JP2012071617A - Method of manufacturing compression molded product - Google Patents

Method of manufacturing compression molded product Download PDF

Info

Publication number
JP2012071617A
JP2012071617A JP2012000429A JP2012000429A JP2012071617A JP 2012071617 A JP2012071617 A JP 2012071617A JP 2012000429 A JP2012000429 A JP 2012000429A JP 2012000429 A JP2012000429 A JP 2012000429A JP 2012071617 A JP2012071617 A JP 2012071617A
Authority
JP
Japan
Prior art keywords
molded product
compression molded
wood
flame
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012000429A
Other languages
Japanese (ja)
Inventor
Koichi Kimura
浩一 木村
Takamitsu Nakamura
貴光 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2012000429A priority Critical patent/JP2012071617A/en
Publication of JP2012071617A publication Critical patent/JP2012071617A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dry Formation Of Fiberboard And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a compression molded product which does not use petroleum-based resin or reduces use amount of petroleum-based resin, has high mechanical strength and uses a plant material suitable for a casing of electronic equipment.SOLUTION: First, wooden chips are treated to have a predetermined shape. Next, while the treated wooden chips are heated, pressure is applied, so as to precipitate a plant-derived adhesion component from the wooden chips. Thus, the compression molded product having high mechanical strength and using the plant material suitable for the casing of the electronic equipment can be obtained.

Description

本発明は、主原料として木又は竹等の植物を用いた圧縮成型品の製造方法に関し、特に電子機器の筐体に好適な圧縮成型品の製造方法に関する。   The present invention relates to a method for manufacturing a compression molded product using a plant such as wood or bamboo as a main raw material, and particularly relates to a method for manufacturing a compression molded product suitable for a housing of an electronic device.

近年、石油に代表される化石資源が大量消費されており、それらの化石資源の枯渇が危惧されている。また、化石資源の大量消費にともなって多量の二酸化炭素が発生しており、それが地球温暖化の原因になっていると指摘されている。現在、多くの製品に石油系樹脂が使用されているが、上記の問題に鑑みて、石油系樹脂に替えてポリ乳酸等の植物系樹脂を用いる動きが世界的に盛んになっている。   In recent years, fossil resources represented by petroleum have been consumed in large quantities, and there is a concern about the exhaustion of those fossil resources. In addition, it is pointed out that a large amount of carbon dioxide is generated with the large consumption of fossil resources, which causes global warming. Currently, petroleum-based resins are used in many products, but in view of the above-mentioned problems, the movement of using plant-based resins such as polylactic acid instead of petroleum-based resins has become popular worldwide.

ポリ乳酸はトウモロコシ等の植物から作られ、廃棄後は土中の微生物により水と二酸化炭素に分解される。また、ポリ乳酸を焼却した場合も、水と二酸化酸素とが生成される。これらの二酸化炭素は光合成により植物に取り込まれ、植物の成長に使用される。このように、ポリ乳酸等の植物系樹脂は、環境にやさしい循環型の素材である。   Polylactic acid is made from plants such as corn, and after disposal, it is decomposed into water and carbon dioxide by microorganisms in the soil. Also, when polylactic acid is incinerated, water and oxygen dioxide are generated. These carbon dioxides are taken into plants by photosynthesis and used for plant growth. In this way, plant-based resins such as polylactic acid are environmentally friendly and recyclable materials.

近年、ノート型パソコン(PC)や携帯電話等の電子機器の筐体にもポリ乳酸等の植物系樹脂を使用することが提案されている(例えば、特許文献1)。しかし、ポリ乳酸等の植物系樹脂は、一般的に曲げ強さ等の剛性は高いものの、アイゾット衝撃強度等の耐衝撃性が十分でなく、荷重たわみ温度等の耐熱性も低いため、単体で電子機器の筐体に用いることは困難である。そのため、植物系樹脂と石油系樹脂とを混合した樹脂を用いて電子機器の筐体を形成することが検討されている(例えば、特許文献2)。   In recent years, it has been proposed to use a plant-based resin such as polylactic acid in a casing of an electronic device such as a notebook personal computer (PC) or a mobile phone (for example, Patent Document 1). However, plant-based resins such as polylactic acid generally have high rigidity such as flexural strength, but they do not have sufficient impact resistance such as Izod impact strength and low heat resistance such as deflection temperature under load. It is difficult to use it for a housing of an electronic device. Therefore, formation of the housing | casing of an electronic device using resin which mixed vegetable resin and petroleum resin is examined (for example, patent document 2).

その他、植物材料を用いた部材として、木質ボード(パーティクルボードとも呼ばれる)がある(例えば、特許文献3,4)。木質ボードは、木材を破砕したもの、木材を薄く紙状にしたもの、又は古紙等(以下、「破砕物等」という)に接着剤(結合剤)を含浸させて圧縮・積層したものであり、比較的硬くて剛性が高いという特徴がある。但し、木質ボードには、石油系の接着剤や溶剤が使用されており、その割合が30%を超えるものもある。また、木質ボードは、原料の破砕物等の大きさのばらつきが大きく、精密な加工には不向きである。更に、ノート型パソコン等の電子機器の筐体にはUL規格に規定される難燃性が要求されるため、木質ボードをそのまま電子機器の筐体に使用することは困難である。   In addition, as a member using plant material, there is a wood board (also called a particle board) (for example, Patent Documents 3 and 4). Wood boards are crushed wood, thin timber made of paper, or waste paper (hereinafter referred to as “crushed material”) impregnated with an adhesive (binder) and compressed and laminated. It is characterized by relatively hard and high rigidity. However, petroleum-based adhesives and solvents are used for the wood board, and there are cases where the ratio exceeds 30%. In addition, the wood board has a large variation in the size of the crushed material and the like, and is not suitable for precise processing. Furthermore, since the flame | frame property prescribed | regulated to UL specification is requested | required by the housing | casing of electronic devices, such as a notebook type personal computer, it is difficult to use a wooden board for the housing | casing of an electronic device as it is.

上述したように、従来は、植物材料のみで強度が高くかつ加工精度が高い成型品を製造することは困難であり、植物材料を使用する場合も多くの石油系樹脂が必要であった。そのため、石油系樹脂を使用しない、又は石油系樹脂の使用量が少なくてすむ成型品及びその製造方法が要望されている。   As described above, conventionally, it has been difficult to produce a molded product having high strength and high processing accuracy using only plant materials, and many petroleum resins have been required even when plant materials are used. Therefore, there is a demand for a molded product that does not use petroleum-based resin or uses a small amount of petroleum-based resin, and a manufacturing method thereof.

特開2001−244645号公報JP 2001-244645 A 特開2006−182994号公報JP 2006-182994 A 特許第2888153号Japanese Patent No. 2888153 特許第2580522号Japanese Patent No. 2580522

本発明の目的は、石油系樹脂を使用しない、又は石油系樹脂の使用量が少なくてすみ、機械強度が高く、電子機器の筐体に好適な植物材料を用いた圧縮成型品の製造方法を提供することにある。   An object of the present invention is to provide a method for producing a compression molded product using a plant material that does not use petroleum resin or uses less petroleum resin, has high mechanical strength, and is suitable for a housing of an electronic device. It is to provide.

本発明の一観点によれば、木片を所定の形状に加工する工程と、加工後の前記木片を加熱しながら圧力を加えることにより前記木片から植物由来の接着成分を析出させる加圧成型工程とを有する圧縮成型品の製造方法が提供される。   According to one aspect of the present invention, a step of processing a piece of wood into a predetermined shape, and a pressure molding step of depositing a plant-derived adhesive component from the piece of wood by applying pressure while heating the piece of wood after processing A method for producing a compression-molded article having the above is provided.

上述の一観点によれば、機械強度が高く、電子機器の筐体に好適な植物材料を用いた圧縮成型品が得られる。   According to the one aspect described above, a compression molded product using a plant material having high mechanical strength and suitable for a housing of an electronic device can be obtained.

図1は、第1の参考形態に係る圧縮成型品の製造方法を示すフローチャートである。FIG. 1 is a flowchart showing a method for manufacturing a compression molded product according to the first reference embodiment. 図2は、第1の参考形態に係る圧縮成型品の製造方法を工程順に示す模式図である。FIG. 2 is a schematic diagram showing a method of manufacturing a compression molded product according to the first reference embodiment in the order of steps. 図3は、第1の参考形態に係る圧縮成型品をノート型パソコンの筐体用部品(蓋部)に採用した例を示す斜視図である。FIG. 3 is a perspective view showing an example in which the compression molded product according to the first reference embodiment is adopted as a casing part (lid part) of a notebook computer. 図4は、第1の参考形態に係る圧縮成型品を携帯電話の筐体用部品に採用した例を示す図である。FIG. 4 is a diagram showing an example in which the compression molded product according to the first reference embodiment is adopted as a casing component of a mobile phone. 図5は、第2の参考形態に係る圧縮成型品の製造方法を示すフローチャートである。FIG. 5 is a flowchart showing a method for manufacturing a compression molded product according to the second embodiment.

以下、本発明の実施形態について、添付の図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

(第1の参考形態)
図1は第1の参考形態に係る圧縮成型品の製造方法を示すフローチャート、図2は同じくその製造方法を工程順に示す模式図である。
(First reference form)
FIG. 1 is a flowchart showing a method for manufacturing a compression molded product according to the first embodiment, and FIG. 2 is a schematic diagram showing the manufacturing method in the order of steps.

まず、原料として、木又は竹(以下、「木材等」という)を粉砕して、粒径(平均粒径)が例えば5〜100μmの粉砕物(以下、「木粉」ともいう)を得る(ステップS11)。原料となる木や竹の種類は特に限定するのものではないが、杉(すぎ)、檜(ひのき)、ブナ、桐(きり)、欅(けやき)、楓(かえで)、桑(くわ)、楠(くすのき)、楢(なら)、楡(にれ)、竹の心材又は表皮等を使用することができる。また、複数種類の木材等の粉砕物を混合して使用してもよい。   First, wood or bamboo (hereinafter referred to as “wood” or the like) is pulverized as a raw material to obtain a pulverized product (hereinafter also referred to as “wood powder”) having a particle size (average particle size) of, for example, 5 to 100 μm ( Step S11). There are no particular restrictions on the type of wood or bamboo used as the raw material, but cedar (cedar), hinoki (cypress), beech, paulownia (kiri), persimmon (keyaki), persimmon (maple), mulberry (kuwa), It is possible to use bamboo grass, nara, bamboo core, skin or the like. A plurality of types of pulverized materials such as wood may be mixed and used.

電子機器の筐体を作成する場合、加工精度及び均一性を確保するために、上述したように木粉の平均粒径は5〜100μmとすることが好ましい。しかし、用途によってはこの範囲から外れる粒径としてもよい。   When creating a casing for an electronic device, it is preferable that the average particle diameter of the wood flour is 5 to 100 μm as described above in order to ensure processing accuracy and uniformity. However, depending on the application, the particle size may be out of this range.

次に、図2(a)に示すように、木粉を第1の金型11内に充填し、金型温度を例えば100〜250℃、圧力を例えば30MPa〜300MPaとして、第1の加圧成型工程を実施する(ステップS12)。この第1の加工成型工程は木粉同士を緩く結合した状態に仮成型する工程であり、成型体として形状を維持できる程度の温度条件及び圧力条件で実施する。第1の加圧成型工程における温度条件及び圧力条件が高すぎると、次の難燃剤含浸工程で成型体に難燃剤を含浸させることができなくなるという問題が発生する。以下、第1の加圧成型工程で成型された成型体を仮成型体12という。   Next, as shown in FIG. 2 (a), wood powder is filled in the first mold 11, the mold temperature is set to 100 to 250 ° C., the pressure is set to, for example, 30 MPa to 300 MPa, and the first pressurization is performed. A molding process is performed (step S12). This first processing and molding step is a step of temporarily molding the wood powder into a loosely coupled state, and is performed under temperature and pressure conditions that can maintain the shape of the molded body. If the temperature condition and pressure condition in the first pressure molding process are too high, there arises a problem that it becomes impossible to impregnate the molded body with the flame retardant in the next flame retardant impregnation process. Hereinafter, the molded body molded in the first pressure molding process is referred to as a temporary molded body 12.

次に、仮成型体12を第1の金型11から取り出し、その表面に難燃剤を含浸させる(ステップS13)。この難燃剤含浸工程では、例えば図2(b)に示すように、仮成型体12を液状の難燃剤13中に浸漬すればよい。また、難燃剤を加熱しその蒸気を仮成型体12に接触させることにより、仮成型体12の表面に難燃剤を含浸させてもよい。難燃剤は仮成型体12の表面近傍で濃度が最も高くなるように浅く含浸させればよく、中心部まで難燃剤を浸透させる必要はない。   Next, the temporary molded body 12 is taken out from the first mold 11, and the surface thereof is impregnated with a flame retardant (step S13). In this flame retardant impregnation step, the temporary molded body 12 may be immersed in the liquid flame retardant 13 as shown in FIG. Further, the surface of the temporary molded body 12 may be impregnated with the flame retardant by heating the flame retardant and bringing the vapor into contact with the temporary molded body 12. The flame retardant may be shallowly impregnated so that the concentration becomes the highest in the vicinity of the surface of the temporary molded body 12, and it is not necessary to penetrate the flame retardant to the center.

難燃剤としては、例えばホウ素系の水溶液を使用することができる。ホウ素系難燃剤には、例えばポリホウ酸ナトリウム(ホウ酸イオン重合体塩)及びホウ酸亜鉛等がある。ホウ素系以外の難燃剤としては、例えばリン酸エステル又はトリアジン化合物等の有機系難燃性がある。リン酸エステルとしては、例えば、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート又はポリリン酸アンモニウム等が使用できる。また、トリアジン化合物としては、例えば、メラミンシアヌレート、トリスイソシアヌレート等が使用できる。   As the flame retardant, for example, a boron-based aqueous solution can be used. Examples of the boron-based flame retardant include sodium polyborate (borate ion polymer salt) and zinc borate. Examples of flame retardants other than boron-based flame retardants include organic flame retardants such as phosphate esters or triazine compounds. Examples of the phosphate ester include triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, ammonium polyphosphate, and the like. Moreover, as a triazine compound, a melamine cyanurate, a tris isocyanurate, etc. can be used, for example.

次に、図2(c)に示すように、表面に難燃剤を含浸させた仮成型体12を第2の金型14内に配置し、第1の加圧成型工程よりも高い条件で第2の加圧成型工程を実施する。第2の加圧成型工程における金型温度は例えば160〜250℃であり、成型圧力は例えば50〜500Paである(ステップS14)。   Next, as shown in FIG. 2 (c), a temporary molded body 12 having a surface impregnated with a flame retardant is placed in the second mold 14, and the first molding is performed under conditions higher than those in the first pressure molding step. 2 is performed. The mold temperature in the second pressure molding process is, for example, 160 to 250 ° C., and the molding pressure is, for example, 50 to 500 Pa (step S14).

この第2の加圧成型工程では、仮成型体12を構成する木粉からリグニンやヘミセルロース等の成分が軟化した状態で析出する。そして、これらの成分が天然の接着剤(バインダ)として働き、第2の金型14内の木粉が相互に強固に結合して一体化され、所定の形状の圧縮成型品15が得られる。この第2の加圧成型工程における金型温度及び成型圧力は原料として用いる木材等の種類や用途に応じて適宜決定すればよいが、上述したように木粉から接着剤となる成分が析出して金型内の木粉が一体化する温度及び圧力に設定することが必要である。   In the second pressure molding step, components such as lignin and hemicellulose are precipitated from the wood powder constituting the temporary molded body 12 in a softened state. These components function as a natural adhesive (binder), and the wood powder in the second mold 14 is firmly bonded and integrated with each other, whereby a compression molded product 15 having a predetermined shape is obtained. The mold temperature and the molding pressure in this second pressure molding process may be appropriately determined according to the type and application of the wood used as the raw material, but as described above, the component that becomes the adhesive precipitates from the wood powder. It is necessary to set the temperature and pressure at which the wood flour in the mold is integrated.

次いで、図2(d)に示すように、第2の金型14から圧縮成型品15を取り出す。このようにして製造された圧縮成型品15は機械的強度が高く、寸法精度も良好である。また、比重を1以下にすることも可能である。更に、原料として植物のみを使用しているため環境に対する負荷が小さい。更にまた、難燃剤を含むことにより燃えにくいという性質を有している。   Next, as shown in FIG. 2D, the compression molded product 15 is taken out from the second mold 14. The compression molded product 15 manufactured in this way has high mechanical strength and good dimensional accuracy. It is also possible to make the specific gravity 1 or less. Furthermore, since only plants are used as raw materials, the burden on the environment is small. Furthermore, it has the property that it is hard to burn by containing a flame retardant.

なお、圧縮成型品15の剛性をより一層向上させるために、原料となる木粉に無機材料、例えば炭素繊維、ガラス繊維、又はガラスフレーム、ガラスビーズ、タルク若しくはマイカ等のケイ酸塩等を添加してもよい。これらの無機材料に替えて、ケナフ又はマニラ麻等の植物系繊維を添加してもよい。また、必要に応じて原料となる木粉に、可塑剤、耐候性改良剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、離型剤、顔料、着色剤、帯電防止剤、香料、発泡剤、抗菌剤又は抗カビ剤等を添加してもよい。これらの添加剤の選択にあたっては、生物に対して無害であって燃焼により有毒ガスを発生しないなど、環境に対する負荷が小さいものを選択することが好ましい。   In order to further improve the rigidity of the compression molded product 15, an inorganic material such as carbon fiber, glass fiber, glass frame, glass bead, talc or mica is added to the raw wood flour. May be. In place of these inorganic materials, plant fibers such as kenaf or manila hemp may be added. In addition, plasticizer, weather resistance improver, antioxidant, heat stabilizer, light stabilizer, UV absorber, lubricant, mold release agent, pigment, colorant, antistatic agent can be added to the raw wood powder as necessary. Agents, fragrances, foaming agents, antibacterial agents, antifungal agents and the like may be added. In selecting these additives, it is preferable to select an additive that is harmless to living organisms and does not generate toxic gas by combustion, and that has a low environmental load.

更に、必要に応じて、原料となる木粉に石油系の樹脂等を混合してもよい。但し、その場合は環境の負荷を考慮して、植物系材料の比率を25%以上、より好ましくは50%以上とするのがよい。   Furthermore, you may mix petroleum-type resin etc. with the wood flour used as a raw material as needed. However, in that case, considering the environmental load, the ratio of the plant-based material should be 25% or more, more preferably 50% or more.

本参考形態によれば、木材加工時に出る廃材や大量発生している竹等を有効利用することができる。また、本参考形態によれば、植物材料のみ又は植物材料と少量の添加剤のみで圧縮成型品を製造できるので、圧縮成型品に木材の質感を残すことや、比重を1以下にすることが可能である。更に、本参考形態により作製された圧縮成型品は、機械的強度が高く、寸法精度が良好であり、軽量であるとともに難燃性を有するので、ノート型パソコンや携帯電話等の電子機器の筐体に好適である。図3に、本参考形態に係る圧縮成型品をノート型パソコンの筐体用部品(蓋部)に採用した例を示す。また、図4に、本参考形態に係る圧縮成型品を携帯電話の筐体用部品に採用した例を示す。   According to the present embodiment, it is possible to effectively use waste materials generated during wood processing, bamboo that is generated in large quantities, and the like. Moreover, according to this reference form, since a compression molding product can be manufactured only with plant material or only with plant material and a small amount of additives, it is possible to leave the texture of wood in the compression molding product or to reduce the specific gravity to 1 or less. Is possible. Furthermore, the compression molded product produced according to the present embodiment has high mechanical strength, good dimensional accuracy, light weight and flame resistance, so that it can be used for electronic devices such as notebook computers and mobile phones. Suitable for the body. FIG. 3 shows an example in which the compression molded product according to the present embodiment is adopted as a casing part (lid part) of a notebook computer. FIG. 4 shows an example in which the compression molded product according to the present embodiment is adopted as a casing component for a mobile phone.

以下、本参考形態の方法により実際に圧縮成型品を製造し、その特性を調べた結果について説明する。   Hereinafter, the result of actually manufacturing a compression molded product by the method of this embodiment and examining the characteristics thereof will be described.

(試験片の作製)
まず、上述した方法により、アメリカ材料試験協会(ASTM:American Society for Testing and Material)の工業規格に規定されている曲げ試験片を作製した。すなわち、原料として、秋田杉を粉砕して平均粒径が約10μmの木粉を得た。この木粉を第1の金型内に充填し、三庄インダストリー社製の加熱プレス機を用いて、成型温度が160℃、成型圧力が30MPa、プレス時間が3分間の条件で第1の加圧成型工程を実施し、仮成型体を得た。
(Preparation of test piece)
First, the bending test piece prescribed | regulated to the industry standard of American Society for Testing and Material (ASTM) was produced by the method mentioned above. That is, Akita cedar was pulverized as a raw material to obtain wood flour having an average particle size of about 10 μm. This wood powder is filled into a first mold, and the first pressurization is performed under the conditions of a molding temperature of 160 ° C., a molding pressure of 30 MPa, and a press time of 3 minutes using a heat press manufactured by Sansho Industry. A pressure molding process was performed to obtain a temporary molded body.

次に、仮成型体を第1の金型から取り出し、ポリホウ酸ナトリウムの水溶液(難燃剤)に10分間浸漬して、表面に難燃剤を含浸させた。その後、仮成型体を乾燥炉に入れて乾燥させた。   Next, the temporary molded body was taken out from the first mold and immersed in an aqueous solution (flame retardant) of sodium polyborate for 10 minutes to impregnate the surface with the flame retardant. Thereafter, the temporary molded body was put in a drying furnace and dried.

次いで、仮成型体を第2の金型に入れ、三庄インダストリー社製の加熱プレス機を用いて、成型温度が200℃、成型圧力が100MPa、プレス時間が3分間の条件で第2の加圧成型工程を実施した。これにより、サイズが12.7mm×64mm×3.2mmのASTM曲げ試験片(圧縮成型品)を得た。   Next, the temporary molded body is put into a second mold, and a second pressurization is performed using a heating press manufactured by Sansho Industry Co., Ltd. under conditions of a molding temperature of 200 ° C., a molding pressure of 100 MPa, and a press time of 3 minutes. A pressure forming process was performed. Thus, an ASTM bending test piece (compression molded product) having a size of 12.7 mm × 64 mm × 3.2 mm was obtained.

(曲げ強さの測定)
次に、上記の曲げ試験片を用いて、曲げ強さを測定した。具体的には、インストロン社製の万能試験機(INSTORON5581)を使用し、試験片の大きさ以外は日本工業規格(JIS K 7203)に準拠して、曲げ弾性率を測定した。なお、曲げ試験片は5個作成し、それらの試験片の曲げ弾性率をそれぞれ測定した後、曲げ弾性率測定の規格に沿って最大値及び最小値のものを除外して平均値を算出し、それを曲げ弾性率として採用した。
(Measurement of bending strength)
Next, the bending strength was measured using the bending test piece. Specifically, a universal testing machine (INSTORON5581) manufactured by Instron was used, and the flexural modulus was measured according to Japanese Industrial Standard (JIS K 7203) except for the size of the test piece. In addition, after preparing five bending test pieces and measuring the flexural modulus of each of these test pieces, the average value is calculated by excluding the maximum and minimum values in accordance with the standard for flexural modulus measurement. It was adopted as the flexural modulus.

その結果、第1の参考形態により作製された試験片の曲げ弾性率は6GPaであった。一般的に電子機器の筐体材料には3GPa〜6GPaの曲げ弾性率が必要とされており、上記の試験から第1の参考形態により製造された圧縮成型品が電子機器の筐体に要求される曲げ弾性率を有することが確認された。   As a result, the bending elastic modulus of the test piece produced according to the first reference embodiment was 6 GPa. Generally, the casing material of an electronic device is required to have a flexural modulus of 3 GPa to 6 GPa, and a compression molded product manufactured according to the first reference form is required for the casing of the electronic device from the above test. It was confirmed to have a bending elastic modulus.

(難燃性の測定)
次に、UL94規格の難燃性試験に基づき、第1の参考形態により作製された上記の試験片の難燃性を調べた。すなわち、試験片を垂直に支持し、その試験片の下端にガスバーナーの炎をあてて10秒間保持し、その後ガスバーナーの炎を試験片から離した。 そして、炎が消えたときには直ちに試験片にガスバーナーの炎を10秒間あてた。
(Measurement of flame retardancy)
Next, based on the flame retardancy test of UL94 standard, the flame retardance of said test piece produced by the 1st reference form was investigated. That is, the test piece was supported vertically, a flame of a gas burner was applied to the lower end of the test piece and held for 10 seconds, and then the flame of the gas burner was separated from the test piece. When the flame disappeared, the gas burner flame was immediately applied to the test piece for 10 seconds.

UL94規格では、1回目及び2回目の接炎後の有炎燃焼持続時間と、2回目の接炎後の有炎燃焼持続時間及び無炎燃焼持続時間の合計と、5個の試験片の有炎燃焼持続時間の合計と、燃焼滴下物(ドリップ)の有無とを調べ、その結果により等級(V−0,V−1,V−2)を決定する。   In the UL94 standard, the total of the flammable combustion duration after the first and second flame contact, the flammable combustion duration and the flameless combustion duration after the second flame contact, and the presence of five test pieces. The total flame combustion duration and the presence or absence of combustion drops (drip) are examined, and the grade (V-0, V-1, V-2) is determined based on the result.

等級V−0は、1回目及び2回目の接炎後の有炎燃焼時間がいずれも10秒以内であること、2回目の接炎後の有炎燃焼持続時間と無炎燃焼時間との合計が30秒以内であること、5個の試験片の有炎燃焼時間の合計が50秒以内であること、及び燃焼落下物がないことが要求される。   Grade V-0 is that the flaming combustion time after the first and second flame contact is within 10 seconds, and the total of the flammable combustion duration and the flameless combustion time after the second flame contact. Is within 30 seconds, the total flame burning time of the five test pieces is within 50 seconds, and there is no burning fallen object.

また、等級V−1は、1回目及び2回目の接炎後の有炎燃焼時間がいずれも30秒以内であること、2回目の接炎後の有炎燃焼持続時間と無炎燃焼時間との合計が60秒以内であること、5個の試験片の有炎燃焼時間の合計が250秒以内であること、及び燃焼滴下物がないことが要求される。   Grade V-1 is that the flaming combustion time after the first and second flame contact is within 30 seconds, the flaming combustion duration and the flameless combustion time after the second flame contact, Is required to be within 60 seconds, the total flaming combustion time of the five test pieces must be within 250 seconds, and there should be no combustion drops.

更に、等級V−2は、1回目及び2回目の接炎後の有炎燃焼時間がいずれも30秒以内であること、2回目の接炎後の有炎燃焼持続時間と無炎燃焼時間との合計が60秒以内であること、及び5個の試験片の有炎燃焼時間の合計が250秒以内であることが要求される。等級V−2では、燃焼滴下物が許容される。なお、試験片が燃え尽きたときは、等級V−0、V−1、V−2のいずれにも該当しない。   Furthermore, the grade V-2 is that the flaming combustion time after the first and second flame contact is within 30 seconds, the flammable combustion duration and the flameless combustion time after the second flame contact, Is required to be within 60 seconds, and the total flame burning time of the five test pieces is required to be within 250 seconds. In grade V-2, combustion drops are allowed. In addition, when a test piece burns out, it does not correspond to any of the grades V-0, V-1, and V-2.

UL94規格の難燃性試験を実施した結果、第1の参考形態により作製された試験片は、ガスバーバーの炎をあててもバーナーを離すと直ぐに炎が消え、燃焼滴下物が発生せず、V−0相当の難燃性を有することが確認された。   As a result of carrying out the flame retardant test of UL94 standard, the test piece produced according to the first reference form immediately disappears when the burner is released even if the flame of the gas bar bar is applied, and no combustion drops are generated. It was confirmed to have flame retardancy equivalent to V-0.

(第2の参考形態)
図5は、第2の参考形態に係る圧縮成型品の製造方法を示すフローチャートである。
(Second reference form)
FIG. 5 is a flowchart showing a method for manufacturing a compression molded product according to the second embodiment.

まず、原料となる木又は竹を粉砕して、平均粒径が約500μmの粉砕物を得る(ステップS21)。   First, wood or bamboo as a raw material is pulverized to obtain a pulverized product having an average particle diameter of about 500 μm (step S21).

次に、粉砕物の表面に難燃剤を含浸させる(ステップS22)。例えばホウ素系難燃剤の水溶液に粉砕物を浸漬して、粉砕物の表面に難燃剤を含浸させる。この場合、難燃剤は粉砕物の表面に浅く含浸させればよく、粉砕物を難燃剤に浸漬する時間は短時間でよい。   Next, the surface of the pulverized material is impregnated with a flame retardant (step S22). For example, the pulverized product is immersed in an aqueous solution of a boron-based flame retardant, and the surface of the pulverized product is impregnated with the flame retardant. In this case, the flame retardant may be shallowly impregnated on the surface of the pulverized material, and the time for immersing the pulverized material in the flame retardant may be short.

次いで、難燃剤を含浸させた粉砕物を金型に入れ、加圧成型工程を実施する(ステップS23)。この加圧成型工程における金型温度は例えば160〜250℃とし、成型圧力は例えば50〜500Paとする。この加圧成型工程においては、木又は竹の粉砕物から植物由来のリグニンやヘミセルロース等の成分が軟化した状態で析出し、これらの成分が接着剤として働いて金型内の粉砕物が一体化され、所定の形状の圧縮成型品が得られる。その後、金型から圧縮成型品を取り出す。このようにして、圧縮成型品が完成する。   Next, the pulverized material impregnated with the flame retardant is placed in a mold, and a pressure molding process is performed (step S23). The mold temperature in this pressure molding step is, for example, 160 to 250 ° C., and the molding pressure is, for example, 50 to 500 Pa. In this pressure molding process, components such as plant-derived lignin and hemicellulose are precipitated from the pulverized product of wood or bamboo in a softened state, and these components work as an adhesive to integrate the pulverized product in the mold. Thus, a compression molded product having a predetermined shape is obtained. Thereafter, the compression molded product is taken out from the mold. In this way, a compression molded product is completed.

なお、本参考形態では原料として木又は竹の粉砕物を使用するものとしたが、木又は竹の粉砕物に、炭素繊維、ガラス繊維、植物性繊維、可塑剤、耐候性改良剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、離型剤、顔料、着色剤、帯電防止剤、香料、発泡剤、抗菌剤又は抗カビ剤等を添加して原料としてもよい。   In this reference form, pulverized wood or bamboo is used as a raw material, but carbon fiber, glass fiber, vegetable fiber, plasticizer, weather resistance improver, antioxidant is added to the pulverized wood or bamboo. An agent, a heat stabilizer, a light stabilizer, an ultraviolet absorber, a lubricant, a release agent, a pigment, a colorant, an antistatic agent, a fragrance, a foaming agent, an antibacterial agent or an antifungal agent may be added as a raw material.

本参考形態により製造された圧縮成型品においても、原料として植物のみ又は植物と少量の添加剤のみを使用しているので、環境に対する負荷が小さい。また、本参考形態により製造された圧縮成型品は難燃剤を含んでいるので、燃えにくいという性質を有している。   Also in the compression molded product manufactured by this reference form, since only plants or only plants and a small amount of additives are used as raw materials, the burden on the environment is small. Moreover, since the compression molded product manufactured by this reference form contains the flame retardant, it has the property of being hard to burn.

(実施形態)
上記第1及び第2の参考形態ではいずれも植物粉砕物を型に入れて加圧成型して圧縮成型品を製造する場合について説明したが、実施形態では、所望の形状に近似の形状に切り出し又は削り出した木片を用い、この木片を加熱しながら圧縮してリグニンやヘミセルロース等の植物由来の接着成分を析出させ、製品となる圧縮成型品を製造する。この場合、植物由来の接着成分により植物繊維同士が強固に接合され、強度が高い圧縮成型品を得ることができる。また、石油系の樹脂等が不要であり、環境に対する負荷が小さい。
(Embodiment)
In each of the first and second reference embodiments described above, a case has been described in which a plant pulverized product is put in a mold and compression molded to produce a compression molded product. Alternatively, using the cut wood pieces, the wood pieces are compressed while being heated to deposit plant-derived adhesive components such as lignin and hemicellulose to produce a compression-molded product as a product. In this case, plant fibers are firmly joined by the plant-derived adhesive component, and a compression-molded product having high strength can be obtained. In addition, petroleum-based resin or the like is unnecessary, and the burden on the environment is small.

11…第1の金型、12…仮成型体、13…難燃剤、14…第2の金型、15…圧縮成型品。   DESCRIPTION OF SYMBOLS 11 ... 1st metal mold | die, 12 ... Temporary molded object, 13 ... Flame retardant, 14 ... 2nd metal mold | die, 15 ... Compression molding product.

Claims (1)

木片を所定の形状に加工する工程と、
加工後の前記木片を加熱しながら圧力を加えることにより前記木片から植物由来の接着成分を析出させる加圧成型工程と
を有することを特徴とする圧縮成型品の製造方法。
Processing a piece of wood into a predetermined shape;
A pressure molding step of depositing a plant-derived adhesive component from the wood piece by applying pressure while heating the wood piece after processing.
JP2012000429A 2012-01-05 2012-01-05 Method of manufacturing compression molded product Pending JP2012071617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012000429A JP2012071617A (en) 2012-01-05 2012-01-05 Method of manufacturing compression molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012000429A JP2012071617A (en) 2012-01-05 2012-01-05 Method of manufacturing compression molded product

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009516107A Division JPWO2008146370A1 (en) 2007-05-30 2007-05-30 Compression molded product using plant material and method for producing the same

Publications (1)

Publication Number Publication Date
JP2012071617A true JP2012071617A (en) 2012-04-12

Family

ID=46167925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012000429A Pending JP2012071617A (en) 2012-01-05 2012-01-05 Method of manufacturing compression molded product

Country Status (1)

Country Link
JP (1) JP2012071617A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038585A (en) * 2005-08-04 2007-02-15 Olympus Corp Wood processing method and compressed wood product
WO2007037160A1 (en) * 2005-09-29 2007-04-05 Olympus Corporation Method of processing wood and compressed wood product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038585A (en) * 2005-08-04 2007-02-15 Olympus Corp Wood processing method and compressed wood product
WO2007037160A1 (en) * 2005-09-29 2007-04-05 Olympus Corporation Method of processing wood and compressed wood product

Similar Documents

Publication Publication Date Title
JPWO2008146370A1 (en) Compression molded product using plant material and method for producing the same
Madyaratri et al. Recent advances in the development of fire-resistant biocomposites—A review
Ramesh et al. A critical review on wood-based polymer composites: processing, properties, and prospects
Chaitanya et al. Sisal fiber‐reinforced green composites: effect of ecofriendly fiber treatment
Owodunni et al. Adhesive application on particleboard from natural fibers: A review
Diop et al. Evaluation of the incorporation of lignocellulose nanofibrils as sustainable adhesive replacement in medium density fiberboards
US7838578B2 (en) Functional cornstalk board and preparation method thereof
Chan et al. Mechanical properties of dense mycelium-bound composites under accelerated tropical weathering conditions
Lee et al. A review of the flammability factors of kenaf and allied fibre reinforced polymer composites
Kumar et al. Optimization of mechanical properties of epoxy based wood dust reinforced green composite using Taguchi method
Chindaprasirt et al. Properties of wood flour/expanded polystyrene waste composites modified with diammonium phosphate flame retardant
Zhao et al. Fully biobased soy protein adhesives with integrated high-strength, waterproof, mildew-resistant, and flame-retardant properties
Saba et al. A review on potential development of flame retardant kenaf fibers reinforced polymer composites
JP5633521B2 (en) Manufacturing method of compression molded products
Mejía et al. Development of binderless fiberboards from steam exploded and oxidized oil palm wastes
Nguyen Biocomposites developed with litchi peel based on epoxy resin: mechanical properties and flame retardant
Lubis et al. The removal of cured urea-formaldehyde adhesive towards sustainable medium density fiberboard production: a review
Najahi et al. Harvesting value from agricultural waste: Dimensionally stable fiberboards and particleboards with enhanced mechanical performance and fire retardancy through the use of lignocellulosic nanofibers
Teles et al. Novel ranking framework for retrospective simultaneous assessment of fire and mechanical performances of natural fiber‐reinforced polymeric composites: Literature update from the previous decade
JP2012071617A (en) Method of manufacturing compression molded product
EP3741530A1 (en) Flame-retardant composition for manufacturing functional, eco-friendly particle board and preparation method therefor
Mutlu et al. Potential Use of Melamine Phytate as a Flame-Retardant Additive in Chicken Feather-Containing Thermoplastic Polyurethane Biocomposites
Chauhan et al. Pretreatment of pine needles/wood particles and their composites with isocyanate prepolymer adhesive
Plăvănescu Biodegradable composite materials—arboform: a review
Soon et al. Advancements in Biodegradable Printed Circuit Boards: Review of Material Properties, Fabrication Methods, Applications and Challenges

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140318