JP2012072257A - Hollow vinyl chloride resin particles, and method for producing the same - Google Patents

Hollow vinyl chloride resin particles, and method for producing the same Download PDF

Info

Publication number
JP2012072257A
JP2012072257A JP2010217611A JP2010217611A JP2012072257A JP 2012072257 A JP2012072257 A JP 2012072257A JP 2010217611 A JP2010217611 A JP 2010217611A JP 2010217611 A JP2010217611 A JP 2010217611A JP 2012072257 A JP2012072257 A JP 2012072257A
Authority
JP
Japan
Prior art keywords
vinyl chloride
polymerization
particles
hollow
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010217611A
Other languages
Japanese (ja)
Other versions
JP5680924B2 (en
Inventor
Atsushi Kono
篤 河野
Yuki Goto
祐樹 後藤
Yoshihiro Kubo
喜弘 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2010217611A priority Critical patent/JP5680924B2/en
Publication of JP2012072257A publication Critical patent/JP2012072257A/en
Application granted granted Critical
Publication of JP5680924B2 publication Critical patent/JP5680924B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide hollow PVC particles having a sharp particle size distribution and a porosity of 38 volume% or more.SOLUTION: The hollow vinyl chloride resin particles have: a passing ratio of a 60 mesh sieve of 95 wt% or more; a passing ratio of a 200 mesh sieve of 5 wt% or less; and the porosity of 38 volume% or more. In the method for producing the hollow vinyl chloride resin particles, they are produced by suspension polymerization in a system including monomer components including vinyl chloride as a principal component and a polyfunctional monomer, a polymerization initiator, a dispersant, and an emulsifying agent. In this process, as the emulsifying agent component, 10,000-20,000 ppm of higher fatty acid ester is added based on the all monomers. The particles can be produced in a high yield (a polymerization yield: 80% or more) without producing a scale.

Description

本発明は、高空隙(空隙率:38容積%以上)でかつ、粒度分布がシャープな中空塩化ビニル樹脂粒子及び、同粒子を、スケールを発生させること無く、高収率(重合収率:80%以上)で、製造する製造方法に関するものである。   The present invention provides a high yield (polymerization yield: 80%) of hollow vinyl chloride resin particles having high voids (porosity: 38% by volume or more) and sharp particle size distribution without generating scale. % Or more).

従来、塩化ビニル樹脂(以下PVCと略す)は、優れた物理的化学的性質を持ち、且つ、他樹脂に比べて安価な事から成形品の広い分野で利用されている。
しかしPVCは比重が1.4と大きく、他の樹脂に対し重いという欠点があり、軽量化のための様々な試みがなされている。
比重を下げるためには、樹脂中に空隙部を導入する方法がとられるのが一般的である。
PVCにおいて高空隙化を狙った方法としては、乳化剤として高級脂肪酸エステルを添加する方法(特許文献1)や、塩化ビニルモノマー成分の重合途中強制排出方法(特許文献2)が例示される。
Conventionally, vinyl chloride resin (hereinafter abbreviated as PVC) has excellent physical and chemical properties and is used in a wide range of molded products because it is cheaper than other resins.
However, PVC has a large specific gravity of 1.4 and is disadvantageous in that it is heavier than other resins, and various attempts have been made to reduce the weight.
In order to lower the specific gravity, a method of introducing voids into the resin is generally taken.
Examples of methods aimed at increasing the porosity in PVC include a method of adding a higher fatty acid ester as an emulsifier (Patent Document 1) and a method of forcibly discharging a vinyl chloride monomer component during polymerization (Patent Document 2).

特開平11−171905号公報JP-A-11-171905 特開平11−228606号公報JP-A-11-228606

しかしながら、これら従来発明についてはそれぞれ、以下のような問題点がある。
特許文献1に記載された発明は、高空隙且つ高重合収率を狙い、乳化剤を使用することでPVC粒子内の空隙を向上させている。
しかしながら、重合時の粒子の安定性から、乳化剤の使用許容上限量が5,000ppmまでと少なく、許容上限量を超えるとスケールが発生してしまうため、得られる中空PVC粒子の空隙率も36容積%までが限界であり、高い空隙率を出すに至っていない。
However, each of these conventional inventions has the following problems.
The invention described in Patent Document 1 aims at high voids and a high polymerization yield, and improves voids in the PVC particles by using an emulsifier.
However, because of the stability of the particles during polymerization, the allowable upper limit of the emulsifier is as small as 5,000 ppm, and scales are generated when the allowable upper limit is exceeded, so the void ratio of the resulting hollow PVC particles is also 36 volumes. % Is the limit, and a high porosity has not been achieved.

特許文献2に記載された発明は、重合途中、その時点で反応系内に残る塩化ビニルモノマーの重量比で5〜20%の原料塩化ビニルモノマーを強制排出させることで、重合容器内壁へのスケール付着を抑止し高空隙でシャープな粒度分布を示すスキン層の無いPVC粒子を得ようとするものである。
特許文献1の方法では、一次粒子間の空隙を増やすのに対し、特許文献2の方法では一次粒子内の空隙を更に増やすことを狙ったものである。
特許文献1と2とは空隙を形成させる場所が異なる為、特許文献2の方においてより相加効果が期待されるが、重合途中に残存する塩ビモノマーの最大20%を強制排出するものであるので、粒子骨格が形成された時点では残存モノマーの量も少なく、実施例で確認されるように得られる中空PVC粒子の空隙率も35容積%までが限界であり、特許文献2の方法の効果は極微量に留まる。
The invention described in Patent Document 2 is a method for forcibly discharging 5 to 20% of a raw material vinyl chloride monomer in the weight ratio of vinyl chloride monomer remaining in the reaction system at the time of polymerization, thereby scaling to the inner wall of the polymerization vessel. An object of the present invention is to obtain PVC particles without a skin layer that suppress adhesion and show a sharp particle size distribution with high voids.
In the method of Patent Document 1, the voids between the primary particles are increased, whereas in the method of Patent Document 2, the voids in the primary particles are further increased.
Since Patent Documents 1 and 2 are different in the place where voids are formed, Patent Document 2 is expected to have an additive effect, but it is forcibly discharged up to 20% of the vinyl chloride monomer remaining during the polymerization. Therefore, when the particle skeleton is formed, the amount of residual monomer is small, and the void ratio of the hollow PVC particles obtained as confirmed in the examples is limited to 35% by volume. Remains in trace amounts.

本発明は、このような事情の下、粒度分布がシャープで且つ空隙率:38容積%以上の中空PVC粒子を提供することを目的とするものである。 Under such circumstances, an object of the present invention is to provide hollow PVC particles having a sharp particle size distribution and a porosity of 38% by volume or more.

本発明者らは上記課題を解決すべく鋭意検討した結果、PVC重合時に、多官能性モノマーの存在下、乳化剤である高級脂肪酸エステルを全モノマーに対し10,000〜20,000ppm添加させることにより、上記課題が達成されることを見出し、この知見に基づいて本発明を成すに至った。   As a result of intensive studies to solve the above problems, the present inventors have added a higher fatty acid ester, which is an emulsifier, in the presence of a polyfunctional monomer in the presence of a polyfunctional monomer at 10,000 to 20,000 ppm based on the total monomer. The inventors have found that the above-mentioned problems can be achieved, and have come to accomplish the present invention based on this finding.

すなわち、本発明の第一の発明では、60メッシュ篩の通過率が95重量%以上で且つ200メッシュ篩の通過率が5重量%以下であり、且つ空隙率:38容積%以上である中空塩化ビニル樹脂粒子が示される。
得られたPVC粒子の成形応答性が良好なものとなるシャープな粒度分布を示すとともに、同粒子を用いた成形品の比重を良好に低減させる、従来技術のものに比して10%以上高い空隙率を有するものである。
空隙率が38容積%未満であると、同粒子を用いた軽量化の効果が小さくなってしまうため、好ましくない。
That is, in the first invention of the present invention, the hollow chlorination in which the passing rate of the 60 mesh sieve is 95% by weight or more, the passing rate of the 200 mesh sieve is 5% by weight or less, and the porosity is 38% by volume or more. Vinyl resin particles are shown.
10% or more higher than that of the prior art, which shows a sharp particle size distribution that gives good molding responsiveness of the obtained PVC particles and also reduces the specific gravity of the molded product using the particles. It has a porosity.
When the porosity is less than 38% by volume, the effect of weight reduction using the particles is reduced, which is not preferable.

ここで示す篩はJIS試験用ふるいを指すものである。
粒度分布を篩の通過率で判定し、JIS Z 8801に準じ60、100、200メッシュの篩を用い、得られた塩ビ粒子を分別し通過量の重量を測定して各篩の通過率及び粒度分布を算出した。
ここで示す粒度分布のシャープさは、粒度分布における60メッシュ通過が95重量%以上かつ200メッシュ通過が5重量%以下であれば粒度分布がシャープであると判定するものである。
The sieve shown here refers to a JIS test sieve.
The particle size distribution is determined by the passing rate of the sieve, and the obtained polyvinyl chloride particles are fractionated according to JIS Z 8801, and the weight of the passing amount is measured to determine the passing rate and the particle size of each sieve. Distribution was calculated.
The sharpness of the particle size distribution shown here determines that the particle size distribution is sharp if the 60 mesh passage in the particle size distribution is 95% by weight or more and the 200 mesh passage is 5% by weight or less.

ここで示す空隙率とは、中空PVC粒子全体積中に占める中空部体積を百分率(%)で表示したものであり、例えば、アムコ社製ポロシメーター2000を用いて封入水銀圧力2000kg/cm2の条件等にて測定することができ、次式で表されるものである。
空隙率(%)=(V2/V1)×100
・V1: 水銀が圧入される前の中空粒子の嵩体積
・V2: 封入水銀圧力2000kg/cm2での中空粒子細孔容積
The porosity shown here represents the volume of the hollow portion in the entire volume of the hollow PVC particles expressed as a percentage (%). For example, the condition of the enclosed mercury pressure of 2000 kg / cm 2 using an AMCO Porosimeter 2000, etc. And can be measured by the following formula.
Porosity (%) = (V2 / V1) × 100
V1: Bulk volume of hollow particles before mercury is injected. V2: Hollow particle pore volume at an enclosed mercury pressure of 2000 kg / cm @ 2.

本発明の第二の発明によれば、主成分としての塩化ビニルと多官能性モノマーとを含むモノマー成分と、重合開始剤、分散剤及び乳化剤とを含む系で、懸濁重合により塩化ビニル樹脂粒子を製造する際に、前記乳化剤成分として高級脂肪酸エステルを用い、同成分を全モノマーに対し、10,000〜20,000ppm添加することにより、スケールを発生させること無く、中空PVC粒子の重合収率:80%以上を確保しながら、第一の発明の粒子を得ることが可能となる。 According to the second invention of the present invention, a vinyl chloride resin is obtained by suspension polymerization in a system comprising a monomer component containing vinyl chloride as a main component and a polyfunctional monomer, and a polymerization initiator, a dispersant and an emulsifier. When particles are produced, a higher fatty acid ester is used as the emulsifier component, and the same component is added to 10,000 to 20,000 ppm with respect to all monomers, so that the polymerization yield of the hollow PVC particles can be reduced without generating scale. It is possible to obtain the particles of the first invention while ensuring a rate: 80% or more.

ここで示す多官能性モノマーとは、分子内にビニル基と反応可能な官能基を2つ以上有するモノマーである。
PVCの架橋度を高める作用があり、PVC粒子が固く安定化するため、耐圧縮強度の改善や粒度分布のシャープ化やスケール付着を防止する効果がある。
例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート等のジ(メタ)アクリレート;トリメチロールプロパントリ(メタ)アクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリストールトリ(メタ)アクリレート等のトリ(メタ)アクリレート;ペンタエリストールテトラ(メタ)アクリレート、ジペンタエリストールヘキサ(メタ)アクリレート、ジアリルフタレート、ジアリルマレート、ジアリルフマレート、ジアリルサクシネート、トリアリルイソシアヌレート等のジ又はトリアリル化合物;ジビニルベンゼン、ブタジエン等のジビニル化合物等が挙げられる。
The polyfunctional monomer shown here is a monomer having two or more functional groups capable of reacting with a vinyl group in the molecule.
There exists an effect | action which raises the bridge | crosslinking degree of PVC, and since PVC particle | grains are hard and stabilized, there exists an effect which prevents the compression resistance strength improvement, the sharpening of a particle size distribution, and scale adhesion.
For example, di (meth) acrylate such as ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, trimethylolpropane di (meth) acrylate, etc. (Meth) acrylate; tri (meth) acrylate such as trimethylolpropane tri (meth) acrylate, ethylene oxide-modified trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate; pentaerythritol tetra (meth) acrylate, Di or tria such as dipentaerystol hexa (meth) acrylate, diallyl phthalate, diallyl malate, diallyl fumarate, diallyl succinate, triallyl isocyanurate Le compounds; divinyl benzene, divinyl compounds such as butadiene and the like.

これらは単独で用いてもよく、2種以上を併用してもよい。
これらの配合量としては特に限定されないが、好ましい下限は0.1重量%であり、より好ましい下限は0.3重量%である。
0.1重量%未満であると、得られる中空PVC粒子の耐圧縮強度が不充分となり、粒度分布のブロード化、スケールの増加を生じるおそれがある。
一方好ましい上限量は、50重量%、より好ましくは30重量%以下である。
多官能モノマー量が増えると相対的に塩化ビニルモノマー量が減少し、乳化剤で空隙を形成する対象となる塩化ビニル成分量が減少するため、空隙の量が減少してしまい、高空隙化が図れない。
また、難燃性などの塩化ビニルとしての特性が発揮できなくなるおそれがある。
These may be used alone or in combination of two or more.
Although these compounding quantities are not specifically limited, A preferable minimum is 0.1 weight% and a more preferable minimum is 0.3 weight%.
If it is less than 0.1% by weight, the resulting hollow PVC particles have insufficient compressive strength, which may cause broadening of the particle size distribution and increase in scale.
On the other hand, the preferable upper limit is 50% by weight, more preferably 30% by weight or less.
As the amount of polyfunctional monomer increases, the amount of vinyl chloride monomer relatively decreases, and the amount of vinyl chloride component that forms voids with the emulsifier decreases, so the amount of voids decreases, and high voids can be achieved. Absent.
Moreover, there exists a possibility that the characteristics as vinyl chloride, such as a flame retardance, cannot be exhibited.

ここで示す重合開始剤とは、熱や光などの外部エネルギーを受けて分解し重合の起点となるラジカルを発生するものであり、上記塩化ビニルと多官能性モノマーとを含むモノマー成分に可溶である油溶性のものでる。
一般にPVCの重合に用いられる公知のラジカル重合開始剤等が好適に用いられる。
上記ラジカル重合開始剤としては特に限定されず、例えば、t−ブチルパーオキシネオデカノエート、t−ヘキシルパーオキシネオデカノエート、t−ヘキシルパーオキシピバレート、α−クミルパーオキシネオデカノエート、t−ヘキシルネオヘキサノエート、2,4,4−トリメチルペンチル−2−パーオキシ−2−ネオデカノエート等のパーエステル化合物;ジイソプロピルパーオキシジカーボネート、ジ−2−エチルヘキシルパーオキシジカーボネート、ジ−2−エトキシエチルパーオキシジカーボネート、ジメトキシイソプロピルパーオキシジカーボネート等のパーカーボネート化合物;デカノイルパーオキシド、ラウロイルパーオキシド、ベンゾイルパーオキシド、クメンハイドロパーオキシド、シクロヘキサノンパーオキシド、2,4−ジクロロベンゾイルパーオキシド、p−メンタンハイドロパーオキシド、3,5,5−トリメチルヘキサノイルパーオキシド、イソブチルパーオキシド等のパーオキシド化合物;α,α′−アゾビスイソブチロニトリル、α,α′−アゾビス(ジメチルバレロニトリル)、α,α′−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)等のアゾ化合物等が挙げられる。
The polymerization initiator shown here decomposes upon receipt of external energy such as heat and light to generate radicals that are the starting point of polymerization, and is soluble in the monomer component containing the above-mentioned vinyl chloride and polyfunctional monomer. It is oil-soluble.
In general, known radical polymerization initiators and the like used for polymerization of PVC are preferably used.
The radical polymerization initiator is not particularly limited, and examples thereof include t-butylperoxyneodecanoate, t-hexylperoxyneodecanoate, t-hexylperoxypivalate, and α-cumylperoxyneodecano. Perester compounds such as diates, t-hexyl neohexanoate, 2,4,4-trimethylpentyl-2-peroxy-2-neodecanoate; diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, di- Percarbonate compounds such as 2-ethoxyethyl peroxydicarbonate and dimethoxyisopropylperoxydicarbonate; decanoyl peroxide, lauroyl peroxide, benzoyl peroxide, cumene hydroperoxide, cyclohexanone peroxide Peroxide compounds such as 2,4-dichlorobenzoyl peroxide, p-menthane hydroperoxide, 3,5,5-trimethylhexanoyl peroxide, isobutyl peroxide; α, α′-azobisisobutyronitrile, α, Examples thereof include azo compounds such as α′-azobis (dimethylvaleronitrile) and α, α′-azobis (4-methoxy-2,4-dimethylvaleronitrile).

これらは単独で使用されてもよく、2種以上が併用されてもよい。
これらの配合量としては特に限定されないが、一般的には塩化ビニルと多官能性モノマーとを含むモノマー成分100重量部に対して0.001〜2重量部である。
These may be used alone or in combination of two or more.
Although these compounding quantities are not specifically limited, Generally it is 0.001-2 weight part with respect to 100 weight part of monomer components containing a vinyl chloride and a polyfunctional monomer.

ここで示す分散剤とは、物理的な吸着性の高い界面活性剤である。
高い吸着性を持つことからモノマー液滴の分散を促進し、粒子を均一化させる効果がある。
懸濁重合に用いるために、水溶性のものが用いられ、例えば、部分ケン化ポリビニルアルコール、メチルセルロースなどのセルロース誘導体、シリカ、リン酸カルシウム、水酸化マグネシウム、水酸化アルミニウム、水酸化第二鉄、硫酸バリウム、硫酸カルシウム、硫酸ナトリウム、蓚酸カルシウム、炭酸カルシウム、炭酸バリウム、炭酸マグネシウムなどが挙げられる。
The dispersant shown here is a surfactant having a high physical adsorptivity.
Since it has high adsorptivity, it has the effect of promoting the dispersion of the monomer droplets and making the particles uniform.
For use in suspension polymerization, water-soluble ones are used, for example, partially saponified polyvinyl alcohol, cellulose derivatives such as methylcellulose, silica, calcium phosphate, magnesium hydroxide, aluminum hydroxide, ferric hydroxide, barium sulfate. , Calcium sulfate, sodium sulfate, calcium oxalate, calcium carbonate, barium carbonate, magnesium carbonate and the like.

これらは単独で使用されてもよく、2種以上が併用されてもよい。
これらの配合量としては特に限定されないが、上記塩化ビニルと多官能性モノマーとを含むモノマー成分100重量部に対して、0.1重量部〜20重量部の割合で使用されるのが好ましい。
These may be used alone or in combination of two or more.
Although these compounding quantities are not specifically limited, It is preferable to use in the ratio of 0.1 weight part-20 weight part with respect to 100 weight part of monomer components containing the said vinyl chloride and a polyfunctional monomer.

ここで示す乳化剤とは、モノマーと溶媒同士の界面張力を低下させる機能を持つ界面活性剤である。
界面活性張力を低下させる機能が高いほどモノマー液滴内で一次粒子を小粒化させることができる。
重合時に一次粒子をポリマー化の途中で激しく分散・合一させることで一次粒子同士が密に詰まらないように合着させることができ、粒子内部の空隙を増加させることができる。
例えば、ソルビタンモノラウレートソルビタンモノミリステート、ソルビタンモノパルミテート、ソルビタンモノステアレートソルビタンジステアレートソルビタントリステアレート等のソルビタン飽和高級脂肪酸エステル、及び不飽和高級脂肪酸エステル等が挙げられる。
The emulsifier shown here is a surfactant having a function of reducing the interfacial tension between the monomer and the solvent.
The higher the function of lowering the surface active tension, the smaller the primary particles can be made in the monomer droplet.
When the primary particles are vigorously dispersed and united during polymerization during polymerization, the primary particles can be coalesced so as not to be densely packed together, and voids inside the particles can be increased.
Examples thereof include sorbitan monolaurate sorbitan monomyristate, sorbitan monopalmitate, sorbitan monostearate sorbitan distearate sorbitan tristearate and other sorbitan saturated higher fatty acid esters, and unsaturated higher fatty acid esters.

これらは単独で使用されてもよく、2種以上が併用されてもよい。
これらの配合量としては特に限定されないが、上記塩化ビニルと多官能性モノマーとを含むモノマー成分に対して、10,000〜20,000ppmの添加が好ましい。
10,000ppm未満であると空隙率の向上が低く高収率との両立ができず、20,000ppmを超えると上記モノマー成分の油滴が不安定になり、重合器内壁に樹脂スケールが付着するおそれがある。
These may be used alone or in combination of two or more.
Although these compounding quantities are not specifically limited, Addition of 10,000-20,000 ppm is preferable with respect to the monomer component containing the said vinyl chloride and a polyfunctional monomer.
If it is less than 10,000 ppm, the improvement of the porosity is low and it is impossible to achieve a high yield. If it exceeds 20,000 ppm, the oil droplets of the monomer components become unstable, and the resin scale adheres to the inner wall of the polymerization vessel. There is a fear.

特許文献1及び2では、10,000ppm以上の高級脂肪酸エステルを添加すると粒度分布の悪化、スケールの増加が起こるとされていたが、本願発明においては多官能モノマーを併用することによりPVCの架橋時に粒子が硬化するため、重合時に粒子同士がぶつかっても合一しにくくなり、高級脂肪酸エステルの量を増量してもシャープな粒度分布、スケール付着の防止が可能となった。 In Patent Documents 1 and 2, the addition of higher fatty acid esters of 10,000 ppm or more was supposed to deteriorate the particle size distribution and increase the scale. In the present invention, by using a polyfunctional monomer in combination, Since the particles harden, it becomes difficult to unite even if the particles collide during polymerization, and even if the amount of the higher fatty acid ester is increased, a sharp particle size distribution and scale adhesion can be prevented.

ここで示す重合容器内壁に付着するスケールの量とは、JIS Z 8801に準じ19メッシュの篩を用い、得られた塩ビ粒子を分別し非通過量の重量を測定するものである。
重合内壁へのスケール付着の量が多いと粒子同士の合着によるブロック化が起こるなど粒子として存在するポリマーが減少するおそれがある。
スケール量の評価としては、全収量におけるスケールの割合として計測し、5重量%未満を○、5重量%以上を×で表すものである。
The amount of scale adhering to the inner wall of the polymerization vessel shown here is to measure the weight of the non-passing amount by separating the obtained PVC particles using a 19-mesh sieve according to JIS Z8801.
If the amount of scale adhesion to the polymerization inner wall is large, there is a risk that the polymer existing as particles will decrease, such as blocking due to coalescence of particles.
As an evaluation of the scale amount, it is measured as a proportion of the scale in the total yield, and less than 5% by weight is represented by ◯, and 5% by weight or more is represented by x.

ここで示す懸濁重合とは、上記塩化ビニルと多官能性モノマーとを含むモノマー成分と、重合開始剤及び架橋剤により同モノマー成分と架橋可能な官能基を有する水溶性高分子化合物を、これらを含有する極性媒体中に懸濁した懸濁液状態で重合調製する方法であれば特に限定されないが、例えば、モノマー成分と重合開始剤とを溶解したモノマー溶液を予め調製し、これを上記水溶性高分子化合物を含有する極性媒体に添加し、攪拌により油滴状に分散させる方法等が挙げられる。得られる中空塩ビ粒子の粒子径は懸濁液中の油滴径に依存するため、分散安定剤の種類や量、又は、撹拌の方法や強度等により容易に制御することも可能である。 The suspension polymerization shown here refers to a monomer component containing the above vinyl chloride and a polyfunctional monomer, and a water-soluble polymer compound having a functional group that can be crosslinked with the monomer component by a polymerization initiator and a crosslinking agent. The polymerization is not particularly limited as long as it is a method for preparing a polymerization in a suspension state in a polar medium containing, for example, a monomer solution in which a monomer component and a polymerization initiator are dissolved is prepared in advance, and this is dissolved in the above water-soluble solution. For example, a method of adding to a polar medium containing a conductive polymer compound and dispersing in oil droplets by stirring. Since the particle diameter of the obtained hollow PVC particles depends on the oil droplet diameter in the suspension, it can be easily controlled by the type and amount of the dispersion stabilizer, the stirring method and strength, and the like.

上記モノマー成分を重合する温度は、用いるモノマー成分の組成や分子量、重合開始剤の種類や量等によって適宜決定されるが、通常は30〜70℃の範囲で行なわれる。 The temperature at which the monomer component is polymerized is appropriately determined depending on the composition and molecular weight of the monomer component to be used, the type and amount of the polymerization initiator, etc., but is usually in the range of 30 to 70 ° C.

重合反応終了後に、例えば、樹脂を蒸気、熱風等により加熱したり、減圧条件下に置いたりすることにより、狙いの中空PVC粒子が得られる。 After the completion of the polymerization reaction, for example, the target hollow PVC particles can be obtained by heating the resin with steam, hot air or the like, or placing the resin under reduced pressure conditions.

ここで示す重合収率とは、重合器に投入した全モノマーがどれだけポリマー化したかを表すもので、次式で表されるものである。
重合収率(%)=重合で得られたポリマー重量(g)/重合器に投入した全モノマー重量(g)
The polymerization yield shown here represents how much all monomers charged into the polymerization vessel have been polymerized, and is represented by the following formula.
Polymerization yield (%) = Polymer weight (g) obtained by polymerization / Total monomer weight (g) charged into the polymerization vessel

表1と表2に示されたように、本発明によれば、収量を高める為にスケールを発生させること無く、中空PVC粒子の重合収率:80%以上を確保しながら、PVC粒子の成形応答性が良好なものとなるシャープな粒度分布で且つ、空隙率:38容積%以上の中空PVC粒子を得ることが出来る。 As shown in Tables 1 and 2, according to the present invention, the formation of PVC particles while ensuring a polymerization yield of the hollow PVC particles: 80% or more without generating a scale in order to increase the yield. Hollow PVC particles having a sharp particle size distribution with good responsiveness and a porosity of 38% by volume or more can be obtained.

本発明の実施の形態を、以下の実施例1を元に説明する。
反応プロセスの概略フローを図1に示す。
An embodiment of the present invention will be described based on Example 1 below.
A schematic flow of the reaction process is shown in FIG.

実施例1:塩化ビニル系中空粒子の製造
内部に攪拌翼、外周に加熱冷却用ジャケットの備えられた25Lの耐圧重合容器に、
イオン交換水:8.78kgを投入したところに、
多官能性モノマー:トリメチロールプロパントリメタクリレート:0.92kgと、
分散剤:ポリビニルアルコールを10%水溶液の形で、ポリビニルアルコール成分として、塩化ビニルモノマーと多官能性モノマーの合計100重量部に対して1.5重量部となるように添加し、
乳化剤:ソルビタン脂肪酸エステルを16%水溶液の形で、ソルビタン脂肪酸エステル成分として、塩化ビニルモノマーと多官能性モノマーの合計に対して10,000ppmとなるように添加し、
油溶性ラジカル開始剤:ジ−secブチルパーオキシジカーボネート:3.7g 及び、α−クミルパーオキシネオデカノエート:5.5g
を投入した。
重合容器を密閉し、容器内部の空気を脱気した後、塩化ビニルモノマー2.76kgを圧入し、次いで攪拌を開始し、10分間懸濁させた。
その後、撹拌しながら54℃まで昇温させ、重合器内の温度を54℃に保持しながら水懸濁重合を行った。
器内圧力が0.4MPaまで低下したら、ジャケットに冷却水を通して30℃まで冷却し、その後、重合スラリーを取り出し、脱水装置により脱水し、真空乾燥させて、多孔性の中空樹脂粒子を得た。重合収率は80%であった。
Example 1: Production of vinyl chloride-based hollow particles In a 25 L pressure-resistant polymerization vessel equipped with a stirring blade inside and a jacket for heating and cooling on the outer periphery,
Ion-exchanged water: When 8.78 kg was charged,
Multifunctional monomer: Trimethylolpropane trimethacrylate: 0.92 kg,
Dispersant: Polyvinyl alcohol is added in the form of a 10% aqueous solution as a polyvinyl alcohol component so as to be 1.5 parts by weight with respect to 100 parts by weight of the total of vinyl chloride monomer and polyfunctional monomer,
Emulsifier: Add sorbitan fatty acid ester in the form of a 16% aqueous solution as a sorbitan fatty acid ester component so that the total amount of vinyl chloride monomer and polyfunctional monomer is 10,000 ppm.
Oil-soluble radical initiator: di-sec butyl peroxydicarbonate: 3.7 g and α-cumyl peroxyneodecanoate: 5.5 g
Was introduced.
After the polymerization vessel was sealed and the air inside the vessel was deaerated, 2.76 kg of vinyl chloride monomer was injected, and then stirring was started and suspended for 10 minutes.
Thereafter, the temperature was raised to 54 ° C. with stirring, and water suspension polymerization was performed while maintaining the temperature in the polymerization vessel at 54 ° C.
When the internal pressure dropped to 0.4 MPa, cooling water was passed through the jacket to 30 ° C., and then the polymerization slurry was taken out, dehydrated with a dehydrator, and vacuum dried to obtain porous hollow resin particles. The polymerization yield was 80%.

実施例2:塩化ビニル系中空粒子の製造
乳化剤:ソルビタン脂肪酸エステルの量を20,000ppmに変更した以外は、実施例1と同様に行った。
Example 2: Production of vinyl chloride hollow particles Emulsifier: The same procedure as in Example 1 except that the amount of sorbitan fatty acid ester was changed to 20,000 ppm.

比較例1:塩化ビニル系中空粒子の製造
乳化剤:ソルビタン脂肪酸エステルの量を5,000ppmに変更した以外は、実施例1と同様に行った。
Comparative Example 1: Production of vinyl chloride hollow particles The same procedure as in Example 1 was conducted except that the amount of emulsifier: sorbitan fatty acid ester was changed to 5,000 ppm.

比較例2:塩化ビニル系中空粒子の製造
乳化剤:ソルビタン脂肪酸エステルの量を25,000ppmに変更した以外は、実施例1と同様に行った。
Comparative Example 2: Production of vinyl chloride-based hollow particles The same procedure as in Example 1 was conducted except that the amount of emulsifier: sorbitan fatty acid ester was changed to 25,000 ppm.

比較例3:特開平11−171905号公報における実施例1を元にした、塩化ビニル系中空粒子の製造
内容積約100リットルの重合器(耐圧オートクレーブ)に、
脱イオン水45kgを入れ、更に、塩ビモノマー成分の重量に対して、
分子鎖末端にメルカプト基を有する部分鹸化化ポリ酢酸ビニル(鹸化度75モル%、平均重合度500)350ppm、
ソルビタンモノラウレート(HLB=8.6)1,000ppm、
ラウリン酸1,000ppm、
ポリアクリルアミド(平均分子量1,200万〜1,400万、51cP/0.1%水溶液)100ppm、
t−ブチルパーオキシネオデカノエート500ppm
を投入した。
次に、重合器内を40mmHgまで脱気した後、塩ビモノマー成分を45kg仕込み、攪拌を開始した。重合温度は57℃とし、重合終了までこの温度を保持した。
重合転化率が95%に達した時点で反応を終了し、重合器内の未反応塩ビモノマー成分を回収した後重合体をスラリー状で系外に取り出し、脱水乾燥後、目的のPVCを得た。
Comparative Example 3: Production of vinyl chloride hollow particles based on Example 1 in Japanese Patent Application Laid-Open No. 11-171905 In a polymerizer (pressure autoclave) having an internal volume of about 100 liters,
Add 45 kg of deionized water, and, with respect to the weight of the vinyl chloride monomer component,
350 ppm of partially saponified polyvinyl acetate having a mercapto group at the molecular chain end (saponification degree 75 mol%, average polymerization degree 500),
Sorbitan monolaurate (HLB = 8.6) 1,000 ppm,
1,000 ppm of lauric acid,
Polyacrylamide (average molecular weight 12 million to 14 million, 51 cP / 0.1% aqueous solution) 100 ppm,
t-Butylperoxyneodecanoate 500ppm
Was introduced.
Next, after degassing the inside of the polymerization vessel to 40 mmHg, 45 kg of a vinyl chloride monomer component was charged and stirring was started. The polymerization temperature was 57 ° C., and this temperature was maintained until the polymerization was completed.
When the polymerization conversion rate reached 95%, the reaction was terminated, and after recovering the unreacted vinyl chloride monomer component in the polymerization vessel, the polymer was taken out of the system in a slurry state, dehydrated and dried to obtain the desired PVC. .

比較例4:特開平11−228606号公報における実施例1を元にした、塩化ビニル系中空粒子の製造
内容積約100リットルの重合器(耐圧オートクレーブ)に、脱イオン水45kgを入れ、更に、塩ビモノマー成分の重量に対して、
部分鹸化化ポリ酢酸ビニル(鹸化度72モル%、平均重合度700)500ppm、
ソルビタンモノラウレート(HLB=8.6)1,400ppm、
ラウリン酸1,400ppm、
ポリエチレンオキサイド(平均分子量,430万〜480万、12cP/0.1%水溶液)100ppm、
t−ブチルパーオキシネオデカノエート500ppm
を投入した。
次に、重合器内を40mmHgまで脱気した後、塩ビモノマー成分を45kg仕込み、攪拌を開始した。重合温度は57℃とし、重合終了までこの温度を保持した。
重合温度が恒温に達した後、塩ビモノマー成分が重合により約31kg消費した時点(単量体/水媒体=約0.3)で塩ビモノマー成分を約1.5kg(重合器内残余単量体1に対して重量比で約0.1に相当)を排ガス操作により系外へ排除し、塩ビモノマー成分回収装置へ導いた。更に重合を続け、重合転化率が95%に達した時点で反応を終了し、重合器内の未反応塩ビモノマー成分を回収した後、重合体をスラリー状で系外に取り出し、脱水乾燥後、目的のPVCを得た。
Comparative Example 4: Production of vinyl chloride hollow particles based on Example 1 in JP-A-11-228606, into a polymerizer (pressure-resistant autoclave) having an internal volume of about 100 liters, 45 kg of deionized water, To the weight of the vinyl chloride monomer component
Partially saponified polyvinyl acetate (saponification degree 72 mol%, average polymerization degree 700) 500 ppm,
Sorbitan monolaurate (HLB = 8.6) 1,400 ppm,
1,400 ppm lauric acid,
Polyethylene oxide (average molecular weight, 4.3 million to 4.8 million, 12 cP / 0.1% aqueous solution) 100 ppm,
t-Butylperoxyneodecanoate 500ppm
Was introduced.
Next, after degassing the inside of the polymerization vessel to 40 mmHg, 45 kg of a vinyl chloride monomer component was charged and stirring was started. The polymerization temperature was 57 ° C., and this temperature was maintained until the polymerization was completed.
After the polymerization temperature reaches a constant temperature, when about 31 kg of the vinyl monomer component is consumed by polymerization (monomer / aqueous medium = about 0.3), about 1.5 kg of the vinyl chloride monomer component (residual monomer in the polymerization vessel) (Corresponding to about 0.1 by weight with respect to 1) was removed from the system by exhaust gas operation and led to a vinyl chloride monomer component recovery device. The polymerization was further continued, and the reaction was terminated when the polymerization conversion rate reached 95%. After recovering the unreacted vinyl chloride monomer component in the polymerization vessel, the polymer was taken out of the system in a slurry state, dehydrated and dried, The desired PVC was obtained.

比較例5:
多官能性モノマーを添加しない以外は実施例1と同様に行った。
Comparative Example 5:
The same procedure as in Example 1 was carried out except that no polyfunctional monomer was added.

結果を表1及び表2に示す。 The results are shown in Tables 1 and 2.

Figure 2012072257
Figure 2012072257

Figure 2012072257
Figure 2012072257

本発明の反応プロセス概略フローの一例である。It is an example of the reaction process schematic flow of this invention.

Claims (2)

60メッシュ篩の通過率が95重量%以上で且つ200メッシュ篩の通過率が5重量%以下であり、且つ空隙率:38容積%以上である中空塩化ビニル樹脂粒子。
Hollow vinyl chloride resin particles in which the passing rate of a 60 mesh sieve is 95% by weight or more, the passing rate of a 200 mesh sieve is 5% by weight or less, and the porosity is 38% by volume or more.
主成分としての塩化ビニルと多官能性モノマーとを含むモノマー成分と、重合開始剤、分散剤及び乳化剤とを含む系で、懸濁重合により塩化ビニル樹脂粒子を製造する際に、前記乳化剤成分として高級脂肪酸エステルを全モノマーに対し、10,000〜20,000ppm添加することを特徴とする請求項1記載の中空塩化ビニル樹脂粒子の製造方法。   When producing vinyl chloride resin particles by suspension polymerization in a system containing a monomer component containing vinyl chloride as a main component and a polyfunctional monomer, and a polymerization initiator, a dispersant and an emulsifier, the emulsifier component The method for producing hollow vinyl chloride resin particles according to claim 1, wherein the higher fatty acid ester is added in an amount of 10,000 to 20,000 ppm based on all monomers.
JP2010217611A 2010-09-28 2010-09-28 Hollow vinyl chloride resin particles and method for producing the same Active JP5680924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010217611A JP5680924B2 (en) 2010-09-28 2010-09-28 Hollow vinyl chloride resin particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010217611A JP5680924B2 (en) 2010-09-28 2010-09-28 Hollow vinyl chloride resin particles and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012072257A true JP2012072257A (en) 2012-04-12
JP5680924B2 JP5680924B2 (en) 2015-03-04

Family

ID=46168789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010217611A Active JP5680924B2 (en) 2010-09-28 2010-09-28 Hollow vinyl chloride resin particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP5680924B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017165890A (en) * 2016-03-17 2017-09-21 綜研化学株式会社 Hollow particle and method for producing the same
WO2022060843A1 (en) * 2020-09-17 2022-03-24 Mexichem Specialty Resins Inc. Low density polyvinyl chloride microparticles

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429891A (en) * 1977-08-09 1979-03-06 Nippon Synthetic Chem Ind Co Ltd:The Dispersion stabilizer for suspension polymerization of vinyl compound
JPS6289703A (en) * 1985-10-15 1987-04-24 Kanegafuchi Chem Ind Co Ltd Production of chlorinated vinyl chloride resin
JPH11189606A (en) * 1997-10-23 1999-07-13 Sekisui Chem Co Ltd Suspension polymerization of vinylchloride resin
JPH11209425A (en) * 1998-01-30 1999-08-03 Sekisui Chem Co Ltd Production of chlorinated vinyl chloride resin
JPH11228607A (en) * 1998-02-16 1999-08-24 Sekisui Chem Co Ltd Suspension polymerization for vinyl chloride-based resin
JPH11228606A (en) * 1998-02-16 1999-08-24 Sekisui Chem Co Ltd Suspension polymerization for vinyl chloride-based resin
JP2000103803A (en) * 1998-09-29 2000-04-11 Taiyo Enbi Kk Production of vinyl chloride-based polymer
JP2011144342A (en) * 2009-12-18 2011-07-28 Sekisui Chem Co Ltd Manufacturing method of vinyl chloride hollow particle, vinyl chloride hollow particle, vinyl chloride resin composition, vinyl chloride molded product

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429891A (en) * 1977-08-09 1979-03-06 Nippon Synthetic Chem Ind Co Ltd:The Dispersion stabilizer for suspension polymerization of vinyl compound
JPS6289703A (en) * 1985-10-15 1987-04-24 Kanegafuchi Chem Ind Co Ltd Production of chlorinated vinyl chloride resin
JPH11189606A (en) * 1997-10-23 1999-07-13 Sekisui Chem Co Ltd Suspension polymerization of vinylchloride resin
JPH11209425A (en) * 1998-01-30 1999-08-03 Sekisui Chem Co Ltd Production of chlorinated vinyl chloride resin
JPH11228607A (en) * 1998-02-16 1999-08-24 Sekisui Chem Co Ltd Suspension polymerization for vinyl chloride-based resin
JPH11228606A (en) * 1998-02-16 1999-08-24 Sekisui Chem Co Ltd Suspension polymerization for vinyl chloride-based resin
JP2000103803A (en) * 1998-09-29 2000-04-11 Taiyo Enbi Kk Production of vinyl chloride-based polymer
JP2011144342A (en) * 2009-12-18 2011-07-28 Sekisui Chem Co Ltd Manufacturing method of vinyl chloride hollow particle, vinyl chloride hollow particle, vinyl chloride resin composition, vinyl chloride molded product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017165890A (en) * 2016-03-17 2017-09-21 綜研化学株式会社 Hollow particle and method for producing the same
WO2022060843A1 (en) * 2020-09-17 2022-03-24 Mexichem Specialty Resins Inc. Low density polyvinyl chloride microparticles

Also Published As

Publication number Publication date
JP5680924B2 (en) 2015-03-04

Similar Documents

Publication Publication Date Title
JP6546586B2 (en) Dispersion Stabilizer for Suspension Polymerization, Method of Producing Vinyl Polymer, and Vinyl Chloride Resin
JP5274774B2 (en) Vinylidene fluoride polymer and method for producing the same
TWI669318B (en) Dispersion stabilizer for suspension polymerization and method for producing vinyl resin
JP6260041B2 (en) Dispersion stabilizer for suspension polymerization and method for producing vinyl resin
WO2015019614A1 (en) Dispersion stabilizer for suspension polymerization, and manufacturing method for vinyl resin
WO2018096937A1 (en) Modified vinyl alcohol polymer and production method therefor
JP3474304B2 (en) Dispersion stabilizer for suspension polymerization of vinyl compounds
KR20190008186A (en) Process for producing polyvinyl chloride particles for producing chlorinated polyvinyl chloride
JP3474307B2 (en) Dispersion stabilizer for suspension polymerization of vinyl compounds
JP5680924B2 (en) Hollow vinyl chloride resin particles and method for producing the same
JP4896709B2 (en) Polymerization reactor output increased by using specific initiator systems
EP0705847A2 (en) Suspending agent for suspension polymerization of vinyl compound
JPWO2018038112A1 (en) Modified vinyl alcohol polymer and dispersion stabilizer for suspension polymerization
JP4024482B2 (en) Method for producing vinyl chloride polymer
JPH0710892B2 (en) Manufacturing method of vinyl chloride resin
JP4571804B2 (en) Adding organic initiator during pressure drop in vinyl chloride monomer polymerization reaction
JP5019778B2 (en) Method for producing vinyl chloride polymer
TWI772303B (en) Production method of vinyl alcohol polymer
JP4098482B2 (en) Method for producing vinyl chloride polymer
JP5465635B2 (en) Dispersion stabilizer for suspension polymerization of vinyl compounds
JP5564160B2 (en) Method for producing vinyl chloride polymer
JP3426770B2 (en) Dispersion stabilizer for suspension polymerization of vinyl compounds
JP2024061755A (en) Microcapsules
JP2000109504A (en) Production of vinyl chloride-based polymer
JPH11181007A (en) Polymerization of vinyl chloride polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140224

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150108

R151 Written notification of patent or utility model registration

Ref document number: 5680924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250