JP2012071292A - Chemical polarization apparatus of direct current - Google Patents

Chemical polarization apparatus of direct current Download PDF

Info

Publication number
JP2012071292A
JP2012071292A JP2010233043A JP2010233043A JP2012071292A JP 2012071292 A JP2012071292 A JP 2012071292A JP 2010233043 A JP2010233043 A JP 2010233043A JP 2010233043 A JP2010233043 A JP 2010233043A JP 2012071292 A JP2012071292 A JP 2012071292A
Authority
JP
Japan
Prior art keywords
direct current
magnetic field
plate
rectangular
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010233043A
Other languages
Japanese (ja)
Inventor
Masaaki Takarada
正昭 宝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010233043A priority Critical patent/JP2012071292A/en
Publication of JP2012071292A publication Critical patent/JP2012071292A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To chemically polarize direct current to be used widely for much wider application in the same way as light or electromagnetic wave penetrating a static electromagnetic field which is chemically polarized according to the state of the static electromagnetic field.SOLUTION: When the direction of a direct current vector is aligned with the direction of a rotation vector from an electric field to a magnetic field in three vectors, the travel direction of the direct current, the direction of the electric field and the direction of the magnetic field, the direct currents have opposite chemical polarity depending on whether the direction of the rotation is clockwise or counterclockwise, in other words, whether the direct current is positive or negative. The direction of the chemical polarity depends on the magnetism of an electrode plate and a matching plate.

Description

本発明は光源に供給される電流を潜在的に化学的に極性化された状態にする。アーク放電装置、直流放電灯、LED、白熱電灯、電熱ヒータ、アンテナなど様々な光、電磁波、熱放射源から放射される電磁波、赤外線、光、熱線、紫外線、X線を化学的に極性化された状態にできる。水を含めた液体、空気を含めた気体、固体は照射された光の化学的極性に対応した状態になり微弱なエネルギーを再放射する。  The present invention renders the current supplied to the light source potentially chemically polarized. Various types of light such as arc discharge devices, DC discharge lamps, LEDs, incandescent lamps, electric heaters, and antennas, electromagnetic waves, electromagnetic waves emitted from heat radiation sources, infrared rays, light, heat rays, ultraviolet rays, and X-rays are chemically polarized. It can be in the state. Liquids including water, gases including air, and solids are in a state corresponding to the chemical polarity of the irradiated light, and weak energy is re-radiated.

直交静電磁場を光、電磁波が通過するとき、電場ベクトルから磁場ベクトルへの回転ベクトルの方向を光の方向ベクトルと一致させる。その時、回転方向が左となる光を左手系の光、右回転となる光を右手系の光とする。右手系の光は酸化的に極性化されている。左手系の光は還元的に極性化されている。電気エネルギーの移動形態としては電磁波が一般的な形態である。電流は受電端に有限負荷が接続されている導線の送電端に電圧が印加されたときの特殊な形態である。導線の誘電率は無限大と考えてよく、結果、電磁波は電流の形となる。  When light and electromagnetic waves pass through an orthogonal electrostatic magnetic field, the direction of the rotation vector from the electric field vector to the magnetic field vector is made to coincide with the direction vector of the light. At this time, light whose rotation direction is left is left-handed light, and light which rotates right is right-handed light. Right-handed light is oxidatively polarized. Left-handed light is reductively polarized. Electromagnetic waves are a common form of electric energy movement. The current is a special form when a voltage is applied to the power transmission end of a conducting wire having a finite load connected to the power receiving end. The dielectric constant of the conductor may be considered infinite, and as a result, the electromagnetic wave is in the form of a current.

電流についても同様に化学的極性化された状態が存在しえることを実験的に確認した。直交静電磁場を電流が通過する。このとき電流の方向を電場から磁場への回転ベクトルの方向と一致させることにより光と同様に電流は右手系の電流、左手系の電流と化学的に極性化される。この2つの電流が光となるとき、その光は化学的極性を有する。また、極性は反転している。  It was experimentally confirmed that a chemically polarized state could exist for the current as well. Current passes through an orthogonal electrostatic field. At this time, by making the direction of the current coincide with the direction of the rotation vector from the electric field to the magnetic field, the current is chemically polarized like the right-handed current and the left-handed current as in the case of light. When these two currents become light, the light has chemical polarity. The polarity is reversed.

水の化学的極性は極低周波の電磁波にも敏感に反応する、例えば7.8Hzに代表される極低周波のシューマン波の影響を受ける。  The chemical polarity of water is sensitive to extremely low frequency electromagnetic waves, for example, affected by extremely low frequency Schumann waves represented by 7.8 Hz.

特開2002−052392  JP-A-2002-052392 特開2003−62450  JP2003-62450A 特開2010−058105  JP 2010-058105 A

電流を潜在的に化学的に極性化する。この極性化された電流を光源、例えば、赤外線灯、白熱電灯、LED、蛍光灯、キセノンランプ、各種放電灯等に供給すると放射された光は化学的に極性化された状態になる。熱源として使われるニクロム線ヒータ、炭素ヒータ、炭素アーク放電、IHヒータに供給すると放射される熱線は化学的に極性化されている。アンテナから放射される電磁波を発振する電磁波源に供給することによりアンテナから放射される電磁波は化学的に極性化されている。化学的に極性化された紫外線、X線を容易に利用できるようにする。  Potentially chemically polarizes the current. When this polarized current is supplied to a light source, for example, an infrared lamp, an incandescent lamp, an LED, a fluorescent lamp, a xenon lamp, various discharge lamps, etc., the emitted light becomes chemically polarized. When heated to a nichrome wire heater, carbon heater, carbon arc discharge, or IH heater used as a heat source, the emitted heat rays are chemically polarized. By supplying the electromagnetic wave emitted from the antenna to the electromagnetic wave source that oscillates, the electromagnetic wave emitted from the antenna is chemically polarized. To make it possible to easily use chemically polarized ultraviolet rays and X-rays.

地上とイオン層間のキャビティに存在する極低周波のシューマン共振波は動植物に生化学的に影響を与えていることが明らかになってきている。水は7.8Hzの超低周波数にも共振する。強い光を放射する炭素アーク放電を利用した水処理にシューマン共振波を利用することの必要性をしめしている。  It has become clear that the very low frequency Schumann resonance wave that exists in the cavity between the ground and the ion layer has a biochemical effect on animals and plants. Water also resonates at very low frequencies of 7.8 Hz. The necessity of using Schumann resonance waves for water treatment using carbon arc discharge that emits strong light is shown.

直交静電磁場を通過した電流を潜在的に化学的に極性化された状態するためには、電流として導体を流れる電子のスピン、電場をつくる電子のスピン、磁場をつくる電子(マグネトン)のスピンの全てを量子的に統合させる必要がある。その方法として板状磁石の磁極面に電極板と同一材質の薄板を密着させる。その薄板をマッチング板と名づける。電極板とマッチング板が強磁性体を含む常磁性体か、反磁性体であるかにより電流の化学的極性が反転する。この実験結果がスピン統合の必要性を証明している。電極板とマッチング板の材質が異なる場合、あるいはマッチング板が使われない場合、電流の極性化の度合いは弱められる。化学的極性化の方向が偏る。  In order to make the current that passed through an orthogonal electrostatic field potentially chemically polarized, the spins of electrons that flow through the conductor as currents, the spins of electrons that create electric fields, and the spins of electrons that generate magnetic fields (magnetons) Everything needs to be integrated quantumally. As a method, a thin plate made of the same material as the electrode plate is brought into close contact with the magnetic pole surface of the plate magnet. The thin plate is named a matching plate. The chemical polarity of the current is reversed depending on whether the electrode plate and the matching plate are a paramagnetic material including a ferromagnetic material or a diamagnetic material. This experimental result proves the necessity of spin integration. When the electrode plate and the matching plate are made of different materials or when the matching plate is not used, the degree of current polarization is weakened. The direction of chemical polarization is biased.

磁場の強度については流れる電流密度により決定されると考える。実験によれば磁束密度は実用的である100−150mTもあれば直流電流は充分に化学的に極性化される。電場の強度については地球電場の平均的な強度である100V/mの影響が無視できるレベルであればよいと考えられる。1000V/m以上であれば十分である。平等電界と平等磁界が直交することが必要である。そのために板状電極と板状磁石を使用する。電流が通過する直交静電磁場の距離は短くてよく、実験的には2mmもあれば十分である。  The strength of the magnetic field is considered to be determined by the flowing current density. According to experiments, if the magnetic flux density is practically 100-150 mT, the direct current is sufficiently chemically polarized. Regarding the intensity of the electric field, it is considered that it may be at a level where the influence of 100 V / m, which is the average intensity of the earth electric field, can be ignored. 1000 V / m or more is sufficient. It is necessary for the equal electric field and the equal magnetic field to be orthogonal. Therefore, a plate electrode and a plate magnet are used. The distance of the orthogonal electrostatic magnetic field through which the current passes may be short, and 2 mm is sufficient experimentally.

電子スピンのランダム性は温度に依存している。したがって静電磁場を構成する電極板、板状磁石、電流がながれる2芯導線の温度は低い方が好ましい。絶対温度に近いほど熱擾乱の影響は小さくなる。実用的には直流電流静電磁場処理装置を液体窒素に浸漬して温度を窒素点にする。電場をつくる電子のスピン、磁場をつくる電子(マグネトン)のスピン、電流電子の各スピンにたいする熱の影響が小さくなる。絶対温度にちかい液体ヘリウムに浸漬すればスピンはそろう。  The randomness of the electron spin depends on the temperature. Therefore, it is preferable that the temperature of the electrode plate, the plate magnet, and the two-core conductor wire through which an electric current flows is low. The closer to the absolute temperature, the smaller the influence of thermal disturbance. Practically, a DC current electrostatic magnetic field treatment device is immersed in liquid nitrogen to bring the temperature to the nitrogen point. The effects of heat on the spins of electrons that generate an electric field, spins of electrons that generate a magnetic field (magneton), and spins of current electrons are reduced. If you soak in liquid helium, which is close to the absolute temperature, the spin will be aligned.

2芯導線については平行2芯導線、ツイストペア導線、単線導線、より線導線などがある。被覆導線の被覆材が常磁性体であるか、反磁性体であるかについては考慮する必要がある。銅が反磁性体であるため、被覆材も反磁性体であることが好ましい。同軸ケーブルは中心線の外周にある外部導線間の絶縁材に注意する必要がある。一般的に言って、化学合成された絶縁被覆材は反磁性である。  The two-core conductor includes a parallel two-core conductor, a twisted pair conductor, a single conductor, and a stranded conductor. It is necessary to consider whether the coating material of the coated conductor is a paramagnetic material or a diamagnetic material. Since copper is a diamagnetic material, the covering material is also preferably a diamagnetic material. For coaxial cables, attention must be paid to the insulation between external conductors on the outer periphery of the center line. Generally speaking, a chemically synthesized insulating coating is diamagnetic.

棒状炭素電極を使用したアーク放電は電磁波を放射している。したがって、アーク放電をパルス状,矩形波状にすることによりその周波数の電磁波が放射される。その周波数は4Hzから120Hzの範囲とする。例えば、シューマン共振波の中心周波数である7.8Hzの矩形波状、パルス状電流を棒状炭素電極に供給して間欠的に放電させる。高温アークの光は7.8Hzの周波数で点滅し、放射される電磁波もシューマン共振波となる。照射された水はその周波数を記憶する。  Arc discharge using a rod-like carbon electrode radiates electromagnetic waves. Therefore, electromagnetic waves of that frequency are radiated by making the arc discharge into a pulse shape or a rectangular wave shape. The frequency is in the range of 4 Hz to 120 Hz. For example, a rectangular wave of 7.8 Hz, which is the center frequency of the Schumann resonance wave, and a pulsed current are supplied to the rod-shaped carbon electrode and discharged intermittently. The high-temperature arc light blinks at a frequency of 7.8 Hz, and the radiated electromagnetic wave also becomes a Schumann resonance wave. Irradiated water stores its frequency.

全ての物質は固有の振動数、波形を持った物質波を出していると考えられる。この物質波の作用と考えられる現象がある。したがって光源として何を使用するかが、化学的に極性化された直流電流を供給された光源から放射される光に影響をあたえる。白熱電球の場合とLEDの場合では放射される光の極性化のレベルに違いがある。白熱電球の光は極性化レベルが高い。この違いは発光原理に違いによると考えられる。照射対象を水、水を大量に含む動植物とした場合、炭素原子から放射される光が適している。この炭素原子からの放射を利用するには、炭素原子からの2次放射を利用するのが便利である。例えば、超微粉末状の炭素で保護ガラス外面をコーティングする。発光、発熱体自体を炭素とする。  All materials are considered to emit material waves with unique frequencies and waveforms. There is a phenomenon considered to be the action of this material wave. Therefore, what is used as the light source affects the light emitted from the light source supplied with a chemically polarized direct current. There is a difference in the level of polarization of emitted light between incandescent bulbs and LEDs. Incandescent light is highly polarized. This difference is considered to be due to the difference in light emission principle. When the irradiation target is water and animals and plants containing a large amount of water, light emitted from carbon atoms is suitable. In order to utilize the radiation from the carbon atom, it is convenient to utilize the secondary radiation from the carbon atom. For example, the outer surface of the protective glass is coated with ultrafine powdered carbon. The light emitting and heating element itself is carbon.

化学的に極性化された直流電流を受けた光源 熱源、電磁波装置は直流電流の化学的極性に対応する電磁波、あるいは赤外線、あるいは光、あるいは紫外線、あるいはX線を放射する。したがって多くの分野で利用できる。例えば、還元的極性化された直流電流の光の照射を受けた空気中の酸素は水によく溶ける。実験により12ppm以上となることを確認している。還元的直流光の照射をうけた植物は成長速度が早い。乾燥に強い。還元的電流の光の照射を受けた牛乳は腐敗しにくく、容易にチーズ化する。電磁波、光、紫外線、X線を利用して気体、液体が関与する化学反応を制御できる可能性がある。電流が化学的に極性化されることは2つの電子の相互スピンに関係していると解釈できる。クーパーペアが液体窒素温度で出来る可能性を示唆し、超伝導が容易に実現できる可能性がある。化学的極性化された光の照射により放射性廃棄物の半減期を極めて短く出来る可能性がある。  A light source that receives a chemically polarized direct current A heat source or electromagnetic wave device emits electromagnetic waves, infrared rays, light, ultraviolet rays, or X-rays corresponding to the chemical polarity of the direct current. Therefore, it can be used in many fields. For example, oxygen in air that has been irradiated with light of reductively polarized direct current is well soluble in water. It has been confirmed by experiments that the concentration is 12 ppm or more. Plants that have been exposed to reductive direct current light grow faster. Resistant to drying. Milk that has been irradiated with light from a reductive current is less susceptible to spoilage and easily turns into cheese. There is a possibility that chemical reactions involving gases and liquids can be controlled using electromagnetic waves, light, ultraviolet rays, and X-rays. It can be interpreted that the current being chemically polarized is related to the mutual spin of two electrons. This suggests that the Cooper pair can be formed at liquid nitrogen temperature, and superconductivity may be easily realized. There is a possibility that the half-life of radioactive waste can be extremely shortened by irradiation with chemically polarized light.

請求項1に関する直流電流の化学的極性化の原理図  Principle diagram of chemical polarization of direct current with respect to claim 1 請求項2に関する実施例図  Example diagram relating to claim 2 請求項8に関する固体状絶縁物(誘電体)が媒質の直交電磁場。  A solid insulator (dielectric) according to claim 8 is an orthogonal electromagnetic field of a medium. 請求項14かかる炭素電極放電による水の化学的極性化の例示  14. An example of chemical polarization of water by such a carbon electrode discharge.

以下本発明実施の形態を図1〜4図に基づいて説明する。図の寸法、数値はあくまでも例示のためであり、限定するものではない。  Embodiments of the present invention will be described below with reference to FIGS. The dimensions and numerical values in the figures are for illustrative purposes only and are not limiting.

図1は請求項1に関する。電場と磁場と電場から磁場への回転ベクトルの方向に流れる電流の3者の関係を示す。鏡像関係にある左手系の電流と右手系の電流が考えられる。  FIG. 1 relates to claim 1. The relationship between the electric field, the magnetic field, and the current flowing in the direction of the rotation vector from the electric field to the magnetic field is shown. A left-handed current and a right-handed current that are mirror images of each other are considered.

図2は請求項2に関する。図2には数値は記入していない。実験に使用した数値を説明のために、実施例として入れた。数値はあくまで例示であり特許の範囲を限定するものではない。厚さ1mm、幅12mm、高さ12、長さ20mmの中空4角柱10(反磁性体)がある。この外側上下面にはプラス24Vの電圧を印加された0.1mm×10mm×15mmの矩形状銅電極板2と矩形状接地銅電極板3が密着されている。上から下に向う静電場をつくる。磁束密度100mT、5mm×10mm×15mmの矩形状板状磁石N極面4、とS極面5が両側面に密着されている。水平方向に異磁極間静磁場がつくられる。4N極面,5S極面には厚さ0.1mm×10mm×15mmの銅マッチング板6が密着されている。電極板と同じ銅板であることが重要である。なお、マッチング板6の厚みは極端に言えば、原子一層でもよいと考えられる。磁場の強さに影響がない範囲で厚くできる。この直交静電磁場1の中心軸に沿って電流が流れる2芯銅導線7がある。2芯銅導線7の両端は直流電源(24V)8と白熱電球光源9に接続されている。中空4角柱10の内部を占める物質は空気に限定されない。気体以外の液体状、粉体状、固体状などの絶縁物を充填することができる。充填される絶縁物が常磁性体か反磁性体かにより電流の化学的極性が反転する。白熱電球9の光を純水に照射した実験により右手系電流の光を照射された水はBTBがアルカリ性を示す青、普通の静電磁場処理されない電流の光の水は中性を示す緑、左手系電流の光の水は酸性を示す黄色となることを確認している。矩形状銅電極板と銅マッチング板をニッケル板に変更した場合、左手系電流の光の水が青、右手系電流の光の水が黄色となる。この反転現象はニッケルが強磁性体であることによる。静電磁場を流れる電流電子のスピンは静電磁場に支配される度合いが強いため、あえて導線7の芯線をニッケルとする必要はないと考えられる。なお、常磁性体であるアルミニウム等を使用した場合も同様なpH傾向をしめす。それは磁場の方向にスピンが揃う点で同じであるからと解釈できる。電流が通過する静電磁場の長さは短くてよく、3mmもあれば十分であることを確認している。なお矩形状接地電極板3は接地されていなくても電流は化学的極性化される。したがって2枚の電極板のどちらに24Vの電圧を印加するかにより簡単に電流の化学的極性化の方向を決定することができる。2枚の電極間の電場の強さが大気中の電場より10倍以上大きくする。たとえば、1000V/mにする。大気中電場の影響を無視できる。磁場の強さについても4mTもあれば地球磁場の影響を無視できる。  FIG. 2 relates to claim 2. No numerical values are entered in FIG. The numerical values used in the experiments are included as examples for the purpose of illustration. The numerical values are merely examples and do not limit the scope of the patent. There is a hollow quadrangular column 10 (diamagnetic material) having a thickness of 1 mm, a width of 12 mm, a height of 12 and a length of 20 mm. The 0.1 mm × 10 mm × 15 mm rectangular copper electrode plate 2 and the rectangular ground copper electrode plate 3 to which a positive voltage of 24 V is applied are in close contact with the outer upper and lower surfaces. Create an electrostatic field from top to bottom. A rectangular plate magnet N pole surface 4 and a S pole surface 5 having a magnetic flux density of 100 mT and 5 mm × 10 mm × 15 mm are in close contact with both side surfaces. A static magnetic field between different magnetic poles is created in the horizontal direction. A copper matching plate 6 having a thickness of 0.1 mm × 10 mm × 15 mm is in close contact with the 4N pole face and the 5S pole face. It is important that the copper plate be the same as the electrode plate. Note that it is considered that the thickness of the matching plate 6 may be, in an extreme case, one atom. The thickness can be increased without affecting the strength of the magnetic field. There is a two-core copper conductor 7 in which a current flows along the central axis of the orthogonal electrostatic magnetic field 1. Both ends of the two-core copper conducting wire 7 are connected to a DC power source (24V) 8 and an incandescent light source 9. The material occupying the inside of the hollow quadrangular column 10 is not limited to air. Insulators such as liquid, powder, and solid other than gas can be filled. The chemical polarity of the current is reversed depending on whether the insulator to be filled is a paramagnetic material or a diamagnetic material. In the experiment of irradiating pure water with the light from the incandescent light bulb 9, the water irradiated with the right-handed current light is blue in which BTB shows alkalinity, the water of the current light not subjected to normal electrostatic magnetic field treatment is green in green, and the left hand It has been confirmed that the water of light of the system current is yellow indicating acidity. When the rectangular copper electrode plate and the copper matching plate are changed to a nickel plate, the water of the left-handed current light is blue and the light of the right-handed current light is yellow. This inversion phenomenon is due to nickel being a ferromagnetic material. Since the spin of current electrons flowing in the electrostatic magnetic field is strongly governed by the electrostatic magnetic field, it is considered that the core wire of the conducting wire 7 does not need to be nickel. A similar pH tendency is exhibited when aluminum or the like, which is a paramagnetic material, is used. It can be interpreted that it is the same in that the spins are aligned in the direction of the magnetic field. It has been confirmed that the length of the electrostatic magnetic field through which the current passes can be short, and 3 mm is sufficient. Even if the rectangular ground electrode plate 3 is not grounded, the current is chemically polarized. Therefore, the direction of chemical polarization of the current can be easily determined depending on which of the two electrode plates is applied with a voltage of 24V. The intensity of the electric field between the two electrodes is increased by 10 times or more than the electric field in the atmosphere. For example, 1000 V / m. The influence of the atmospheric electric field can be ignored. If the strength of the magnetic field is 4 mT, the influence of the geomagnetic field can be ignored.

図3は請求項8に関連する。断面が12mm×12mm、長さが20mmの絶縁体の固体状4角柱31の両側面にマッチング板6によりカバーされた矩形状板状磁石N極面4,S極面5.上下面に矩形状銅電極板2,接地矩形状電極板3が密着されている。2芯導線7は中心軸に沿ってあけられた孔32の中を通る。矩形状銅電極板2,3、矩形状板状磁石4、5の長さは20mm以上である必要はない。10mm以下でも、例えば3mmでも電流を化学的に極性化できることが確認できている。固体状誘電体直交静電磁場30の断面、即ち、固体状4角柱31の断面は電流を流す2芯電線7の電流容量と大きさにより決定される。  FIG. 3 relates to claim 8. 4. Rectangular plate magnets N pole surface 4 and S pole surface 5 covered with matching plates 6 on both sides of an insulating solid quadrangular column 31 having a cross section of 12 mm × 12 mm and a length of 20 mm. A rectangular copper electrode plate 2 and a grounded rectangular electrode plate 3 are in close contact with the upper and lower surfaces. The two-core conducting wire 7 passes through the hole 32 formed along the central axis. The lengths of the rectangular copper electrode plates 2 and 3 and the rectangular plate magnets 4 and 5 need not be 20 mm or more. It has been confirmed that even at 10 mm or less, for example, 3 mm, the current can be chemically polarized. The cross section of the solid dielectric orthogonal electrostatic magnetic field 30, that is, the cross section of the solid quadrangular column 31 is determined by the current capacity and size of the two-core electric wire 7 through which a current flows.

図4は請求項14にかかる。アーク放電を利用した水処理に化学的極性化された直流電流を供給し水を化学的に極性化された状態にする。2本の棒状炭素電極43と44間に直流アーク放電を生成し、その高温アークの光と熱を落下する粒子状の水滴45に照射する水処理方法である。この棒状炭素電極に流す直流電流を矩形波状とする。その周波数を、例えばシューマン共振の中心波である7.8Hzとして間欠的にアーク放電させる。このことによりアーク放電の光そのものが7.8Hzとなるとともに、放射される電磁波も7.8Hzの周波数を持つようになる。この光、電磁波に照射された水は7.8Hzのシューマン周波数に共鳴し記憶する。定電流装置40からの電流は周波数変換器41により7.8Hzの周波数の矩形波状の直流となる。さらに直流電流化学的極性化装置42により化学的に極性化された状態となる。最終的状炭素電極43,44間を流れるアーク放電電流49となる。アーク放電の光、電磁波は化学的に極性化されている。結果、水は化学的に極性化された状態となる。炭素原子から放射される光は生化学的効果がある。処理された水は健康増進、免疫力向上、化粧水に有効である  FIG. 4 is related to claim 14. A chemically polarized direct current is supplied to the water treatment using arc discharge to bring the water into a chemically polarized state. This is a water treatment method in which a DC arc discharge is generated between two rod-like carbon electrodes 43 and 44, and light and heat of the high-temperature arc are irradiated onto particulate water droplets 45 that fall. The direct current flowing through the rod-like carbon electrode is a rectangular wave. For example, arc discharge is intermittently performed at a frequency of 7.8 Hz, which is the central wave of the Schumann resonance. As a result, the arc discharge light itself becomes 7.8 Hz, and the radiated electromagnetic wave has a frequency of 7.8 Hz. The water irradiated by this light and electromagnetic wave resonates and memorizes the Schumann frequency of 7.8 Hz. The current from the constant current device 40 is converted into a rectangular wave direct current having a frequency of 7.8 Hz by the frequency converter 41. Furthermore, it is in a state of being chemically polarized by the direct current chemical polarization device 42. The arc discharge current 49 flows between the final carbon electrodes 43 and 44. Arc discharge light and electromagnetic waves are chemically polarized. As a result, water is in a chemically polarized state. Light emitted from carbon atoms has a biochemical effect. Treated water is effective for improving health, improving immunity, and lotion

電流の化学的極性化を妨げる外乱要因は温度である。温度は電子スピンのランダム化をすすめる。極低温にすると、たとえば液体ヘリウム使って直流の化学的極性化装置を冷却する。電子のスピンは一定方向に揃う。そして揃ったスピンは持続する。スピン方向がそろった直流電流の供給を受けた光源の光は完全に化学的に極性化された状態となる。  The disturbance factor that prevents the chemical polarization of current is temperature. Temperature promotes randomization of electron spin. When cryogenic, the direct current chemical polariser is cooled, for example using liquid helium. Electron spins are aligned in a certain direction. And the aligned spins last. The light of the light source that is supplied with the direct current having the same spin direction is completely chemically polarized.

4角柱状の直交静電磁場1の空間にはテフロン、塩化ビニール、発砲スチロール、ポリエチレン、アクリル樹脂等の化学合成物質、金属酸化物粉末、絶縁オイル、超純水を含む液体、酸素、窒素を含む気体などを充填することができる。その選択の基準は常磁性体か反磁性体かである。被覆絶縁導線の銅芯線と被覆厚みが静電磁場断面積の中で占める比率が小さく、充填材が静電磁場断面積の殆どを占めるときはそれらの影響は無視できる。原則として被覆材と同一の磁性材料とするのが好ましい。実験結果からは静電磁場に充填される絶縁物は照射対象と同じ物質であることがよいと考えられる。照射対象を水とする場合、超純水を封入するのがよい。  The space of the quadrangular prism-like orthogonal electrostatic magnetic field 1 contains Teflon, vinyl chloride, foamed polystyrene, polyethylene, acrylic resin and other chemically synthesized materials, metal oxide powder, insulating oil, liquid containing ultrapure water, oxygen, and nitrogen. A gas or the like can be filled. The selection criterion is paramagnetic or diamagnetic. When the ratio of the copper core wire and the coating thickness of the coated insulated conductor to the electrostatic magnetic field cross-sectional area is small and the filler occupies most of the electrostatic magnetic field cross-sectional area, the influence can be ignored. In principle, it is preferable to use the same magnetic material as the coating material. From the experimental results, it is considered that the insulator filled in the electrostatic magnetic field should be the same material as the irradiation target. When the irradiation target is water, ultrapure water is preferably sealed.

白熱電球、水銀灯、キセノンランプなどの光を利用して水を効率的に化学的に極性化するための方法である、水を照射対象とした場合、炭素原子が放射する光、赤外線が有効である。その方法として、例えば白熱電球のガラス外面をカーボンブラックで半透明にコーティングする。カーボンブラックが紫外線、可視光線を赤外線に変換、2次放射するため、遠赤外線をふくむ化学的に極性化された赤外線の量が増加する。LEDの場合も同様にカーボンブラックで放射面をコーティングすると赤外線の量を増加することができる。エジソン炭素電球に化学的に極性化された電流を供給する方法もある。極性化された赤外線、遠赤外線を効果的に利用するには炭素繊維を発熱源としたヒータがよい。  This is a method for efficiently and chemically polarizing water using light from incandescent bulbs, mercury lamps, xenon lamps, etc. When water is the target of irradiation, light emitted from carbon atoms and infrared rays are effective. is there. As the method, for example, the glass outer surface of an incandescent bulb is coated with carbon black to be translucent. Since carbon black converts ultraviolet rays and visible rays into infrared rays and emits secondary radiation, the amount of chemically polarized infrared rays including far infrared rays increases. Similarly, in the case of an LED, the amount of infrared rays can be increased by coating the radiation surface with carbon black. There is also a method of supplying a chemically polarized current to an Edison carbon bulb. In order to effectively use polarized infrared rays and far infrared rays, a heater using carbon fiber as a heat source is preferable.

化学的に極性化された電流を光源、電磁波源に供給することのより低周波電磁波から、X線までの光、電磁波を容易に化学的に極性化された状態、即ち還元的状態、酸化的状態できる。産業上の利用は農業、林業、漁業、工業、医療のあらゆる分野に広がる。例えば、医療の分野ではがんに対する光治療の可能性がひろがる。還元的光の照射を受けた水は還元的状態となり植物の成長を促進する。酸化的光の照射は反応容器内の化学反応を促進し反応温度圧力を下げる効果がある。放射性廃棄物の処理に利用できる。半減期を大幅に短縮できる可能性がある。  Supplying chemically polarized current to the light source and electromagnetic wave source, from the low frequency electromagnetic wave to the X-rays, the state where the electromagnetic wave is easily chemically polarized, that is, reductive state, oxidative Can be in state. Industrial use extends to all fields of agriculture, forestry, fishing, industry and medicine. For example, in the medical field, the possibility of phototherapy for cancer opens up. Water that has been irradiated with reductive light becomes reductive and promotes plant growth. Irradiation with oxidative light has the effect of promoting a chemical reaction in the reaction vessel and lowering the reaction temperature and pressure. It can be used for the treatment of radioactive waste. The half-life may be greatly shortened.

1 直交静電磁場
2 矩形状銅電極板
3 接地矩形状銅電極板
4 矩形状板状磁石N極面
5 矩形状板状磁石S極面
6 マッチング板
7 2芯銅線
8 直流電源(24V)
9 白熱電球(7W)
10 中空4角柱(反磁性体)
30 固体状誘電体直交静電磁場
31 固体状4角柱
32 貫通孔
40 定電流装置(直流)
41 周波数変換器(7−8Hz)
42 直流電流化学的極性化装置
43 水滴
44 棒状炭素電極(プラス)
45 棒状炭素電極(マイナス)
46 スプレーノズル
47 排水バルブ
48 水処理塔
49 アーク放電
1 rectangular electrostatic electrode 2 rectangular copper electrode plate 3 ground rectangular copper electrode plate 4 rectangular plate magnet N pole surface 5 rectangular plate magnet S pole surface 6 matching plate 7 2-core copper wire 8 DC power supply (24V)
9 Incandescent light bulb (7W)
10 Hollow quadrangular prism (diamagnetic material)
30 Solid Dielectric Orthogonal Electromagnetic Field 31 Solid Quadratic Column 32 Through-hole 40 Constant Current Device (DC)
41 Frequency converter (7-8Hz)
42 DC Current Chemical Polarizer 43 Water Drop 44 Rod-shaped Carbon Electrode (Plus)
45 Rod-shaped carbon electrode (minus)
46 Spray nozzle 47 Drain valve 48 Water treatment tower 49 Arc discharge

Claims (15)

正、又は負の電圧(電荷)を印加された電極板がつくる電場と板状磁石がつくる磁場が互いに直交する電磁場空間を直流電流が流れるとき、その方向が電場ベクトルから磁場ベクトルへの回転ベクトルの方向であること。  When a direct current flows through an electromagnetic field space in which the electric field created by the electrode plate to which a positive or negative voltage (charge) is applied and the magnetic field created by the plate magnets are orthogonal to each other, the direction is a rotation vector from the electric field vector to the magnetic field vector. That the direction. 正方形を含む2枚の矩形状電極板の片方の矩形状電極板に正、又は負の電圧(電荷)を印加するとともに、残りの矩形状電極板を接地して得られる静電場、2枚の矩形状板状磁石の異なる磁極面間の静磁場が該静電場に直交する4角柱状の直交静電磁場空間、および該直交静電磁場の長さ方向中心軸に沿って配線された2芯導線を基本構成とする直流電流の静電磁場処理装置において、該矩形状電極板間に印加される直流電圧が9−3000の範囲にあること、該矩形状板状磁石の磁極磁束密度が10−2000mTの範囲にあること、該矩形状板状磁石の互いに向かい合う磁極面に該矩形状電極板と同一材質の厚さが0.01−1mmの範囲にある薄板、(通称、マッチング板)が密着されていることを特長とする直流電流の静電磁場処理装置。  An electrostatic field obtained by applying a positive or negative voltage (charge) to one rectangular electrode plate of two rectangular electrode plates including a square and grounding the remaining rectangular electrode plates, A quadrangular cylindrical orthogonal electrostatic magnetic field space in which static magnetic fields between different magnetic pole faces of a rectangular plate magnet are orthogonal to the electrostatic field, and a two-core conductor wired along the longitudinal central axis of the orthogonal electrostatic magnetic field. In the direct current electrostatic magnetic field treatment apparatus having a basic configuration, the DC voltage applied between the rectangular electrode plates is in the range of 9 to 3000, and the magnetic pole magnetic flux density of the rectangular plate magnet is 10 to 2000 mT. A thin plate (commonly called a matching plate) having a thickness of 0.01-1 mm in the same material as the rectangular electrode plate is in close contact with the magnetic pole faces of the rectangular plate magnet facing each other. DC magnetic field treatment characterized by Location. 請求項2において、該2枚の矩形状電極板うち1枚にのみ正、又は負の電圧(電荷)を印加すること。  3. The positive or negative voltage (charge) is applied to only one of the two rectangular electrode plates according to claim 2. 請求項2において強磁性体、常磁性体、反磁性体のいずれかに属する導電性物質、たとえば金、白金、銀、銅、ビスマス、アルミニウム、鉄、ニッケル、亜鉛、鉛、炭素の中から選ばれたひとつの導電性物質を矩形状電極板、およびマッチング板とすること。  3. A conductive material belonging to any one of ferromagnetic material, paramagnetic material, and diamagnetic material in claim 2, such as gold, platinum, silver, copper, bismuth, aluminum, iron, nickel, zinc, lead, carbon One conductive material is a rectangular electrode plate and a matching plate. 請求項2において該2芯導線の芯線を電極板、およびマッチング板と同一材質の芯線とすること。  The core wire of the two-core conducting wire according to claim 2, wherein the core wire is made of the same material as the electrode plate and the matching plate. 請求項2における該4角柱状の直交静電磁場空間が空気により占められていること。  The quadrangular prism-shaped orthogonal electrostatic magnetic field space according to claim 2 is occupied by air. 請求項2における該4角柱状の直交静電磁場空間が空気以外の単体気体、混合気体、単体液体、混合液体、粉体状、ゼリー状、固体状のいずれかの絶縁性誘電体により占有されていること。  The quadrangular prism-shaped orthogonal electrostatic magnetic field space according to claim 2 is occupied by any one of a dielectric gas other than air, a mixed gas, a single liquid, a mixed liquid, a powder, a jelly, or a solid dielectric. Being. 請求項2において該矩形状電極板と矩形状板状磁石を4角柱状の絶縁性の固体状誘電体の上下、両側面に密着させ固体状誘電体を媒質とする直交静電磁場とするとともに、該4角柱状固体を中心軸にそって貫通する孔を該2芯導線が配線されていること。  In claim 2, the rectangular electrode plate and the rectangular plate-shaped magnet are in close contact with the upper and lower sides and both side surfaces of a quadrangular prism-like insulating solid dielectric, and an orthogonal electrostatic magnetic field using the solid dielectric as a medium is obtained. The two-core conductive wire is wired through a hole penetrating the quadrangular columnar solid along the central axis. 矩形状電極板、マッチング板、誘電体媒質、2芯線の芯線、2芯線の被覆材の磁性が強磁性体を含む常磁性体、もしくは反磁性体に統一されていること。  The magnetism of the rectangular electrode plate, the matching plate, the dielectric medium, the core wire of the two-core wire, and the coating material of the two-core wire is unified to a paramagnetic material including a ferromagnetic material or a diamagnetic material. 請求項2において、2芯導線を含めて該直交静電磁場が液体窒素点以下の極低温に保持されていること。  3. The orthogonal electrostatic magnetic field including the two-core conductor is maintained at an extremely low temperature below the liquid nitrogen point in claim 2. 請求項2において2芯導線を流れる直流電流を4 以上120 の範囲の矩形波状の
直流電流とすること。
The direct current flowing through the two-core conductor in claim 2 is a rectangular wave direct current in the range of 4 to 120.
透明なガラスの内部に発光体が封入された光源において、該ガラス外面が微粉末状の炭素を主成分とするコーティング剤により薄膜コーティングされていることを特長とする光源に化学的極性化された直流電流を供給すること。  In a light source in which a light emitter is encapsulated in a transparent glass, the outer surface of the glass is chemically polarized to a light source that is thin-film coated with a coating agent mainly composed of fine powdery carbon. Supply direct current. 炭素ヒータに供給する電流を化学的に極性化した直流電流とすること。  The current supplied to the carbon heater shall be a chemically polarized direct current. 直径が0,01−2mmの範囲の粒子状の水滴がほぼ円錐状、または円筒状に落下する空間の垂直軸方向中心部の水平断面にほぼ平行に直径の両端から中心にむかって挿入された2本の棒状炭素電極間に直流アーク放電を生成し、該直流アークから放射される光と熱に落下中の粒子状水滴が照射されることを特長とする光水処理方法において、該棒状炭素電極に供給される直流電流を請求項2の直流電流の静電磁場処理装置により化学的に極性化された直流電流とする水処理方法、および水処理装置。  Particulate water droplets with a diameter in the range of 0,01-2 mm were inserted from the both ends of the diameter to the center almost parallel to the horizontal cross section of the central portion in the vertical axis direction of the space where the space falls into a conical or cylindrical shape. In the optical water treatment method, a direct current arc discharge is generated between two rod-shaped carbon electrodes, and the falling particulate water droplets are irradiated to light and heat emitted from the direct-current arc. A water treatment method and a water treatment apparatus, wherein the direct current supplied to the electrodes is a direct current chemically polarized by the direct current electrostatic magnetic field treatment apparatus of claim 2. 請求項2における該2芯導線を同軸ケーブルとすること。  The two-core conductive wire according to claim 2 is a coaxial cable.
JP2010233043A 2010-09-27 2010-09-27 Chemical polarization apparatus of direct current Pending JP2012071292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010233043A JP2012071292A (en) 2010-09-27 2010-09-27 Chemical polarization apparatus of direct current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010233043A JP2012071292A (en) 2010-09-27 2010-09-27 Chemical polarization apparatus of direct current

Publications (1)

Publication Number Publication Date
JP2012071292A true JP2012071292A (en) 2012-04-12

Family

ID=46167678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010233043A Pending JP2012071292A (en) 2010-09-27 2010-09-27 Chemical polarization apparatus of direct current

Country Status (1)

Country Link
JP (1) JP2012071292A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101351447B1 (en) 2009-02-20 2014-01-14 도쿠리쓰교세이호징 가가쿠 기주쓰 신코 기코 Transportation of Micrometer-Sized Object and Extraction of Mechanical Work by Constant Electric Field

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101351447B1 (en) 2009-02-20 2014-01-14 도쿠리쓰교세이호징 가가쿠 기주쓰 신코 기코 Transportation of Micrometer-Sized Object and Extraction of Mechanical Work by Constant Electric Field

Similar Documents

Publication Publication Date Title
Ghernaout Magnetic field generation in the water treatment perspectives: An overview
CN101177315B (en) The water disinfection apparatus
US20160251240A1 (en) Devices For The Treatment Of Liquids Using Plasma Discharges And Related Methods
JPH027972A (en) Heat source seed for tumor healing
US8130893B2 (en) Device and method for stimulation of magnetohydrodynamics
Cohen ENHANCEMENT OF FERROMAGNETIC SHIELDING AGAINST LOW‐FREQUENCY MAGNETIC FIELDS
JP2012071292A (en) Chemical polarization apparatus of direct current
Ramli et al. Review on the development of plasma discharge in liquid solution
US9296610B2 (en) Optical reactor and driving circuit for optical reactor
Pekárek Ozone production of hollow-needle-to-mesh negative corona discharge enhanced by dielectric tube on the needle electrode
US9682358B2 (en) Resonance-based molecular dissociator
EP1917843B1 (en) Method and apparatus for creating a plasma
Mohri et al. Gradual decrease of electric resistivity in water triggered by Milli-Gauss low frequency pulsed magnetic field
RU2598098C2 (en) Air ioniser
CN113088122A (en) Coating reinforcing agent and preparation method and use method thereof
CA2460847C (en) Device for neutralizing electromagnetic radiation
KR101122355B1 (en) Method for Means of Multi-Activation of Ions and Atoms with NMR and EPR
Cullen Systems for Generation of Cold Plasma
JPH08155442A (en) Water activating treatment apparatus
CN220367188U (en) Alternating magnetic field corrosion experimental device for metal material
JP2006261079A (en) Heterogeneous metal wire braided wire
IL256745B2 (en) Water treatment system
Xu et al. Effects of the ground-electrode temperature on the plasma physicochemical processes and biological inactivation functions involved in surface dielectric barrier discharge
JP2000140855A (en) Method and device for imparting reducing property and
KR200401282Y1 (en) Magnetizing apparatus