JP2012069380A - Electrolyte material for solid fuel cell and manufacturing method thereof - Google Patents

Electrolyte material for solid fuel cell and manufacturing method thereof Download PDF

Info

Publication number
JP2012069380A
JP2012069380A JP2010213251A JP2010213251A JP2012069380A JP 2012069380 A JP2012069380 A JP 2012069380A JP 2010213251 A JP2010213251 A JP 2010213251A JP 2010213251 A JP2010213251 A JP 2010213251A JP 2012069380 A JP2012069380 A JP 2012069380A
Authority
JP
Japan
Prior art keywords
fuel cell
solid fuel
compound
electrolyte material
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010213251A
Other languages
Japanese (ja)
Other versions
JP5652602B2 (en
Inventor
Fabbri Emiliana
ファブリ エミリアーナ
Traversa Enrico
トラベルサ エンリコ
Daniele Pergolesi
ペルゴェシ ダニエレ
Hidehiko Tanaka
英彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2010213251A priority Critical patent/JP5652602B2/en
Publication of JP2012069380A publication Critical patent/JP2012069380A/en
Application granted granted Critical
Publication of JP5652602B2 publication Critical patent/JP5652602B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a stable compound which is suitable for fuel cell type vehicles, can be used as electrolyte for solid fuel cells operable at middle to low temperatures of approximately 600°C, is manufactured readily in industrial scale, and has high electric conductivity in the above-mentioned temperature range, and which virtually does not react with moisture and carbon dioxide under the operation environments.SOLUTION: Novel material is obtained by simultaneously adding Y and Pr to the base of ZrYOand/or ZrCeYOas the best oxide conductor at the middle to low temperatures so far. This material is a polycrystalline substance, and a substance having a composition of BaZrPrYO(0.1<x<0.4, 0<y≤0.2) and obtained by forming powder using a combustion synthesis method, followed by sintering.

Description

本発明は、固体燃料電池用電解質材料に関し、特に600℃前後の中低温で伝導率に優れ、化学的に安定であるとともに緻密な焼結体である新規なプロトン伝導固体燃料電池用電解質材料とその製造方法に関する。   The present invention relates to an electrolyte material for a solid fuel cell, and in particular, a novel electrolyte material for a proton conductive solid fuel cell, which is excellent in conductivity at medium and low temperatures around 600 ° C., chemically stable and densely sintered. It relates to the manufacturing method.

電気エネルギー需要の継続的増加に対して、新しい発電手段の燃料電池が有望視されてきた。その中でも固体燃料電池の開発は急であり、一部に実用化に至っている。固体燃料電池に利用される固体燃料電池材料は金属酸化物固体(セラミックス)であり、800〜1000℃で作動させている。これらは高温環境が容易な定置型発電機に利用されているが、自動車等の可動型発電機への利用はまだ実現していない。作動温度が600℃程度、あるいはそれ以下の中低温になれば、広範囲に利用できる発電機ができ、その経済的、地球環境的、さらに政治的インパクトは大きく、巨大なマーケットが開かれることが期待される。   New power generation fuel cells have been viewed as promising for a continuous increase in electrical energy demand. Among them, the development of solid fuel cells is rapid, and some have been put into practical use. The solid fuel cell material used for the solid fuel cell is a metal oxide solid (ceramics), which is operated at 800 to 1000 ° C. These are used for stationary generators that are easy to use in high-temperature environments, but have not yet been used for movable generators such as automobiles. If the operating temperature is about 600 ° C or lower, a generator that can be used in a wide range will be produced, and its economic, global environmental and political impact will be great, and a huge market is expected to be opened. Is done.

酸化物固体燃料電池用電解質では、電子伝導よりプロトン伝導体が優れている。従って、プロトン伝導を持ち、中低温で作動し、しかも、燃料電池の雰囲気の水蒸気や二酸化炭素雰囲気で安定な材料が求められている。さらに、材料は粉末から焼結して緻密体を作るので、工業材料として使用するためには、焼結性に優れなければならない。   In the oxide solid fuel cell electrolyte, the proton conductor is superior to the electron conduction. Accordingly, there is a need for a material that has proton conductivity, operates at medium and low temperatures, and is stable in the atmosphere of water vapor or carbon dioxide in the fuel cell. Further, since the material is sintered from powder to form a dense body, it must be excellent in sinterability in order to be used as an industrial material.

酸化物の固体燃料電池用電解質材料としては、酸化ジルコニウム(ジルコニア、ZrO)があり、高温で電気伝導を示す。これに酸化イットリウム(イットリア、Y)を固溶したイットリア安定化ジルコニア(YSZ)がよく知られている。これらは電子伝導体であるので、これに酸化バリウム(BaO)を固溶させると、たとえばBaZr0.70.33−δ(BZY、δ≒0.15であり、酸素欠陥で変動する)はプロトン伝導を示し、電気伝導率が高く注目された材料である。さらに、酸化セリウム(セリア、CeO)を固溶させると、たとえばBaCe0.7Zr0.10.23−δ(BCZY、δ≒0.2)は優れた電気伝導材料となることが知られている。 An oxide material for solid fuel cells is zirconium oxide (zirconia, ZrO 2 ), which exhibits electrical conduction at high temperatures. Yttria-stabilized zirconia (YSZ) in which yttrium oxide (yttria, Y 2 O 3 ) is dissolved is well known. Since these are electron conductors, if barium oxide (BaO) is dissolved in this, for example, BaZr 0.7 Y 0.3 O 3-δ (BZY, δ≈0.15, and fluctuates due to oxygen defects. Is a material that has attracted attention because of its proton conductivity and high electrical conductivity. Further, when cerium oxide (ceria, CeO 2 ) is dissolved, for example, BaCe 0.7 Zr 0.1 Y 0.2 O 3-δ (BCZY, δ≈0.2) becomes an excellent electrically conductive material. It is known.

しかしながら、これらを固体燃料電池の電解質として利用するには、いくつかの欠点がある。先ず、BZYは焼結による緻密化が不十分なので、燃料電池材料を製造するときに問題となる。これらは高温でのみ作動する。また、BCZYは化学的に十分安定ではなく、燃料電池の雰囲気である二酸化炭素(CO)や水蒸気(水、HO)と反応し、材料が劣化することが分かった。 However, there are several drawbacks to using these as electrolytes for solid fuel cells. First, since BZY is insufficiently densified by sintering, it becomes a problem when manufacturing fuel cell materials. They operate only at high temperatures. Further, it was found that BCZY is not chemically sufficiently stable and reacts with carbon dioxide (CO 2 ) and water vapor (water, H 2 O), which are the atmosphere of the fuel cell, to deteriorate the material.

本発明の課題は、600℃前後の中低温で作動する固体燃料電池用電解質材料であって、二酸化炭素下と水雰囲気で安定であり、しかも焼結で緻密化し易く、工業的製造が容易な材料を提供することである。   An object of the present invention is an electrolyte material for a solid fuel cell that operates at a medium / low temperature of about 600 ° C., is stable in carbon dioxide and in a water atmosphere, is easily densified by sintering, and is easily manufactured industrially. Is to provide materials.

本発明の一側面によれば、酸化バリウムと酸化ジルコニウムと酸化プラセオジムと酸化イットリウムとの固溶体である、固体燃料電池用電解質材料が与えられる。
この電解質材料は、電気伝導率が600℃で10−4s/Scm−1以上であってよい。
また、この電解質材料は、組成がBaZr1−x−yPr3−(x+y)/2(0.1<x<0.4、0<y≦0.2)で表されてよい。
本発明の他の側面によれば、バリウム(Ba)化合物、ジルコニウム(Zr)化合物、イットリウム(Y)化合物、プラセオジム(Pr、Praseodymium)化合物及び有機物を含む混合物を燃焼して合成される粉末を、成形し、仮焼し、焼結する、固体燃料電池用電解質材料の製造方法が与えられる。
ここで、前記バリウム化合物、ジルコニウム化合物、イットリウム化合物及びプラセオジム化合物は酸化物、水酸化物または硝酸化物であってよい。
According to one aspect of the present invention, there is provided an electrolyte material for a solid fuel cell, which is a solid solution of barium oxide, zirconium oxide, praseodymium oxide, and yttrium oxide.
The electrolyte material may have an electric conductivity of 10 −4 s / Scm −1 or more at 600 ° C.
The electrolyte material has a composition represented by BaZr 1-xy Pr x Y y O 3-(x + y) / 2 (0.1 <x <0.4, 0 <y ≦ 0.2). Good.
According to another aspect of the present invention, a powder synthesized by burning a mixture containing a barium (Ba) compound, a zirconium (Zr) compound, an yttrium (Y) compound, a praseodymium (Pr) compound, and an organic substance, A method for producing an electrolyte material for a solid fuel cell that is molded, calcined, and sintered is provided.
Here, the barium compound, zirconium compound, yttrium compound and praseodymium compound may be oxides, hydroxides or nitrates.

本発明の固体燃料電池用電解質材料は、固体燃料電池の使用温度及び雰囲気で化学的に安定であり、中低温で電気伝導が高く、固体燃料電池の電解質材料に適するものである。しかも、本材料の焼結体の製造は容易であるので、工業的生産に適切である。   The electrolyte material for a solid fuel cell of the present invention is chemically stable at the use temperature and atmosphere of the solid fuel cell, has high electrical conductivity at medium and low temperatures, and is suitable as an electrolyte material for a solid fuel cell. In addition, since the sintered body of this material is easy to manufacture, it is suitable for industrial production.

本発明の実施例2の固体燃料電池用電解質材料の破断面に現れた組織のSEM写真。The SEM photograph of the structure | tissue which appeared in the fracture surface of the electrolyte material for solid fuel cells of Example 2 of this invention. 本発明の実施例1(BZPY01)及び実施例2(BZPY02)、更にPあるいはYを含まない既存の固体電気伝材料である比較例2のBZPと基本結晶構造の既存データ(BaZrO)。Example 1 (BZPY01) and Example 2 (BZPY02) of the present invention, BZP of Comparative Example 2, which is an existing solid electrical conductive material not containing P or Y, and existing data (BaZrO 3 ).

BZYをもとに、イットリウム(Y)の一部をプロセオジム(Pr)に置換すると、組成がBaZr1−x−yPr3−(x+y)/2(0.1<x<0.4、0<y≦0.2)である、BaO−ZrO−Pr−Y系固溶体材料が合成できる。これらの原料成分を燃焼合成した粉末の焼結によって製造すると優れた固体燃料電池用電解質を得ることができる。この材料は化学的に安定で、600℃程度の中低温で電気伝導率が10−2Sm−1程度と高い。この性質は、YとPrを同時にBZYに固溶させないと実現できない。BaOの含有量に関してはペロブスカイト構造を持つことから、モル比でBa:(Zr+Pr+Y)=1:1である。 Based on BZY, when a part of yttrium (Y) is replaced with protheodymium (Pr), the composition becomes BaZr 1-xy Pr x Y y O 3-(x + y) / 2 (0.1 <x <0 BaO—ZrO 2 —Pr 2 O 3 —Y 2 O 3 based solid solution material can be synthesized. An excellent electrolyte for a solid fuel cell can be obtained by producing powders obtained by combustion synthesis of these raw material components. This material is chemically stable and has a high electrical conductivity of about 10 −2 Sm −1 at medium and low temperatures of about 600 ° C. This property cannot be realized unless Y and Pr are simultaneously dissolved in BZY. Since the BaO content has a perovskite structure, the molar ratio is Ba: (Zr + Pr + Y) = 1: 1.

本発明に係る固体燃料電池用電解質の製造に当たっては、先ず所定の混合比をもつ原料粉末を燃焼合成によって作成する。無機系液体や有機系の液体、キレート剤などを溶媒にし、Ba、Zr、Pr及びYの酸化物、水酸化物、硝酸化物等を所定のBaZr1−x−yPr3−(x+y)/2(0.1<x<0.4、0<y≦0.2)の組成になるように、pH等を調整し溶解する。これを加熱し、高温で仮焼すると、ゲル化し有機系含有部物が燃焼し、原料の金属酸化物の微粉末混合物が合成される。この工程を燃焼合成といい、本発明の電解質を製造するための、微粉で均一に混合した原料を得るために必須である。通常の方法で作製される粉末では後の焼結工程で均一な固溶体が得られない。このようにして得られた粉末を、通常の金型成形やスリップキャスト法、静水圧ラバープレス(CIP)等で成形体とする。粉末成形体を通常の加熱炉で1600℃程度の温度で仮焼し、焼結して、固体燃料電池用電解質材料を製造する。 In producing the electrolyte for a solid fuel cell according to the present invention, first, a raw material powder having a predetermined mixing ratio is prepared by combustion synthesis. Inorganic liquids and organic liquids, such as a chelating agent and a solvent, Ba, Zr, oxides of Pr and Y, hydroxides, given the nitrates like BaZr 1-x-y Pr x Y y O 3- (X + y) / 2 (0.1 <x <0.4, 0 <y ≦ 0.2) The pH and the like are adjusted and dissolved so as to have a composition. When this is heated and calcined at a high temperature, it gels and the organic content part burns, and a fine powder mixture of the raw material metal oxide is synthesized. This process is called combustion synthesis and is essential for obtaining a raw material uniformly mixed with fine powder for producing the electrolyte of the present invention. With a powder produced by a normal method, a uniform solid solution cannot be obtained in the subsequent sintering step. The powder thus obtained is formed into a molded body by ordinary die molding, slip casting method, hydrostatic pressure rubber press (CIP) or the like. The powder compact is calcined at a temperature of about 1600 ° C. in an ordinary heating furnace and sintered to produce an electrolyte material for a solid fuel cell.

製造した固体燃料電池用材料は次のように評価した。組成の定量は実際に化学分析を行うことによって決定した。分析の結果得られた組成は混合した原料粉末の金属モル比から予測できるものと変わらなかった。相は粉末X線回折(XRD)によって同定した。組織(破断面)を図1に、XRDパターンを図2に示す(詳細は後述)。   The manufactured solid fuel cell material was evaluated as follows. The quantification of the composition was determined by actually performing chemical analysis. The composition obtained as a result of analysis was not different from that predicted from the metal molar ratio of the mixed raw material powder. Phases were identified by powder X-ray diffraction (XRD). The structure (fracture surface) is shown in FIG. 1, and the XRD pattern is shown in FIG. 2 (details will be described later).

製造された焼結体は緻密で、気孔は特に見出されず、均一な粒径を持っている。また、XRDパターンでは、回折線に角度シフトがあるものの、BaZrOと一致し、他の組成は含まれていない均一固溶体が出来た。化学安定性は、COガスあるいは水中に暴露して評価した。暴露試験後にXRD測定で相の変化を調べたが、化学変化や相分離を起こすことがなく安定であった。電気伝導率は通常の方法で測定した。乾燥空気と湿潤空気中で、中低温で10−2/Scm−1程度の優れた伝導率を持っていた。 The manufactured sintered body is dense, no pores are particularly found, and has a uniform particle size. Further, in the XRD pattern, although there was an angle shift in the diffraction line, a uniform solid solution was obtained which coincided with BaZrO 3 and did not contain other compositions. Chemical stability was evaluated by exposure to CO 2 gas or water. The phase change was examined by XRD measurement after the exposure test, but it was stable without causing chemical change or phase separation. The electrical conductivity was measured by a usual method. It had an excellent conductivity of about 10 −2 / Scm −1 at low temperatures in dry and humid air.

次に、本発明を実施例により、固体燃料電池用材料の製造と評価結果を具体的に説明する。   Next, the production and evaluation results of the solid fuel cell material will be specifically described by way of examples of the present invention.

Ba(NO、ZrO(NO)・2HO、Pr11とY(NO)・6HO粉末を所定の混合比に秤量し、硝酸のアセトン溶液とクエン酸のキレート剤の比が2:1の液に溶解した。アンモニア水で溶液のpHを調整して共沈させ、各成分が微細で均一に混合して、有機系成分を含む共沈物を得た。これを1600℃前後まで加熱して、有機成分を燃焼させて酸化物原料粉末を合成した。この合成粉末を金型で成形し、静水圧ラバープレス成形法(CIP)で成形した。成形体を通常の炉で1600℃で仮焼し、緻密な多結晶の焼結体を製造した。 Ba (NO 3 ) 2 , ZrO (NO 3 ) · 2H 2 O, Pr 6 O 11 and Y (NO 3 ) · 6H 2 O powder are weighed to a predetermined mixing ratio, and a chelate of nitric acid in acetone and citric acid The agent was dissolved in a solution having a 2: 1 ratio. The pH of the solution was adjusted with ammonia water to cause coprecipitation, and each component was finely and uniformly mixed to obtain a coprecipitate containing an organic component. This was heated to around 1600 ° C., and the organic component was burned to synthesize oxide raw material powder. This synthetic powder was molded with a mold and molded by an isostatic rubber press molding method (CIP). The compact was calcined at 1600 ° C. in an ordinary furnace to produce a dense polycrystalline sintered body.

このようにして得られた焼結体の実施例の組成と焼結結果を、表1の実施例1と2に示す。実施例1、2と図2によれば、燃焼合成による原料粉末から各成分が均一に固溶した材料が出来ていることがわかる。また、図2からわかるように、この焼結体の結晶は比較的大きく、またその大きさのばらつきが小さい。これにより、結晶の粒界部分の高い抵抗の影響が少ないことが、本材料の高導電率の理由の一つと考えられる。   Examples 1 and 2 of Table 1 show the compositions and sintering results of the examples of the sintered bodies thus obtained. According to Examples 1 and 2 and FIG. 2, it can be seen that a material in which each component is uniformly dissolved from the raw material powder by combustion synthesis is formed. Further, as can be seen from FIG. 2, the crystals of the sintered body are relatively large and the size variation is small. Thus, it is considered that one of the reasons for the high conductivity of this material is that the influence of the high resistance at the grain boundary portion of the crystal is small.

二酸化炭素との反応性では、二酸化炭素中200℃で1時間露出させた。水との反応性では、沸騰水中に置き、生成する成分をX線回折で同定した。電気伝導度はポテンシオスタットで乾燥空気と湿潤(3vol% HO)水素中で測定した。上述の実施例1、2についてのこれらの試験の結果を表2に示した。これより、実施例では焼結収縮が大きく、緻密化し、化学的に安定で、600℃で良好な電気伝導性を持った焼結体が得られることがわかった。従って、これらの焼結体を電解質として使用することによって、優れた固体燃料電池を製造することができる。 For reactivity with carbon dioxide, it was exposed in carbon dioxide at 200 ° C. for 1 hour. In terms of reactivity with water, it was placed in boiling water and the components produced were identified by X-ray diffraction. Electrical conductivity was measured with a potentiostat in dry air and wet (3 vol% H 2 O) hydrogen. The results of these tests for Examples 1 and 2 described above are shown in Table 2. From this, it was found that in the Examples, sintered compacts having large sintering shrinkage, densification, chemical stability, and good electrical conductivity at 600 ° C. were obtained. Therefore, an excellent solid fuel cell can be manufactured by using these sintered bodies as an electrolyte.

比較例Comparative example

比較例1として、実施例1と最終の組成は同じであるが、燃焼合成によらないで、焼結用成形体を作った。出発原料に酸化物粉末を用い、通常のボールミル粉砕と混合をした。粉末を実施例と同じく、金型成形、CIPと焼結をした。表1の比較例1では粉末の燃焼合成法を使わなかったため、原料粉末の混合が十分ではなかった。これによって、緻密化が十分に進まず、均一な固溶体は出来なかった。   As comparative example 1, the final composition was the same as in example 1, but a sintered compact was made without using combustion synthesis. Oxide powder was used as a starting material, and ordinary ball milling and mixing were performed. The powder was molded, molded with CIP and sintered as in the example. In Comparative Example 1 in Table 1, since the powder combustion synthesis method was not used, mixing of raw material powders was not sufficient. As a result, the densification did not proceed sufficiently and a uniform solid solution could not be obtained.

表2の比較例2はPrを含まないBaO−Zr−Y系材料(BZY)である。この比較例は焼結収縮が実施例4より少なく、緻密化が十分ではない。 Comparative Example 2 in Table 2 is a BaO—Zr 2 O 3 —Y 2 O 3 based material (BZY) that does not contain Pr. In this comparative example, the sintering shrinkage is less than that in Example 4, and the densification is not sufficient.

比較例3はCeを含有し、Prを含まないBCZYであるが、表2に示すように二酸化炭素と水で分解した。一方、実施例1、2はこれらの雰囲気で安定である。   Comparative Example 3 was BCZY containing Ce and not containing Pr, but decomposed with carbon dioxide and water as shown in Table 2. On the other hand, Examples 1 and 2 are stable in these atmospheres.

比較例4はPrを含むが、Yを含まない材料である。この比較例は実施例1、2に比べて電気伝導率が小さく、中低温の固体燃料電池用電解質材料に適さない。   Comparative Example 4 is a material that contains Pr but does not contain Y. This comparative example has a smaller electric conductivity than Examples 1 and 2, and is not suitable for an electrolyte material for a medium-low temperature solid fuel cell.

なお、本発明の材料を使用した固体燃料電池を実際に作成する場合、燃料電池の各要素、つまりカソード、アノード、電解質等の原料粉末をその最終的な構成に従って積層して成形してから全体をまとめて仮焼、焼結する方法を用いてよい。   In the case of actually producing a solid fuel cell using the material of the present invention, each element of the fuel cell, that is, a raw material powder such as a cathode, an anode, an electrolyte, etc. is laminated and molded according to its final configuration, and then the whole is formed. A method of calcining and sintering may be used.

以上から、BaO−ZrO系材料にYとPrを同時に固溶するBZPY系固体燃料電池用材料が良好な焼結性を有するとともに化学的に安定であり、しかも電気伝導度が大きい材料であることがわかる。本発明によれば工業的に容易に優れた固体燃料電池用電解質材料が与えられる。 From the above, the BZPY solid fuel cell material in which Y 2 O 3 and Pr 2 O 3 are simultaneously dissolved in the BaO—ZrO 2 material has good sinterability, is chemically stable, and is electrically conductive. It can be seen that the material has a large degree. According to the present invention, an excellent electrolyte material for a solid fuel cell can be provided easily industrially.

Claims (5)

酸化バリウムと酸化ジルコニウムと酸化プラセオジムと酸化イットリウムとの固溶体である、固体燃料電池用電解質材料。 An electrolyte material for a solid fuel cell, which is a solid solution of barium oxide, zirconium oxide, praseodymium oxide, and yttrium oxide. 電気伝導率が600℃で10−3Scm−1以上である、請求項1記載の固体燃料電池用電解質材料。 2. The electrolyte material for a solid fuel cell according to claim 1, wherein the electric conductivity is 10 −3 Scm −1 or more at 600 ° C. 3 . 組成がBaZr1−x−yPr3−(x+y)/2(0.1<x<0.4、0<y≦0.2)で表される、請求項1または2に記載の固体燃料電池用電解質材料。 The composition is represented by BaZr 1-xy Pr x Y y O 3- (x + y) / 2 (0.1 <x <0.4, 0 <y ≦ 0.2). The electrolyte material for solid fuel cells as described. バリウム(Ba)化合物、ジルコニウム(Zr)化合物、イットリウム(Y)化合物、プラセオジム(Pr)化合物及び有機物を含む混合物を燃焼して合成される粉末を、成形し、仮焼し、焼結する、固体燃料電池用電解質材料の製造方法。 Solid, which is formed, calcined and sintered, by synthesizing a powder synthesized by burning a mixture containing a barium (Ba) compound, zirconium (Zr) compound, yttrium (Y) compound, praseodymium (Pr) compound and organic matter Manufacturing method of electrolyte material for fuel cell. 前記バリウム化合物、ジルコニウム化合物、イットリウム化合物及びプラセオジム化合物は酸化物、水酸化物または硝酸化物である、請求項4に記載の製造方法。 The production method according to claim 4, wherein the barium compound, zirconium compound, yttrium compound and praseodymium compound are oxides, hydroxides or nitrates.
JP2010213251A 2010-09-24 2010-09-24 Electrolyte material for solid fuel cell and method for producing the same Expired - Fee Related JP5652602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010213251A JP5652602B2 (en) 2010-09-24 2010-09-24 Electrolyte material for solid fuel cell and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010213251A JP5652602B2 (en) 2010-09-24 2010-09-24 Electrolyte material for solid fuel cell and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012069380A true JP2012069380A (en) 2012-04-05
JP5652602B2 JP5652602B2 (en) 2015-01-14

Family

ID=46166389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010213251A Expired - Fee Related JP5652602B2 (en) 2010-09-24 2010-09-24 Electrolyte material for solid fuel cell and method for producing the same

Country Status (1)

Country Link
JP (1) JP5652602B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055884A (en) * 2012-09-13 2014-03-27 Sumitomo Electric Ind Ltd Solid electrolyte for oxygen sensor, and oxygen sensor
WO2015029713A1 (en) * 2013-08-27 2015-03-05 住友電気工業株式会社 Electrode material for fuel electrode, solid electrolyte-electrode laminate, method for producing solid electrolyte-electrode laminate, and fuel cell
CN104468856A (en) * 2013-09-20 2015-03-25 柯尼卡美能达株式会社 Information communication system, intermediate server, and recording medium
JP2021014374A (en) * 2019-07-10 2021-02-12 Dowaエレクトロニクス株式会社 Perovskite type composite oxide, and method of producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487510A (en) * 1987-09-29 1989-03-31 Nippon Denso Co Protonic conductive solid electrolyte
JPH10284108A (en) * 1997-03-31 1998-10-23 Toyota Motor Corp Solid electrolyte, and fuel cell, hydrogen pump, oxygen concentration sensor, and steam concentration sensor using the electrolyte
JP2001118590A (en) * 1999-10-21 2001-04-27 Toto Ltd High conductivity solid electrolyte film and method for manufacturing the same
JP2001307546A (en) * 2000-02-14 2001-11-02 Matsushita Electric Ind Co Ltd Ionic conductor
JP2009295521A (en) * 2008-06-09 2009-12-17 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell
JP2012227070A (en) * 2011-04-22 2012-11-15 National Institute For Materials Science Composite cathode material for solid oxide fuel cell operating at medium-low temperature, composite cathode for solid oxide fuel cell, and method for manufacturing electrolyte-composite cathode structure for solid oxide fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487510A (en) * 1987-09-29 1989-03-31 Nippon Denso Co Protonic conductive solid electrolyte
JPH10284108A (en) * 1997-03-31 1998-10-23 Toyota Motor Corp Solid electrolyte, and fuel cell, hydrogen pump, oxygen concentration sensor, and steam concentration sensor using the electrolyte
JP2001118590A (en) * 1999-10-21 2001-04-27 Toto Ltd High conductivity solid electrolyte film and method for manufacturing the same
JP2001307546A (en) * 2000-02-14 2001-11-02 Matsushita Electric Ind Co Ltd Ionic conductor
JP2009295521A (en) * 2008-06-09 2009-12-17 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell
JP2012227070A (en) * 2011-04-22 2012-11-15 National Institute For Materials Science Composite cathode material for solid oxide fuel cell operating at medium-low temperature, composite cathode for solid oxide fuel cell, and method for manufacturing electrolyte-composite cathode structure for solid oxide fuel cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7014000230; Emiliana Fabbri 他: Energy & Environmental Science 1, 2008, 355-359 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055884A (en) * 2012-09-13 2014-03-27 Sumitomo Electric Ind Ltd Solid electrolyte for oxygen sensor, and oxygen sensor
WO2015029713A1 (en) * 2013-08-27 2015-03-05 住友電気工業株式会社 Electrode material for fuel electrode, solid electrolyte-electrode laminate, method for producing solid electrolyte-electrode laminate, and fuel cell
JP2015046251A (en) * 2013-08-27 2015-03-12 住友電気工業株式会社 Electrode material for fuel electrodes, solid electrolyte-electrode laminate, method for manufacturing solid electrolyte-electrode laminate, and fuel battery
US9853295B2 (en) 2013-08-27 2017-12-26 Sumitomo Electric Industries, Ltd. Electrode material for fuel electrode, solid electrolyte-electrode laminate, method for producing solid electrolyte-electrode laminate, and fuel cell
CN104468856A (en) * 2013-09-20 2015-03-25 柯尼卡美能达株式会社 Information communication system, intermediate server, and recording medium
CN104468856B (en) * 2013-09-20 2017-10-03 柯尼卡美能达株式会社 Information communication system and its control method, intermediate server and its control method
JP2021014374A (en) * 2019-07-10 2021-02-12 Dowaエレクトロニクス株式会社 Perovskite type composite oxide, and method of producing the same

Also Published As

Publication number Publication date
JP5652602B2 (en) 2015-01-14

Similar Documents

Publication Publication Date Title
Tong et al. Solid-state reactive sintering mechanism for large-grained yttrium-doped barium zirconate proton conducting ceramics
Chen et al. Chemical stability study of BaCe 0.9 Nd 0.1 O 3-α high-temperature proton-conducting ceramic
Tong et al. Proton-conducting yttrium-doped barium cerate ceramics synthesized by a cost-effective solid-state reactive sintering method
Sawant et al. Synthesis, stability and conductivity of BaCe0. 8− xZrxY0. 2O3− δ as electrolyte for proton conducting SOFC
Li et al. Stable and easily sintered BaCe0. 5Zr0. 3Y0. 2O3− δ electrolytes using ZnO and Na2CO3 additives for protonic oxide fuel cells
Tong et al. Cost-effective solid-state reactive sintering method for high conductivity proton conducting yttrium-doped barium zirconium ceramics
Hossain et al. Highly dense and novel proton conducting materials for SOFC electrolyte
D'Epifanio et al. Design of BaZr0. 8Y0. 2O3–δ Protonic Conductor to Improve the Electrochemical Performance in Intermediate Temperature Solid Oxide Fuel Cells (IT‐SOFCs)
Liu et al. Structure, sinterability, chemical stability and conductivity of proton-conducting BaZr0. 6M0. 2Y0. 2O3− δ electrolyte membranes: the effect of the M dopant
Del Toro et al. Synthesis of La0. 8Sr0. 2FeO3 perovskites nanocrystals by Pechini sol–gel method
JP6655122B2 (en) Method for producing proton conductive oxide fuel cell
Zhang et al. Influence of ZnO addition on the properties of high temperature proton conductor Ba1. 03Ce0. 5Zr0. 4Y0. 1O3− δ synthesized via citrate–nitrate method
Khan et al. Wet chemical synthesis and characterisation of Ba0. 5Sr0. 5Ce0. 6Zr0. 2Gd0. 1Y0. 1O3− δ proton conductor
Barison et al. Barium non‐stoichiometry role on the properties of Ba1+ xCe0. 65Zr0. 20Y0. 15O3–δ proton conductors for IT‐SOFCs
JP5652602B2 (en) Electrolyte material for solid fuel cell and method for producing the same
Nayak et al. Recent advance on fundamental properties and synthesis of barium zirconate for proton conducting ceramic fuel cell
Changan et al. Preparation and characterization of Ce0. 8La0. 2–xYxO1. 9 as electrolyte for solid oxide fuel cells
An et al. Effect of nickel addition on sintering behavior and electrical conductivity of BaCe 0.35 Zr 0.5 Y 0.15 O 3-δ
Ge et al. A facile method to fabricate proton-conducting BaZr0· 85Y0· 15O3-δ electrolyte with a large grain size and high conductivity
Cheng et al. A strategy for improving sinterability and electrical properties of gadolinium-doped ceria electrolyte using calcium oxide additive
Reddy et al. A novel route to enhance the sinterability and its effect on microstructure, conductivity and chemical stability of BaCe0. 4Zr0. 4Y0. 2O3-δ proton conductors
Corcoran et al. Investigations into Sr3CaZr0. 5Ta1. 5O8. 75, a novel proton conducting perovskite oxide
JP5598920B2 (en) Method for producing electrolyte dense material for solid oxide fuel cell
Paydar et al. Chemically stable Dy–Y double substituted barium zirconate with high proton conductivity and improved sinterability
Cheng et al. Effects of Mg2+ addition on structure and electrical properties of gadolinium doped ceria electrolyte ceramics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141104

R150 Certificate of patent or registration of utility model

Ref document number: 5652602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees