JP2012070598A - Method for avoiding output suppression of multiple interconnected photovoltaic power generation systems and apparatus therefor - Google Patents
Method for avoiding output suppression of multiple interconnected photovoltaic power generation systems and apparatus therefor Download PDFInfo
- Publication number
- JP2012070598A JP2012070598A JP2010215571A JP2010215571A JP2012070598A JP 2012070598 A JP2012070598 A JP 2012070598A JP 2010215571 A JP2010215571 A JP 2010215571A JP 2010215571 A JP2010215571 A JP 2010215571A JP 2012070598 A JP2012070598 A JP 2012070598A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- pcs
- value
- power generation
- output suppression
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001629 suppression Effects 0.000 title claims abstract description 107
- 238000010248 power generation Methods 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims abstract description 23
- 229920003258 poly(methylsilmethylene) Polymers 0.000 abstract 5
- 238000002296 dynamic light scattering Methods 0.000 abstract 1
- 238000013061 process characterization study Methods 0.000 abstract 1
- 238000004088 simulation Methods 0.000 description 19
- 238000007726 management method Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000005611 electricity Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/10—Photovoltaic [PV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/70—Smart grids as climate change mitigation technology in the energy generation sector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/12—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
- Y04S10/123—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
Abstract
Description
この発明は、太陽光システムが多数台連系された配電系統において、当該配電系統における太陽光の出力抑制を回避する方法及びその装置に関するものである。 The present invention relates to a method and an apparatus for avoiding suppression of solar light output in a distribution system in which a large number of solar systems are connected.
一般に同一の配電系統から給電される複数の需要家(住宅)に太陽光発電(PV)システムが設置されるようになってきている。太陽光発電システムは、太陽電池パネルで発生した直流電力をパワーコンディショナ(PCS)で交流電力に変換して当該需要家の負荷に給電し、余剰電力は交流系統側に逆潮流している。 In general, a photovoltaic power generation (PV) system has been installed in a plurality of consumers (housing) that are fed from the same distribution system. In the photovoltaic power generation system, DC power generated in the solar cell panel is converted into AC power by a power conditioner (PCS) and supplied to the load of the consumer, and surplus power is flowing backward to the AC system side.
太陽光発電システムが同一の配電系統に多数台連系された場合、各住宅から流出する逆潮流電力により、系統電圧が上昇する。特に、ゴールデンウイーク等の発電電力が大きく負荷電力が少ない時期においては、電圧が電気事業法で定められた上限値と内線電圧上昇分を加算した電圧管理値を逸脱するケースが想定される。 When many photovoltaic power generation systems are connected to the same distribution system, the system voltage rises due to the reverse power flow flowing out from each house. In particular, when the generated power is large and the load power is low, such as Golden Week, a case is assumed in which the voltage deviates from the voltage management value obtained by adding the upper limit value defined by the Electricity Business Act and the extension of the extension voltage.
この場合PVシステムは適正電圧を維持するための運用が求められ、各住宅のPCSに具備されている電圧上昇抑制機能(進相無効電力制御機能、出力抑制機能)により、電圧管理値を逸脱した場合は、図12に示すように、特に端末に連系される一部の住宅において、電圧上昇時に出力抑制機能が動作し、発電電力が抑制される(以下、出力抑制)運用が行われる。この様なPVシステムの電圧上昇抑制機能は、例えば、下記の特許文献1の段落0003に記載されている。
In this case, the PV system is required to operate to maintain an appropriate voltage, and deviated from the voltage management value by the voltage rise suppression function (phase advance reactive power control function, output suppression function) provided in the PCS of each house. In this case, as shown in FIG. 12, particularly in some houses connected to the terminal, the output suppression function operates when the voltage rises, and operation in which generated power is suppressed (hereinafter, output suppression) is performed. Such a voltage rise suppression function of the PV system is described in paragraph 0003 of
この場合、十分な日射があるにも関わらず、発電出力が抑制され発電効率が低下する。また、太陽光発電の容量や系統構成が住宅により異なることから、特定の住宅に発電効率の低下が偏ることも考えられる。 In this case, in spite of sufficient solar radiation, the power generation output is suppressed and the power generation efficiency is reduced. Moreover, since the capacity | capacitance and system | strain structure of photovoltaic power generation change with houses, it is also considered that the fall of power generation efficiency is biased to a specific house.
一方、電圧上昇対策として、PCSは受電点の力率が85%以上になる範囲で、進相無効電力制御運転が許可されており、これにより適正電圧が維持できる場合は、発電出力を抑制する必要はないが、住宅間で電圧のばらつきが発生することから、出力抑制量は住宅毎に異なる。 On the other hand, as a countermeasure against voltage rise, the PCS is allowed to advance phase reactive power control in the range where the power factor of the power receiving point is 85% or more, and if this allows the appropriate voltage to be maintained, the power generation output is suppressed. Although it is not necessary, since voltage variation occurs between houses, the amount of output suppression varies from house to house.
この様に太陽光発電システムの多数台連系時は、住宅間で電圧のばらつきが発生するが、全住宅間の出力抑制量を最小化し、住宅間のばらつきを補整するための電圧上昇抑制機能の制御方法が確立されていない。電圧上昇抑制機能を全軒で同じ整定値(事前に各PCSで設定する電圧上昇抑制機能が動作する電圧)にする場合は、住宅間で出力抑制量や無効電力出力に不公平等が生じることが考えられる。この結果出力抑制が大きく発生する住宅では、売電量が少なく、出力抑制がそれほど発生しない住宅では、売電量が多くなるので、収入の少ない住宅と、多い住宅が生じ、収入の不平等が発生することになる。 In this way, when multiple photovoltaic power generation systems are connected, voltage fluctuations occur between houses, but the voltage rise suppression function minimizes the amount of output suppression between all houses and compensates for fluctuations between houses. The control method has not been established. If the voltage rise suppression function is set to the same set value for all the buildings (the voltage at which the voltage rise suppression function set in advance in each PCS operates), there will be unfairness in the output suppression amount and reactive power output between houses. Can be considered. As a result, the amount of electricity sold is small in houses where output suppression is large, and the amount of power sold is large in houses where output suppression does not occur so much, resulting in low-income houses and many houses, resulting in income inequality. It will be.
即ち、住宅毎に取り付けられているPCSには、電圧上昇抑制機能が具備されているので、十分な日射があっても、その地域の電圧が上昇している場合は、PCSの出力抑制の機能が働いて、逆潮流する電力量(発電効率)は低下する。 That is, since the PCS installed in each house has a voltage rise suppression function, even if there is sufficient solar radiation, if the local voltage is rising, the PCS output suppression function As a result, the amount of power (power generation efficiency) flowing backwards decreases.
しかし、昼間は、太陽光発電の発電量が非常に大きくなるため、住宅毎の消費電力が異なっても、前記発電量に比べて消費電力が小さい。このため、昼間の消費電力は住宅間に大きな差が生じない。 However, since the power generation amount of photovoltaic power generation becomes very large during the daytime, even if the power consumption of each house differs, the power consumption is smaller than the power generation amount. For this reason, there is no great difference in daytime power consumption between houses.
そこで、この発明はこれらの従来技術に鑑み、太陽光発電システムが多数台連系された配電系統において、既存の装置に機能を追加するだけで、当該配電系統の全需要家の出力抑制量を最小化し、需要家間の出力抑制量の不平等を是正することができる、太陽光発電システムの出力抑制回避方法及びそのシステムを提供することを目的としたものである。 Therefore, in view of these prior arts, the present invention is a distribution system in which a large number of photovoltaic power generation systems are connected to each other, and by simply adding a function to an existing device, the output suppression amount of all consumers of the distribution system can be reduced. An object of the present invention is to provide an output suppression avoidance method for a photovoltaic power generation system and a system thereof that can minimize and correct inequalities in the amount of output suppression between consumers.
請求項1の発明は、一配電系統の複数の需要家に太陽光発電装置が連系されて設けられた地域において、前記太陽光発電装置を設けた需要家のPCSが、電圧上昇時に電圧管理値を逸脱しないようにするために、或る時刻における地域の全需要家のPCSの端電圧を測定し、最も高い電圧を示した需要家のPCSの端電圧と電圧管理値の差分を算出し、その最も高い電圧を示した需要家のPCSの整定値を電圧管理値と同じ値とし、その他の需要家のPCSの整定値を、上記測定した各電圧に上記差分を加算した値として、各需要家にPCSの整定値を設定することを特徴とする、多数台連系した太陽光発電システムの逆潮流における電圧上昇時の出力抑制回避方法とした。 According to the first aspect of the present invention, in a region where a photovoltaic power generation apparatus is connected to a plurality of consumers in one distribution system, the PCS of the consumer having the photovoltaic power generation apparatus performs voltage management when the voltage rises. In order not to deviate from the value, the PCS end voltage of all the consumers in a certain region at a certain time is measured, and the difference between the PCS end voltage of the consumer showing the highest voltage and the voltage management value is calculated. The set value of the PCS of the consumer showing the highest voltage is set to the same value as the voltage control value, and the set value of the PCS of the other consumers is set to the value obtained by adding the difference to the measured voltages. A method of avoiding output suppression at the time of voltage increase in reverse power flow of a photovoltaic power generation system connected to a large number of units, wherein a set value of PCS is set for a consumer.
請求項2の発明は、一配電系統の複数の需要家に太陽光発電装置が連系されて設けられた地域において、前記太陽光発電装置に設けた需要家のPCSが、電圧上昇時に電圧管理値を逸脱しないようにするために、前記各太陽光発電システムのPCSとサーバとを接続し、当該サーバからの指令により前記各PCSはPCS端電圧を測定し、当該測定電圧をサーバに送信し、サーバではこれらの各PCSの端電圧の最も高い電圧を示した需要家のPCSの端電圧と電圧管理値との差分を算出し、その最も高い電圧を示した需要家のPCSの整定値を電圧管理値と同じ値とし、その他の需要家のPCSの整定値を、上記測定した各電圧に上記差分を加算した値として、各需要家にPCSの整定値を設定し、これらの設定電圧を各PCSに送信する機能を有し、各PCSはサーバから送信された整定値を設定する構成としたことを特徴とする、多数台連系した太陽光発電システムの逆潮流における電圧上昇時の出力抑制回避システムとした。 According to the second aspect of the present invention, in a region where a photovoltaic power generation apparatus is connected to a plurality of consumers in a single distribution system, the consumer PCS provided in the photovoltaic power generation apparatus performs voltage management when the voltage rises. In order not to deviate from the value, the PCS of each photovoltaic power generation system is connected to a server, and each PCS measures the PCS terminal voltage according to a command from the server, and transmits the measured voltage to the server. The server calculates the difference between the terminal voltage of the consumer PCS that shows the highest voltage of each of the PCS and the voltage management value, and sets the set value of the consumer PCS that shows the highest voltage. Set the same value as the voltage management value, set the PCS settling value of other consumers as the value obtained by adding the above difference to each measured voltage, set the settling value of the PCS to each consumer, and set these set voltages. Send to each PCS Each PCS has a configuration in which each PCS is configured to set a set value transmitted from the server, and is an output suppression avoidance system at the time of voltage increase in reverse power flow of a photovoltaic power generation system linked to multiple units .
また、請求項3の発明は、前記サーバが、設定された時間又は条件が充足されると自動的に前記各PCSに、各PCSの前記整定値を測定するよう指令し、各PCSの測定電圧データを収集して演算し、各PCSの整定値を設定して、再設定可能な各PCSの制御部に送信する構成とした、請求項2に記載の多数台連系した太陽光発電システムの逆潮流における電圧上昇時の出力抑制回避システムとした。
According to a third aspect of the present invention, when the set time or condition is satisfied, the server automatically instructs each PCS to measure the set value of each PCS, and the measured voltage of each PCS. The multi-unit-connected photovoltaic power generation system according to
請求項1の発明のように、各需要家にPCSの整定値を設定することにより、上記全需要家の電力出力抑制量を最小化し、需要家間の電力出力抑制量と無効電力出力のばらつきを最小化し、同一配電系統における需要家の売電量の不平等を是正することができ、当該配電系統の全体の電圧上昇を抑制することができる。 As in the first aspect of the invention, by setting the PCS set value for each consumer, the power output suppression amount of all the consumers is minimized, and the variation in the power output suppression amount and the reactive power output among the consumers. Can be minimized, and inequality in the amount of electricity sold by customers in the same distribution system can be corrected, and an increase in the overall voltage of the distribution system can be suppressed.
また、請求項2の発明は、上記請求項1の発明の効果に加え、各需要家の太陽光発電システムのPCSと接続されたサーバを設け、このサーバにより、各需要家のPCSの端電圧の測定、演算、整定値の設定をIT化し、自動的に処理することができる。
In addition to the effect of the invention of
さらに、請求項3の発明によれば、前記配電系統のPVシステムが増設されたり、区間開閉器の変更等により系統構成の変化が生じた場合や季節による発電量と負荷量の変動した場合により設定条件や設定された時刻が充足されると自動的に前記サーバが作動して、各PCSの整定値を設定するため、需要家間の不平等をきめ細かに解消できる。
Further, according to the invention of
この発明は、或る時刻における配電系統に太陽光発電装置が多数台連系された地域の全需要家のPCSの端電圧を測定し、そのうち、最も高い電圧を示した需要家のPCSの端電圧と、電気事業法の上限値と内線電圧上昇分を加算した電圧管理値を算出し、例えばその最も高い電圧を示した需要家のPCSの整定値を上記電圧管理値である107.5Vとし、その他の需要家のPCSの整定値を、上記測定した各電圧に上記差分を加算した電圧として、各需要家にPCSの整定値を設定することを特徴とする、多数台連系した太陽光発電システムの出力抑制回避方法とした。 The present invention measures the PCS end voltage of all the customers in a region where a large number of photovoltaic power generation devices are connected to the distribution system at a certain time, and the end of the PCS of the consumer that showed the highest voltage among them. The voltage management value is calculated by adding the voltage, the upper limit value of the Electricity Business Law and the extension of the extension voltage. For example, the set value of the PCS of the consumer showing the highest voltage is set to 107.5 V which is the voltage management value. The setting value of the PCS of other consumers is set as the voltage obtained by adding the difference to the measured voltage, and the setting value of the PCS is set for each consumer. This is a method for avoiding output suppression in the power generation system.
これにより、上記全需要家の電力出力抑制量を最小化し、需要家間の電力出力抑制量と無効電力出力のばらつきを最小化できる。 Thereby, the electric power output suppression amount of all the said consumers can be minimized, and the dispersion | variation in the electric power output suppression amount and reactive power output between consumers can be minimized.
以下、この発明の実施例1を図に基づいて説明する。図1はこの発明の方法に使用する配電系統に太陽光発電が多数台連系された需要家(住宅)の連系を示す概略構成図である。
図1において、変電所1から高圧配電線2が導出され、この高圧配電線2に間隔をあけて複数の柱上変圧器3が設けられている。これらの各柱上変圧器3から低圧配電線4を介して複数の住宅5に電力が供給されており、各住宅5には、太陽光発電システム6が設けられ、これらの各太陽光発電システム6にはパワーコンディショナ(PCS)7が設けられ、各住宅5の太陽光発電システム6の太陽電池パネルで発生した直流電力をPCS7で交流電力に変換して当該住宅5の負荷8に給電し、余剰電力は配電系統側に逆潮流している。
In FIG. 1, a high-
また、各住宅5のPCS7とインターネットやLANや無線を介して、サーバ9とが接続されている。勿論PCS7とサーバ9とは電力線経由(PLC)でも可能である。又、図1ではサーバ9は各PCS7から離れている箇所に設置されているように記載されているが、このサーバ9はある特定のPCS7に設けられていても良く、また、電力供給会社、その他の場所に設置されていても良い。
In addition, the PCS 7 of each
さらに前記各PCS7では、電圧の測定機能、外部からの制御信号で前記整定値の変更機能、電圧管理値を維持するための電圧コントロール機能等を持っている。また、ある一定時刻に前記サーバ9は、各PCS7に対して電圧測定を指令する機能、また、各PCS7からの測定電圧を受信して記録し、最も高い電圧を示した住宅5のPCS7のPCS端電圧と、当該配電系統における電圧管理値との差分を算出し、その最も高い電圧を示した住宅5のPCS7のPCS端電圧を電圧管理値と同じ値とし、その他の住宅5のPCS7の整定値を、上記測定した各電圧に上記差分を加算して設定する機能、また、この様に各住宅5のPCS7の整定値を決定し、これを各住宅5のPCS7に送信する機能を有している。従って、各住宅5のPCS7はサーバ9からの整定値を受信すると、その整定値に変更する。
Further, each
この様な一つの配電系統において、全軒の出力抑制量を最小化し、住宅間の出力抑制量及び無効電力出力のばらつきを最小化するためのPCSの整定値の整定方法を確立した。 In such a power distribution system, we established a method for setting the PCS settling value to minimize the output suppression amount of all the houses and to minimize the variation in output suppression amount and reactive power output between houses.
具体的な方法は、図2及び以下の通りである。
ステップS1:午前10時頃の発電出力にて、各住宅5のPCS7の端電圧を測定する。ただし、電圧上昇抑制機能が動作している場合は、電圧上昇抑制機能が動作しなくなるまで変電所1の送り出し電圧を下げる。
ステップS2:ステップS1で計測した中で最も電圧が高いPCS7の端電圧(Vmax)と電圧管理値の上限である107.5Vの差分ΔVを算出する。
ステップS3:Vmaxが計測された住宅5のPCS7の整定値を107.5Vとする。
ステップS4:他の住宅5のPCS7は、1.で計測した端電圧にΔVを加算した電圧を整定値とする。
A specific method is as shown in FIG.
Step S1: The end voltage of the
Step S2: The difference ΔV between the end voltage (Vmax) of the
Step S3: The setting value of the
Step S4: The
以下に一般的な配電系統構成における出力抑制回避に対する進相無効電力制御の効果及び住宅ごとの動作電圧の整定方法についてシミュレーションを実施し、検証する。 In the following, a simulation will be conducted to verify the effect of phase-advanced reactive power control on avoiding output suppression in a general distribution system configuration and the method of setting the operating voltage for each house.
図3は、前記配電系統構成のうちの、高圧配電系統の構成を示し、変電所1からの高電圧配線2に同間隔で柱上変圧器3が分布する構成とし、電線はAL120mm2とした。また、図4は、低圧配電線4により一つの柱上変圧器3から15軒の住宅5に供給する構成であり、低圧配電線4にALOC120mm2を、低圧引込線にSV14mm2を、住宅用分電盤からPV用PCSまでの電線にCV5.5mm2を用いている。
FIG. 3 shows the configuration of the high-voltage distribution system among the distribution system configurations, in which the
また、発電・負荷電力パターンは新エネルギー・産業技術総合開発機構(NEDO)事業「集中連系型太陽光発電システム実証研究」にて、群馬県太田市の一般住宅553軒で実測された発電電力を平均化して使用することとした。代表日として、年間で出力抑制の発生が最も懸念されるゴールデンウイークの一日(2007/4/29)を抽出した。図5にシミュレーションに使用した発電・負荷パターンを示す。この日の1日の発電電力量は21.7kWh、負荷電力量は21.9kWh、逆潮流電力量は15.5kWhであった。 The power generation / load power pattern was measured at 553 houses in Ota City, Gunma Prefecture in the New Energy and Industrial Technology Development Organization (NEDO) project “Centralized Photovoltaic Power Generation System Demonstration Study”. Were used after averaging. As a representative day, we extracted the day of Golden Week (Apr 29, 2007), the most concerned about the occurrence of output suppression in the year. FIG. 5 shows the power generation / load pattern used in the simulation. The generated power amount of the day was 21.7 kWh, the load power amount was 21.9 kWh, and the reverse flow power amount was 15.5 kWh.
配電線の送り出し電圧は、系統側で電圧制御を行わない条件でPVシステム多数台連系による出力抑制への影響を確認するため、6660V(低圧換算値106.0V)で固定した。 The distribution line feed voltage was fixed at 6660 V (low voltage conversion value 106.0 V) in order to confirm the influence on the output suppression by the PV system multi-unit interconnection under the condition that the voltage control is not performed on the system side.
PCSの電圧制御に関しては、出力抑制制御及び進相無効電力制御の仕様は、出力抑制機能、進相無効電力制御共に動作電圧が、107.5Vであり、復帰電圧は動作電圧より、0.2V低い107.3Vとなっており、進相無効電力制御は、力率を1〜0.85と設定している。 Regarding the voltage control of the PCS, the specifications of the output suppression control and the phase advance reactive power control are the operation voltage of 107.5V for both the output suppression function and the phase advance reactive power control, and the return voltage is 0.2V from the operation voltage. 107.3 V is low, and the fast reactive power control sets the power factor to 1 to 0.85.
進相無効電力の注入方法としては、PVの発電電力を維持しつつ追加で系統電源を用いて無効電力を注入する制御方法を用いることとした。系統電圧上昇時のPCSの電圧制御機能の動作は、潮流計算の結果、系統電圧が適正値を逸脱している場合は、適正範囲に収まるまで力率を低下(進相無効電力を出力)させ、力率が設定値まで到達しても電圧が適正値を上回る場合は、適正電圧に収まるように出力制御機能が動作する、という2つのステップで電圧制御を行う。 As a method of injecting reactive power, the control method of injecting reactive power using a system power supply while maintaining PV generated power was used. The operation of the PCS voltage control function when the system voltage rises is as follows. If the system voltage is out of the proper value as a result of the power flow calculation, the power factor is reduced (the phase reactive power is output) until it falls within the proper range. If the voltage exceeds the appropriate value even when the power factor reaches the set value, the voltage control is performed in two steps in which the output control function operates so as to be within the appropriate voltage.
次に、図12で説明したとおり、PVシステムを同一配電系統へ多数台連系する場合、系統の末端に向かって電圧が上昇し易くなる。従って、出力抑制量も系統の連系位置により住宅間でばらつきが生じることが想定される。そこで、全体の出力抑制量及び住宅間の出力抑制量及び無効電力出力のばらつきを最小化するためのアルゴリズムを3段階のアプローチで検討する。 Next, as described with reference to FIG. 12, when a large number of PV systems are connected to the same distribution system, the voltage tends to increase toward the end of the system. Therefore, it is assumed that the output suppression amount also varies among houses depending on the grid connection position. Therefore, an algorithm for minimizing the overall output suppression amount, the output suppression amount between houses, and the variation in reactive power output is examined by a three-stage approach.
第1段の目標は、進相無効電力制御による出力抑制量の低減効果を確認することとした。この検討では、進相無効電力制御機能をマスクした場合、力率設定0.85で進相無効電力制御機能を有効にした場合の出力抑制量を比較する。ただし、配電線距離は2km刻みで0〜10kmとし、全軒でPCS電圧制御の整定値を統一させ、柱上変圧器単位で最も出力抑制量の大きい住宅の出力抑制量で評価することとした。 The goal of the first stage was to confirm the effect of reducing the output suppression amount by the phase advance reactive power control. In this study, when the phase advance reactive power control function is masked, the output suppression amount when the phase advance reactive power control function is enabled with the power factor setting of 0.85 is compared. However, the distribution line distance is set to 0 to 10 km in steps of 2 km, and the setting values for PCS voltage control are standardized for all houses, and the output suppression amount of the house with the largest output suppression amount per pole transformer is evaluated. .
第2段の目標は、無効電力を極力出力せずに、出力抑制量を最小化するためのPCS電圧制御整定値を確立することとした。この検討では、進相無効電力制御の力率設定をパラメータとして出力抑制量の全軒の総和の低減に対する影響を把握する。ただし、配電線距離を2km刻みで0〜10kmとし、全軒でPCS電圧制御の整定値を統一させ、全軒の出力抑制回避率(式2参照)で評価することとした。 The goal of the second stage was to establish a PCS voltage control settling value for minimizing the amount of output suppression without outputting reactive power as much as possible. In this study, the power factor setting of the fast reactive power control is used as a parameter to understand the effect of the output suppression amount on the reduction of the total sum of all the houses. However, the distribution line distance was set to 0 to 10 km in increments of 2 km, the setting values of PCS voltage control were unified for all the houses, and evaluation was performed based on the output suppression avoidance rate (see Equation 2) for all the houses.
図6にPCS有効電力3kW時の設定力率に対する無効電力・皮相電力の出力を示す。図6より、PCS容量(皮相電力)が最も大きくなるのは、力率が0.85の場合であり、この場合無効電力が約1.8kvar、PCS容量が約3.5kVAになることが解かる。 FIG. 6 shows the output of reactive power and apparent power with respect to the set power factor when the PCS active power is 3 kW. It can be seen from FIG. 6 that the PCS capacity (apparent power) is the largest when the power factor is 0.85, in which case the reactive power is about 1.8 kvar and the PCS capacity is about 3.5 kVA. Karu.
第3段の目標は、第2段の目標を維持しつつさらに、住宅間の出力抑制量及び無効電力注入量のばらつきを最小化するための電圧制御整定値を確立することとした。この検討では、住宅毎の進相無効電力制御の力率設定及びPCS電圧制御の動作電圧(Vo:Operating voltage)をパラメータとした場合の、出力抑制量の全軒の総和及び各住宅の出力抑制量及び無効電力出力のばらつきに対する影響を把握する。本来であれば、PCS電圧制御機能全体の最適化を行うために、動作電圧以外にも復帰電圧や変化速度をパラメータとすべきであるが、今回は本質的な制御ロジックには手を加えず、復帰電圧は式1に示す通り、動作電圧から0.2V低い値に固定することとした。なお、今回の制御ロジックでは、出力抑制機能及び進相無効電力制御機能の動作・復帰電圧の整定値は共通である。
The target of the third stage is to establish a voltage control settling value for minimizing the variation in the output suppression amount and the reactive power injection amount between houses while maintaining the second stage target. In this study, the sum of the output suppression amount and the output suppression of each house when the power factor setting of phase reactive power control for each house and the operating voltage (Vo: Operating voltage) of PCS voltage control are used as parameters. Understand the impact on quantity and reactive power output variability. Originally, in order to optimize the entire PCS voltage control function, in addition to the operating voltage, the return voltage and change rate should be used as parameters, but this time, the essential control logic is not touched. The return voltage is fixed at a value 0.2 V lower than the operating voltage as shown in
Vr=Vo−0.2………式1
Vr:PCS電圧制御復帰電圧
Vo:PCS電圧制御動作電圧
V r = V o -0.2 .........
V r : PCS voltage control return voltage V o : PCS voltage control operating voltage
次に、出力抑制量の最小化及び住宅間の出力抑制量及び無効電力注入量のばらつきを最小化する整定値を確立するためのシミュレーション条件について検討を行った。表1に今回実施する6パターンのシミュレーション条件を示す。 Next, we examined the simulation conditions for establishing a settling value that minimizes the amount of output suppression and the variation in the amount of output suppression and reactive power injection between houses. Table 1 shows the simulation conditions for the six patterns implemented this time.
表1に示した6パターンの内、Tr−1、Tr−2は低圧配電線単位で住宅間の出力抑制量及び無効電力のばらつきを是正するための設定パラメータである。高圧配電線の潮流による電圧のばらつきを補正することはできないが、小規模の系統で動作電圧を決定できるという利点がある。一方、All−1、All−2、All−3は同一配電線における全てのPVシステムの動作電圧を変更する方法である。具体的な動作電圧の決定方法は、図7を用いて説明する。 Of the six patterns shown in Table 1, Tr-1 and Tr-2 are setting parameters for correcting variations in output suppression amount and reactive power between houses in units of low-voltage distribution lines. Although it is impossible to correct the voltage variation due to the power flow of the high-voltage distribution line, there is an advantage that the operating voltage can be determined by a small-scale system. On the other hand, All-1, All-2, and All-3 are methods for changing the operating voltages of all PV systems on the same distribution line. A specific method for determining the operating voltage will be described with reference to FIG.
All−1、All−2、All−3の各住宅の動作電圧は以下の手順で決定する。
1. 変電所と各住宅の電位差の算出
PCSの電圧制御が動作しないように送り出し電圧を下げた状態で、図5に示す発電・負荷パターンを用いて潮流計算を行う。逆潮流が最も大きい時間(AM11:34)と逆潮流を開始する時間(AM6:55)を3等分し、逆潮流電力が異なる夫々の時間(AM8:28、AM10:01、AM11:34)で変電所と各住宅の電位差を算出する。
2. 各住宅の電圧上昇抑制機能の動作電圧の決定
最も電圧が上昇しやすいTr5TM1の動作電圧を107.5Vとして、前記1.で算出した電位分布を基に、それ以外の住宅の電圧上昇抑制機能の動作電圧を決定する。AM8:28の逆潮流電圧を用いて算出した電圧上昇抑制機能の動作電圧をAll−1、AM10:01を用いて算出した電圧上昇抑制機能の動作電圧をAll−2、AM11:34の逆潮流電力を用いて算出した電圧上昇抑制機能の動作電圧をAll−3とそれぞれ定義する。
The operating voltage of each house of All-1, All-2, and All-3 is determined by the following procedure.
1. Calculation of the potential difference between the substation and each house The power flow is calculated using the power generation / load pattern shown in FIG. 5 with the sending voltage lowered so that the voltage control of the PCS does not operate. The time when the reverse power flow is greatest (AM11: 34) and the time when the reverse power flow starts (AM6: 55) are divided into three equal parts, and the times when the reverse power flow is different (AM8: 28, AM10: 01, AM11: 34) Calculate the potential difference between the substation and each house.
2. Determination of the operating voltage of the voltage rise suppressing function of each house The operating voltage of Tr5TM1, which is most likely to increase the voltage, is 107.5V. Based on the potential distribution calculated in
前記で示したパラメータを用いてシミュレーション解析により出力抑制量を算出した。図8にPCS制御が出力抑制機能のみ及び進相無効電力制御を併用した場合の各柱上変圧器中最も出力抑制量が大きい住宅の1日の出力抑制量を示す。 The output suppression amount was calculated by simulation analysis using the parameters shown above. FIG. 8 shows the daily output suppression amount of a house having the largest output suppression amount among the pole transformers when the PCS control uses only the output suppression function and the phase advance reactive power control in combination.
図8の(a)図に示すように、進相無効電力制御を併用しない場合(出力抑制機能出力抑制機能のみ)は、高圧配電線の全長が0kmでも、最悪ケースで出力抑制が発生しない理想発電電力量(21.7kWh)の約18%に相当する最大約4kWhの出力抑制が発生すること及び高圧配電線の全長が10kmの場合、最悪ケースで、理想発電電力量の約47%に相当する10.1kWhの出力抑制が発生する住宅があることが確認できた。一方、(b)図に示すように、進相無効電力制御を併用した場合については、大幅に出力抑制量が低下し、高圧配電線の線路長によらず、出力抑制量がほぼ零になることが確認できた。 As shown in FIG. 8 (a), when phase reactive power control is not used together (output suppression function and output suppression function only), even if the total length of the high-voltage distribution line is 0 km, ideal output suppression does not occur in the worst case. When the maximum output of about 4 kWh corresponding to about 18% of the generated power (21.7 kWh) occurs and the total length of the high-voltage distribution line is 10 km, it corresponds to about 47% of the ideal generated power in the worst case. It was confirmed that there is a house where output suppression of 10.1 kWh occurs. On the other hand, as shown in FIG. 5B, when the phase-advanced reactive power control is used together, the output suppression amount is greatly reduced, and the output suppression amount becomes almost zero regardless of the line length of the high-voltage distribution line. I was able to confirm.
また、上記の結果から、進相無効電力制御の力率設定値を変えたことによる出力抑制量の変化への効果を確認することとした。これは式2で定義する出力抑制回避率、各住宅の出力抑制量及び無効電力出力の分布を用いて実施することとした。
In addition, from the above results, it was decided to confirm the effect of changing the power factor setting value of the phase reactive power control on the change in the output suppression amount. This was implemented using the output suppression avoidance rate, the output suppression amount of each house, and the distribution of reactive power output defined by
図9に設定力率と出力抑制回避量の相関を、図10に高圧配電線全長10kmの場合の住宅毎の出力抑制量及び進相無効電力出力の分布をそれぞれ示す。なお、図10の(b)図の無効電力は、当該住宅で皮相電力が最も大きい時間のデータを抽出した。 FIG. 9 shows the correlation between the set power factor and the output suppression avoidance amount, and FIG. 10 shows the distribution of the output suppression amount and the phase reactive power output for each house when the total length of the high-voltage distribution line is 10 km. In addition, the reactive power of FIG.10 (b) extracted the data of the time when the apparent power is the largest in the said house.
図9より、いずれのケースにおいても、設定力率を下げるほど出力抑制回避率は上昇し、配電線距離10km・設定力率0.85の場合に、出力抑制回避率は最大で約25%になることが確認できた。 From FIG. 9, in any case, the output suppression avoidance rate increases as the set power factor is lowered. When the distribution line distance is 10 km and the set power factor is 0.85, the output suppression avoidance rate is about 25% at the maximum. It was confirmed that
また、各住宅の無効電力・出力抑制量は、図10に示す通り設定力率によらず、住宅1が最も大きく、住宅7が最も小さいことが確認できた。この傾向は、進相無効電力制御の力率設定を小さくすればするほど顕著になることから、住宅間の出力抑制量及び無効電力出力のばらつき補整という観点からは、好ましくない運用ということになる。
Moreover, it was confirmed that the reactive power / output suppression amount of each house is the largest in the
これらの結果を踏まえて次のステップとして、住宅毎にPCS電圧制御整定値を変えることによる住宅間の出力抑制量及び無効電力ばらつき低減効果の検証を行った。各住宅の整定値は、低圧配電線単位の住宅間の出力抑制量及び無効電力のばらつきを是正するために柱上変圧器単位で差を付ける方法と同一配電線における全PVシステムの動作電圧を変更する方法の2通りで検証した。前者は柱上変圧器内の電圧分布で整定値を決定できるという利点がある。
一方、後者は、配電線全体の電圧分布を考慮できるという利点があるが、全ての住宅を模擬する詳細シミュレーションが必要になるという欠点がある。
Based on these results, the next step was to verify the output suppression amount between houses and the effect of reducing the variation in reactive power by changing the PCS voltage control set value for each house. The setting value for each house is the operating voltage of all PV systems in the same distribution line as the method of making a difference in pole transformer units to correct the output suppression amount and reactive power variation between houses in the low voltage distribution line unit. It verified in two ways of changing. The former has the advantage that the set value can be determined by the voltage distribution in the pole transformer.
On the other hand, the latter has an advantage that the voltage distribution of the entire distribution line can be taken into account, but has a disadvantage that a detailed simulation for simulating all houses is required.
実際今回実施したシミュレーションでは、前者は柱上変圧器内の電圧分布に従い電圧上昇し易い住宅、中間の住宅、電圧上昇し難い住宅に0.1V若しくは0.2V整定値の差を付けるという手法をとったが、後者の電圧分布は、PCSの電圧制御機能が動作しないように送り出し電圧を下げ、逆潮流が最も大きい時間(AM11:34)と逆潮流が開始する時間(AM6:55)を3等分し、逆潮流電力が異なるそれぞれの時間(AM8:28、AM10:01、AM11:34)で変電所と各住宅の電位差を算出し、最も電圧が上昇するTr5TM1の電圧上昇抑制機能の動作電圧を107.5Vとして算出した電位分布を基に整定値を決定するというプロセスでシミュレーションを実施した。 In fact, in the simulation that was conducted this time, the former used a method in which a difference of 0.1V or 0.2V settling value was given to a house that is likely to increase in voltage according to the voltage distribution in the pole transformer, an intermediate house, or a house that is difficult to increase the voltage. However, the latter voltage distribution is obtained by reducing the sending voltage so that the voltage control function of the PCS does not operate, and the time when the reverse power flow is the largest (AM11: 34) and the time when the reverse power flow starts (AM6: 55) are 3 Calculate the potential difference between the substation and each house at different times (AM8: 28, AM10: 01, AM11: 34) when the reverse power flow is equally divided, and the operation of the Tr5TM1 voltage rise suppression function where the voltage rises the most The simulation was carried out by the process of determining the settling value based on the potential distribution calculated with a voltage of 107.5V.
シミュレーションの結果、AM11:34の逆潮流電力で算出した整定値(All−3)で運用する場合が、最も出力抑制回避率が高くなり、全軒で同じ整定値を使用する場合と比較して約10%出力抑制回避率が高くなることが確認できた。しかし、この運用では、住宅間の出力抑制量及び無効電力出力のばらつきが大きいという欠点があることが確認できた。一方、AM10:01の逆潮流電力で算出した整定値(All−2)で運用する場合は、出力抑制回避率はAll−3と同等で且つ住宅間の出力抑制損失量及び無効電力出力の標準偏差が全ての運用の中で最も小さくなることが確認できた。これを定量的に評価するため、出力抑制回避率、住宅間の出力抑制量のばらつき、無効電力のばらつきに重み関数を与え、総合評価を行った。 As a result of simulation, when operating with the settling value (All-3) calculated with the reverse power flow of AM11: 34, the output suppression avoidance rate is the highest, compared to the case where the same settling value is used in all the houses. It was confirmed that the output suppression avoidance rate was increased by about 10%. However, in this operation, it was confirmed that there is a drawback that the amount of output suppression between houses and the variation of reactive power output are large. On the other hand, when operating with a settling value (All-2) calculated with the reverse power flow of AM10: 01, the output suppression avoidance rate is equivalent to All-3, and the output suppression loss amount between houses and the standard of reactive power output It was confirmed that the deviation was the smallest among all operations. In order to evaluate this quantitatively, a weighting function was given to the output suppression avoidance rate, the variation in the amount of output suppression between houses, and the variation in reactive power, and an overall evaluation was performed.
すなわち、総合評価は、(1)出力抑制回避率、(2)住宅間の出力抑制量のばらつき、(3)無効電力出力のばらつきの3項目を評価項目とした。 In other words, the overall evaluation was evaluated using three items: (1) output suppression avoidance rate, (2) variation in output suppression amount between houses, and (3) variation in reactive power output.
出力抑制回避のための電圧制御機能を最適化するためには、上記3項目はいずれも重要であるが、ロスの低減という観点から重要度に差をつけられることが可能な評価を行うこととした。評価は式3で定義する規格化した出力抑制回避率、住宅間の出力抑制量のばらつき、無効電力出力のばらつきを用いて式4に示す判定係数Jcで実施した。
In order to optimize the voltage control function for avoiding output suppression, the above three items are all important, but an evaluation that can make a difference in importance from the viewpoint of reducing loss and did. The evaluation was performed using the standardized output suppression avoidance rate defined by
判定係数Jcは、出力抑制回避率が最も大きく、住宅間の出力抑制量及び無効電力出力のばらつきがない場合に1と最も大きくなる。また、重み係数は、各パラメータの重要度を考慮し、値にα、β、γにつけたケースを2パターン(α=1、β=0.5、γ=0.5)、(α=1、β=0.5、γ=0.25)とα、β、γを同じ値とするケース(α、β、γ=1)の3通りを設定し評価をじっしすることとした。図11に各条件の判定係数算出結果を示す。 The determination coefficient Jc is the largest when the output suppression avoidance rate is the highest and there is no variation in the output suppression amount between the houses and the reactive power output. In addition, the weighting factor takes into account the importance of each parameter, and two cases (α = 1, β = 0.5, γ = 0.5), (α = 1) where the values are assigned to α, β, γ. , Β = 0.5, γ = 0.25) and the case (α, β, γ = 1) in which α, β, γ are set to the same value, and the evaluation was started. FIG. 11 shows determination coefficient calculation results for each condition.
図11から、今回設定した重み係数及び力率条件では、いずれのケースにおいてもAll−2が最も判定係数が大きく、その中でも力率設定0.875〜0.9が最も判定係数が大きくなることから、この運用が今回設定した条件における最も効率的なものでることが分かった。 From FIG. 11, in the weighting factor and power factor condition set this time, in all cases, All-2 has the largest determination coefficient, and power factor setting 0.875 to 0.9 has the largest determination coefficient. Therefore, it was found that this operation is the most efficient under the conditions set this time.
なお、以上のシミュレーションから、整定値の設定をAM10:01としているが、この発明はこの時刻に限定されるものではない。
各需要家の負荷や発電電力の変動等の設定条件や設定された時刻が充足されると自動的に前記サーバが作動して、各PCS7により各PCS7の電圧を測定し、各PCS7に動作電圧を設定することもできる。
From the above simulation, the setting value is set to AM10: 01, but the present invention is not limited to this time.
When the setting conditions such as the load of each customer and the fluctuation of the generated power and the set time are satisfied, the server automatically operates, the voltage of each
1 変電所 2 高圧配電線
3 柱上変圧器 4 低圧配電線
5 住宅 6 PVシステム
7 PCS 8 負荷
9 サーバ 10 PCS端電圧
DESCRIPTION OF
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010215571A JP5612417B2 (en) | 2010-09-27 | 2010-09-27 | Method and apparatus for avoiding output suppression in photovoltaic power generation system connected to multiple units |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010215571A JP5612417B2 (en) | 2010-09-27 | 2010-09-27 | Method and apparatus for avoiding output suppression in photovoltaic power generation system connected to multiple units |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012070598A true JP2012070598A (en) | 2012-04-05 |
JP5612417B2 JP5612417B2 (en) | 2014-10-22 |
Family
ID=46167179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010215571A Active JP5612417B2 (en) | 2010-09-27 | 2010-09-27 | Method and apparatus for avoiding output suppression in photovoltaic power generation system connected to multiple units |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5612417B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019208304A (en) * | 2018-05-28 | 2019-12-05 | 三菱電機株式会社 | Power control device, power control system, reactive power controller, and power control method |
US11817708B2 (en) | 2018-12-10 | 2023-11-14 | Mitsubishi Electric Corporation | Power conversion system and management apparatus for the same, and distributed power supply apparatus |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000232736A (en) * | 1999-02-12 | 2000-08-22 | Tdk Corp | Linked distributed power generation system |
JP2001352682A (en) * | 2000-06-09 | 2001-12-21 | Sharp Corp | Inverter device and method for reversing power flow to direct it to commercial system |
JP2004135454A (en) * | 2002-10-11 | 2004-04-30 | Sharp Corp | Output control method for a plurality of distributed power supplies and distributed power supply management system |
JP2010213542A (en) * | 2009-03-12 | 2010-09-24 | Kansai Electric Power Co Inc:The | Distribution system |
-
2010
- 2010-09-27 JP JP2010215571A patent/JP5612417B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000232736A (en) * | 1999-02-12 | 2000-08-22 | Tdk Corp | Linked distributed power generation system |
JP2001352682A (en) * | 2000-06-09 | 2001-12-21 | Sharp Corp | Inverter device and method for reversing power flow to direct it to commercial system |
JP2004135454A (en) * | 2002-10-11 | 2004-04-30 | Sharp Corp | Output control method for a plurality of distributed power supplies and distributed power supply management system |
JP2010213542A (en) * | 2009-03-12 | 2010-09-24 | Kansai Electric Power Co Inc:The | Distribution system |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019208304A (en) * | 2018-05-28 | 2019-12-05 | 三菱電機株式会社 | Power control device, power control system, reactive power controller, and power control method |
JP7097748B2 (en) | 2018-05-28 | 2022-07-08 | 三菱電機株式会社 | Power control device, power control system, reactive power controller and power control method |
US11817708B2 (en) | 2018-12-10 | 2023-11-14 | Mitsubishi Electric Corporation | Power conversion system and management apparatus for the same, and distributed power supply apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP5612417B2 (en) | 2014-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Samadi et al. | Multi-objective coordinated droop-based voltage regulation in distribution grids with PV systems | |
Nour et al. | Review on voltage‐violation mitigation techniques of distribution networks with distributed rooftop PV systems | |
Samadi et al. | Coordinated active power-dependent voltage regulation in distribution grids with PV systems | |
Juamperez et al. | Voltage regulation in LV grids by coordinated volt-var control strategies | |
JP6205658B2 (en) | Photovoltaic power plant and control method thereof | |
Ochoa et al. | Minimizing the reactive support for distributed generation: Enhanced passive operation and smart distribution networks | |
EP2518854B1 (en) | Electric power supply system | |
Solanki et al. | Steady state analysis of high penetration PV on utility distribution feeder | |
KR101109187B1 (en) | Operation method for power system using real-time power information | |
US20190041436A1 (en) | Determining meter phase using interval voltage measurements | |
Gabash et al. | Active-reactive optimal power flow for low-voltage networks with photovoltaic distributed generation | |
US11415598B2 (en) | Methods and systems for connecting and metering distributed energy resource devices | |
US9042129B2 (en) | System and method for controlling power in a distribution system | |
CA3054142C (en) | Solar generation estimation | |
Perpinias et al. | Optimum design of low‐voltage distributed photovoltaic systems oriented to enhanced fault ride through capability | |
US11146068B2 (en) | Method and apparatus for minimizing circulating currents in microgrids | |
JP5612417B2 (en) | Method and apparatus for avoiding output suppression in photovoltaic power generation system connected to multiple units | |
Chacko et al. | DC nanogrid for Buildings: Study based on experimental investigation of load performance and Annual energy consumption | |
KR101978245B1 (en) | Stablization system for distribution system | |
Homaee et al. | Online voltage control approach in smart distribution system with renewable distributed generation | |
Bhattacharyya et al. | Impacts of large-scale integration of PV based generations in a mesh-connected low voltage network | |
Singh et al. | Real-time conservation voltage reduction and control in smart micro-grid application | |
Perpinias et al. | Design principles of low voltage distributed generation units with increased fault ride through capability | |
Venkatraman et al. | Optimal reactive power allocation to minimize line and DG losses in a radial distribution system | |
AU2020206320B2 (en) | Methods and systems for connecting and metering distributed energy resource devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130924 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140416 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140422 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140528 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140805 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140904 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5612417 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |