres to the surface of the filler, and gas-liquid contact with the air taken into the housing 1 is performed on the surface of the filler.

水槽2は気液接触部31の下側に設けられており、配管を介してポンプ(P)7に接続されている。ポンプ7の吐水側は配管8を介して散水手段32に接続されている。こうして洗浄水が循環するようになっている。散水手段32は例えば、多数の孔の開けられた配管であり、これらの孔から洗浄水が散布される。散水手段32に設けられた孔の数や形状、位置は特に限定されないが、洗浄水をほぼ均一に散布できるように設けられることが好ましい。しかし充填材の構造や、空気の流れに拠っては、気液接触部31に対する散水量に偏りを持たせても構わない。また、洗浄水が散布される孔には、洗浄水をより微細な液滴として噴霧されるような形状を有したノズルを設けるのが好ましい。   The water tank 2 is provided below the gas-liquid contact part 31, and is connected to the pump (P) 7 through a pipe. The water discharge side of the pump 7 is connected to the water spray means 32 via the pipe 8. Thus, the washing water is circulated. The water spray means 32 is, for example, a pipe having a large number of holes, and the cleaning water is sprayed from these holes. The number, shape, and position of the holes provided in the sprinkling means 32 are not particularly limited, but it is preferable that the holes be provided so that the cleaning water can be sprayed almost uniformly. However, depending on the structure of the filler and the flow of air, the water spray amount with respect to the gas-liquid contact portion 31 may be biased. Moreover, it is preferable to provide a nozzle having a shape in which the cleaning water is sprayed as finer droplets in the holes to which the cleaning water is sprayed.

水槽2内の洗浄水を散水手段32より散布して再び水槽2で受容するように配管8及びポンプ7で循環させていると、洗浄水の水質が低下して洗浄水中に菌が発生する恐れがある。こうした菌の発生を抑制するために、本発明は細菌やウィルスに対して殺菌力及び除菌力を持つオゾンを洗浄水中に溶解させる機構を備える。具体的には、水槽2と散水手段32の間を接続する配管8(即ち洗浄水の循環ライン)の途中に、水流発電式オゾン生成装置9が設けられている。   If the washing water in the water tank 2 is sprayed from the sprinkling means 32 and is circulated by the pipe 8 and the pump 7 so as to be received by the water tank 2 again, the quality of the washing water may deteriorate and bacteria may be generated in the washing water. There is. In order to suppress the generation of such bacteria, the present invention has a mechanism for dissolving ozone having a bactericidal and sterilizing power against bacteria and viruses in the wash water. More specifically, a water current generation type ozone generator 9 is provided in the middle of a pipe 8 (that is, a cleaning water circulation line) connecting the water tank 2 and the water sprinkling means 32.

この水流発電式オゾン生成装置9は、水流タービン91と、水流タービン91の回転によって電力を発生する誘導式の発電機構92と、発電機構92で発生した電力で配管8中にオゾンを発生するオゾン発生手段93とを有する。水流タービン91及びオゾン発生手段93はこの順番に配管8の水流方向に沿って直列接続されて、配管8の途中に配設されている。   This water flow generation type ozone generator 9 includes a water flow turbine 91, an induction type power generation mechanism 92 that generates electric power by the rotation of the water flow turbine 91, and ozone that generates ozone in the pipe 8 with the electric power generated by the power generation mechanism 92. Generating means 93. The water flow turbine 91 and the ozone generating means 93 are connected in series along the water flow direction of the pipe 8 in this order, and are arranged in the middle of the pipe 8.

水流発電式オゾン生成装置9では配管8を流れる循環流の力により水流タービン91が回転し、この回転で発電機構92が電力(誘導電力)を発生する。発生した電力を使ってオゾン発生手段93は配管8中にオゾンを連続的に発生させ、配管8を通る洗浄水にオゾンを溶解させる。オゾンにより洗浄水における菌の発生が抑制される。オゾンの発生機構(オゾナイザ)としては電気分解式(電極式)、無声放電式もしくは回転電極式などが適用可能である。   In the water flow generation type ozone generator 9, the water flow turbine 91 is rotated by the force of the circulating flow through the pipe 8, and the power generation mechanism 92 generates electric power (inductive power) by this rotation. Using the generated electric power, the ozone generating means 93 continuously generates ozone in the pipe 8 and dissolves ozone in the cleaning water passing through the pipe 8. Ozone suppresses the generation of bacteria in the wash water. As an ozone generation mechanism (ozonizer), an electrolysis type (electrode type), a silent discharge type, a rotating electrode type, or the like is applicable.

さらに、従来の電解方式の除菌機構では水中の塩素量を考慮する必要があるが、オゾンは発生時に塩素を必要としないため、水中の塩素量に関係無く安定してオゾン供給を行うことができる。   Furthermore, in the conventional electrolysis sterilization mechanism, it is necessary to consider the amount of chlorine in water, but since ozone does not require chlorine when generated, ozone can be supplied stably regardless of the amount of chlorine in water. it can.

なお、本装置のオゾン生成装置9はオゾン生成の電力を水流を利用して自己発電で賄うが、その水流はポンプ7によって作っている。このため、ポンプ7の駆動電力が水流タービン91を回せるような循環流エネルギーになるように大きくされるとエネルギー的なメリットはない。しかし実際には吐水ポンプの選定に当たって、最適な定格電力を選定できることは少なく、多くの場合は循環流エネルギーに対して余剰の電力を持つ。そこで、この余剰電力を、水流タービン91を回す分のエネルギー(即ちオゾン発生用の電力)に当てれば、オゾン生成装置9を備えても電気費用は上がらない。従来技術では除菌のための電解に使用する電力が循環ポンプの駆動電力とは別に必要であったが、本発明はこのような従来技術と比べて電気費用を低減できる。   Note that the ozone generator 9 of the present apparatus supplies power for ozone generation by self-power generation using a water flow, and the water flow is generated by the pump 7. For this reason, there is no merit in terms of energy when the driving power of the pump 7 is increased so that the circulating flow energy can turn the water turbine 91. However, in actuality, it is rare that an optimum rated power can be selected in selecting a water discharge pump, and in many cases, there is surplus power with respect to the circulating flow energy. Therefore, if this surplus power is applied to the energy for turning the water flow turbine 91 (that is, the power for generating ozone), even if the ozone generator 9 is provided, the electric cost does not increase. In the prior art, the electric power used for electrolysis for sterilization was required separately from the driving power of the circulation pump. However, the present invention can reduce the electric cost as compared with the prior art.

オゾン発生機構として電気分解式を用いた場合に使用する電極の材質としては、例えば、陽極にはTiをベースとした白金タンタル又は2酸化鉛を使用することができ、陰極にはTiをベースとした白金を使用することができる。なお、陰極にスケールが堆積して電気伝導性が低下する恐れがある場合には両電極の極性を反転させることが効果的である。つまり、陰極を陽極に切替えることで陰極上に堆積したスケールを取り除くことができる。こうした反転操作を必要とする場合は陰極材料に陽極と同様の素材を用いることがある。   As the material of the electrode used when the electrolysis type is used as the ozone generation mechanism, for example, platinum tantalum or lead dioxide based on Ti can be used for the anode, and Ti is used for the cathode. Platinum can be used. Note that it is effective to reverse the polarities of both electrodes when there is a possibility that the scale is deposited on the cathode and the electrical conductivity is lowered. That is, the scale deposited on the cathode can be removed by switching the cathode to the anode. When such a reversal operation is required, the same material as the anode may be used as the cathode material.

(第2の実施形態)
図2は本発明による第2の実施形態の空気調和装置の構成を示す模式図である。この図において第1の実施形態と同じ構成要素には同一の符号を用いており、第1の実施形態と同じ構成要素の説明については、省略する。また、オゾン生成装置9についてはその構成要素を省略して図示した。以下、第1の実施形態とは異なる点について説明する。
(Second Embodiment)
FIG. 2 is a schematic diagram showing a configuration of an air conditioner according to a second embodiment of the present invention. In this figure, the same reference numerals are used for the same components as those in the first embodiment, and descriptions of the same components as those in the first embodiment are omitted. Further, the ozone generator 9 is illustrated with its constituent elements omitted. Hereinafter, differences from the first embodiment will be described.

第1の実施形態と異なる構成としては、洗浄水中のオゾン濃度を測り、一定のオゾン濃度を超えている場合は洗浄水がオゾン生成装置9を通らない経路に、一定のオゾン濃度以下の場合は洗浄水がオゾン生成装置9を通る経路に洗浄水循環ラインを切替えられる点にある。そのため本実施形態の装置は、図2に示すように、第1の実施形態の空気調和装置の構成に加え、水槽2内の洗浄水中のオゾン濃度を監視するオゾン濃度計10と、オゾン濃度計10で検出されたオゾン濃度に応じて、ポンプ7から散水手段32への洗浄水の循環ラインを、洗浄水がオゾン生成装置9を通過する経路とそれを通過しない経路に切替える3方バルブ11とを有している。   As a different configuration from the first embodiment, the ozone concentration in the wash water is measured, and if the ozone concentration exceeds a certain ozone concentration, the wash water does not pass through the ozone generator 9 and is below a certain ozone concentration. The cleaning water circulation line can be switched to a path through which the cleaning water passes through the ozone generator 9. Therefore, as shown in FIG. 2, the apparatus of the present embodiment includes an ozone concentration meter 10 that monitors the ozone concentration in the wash water in the water tank 2 in addition to the configuration of the air conditioner of the first embodiment, and an ozone concentration meter. A three-way valve 11 for switching the washing water circulation line from the pump 7 to the sprinkling means 32 between a path through which the washing water passes through the ozone generator 9 and a path through which the washing water does not pass according to the ozone concentration detected at 10. have.

このような構成によれば、第1の実施形態による装置の効果に加えて、洗浄水中のオゾンの不足や過剰供給を最小限にできるため、オゾン濃度を一定の範囲に正確に維持することができる。   According to such a configuration, in addition to the effect of the apparatus according to the first embodiment, the shortage and excess supply of ozone in the wash water can be minimized, so that the ozone concentration can be accurately maintained within a certain range. it can.

(第3の実施形態)
図3は本発明による第3の実施形態の空気調和装置の構成を示す模式図である。この図において第1の実施形態と同じ構成要素には同一の符号を用いており、第1の実施形態と同じ構成要素の説明は省略する。また、オゾン生成装置9についてはその構成要素を省略して図示した。以下、第1の実施形態とは異なる点について説明する。
(Third embodiment)
FIG. 3 is a schematic diagram showing a configuration of an air conditioner according to a third embodiment of the present invention. In this figure, the same reference numerals are used for the same components as those in the first embodiment, and description of the same components as those in the first embodiment is omitted. Further, the ozone generator 9 is illustrated with its constituent elements omitted. Hereinafter, differences from the first embodiment will be described.

第1の実施形態と異なる構成としては、オゾン生成装置9を洗浄水の循環ラインの配管8ではなく、水道水を水槽2へ供給する給水ライン上に設けた点にある。本実施形態では、図3に示すように、循環ラインの一部を構成する散水手段32への給水管13に水道水の給水ライン12が直結されており、その給水ライン12上にオゾン生成装置9が設置されている。なお、オゾン生成装置9の図示しない水流タービン及びオゾン発生手段は、この順番で給水ライン12の水流方向に沿って直列接続されている。   The configuration different from the first embodiment is that the ozone generator 9 is provided on the water supply line for supplying tap water to the water tank 2 instead of the piping 8 of the washing water circulation line. In the present embodiment, as shown in FIG. 3, a tap water supply line 12 is directly connected to a water supply pipe 13 to a watering means 32 constituting a part of the circulation line, and an ozone generator is provided on the water supply line 12. 9 is installed. In addition, the water flow turbine and the ozone generation means (not shown) of the ozone generator 9 are connected in series along the water flow direction of the water supply line 12 in this order.

オゾン生成装置9を備えた給水ライン12は図3では循環ラインの一部である供給管13に直結されているが、水槽2に接続されていてもよい。   Although the water supply line 12 provided with the ozone generator 9 is directly connected to the supply pipe 13 which is a part of the circulation line in FIG. 3, it may be connected to the water tank 2.

図3の構成によれば、給水ライン12より散水手段32へ水道水が供給されたとき、第1の実施形態(図1参照)と同じように水流タービンが回って発電機構が電力を発生し、この発生した電力を使ってオゾン発生手段がオゾンを連続的に発生させて、給水ライン12を通る水道水中にオゾンが溶解する。給水ライン12は散水手段32の給水管13に直結されているため、水槽2及び配管8等を含む循環ラインにオゾン水が侵入することとなる。これにより洗浄水における菌の発生が抑制される。   According to the configuration of FIG. 3, when tap water is supplied from the water supply line 12 to the sprinkling means 32, the water turbine rotates to generate power as in the first embodiment (see FIG. 1). The ozone generating means continuously generates ozone using the generated electric power, and the ozone is dissolved in the tap water passing through the water supply line 12. Since the water supply line 12 is directly connected to the water supply pipe 13 of the water sprinkling means 32, ozone water enters the circulation line including the water tank 2, the pipe 8, and the like. Thereby, generation | occurrence | production of the microbe in wash water is suppressed.

この構成では水道水の供給時のみオゾンが生成されるため、しばらく洗浄水を循環使用してオゾンが少なくなってきた頃に洗浄水を交換の為に排出して水道水を再供給すると、その水道水にオゾンを付加することができる。このため、塩素の含有量が比較的少ない水道水であっても、交換時にオゾンを含む洗浄水に変えることができる。また、水道水の供給時の水流でオゾン生成用の電力を得ているため、オゾン生成装置9を備えても電気費用が増すことはない。むしろ、電解によって水の除菌を行う従来技術と比べると、電気費用を低減できる。   In this configuration, ozone is generated only when tap water is supplied, so when the cleaning water is circulated and used for a while and the ozone becomes low, when the cleaning water is discharged for replacement and the tap water is supplied again, Ozone can be added to tap water. For this reason, even tap water having a relatively small chlorine content can be changed to cleaning water containing ozone at the time of replacement. Moreover, since the electric power for ozone generation is obtained by the water flow at the time of supplying tap water, even if the ozone generator 9 is provided, the electric cost does not increase. Rather, the cost of electricity can be reduced compared to the prior art in which water is sterilized by electrolysis.

また本装置は、洗浄水の循環使用によって洗浄水中のオゾン濃度が所定の値以下になったか否かを検知し、この検知結果が所定の値以下であるときに水道水の供給を行うものであるとよい。このため本装置には、第2の実施形態のような水槽2内の洗浄水中のオゾン濃度を監視するオゾン濃度計(不図示)と、給水ライン12のオゾン生成装置9よりも上流側に設置され、オゾン濃度計の検出値が所定の値以下になると開いて水道水を給水する給水バルブ(不図示)とを追加することが好ましい。この追加の構成により、洗浄水中のオゾン濃度を一定の範囲に正確に維持することができる。   In addition, this device detects whether or not the ozone concentration in the wash water has become a predetermined value or less due to the circulating use of the wash water, and supplies tap water when the detection result is less than the predetermined value. There should be. For this reason, in this apparatus, an ozone concentration meter (not shown) for monitoring the ozone concentration in the wash water in the water tank 2 as in the second embodiment and an upstream side of the ozone generator 9 in the water supply line 12 are installed. It is preferable to add a water supply valve (not shown) that opens and supplies tap water when the detected value of the ozone concentration meter becomes a predetermined value or less. With this additional configuration, the ozone concentration in the wash water can be accurately maintained within a certain range.

1 筐体
2 水槽
3 気液接触手段
31 気液接触部
32 散水手段
4 主送風機
5 空気取込み口
6 空気吐出口
7 ポンプ
8 配管
9 オゾン生成装置
91 水流タービン
92 発電機構
93 オゾン発生手段
10 オゾン濃度計
11 3方バルブ
12 水道水の給水ライン
13 散水手段の給水菅
DESCRIPTION OF SYMBOLS 1 Case 2 Water tank 3 Gas-liquid contact means 31 Gas-liquid contact part 32 Sprinkling means 4 Main blower 5 Air intake port 6 Air discharge port 7 Pump 8 Pipe 9 Ozone generator 91 Water turbine 92 Power generation mechanism 93 Ozone generation means 10 Ozone concentration Total 11 Three-way valve 12 Tap water supply line 13 Water supply tank

Claims (6)

筐体と、
前記筐体の内部に取り込んだ空気に洗浄水を散布して接触させる気液接触手段と、
前記気液接触手段の下方にて前記洗浄水を受け入れる水槽と、
前記水槽内の前記洗浄水を前記気液接触手段へ送る循環ラインと、
を有し、
前記洗浄水の流れを利用して電力を発生させ、この電力でオゾンを生成して前記洗浄水の中に溶解させるオゾン生成装置をさらに備えたことを特徴とする空気調和装置。
A housing,
Gas-liquid contact means for spraying and contacting cleaning water to the air taken into the housing;
A water tank for receiving the washing water below the gas-liquid contact means;
A circulation line for sending the wash water in the water tank to the gas-liquid contact means;
Have
An air conditioner further comprising an ozone generator that generates electric power using the flow of the cleaning water, generates ozone by the electric power, and dissolves the ozone in the cleaning water.
前記オゾン生成装置は、水流で回転する水流タービンと、該水流タービンの回転によって電力を発生する誘導式の発電機構と、該発電機構で発生した電力でオゾンを発生するオゾン発生手段とを有し、
前記水流タービン及び前記オゾン発生手段が、前記循環ライン上に配設されており、前記水流タービン及び前記オゾン発生手段はこの順番に前記循環ラインの水流方向に沿って直列接続されていることを特徴とする請求項1に記載の空気調和装置。
The ozone generator has a water turbine rotating with a water flow, an induction power generating mechanism that generates electric power by the rotation of the water turbine, and an ozone generating means that generates ozone with the electric power generated by the power generating mechanism. ,
The water turbine and the ozone generating means are disposed on the circulation line, and the water turbine and the ozone generating means are connected in series along the water flow direction of the circulation line in this order. The air conditioning apparatus according to claim 1.
前記オゾン生成装置は、水流で回転する水流タービンと、該水流タービンの回転によって電力を発生する誘導式の発電機構と、該発電機構で発生した電力でオゾンを発生するオゾン発生手段と、前記気液接触手段または前記水槽に前記洗浄水として水道水を供給する給水ラインとを有し、
前記水流タービン及び前記オゾン発生手段が、前記給水ライン上に配設されており、前記水流タービン及び前記オゾン発生手段はこの順番に前記給水ラインの水流方向に沿って直列接続されていることを特徴とする請求項1に記載の空気調和装置。
The ozone generator includes a water turbine rotating with a water flow, an induction power generating mechanism that generates electric power by the rotation of the water turbine, ozone generating means for generating ozone with the electric power generated by the power generating mechanism, and the air generator. A liquid contact means or a water supply line for supplying tap water as the washing water to the water tank,
The water turbine and the ozone generating means are disposed on the water supply line, and the water turbine and the ozone generating means are connected in series along the water flow direction of the water supply line in this order. The air conditioning apparatus according to claim 1.
前記水槽内の洗浄水中のオゾン濃度を監視するオゾン濃度計と、
前記オゾン濃度計によるオゾン濃度が一定の値以下である場合は前記循環ラインを、前記洗浄水が前記オゾン生成装置を通過する経路に切替え、前記オゾン濃度計によるオゾン濃度が一定の値を超えている場合は前記循環ラインを、前記洗浄水が前記オゾン生成装置を通過しない経路に切替える3方バルブと、を有することを特徴とする請求項1又は2に記載の空気調和装置。
An ozone concentration meter for monitoring the ozone concentration in the wash water in the water tank;
When the ozone concentration by the ozone concentration meter is below a certain value, the circulation line is switched to a path through which the washing water passes through the ozone generator, and the ozone concentration by the ozone concentration meter exceeds a certain value. 3. The air conditioner according to claim 1, further comprising a three-way valve that switches the circulation line to a path through which the washing water does not pass through the ozone generation device.
前記水槽内の洗浄水中のオゾン濃度を監視するオゾン濃度計と、
前記オゾン濃度計によるオゾン濃度が一定の値以下である場合は前記給水ラインを開けて給水し、前記オゾン濃度計によるオゾン濃度が一定の値を超えている場合は前記給水ラインを閉じる給水バルブと、を有することを特徴とする請求項1又は3に記載の空気調和装置。
An ozone concentration meter for monitoring the ozone concentration in the wash water in the water tank;
A water supply valve that opens the water supply line when the ozone concentration by the ozone concentration meter is below a certain value, and closes the water supply line when the ozone concentration by the ozone concentration meter exceeds a certain value; The air conditioner according to claim 1 or 3, characterized by comprising:
前記オゾン発生手段が無声放電式または電極式のイオナイザであることを特徴とする請求項1乃至5のいずれか1項に記載の空気調和装置。   The air conditioner according to any one of claims 1 to 5, wherein the ozone generating means is a silent discharge type or an electrode type ionizer.
JP2010216858A 2010-09-28 2010-09-28 Air conditioning device Pending JP2012072940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010216858A JP2012072940A (en) 2010-09-28 2010-09-28 Air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010216858A JP2012072940A (en) 2010-09-28 2010-09-28 Air conditioning device

Publications (1)

Publication Number Publication Date
JP2012072940A true JP2012072940A (en) 2012-04-12

Family

ID=46169301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010216858A Pending JP2012072940A (en) 2010-09-28 2010-09-28 Air conditioning device

Country Status (1)

Country Link
JP (1) JP2012072940A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104214828A (en) * 2014-05-04 2014-12-17 徐海锋 Wind and rain type air purification method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428725U (en) * 1987-08-10 1989-02-20
JPH01194922A (en) * 1988-01-29 1989-08-04 Nippon Light Metal Co Ltd Method and equipment for cleaning air
JP2003135944A (en) * 2001-11-01 2003-05-13 Toyota Auto Body Co Ltd Ozonized water producing apparatus
JP2005169297A (en) * 2003-12-12 2005-06-30 Nissho Engineering:Kk Faucet-directly-connectable ozone water producer equipped with water flow power generator
JP2008190754A (en) * 2007-02-02 2008-08-21 Techno Ryowa Ltd Air conditioning system using microbubble or micronanobubble
JP2010046358A (en) * 2008-08-22 2010-03-04 Japan Organo Co Ltd Air purifying apparatus
JP3158191U (en) * 2010-01-07 2010-03-18 エフケイ・ライフサービス株式会社 Pipe power generator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428725U (en) * 1987-08-10 1989-02-20
JPH01194922A (en) * 1988-01-29 1989-08-04 Nippon Light Metal Co Ltd Method and equipment for cleaning air
JP2003135944A (en) * 2001-11-01 2003-05-13 Toyota Auto Body Co Ltd Ozonized water producing apparatus
JP2005169297A (en) * 2003-12-12 2005-06-30 Nissho Engineering:Kk Faucet-directly-connectable ozone water producer equipped with water flow power generator
JP2008190754A (en) * 2007-02-02 2008-08-21 Techno Ryowa Ltd Air conditioning system using microbubble or micronanobubble
JP2010046358A (en) * 2008-08-22 2010-03-04 Japan Organo Co Ltd Air purifying apparatus
JP3158191U (en) * 2010-01-07 2010-03-18 エフケイ・ライフサービス株式会社 Pipe power generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104214828A (en) * 2014-05-04 2014-12-17 徐海锋 Wind and rain type air purification method
CN104214828B (en) * 2014-05-04 2017-10-10 徐友明 A kind of windy and rainy formula air purification method

Similar Documents

Publication Publication Date Title
WO2017006837A1 (en) Electrolysis device and apparatus for producing electrolyzed ozonated water
WO2003000957A1 (en) Electrolyzing electrode and production method therefor and electrolysis method using electrolyzing electrode and electrolysis solution producing device
JP2009190016A (en) Method for preventing and removing biofilm in electrolytic capacitor for water purification
KR100634760B1 (en) Apparatus for producing sterilizing and oxidizing water by electrolysis cell used overpotential electrode
JP2013108104A (en) Electrolytic synthesis device, electrolytic treating device, electrolytic synthesis method, and electrolytic treatment method
CN216337991U (en) Self-generating sterilized water generating device
JP6413088B2 (en) Air purification device
JP4394941B2 (en) Electrolytic ozonizer
JP2010017413A (en) Air sterilization device
KR100845955B1 (en) Packed bed electro-sterilizer with 3-dimensional insoluble electrode
KR20060007369A (en) High electric field electrolysis cell
JP2012072940A (en) Air conditioning device
JP5244038B2 (en) Electrolyzed water mixing device
CN205924541U (en) Filtration formula electrochemistry air sterilization purifier
JP2005270788A (en) Flowing water purifying apparatus
JP2009106706A (en) Air sterilizing apparatus
JP3131357U (en) Circulating bath equipment that can supply carbon dioxide
JP5369804B2 (en) Water treatment equipment
JP2004082104A (en) Electrolytic sterilizing apparatus and method
WO2017138048A1 (en) Electrolyzed water-generating apparatus
WO2023197797A1 (en) Water electrolysis module, water inlet pipeline system, washing appliance, and control method
CN217236007U (en) Air conditioner and water tank assembly thereof
JP3132048U (en) Electrolyzed water generator
JP2014004568A (en) Water treatment apparatus
CN211834090U (en) Washing purifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140401