JP2012068222A - Radar cross section (rcs) measurement system - Google Patents

Radar cross section (rcs) measurement system Download PDF

Info

Publication number
JP2012068222A
JP2012068222A JP2010230970A JP2010230970A JP2012068222A JP 2012068222 A JP2012068222 A JP 2012068222A JP 2010230970 A JP2010230970 A JP 2010230970A JP 2010230970 A JP2010230970 A JP 2010230970A JP 2012068222 A JP2012068222 A JP 2012068222A
Authority
JP
Japan
Prior art keywords
sample
rcs
measurement
wave
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010230970A
Other languages
Japanese (ja)
Inventor
Yosuke Suzuki
洋介 鈴木
Tomohiro Kado
智広 門
Kenji Saito
健次 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keycom Corp
Original Assignee
Keycom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keycom Corp filed Critical Keycom Corp
Priority to JP2010230970A priority Critical patent/JP2012068222A/en
Publication of JP2012068222A publication Critical patent/JP2012068222A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure not only mono-static radar cross section (RCS) but also bi-static RCS in not a remote field but a neighboring field by solving the problem that conventional RCS measurement adopts only either measurement in a remote field or measurement in a compact range, and that a measurement method in the remote field is to include remote measurement while a measurement method in the compact range is limited to only mono-static measurement.SOLUTION: The radar cross section (RCS) measurement system is configured to measure the RCS by irradiating a sample which rotates with a plane wave, receiving a reflection wave from the sample by the probe antenna in a neighboring field, and converting this from the neighboring field into a remote field by using an array factor.

Description

レーダークロスセクションを測定する際、近傍界で測定し、遠方界に変換する測定法に関するものである。  The present invention relates to a measurement method in which a radar cross section is measured in the near field and converted into a far field.

現在、レーダークロスセクションを測定する際、遠方界で測定する方法とコンパクトレンジで測定する方法がある。遠方界で測定すると測定距離が長いという欠点がある。
λ:波長、L:試料の幅とすると測定距離は
2L/λ以上であり、たとえば10GHzで試料の幅が10mだと、6.6km以上遠くから測定しなければならない。また、コンパクトレンジの場合、距離は20m程度という近距離でよいが、モノスタティックの測定だけという欠点がある。
Currently, when measuring the radar cross section, there are two methods: a far field measurement method and a compact range measurement method. When measuring in the far field, there is a disadvantage that the measurement distance is long.
If λ is the wavelength, and L is the width of the sample, the measurement distance is 2L 2 / λ or more. For example, if the width of the sample is 10 m at 10 GHz, measurement must be performed from 6.6 km or more. In the case of a compact range, the distance may be a short distance of about 20 m, but there is a drawback of only monostatic measurement.

なし
None

なし  None

背景技術で述べたようにレーダークロスセクションを測定する際、遠方界で測定する方法では、遠方で測定しなければならない。また、コンパクトレンジで測定する方法では、モノスタティックだけの測定に限られてしまう。遠方からではなく、また、モノスタティックでもバイスタティックでもレーダークロスセクション(RCS)を測定したい、という要望を解決するものである。  As described in the background art, when measuring the radar cross section, the method of measuring in the far field must be measured in the far field. In addition, the method of measuring in the compact range is limited to monostatic measurement. It solves the desire to measure radar cross section (RCS) not from a distance, but also monostatic or bistatic.

試料を回転させる。この試料に電磁波の平面波を照射する。試料から反射してきた電磁波を1点で受信し、角度ごとの振幅と位相を入手する。アレイファクタ、ArrayFactor(AF)の考えを用いた計算式と、測定した振幅、位相などからレーダークロスセクションを計算する。  Rotate the sample. This sample is irradiated with a plane wave of electromagnetic waves. The electromagnetic wave reflected from the sample is received at one point, and the amplitude and phase for each angle are obtained. The radar cross section is calculated from the calculation formula using the idea of the array factor and ArrayFactor (AF) and the measured amplitude and phase.

試料を1回、回転するだけで、近傍においてモノスタティック、バイスタティックなど希望するレーダークロスセクションが求められる。なお、照射する平面波からの角度を変えた複数のアンテナを上下に移動させながら、試料を回転し、しかも周波数を変えると各種のレーダークロスセクションを一度の回転で入手できる。  By rotating the sample once, the desired radar cross section such as monostatic or bistatic is obtained in the vicinity. Note that various radar cross sections can be obtained in one rotation by rotating the sample while moving a plurality of antennas whose angles from the plane wave to be irradiated are moved up and down, and changing the frequency.

本発明の全体構成の一例。なお、図1の下の図は全体構成を上から見た図。An example of the whole structure of this invention. In addition, the lower figure of FIG. 1 is the figure which looked at the whole structure from the top. レーダークロスセクションを測定する対象となる試料。Sample for measuring radar cross section. 反射波を受信するプローブアンテナの位置と、モノスタティック、バイスタティックなどレーダークロスセクションの内容を示す図。The figure which shows the position of the probe antenna which receives a reflected wave, and the contents of the radar cross section, such as monostatic and bistatic. 試料を回転すると、同一素子が円形リングアレイとして表現できる。この座標を示す。When the sample is rotated, the same element can be expressed as a circular ring array. This coordinate is shown. 図3で示した各種位置のプローブアンテナで受信し、それを遠方界に変換したレーダークロスセクション。なお、プローブアンテナで反射波を受信するのではなく、プローブアンテナから電磁波を送信してもよい。A radar cross section that is received by the probe antenna at various positions shown in FIG. 3 and converted to a far field. Note that an electromagnetic wave may be transmitted from the probe antenna instead of receiving the reflected wave by the probe antenna.

図1、図2、図3に示す構成にベクトルネットワークアナライザ及びプログラムの入ったウインドウズコンピュータからの指令で試料を回転させ、また、プローブアンテナを上下に移動させながら、一次放射器から電波を放射し、反射波をプローブで受け、その振幅と位相を記録し、コンピュータでアレイファクタを用いた近傍界遠方界変換を行ってレーダークロスセクションを得る。  1, 2, and 3, the sample is rotated by a command from a Windows computer containing a vector network analyzer and a program, and a radio wave is emitted from the primary radiator while moving the probe antenna up and down. The reflected wave is received by the probe, the amplitude and phase are recorded, and the near field far field conversion using the array factor is performed by the computer to obtain the radar cross section.

図1に示す構成に基づき、ベクトルネットワークアナライザのSパラメータ出入り口のポート1を一次ホーンアンテナ2に接続する。そして、ポート2をプローブアンテナに接続する。一方、アレイファクタを用いて近傍界遠方界変換するソフトウエアと、試料4を回転するモータの制御プログラム及びプローブアンテナを上下させるリニアモータを制御するプログラムを内蔵する、ウインドウズパソコンをベクトルネットワークアナライザ、モータ及びリニアモータに接続する。まず、プローブアンテナを3bの位置、すなわちパラボラアンテナ1から出る平面波と平行で、試料4の中央を見透す線上で、試料4を見て、右方向に水平45°振ったところにプローブアンテナを置く。ベクトルネットワークアナライザはS21モードとし、周波数は10GHzに固定し、ゲートモードで、試料4を中心にして前に10cm、後ろに10cmだけを測定するようにする。
ポート1から10GHzを送り、一次放射器2から送信した電波はパラボラアンテナで反射して平面波となって試料4を照射する。そして、試料4のあらゆる部分から反射した電波を、プローブアンテナで受信する。このとき、プローブアンテナは導波管WR90をカットし、また、肉厚部は先端部を薄く仕上げる。なお、このプローブアンテナの−3dB半値角は広いので試料の反射はすべて受信できる。この状況で試料を回転し、0.1度おきに振幅と位相情報を入手する。
次に、円筒走査で取得した近傍界データの遠方界変換に、簡略なアレイファクタ(AF)の考えを適用したときの計算式、及び実測結果比較について示す。
図4で示すように、同一素子が回転して、1,2,3・・・nと移動した場合の円筒アレイのアレイファクタ(AF)は同一素子がN個x−y平面の円周上に配列されているので、
が得られる。ここで、R=Rは円周の半径、φ=2πn/Nは素子アンテナの配列角度である。実測の位相と振幅を複素数aとして、この円形AFに入力することで、容易に遠方変換が可能となる。なお、(1)式はすでに遠方でのパターン表示になっている。
以上が単層リングアレイとしてのアンテナ理論であり、素子の座標と励振位相が決まれば、単一のリングアレイのパターンが得られることが分かる。円筒状に半径RmnのリングアレイがM個重なっている場合には、(1)式を
とすればいい。ここで、θ,φは空間球座標における放射パターンの角度である。各層のリングアレイがz方向に全く同じように配列されている場合、つまり周方向の素子座標が同じ場合、φmn=φとなる。また、円筒形を想定しているので、径方向の距離はR =Rである。
円筒アレイファクタによる近傍界の遠方変換
さて、遠方界を評価する手続きについて示す。これには、近傍で取得した位相と振幅のデータを複素数のまま、係数amnに入力することを考える。このとき、相対的な給電位相は全て取得データとしてamnに情報を組み込むことになる。サンプリングの位置座標は各点で自由度が残っているが、通常は円筒の半径は一定であるので、Rmn=Rとすることができる。また、プローブは同じアンテナを円筒のz軸を向くようにプロービング走査する。このときのプローブ補正は次のように考えればよい。つまり、プローブのパターンをf(θ,φ)とする。ここでθ,φはデータを取得するサンプリング点における局所座標を表している。このプローブパターンを重み関数として、遠方界の放射パターンを計算する際、アレイファクタに乗じる。簡単のためf=cos(φ)と仮定して、周方向だけの単層リングアレイを考えると、これは近似的にcos(φ−φ)と走査座標に変換できるので、最終的なプローブ補正後の遠方パターンは
で評価できる。実際のプローブアンテナは、たとえば、導波管の端部を利用したタイプなどが多く採用されるが、この指向性パターンをあらかじめ測定して数値化し、補正する。なお、近似的にホーンアンテナの計算値を使ってもよい。
以上の手順で測定した結果を図5の(1)に示した。角度0度は円板が正面を向いている状態で、これは水平方向バイスタティック45度のレーダークロスセクション値であり、理論値と概ね一致している。なお、この実験の前に45度を0度にして、モノスタティックの実験を行ったが、理論値とほとんど一致していた。今回の実験の場合、一次放射器から送信したが、これをプローブアンテナから放射してパラボラアンテナで受信してもよい。また、パラボラアンテナをオフセットパラボラアンテナにして、一次放射器を平面波の通り道からはずれた位置にずらしてもよい。
Based on the configuration shown in FIG. 1, the port 1 at the S parameter entrance / exit of the vector network analyzer is connected to the primary horn antenna 2. Port 2 is then connected to the probe antenna. On the other hand, a software that converts near-field and far-field using an array factor, a control program for a motor that rotates the sample 4, and a program that controls a linear motor that moves the probe antenna up and down. And connect to a linear motor. First, the probe antenna is placed at the position of 3b, that is, parallel to the plane wave coming out of the parabolic antenna 1, on the line passing through the center of the sample 4 and looking at the sample 4 and horizontally 45 ° to the right. Put. The vector network analyzer and S 21 mode, the frequency is fixed at 10 GHz, with a gate mode, so that 10cm, only 10cm behind the measurement before around the sample 4.
The radio wave transmitted from the port 1 at 10 GHz and transmitted from the primary radiator 2 is reflected by the parabolic antenna and becomes a plane wave to irradiate the sample 4. Then, radio waves reflected from all parts of the sample 4 are received by the probe antenna. At this time, the probe antenna cuts the waveguide WR90, and the thick part finishes the tip part thinly. Since the probe antenna has a wide -3 dB half-value angle, all reflections of the sample can be received. In this situation, the sample is rotated, and amplitude and phase information is obtained every 0.1 degrees.
Next, calculation formulas and comparison of actual measurement results when a simple array factor (AF) concept is applied to far-field conversion of near-field data acquired by cylindrical scanning will be described.
As shown in FIG. 4, the array factor (AF) of the cylindrical array when the same element rotates and moves 1, 2, 3... N is the same element N on the circumference of the xy plane. Is arranged in
Is obtained. Here, R = R n is the radius of the circumference, and φ n = 2πn / N is the array angle of the element antennas. The phase and amplitude of the measured as a complex number a n, and inputs to the circular AF, it is possible to easily distant conversion. Note that equation (1) has already been displayed in a distant pattern.
The above is the antenna theory as a single-layer ring array, and it can be seen that a single ring array pattern can be obtained if the element coordinates and excitation phase are determined. When M ring arrays with a radius R mn overlap in a cylindrical shape,
What should I do? Here, θ and φ are angles of the radiation pattern in space spherical coordinates. When the ring arrays of each layer are arranged in exactly the same way in the z direction, that is, when the element coordinates in the circumferential direction are the same, φ mn = φ n . Moreover, since the cylindrical shape is assumed, the radial distance is R m n = R n .
Transform of near field by cylindrical array factor Now, the procedure for evaluating the far field is shown. For this purpose , it is considered that the phase and amplitude data acquired in the vicinity are input to the coefficient a mn as complex numbers. At this time, all relative power supply phases incorporate information into a mn as acquired data. Although the sampling position coordinates still have a degree of freedom at each point, since the radius of the cylinder is usually constant, R mn = R can be set. The probe also performs probing scanning with the same antenna facing the z axis of the cylinder. The probe correction at this time may be considered as follows. That is, the probe pattern is set to f pp , φ p ). Here, θ p and φ p represent local coordinates at a sampling point at which data is acquired. When calculating the far-field radiation pattern using this probe pattern as a weight function, the array factor is multiplied. For simplicity, assuming f p = cos (φ p ) and considering a single-layer ring array only in the circumferential direction, this can be approximately converted to cos (φ−φ n ) and scan coordinates, so the final Distant pattern after probe correction
Can be evaluated. For example, a type using an end portion of a waveguide is often used as an actual probe antenna, and this directivity pattern is measured in advance, digitized, and corrected. In addition, you may use the calculated value of a horn antenna approximately.
The results measured by the above procedure are shown in (1) of FIG. An angle of 0 degrees is a state in which the disk is facing the front, and this is a radar bisection value of 45 degrees in the horizontal direction bistatic, which is almost the same as the theoretical value. Prior to this experiment, a monostatic experiment was performed with 45 degrees set to 0 degrees, which almost agreed with the theoretical value. In the case of this experiment, it was transmitted from the primary radiator, but this may be radiated from the probe antenna and received by the parabolic antenna. Alternatively, the parabolic antenna may be an offset parabolic antenna, and the primary radiator may be shifted to a position off the plane wave path.

前回の実施例の場合は、プローブアンテナを3bに置いたが、これを3cに移動する。この位置だと、水平45°、垂直20°のバイスタティックRCSである。結果を[図5]の(2)に示したが、理論値と概ね一致する。  In the case of the previous embodiment, the probe antenna is placed on 3b, but this is moved to 3c. At this position, the bistatic RCS is 45 ° horizontal and 20 ° vertical. The results are shown in (2) of [FIG. 5], which almost agrees with the theoretical values.

次に、プローブアンテナを3dに置いたが、この位置だと、水平45°、垂直40°のバイスタティックRCSである。結果を[図5]の(3)に示したが、理論値と概ね一致する。なお、試料を0.1度回転し、プローブアンテナを下から上に移動し、また、0.1度回転し、プローブアンテナを上から下に移動する。なお、プローブは静止することはないが、ゆっくり動かし、周波数を9.5GHzから0.1GHzおきに10.4GHzまで10点取得するなどもできる。これが一巡したら、次に、プローブアンテナを水平に15度移動すれば、45度+15度で水平方向バイスタティック60度のRCS測定の開始となる。  Next, the probe antenna was placed in 3d. At this position, the probe antenna is a bistatic RCS of 45 ° horizontally and 40 ° vertically. The results are shown in (3) of [FIG. 5], which almost agrees with the theoretical values. The sample is rotated by 0.1 degree, the probe antenna is moved from the bottom to the top, and the sample is rotated by 0.1 degree, and the probe antenna is moved from the top to the bottom. In addition, although a probe does not stop still, it can move slowly and can acquire 10 points from 9.5 GHz to 10.4 GHz every 0.1 GHz. Once this is completed, if the probe antenna is moved 15 degrees horizontally, the RCS measurement of 45 degrees +15 degrees and the horizontal bistatic 60 degrees is started.

レーダーで試料を測定したときの各種の状況
1.モノスタティックモードすなわちレーダー波を送信したところにもどってくる反射波2.バイスタティックモード ▲1▼レーダー送信波の水平面上の送信波と異なる方向から観測した反射波 ▲2▼レーダー送信波の水平面上の送信波と同一または異なる方向への反射波
このように上方向または下方向から観測した反射波のRCSを近傍界で測定できるので、レーダーからの反射波の大きい車の開発、レーダーからの反射波の少ない航空機の開発など、多くの利用可能性がある。
Various situations when measuring a sample with radar 1. 1. A reflected wave that returns to the place where the radar wave was transmitted in the monostatic mode. Bistatic mode (1) Reflected wave observed from a direction different from the transmitted wave of the radar transmitted wave on the horizontal plane (2) Reflected wave in the same or different direction as the transmitted wave of the radar transmitted wave on the horizontal plane Since the RCS of the reflected wave observed from below can be measured in the near field, there are many possibilities such as the development of a vehicle with a large reflected wave from the radar and the development of an aircraft with a small reflected wave from the radar.

1.パラボラアンテナ
2.一次放射器
3.プローブアンテナ
3a.モノスタティックモードの位置のプローブアンテナ
3b.水平面上で45°異なる角度のバイスタティックモード
3c.水平面上で45°異なり、上の方向に20°異なるバイスタティックモードの位置のプローブアンテナ
3d.水平面上で45°異なり、上の方向に40°異なるバイスタティックモードの位置のプローブアンテナ
4.試料
1. 1. Parabolic antenna Primary radiator3. Probe antenna 3a. Probe antenna in monostatic mode position 3b. Bistatic mode with a 45 ° angle difference on the horizontal plane 3c. Probe antenna at a position of bistatic mode that differs by 45 ° on the horizontal plane and by 20 ° in the upward direction 3d. 3. Probe antenna at a position of bistatic mode that differs by 45 ° on the horizontal plane and by 40 ° in the upward direction sample

Claims (5)

回転する試料に平面波を照射し、試料の各点からの反射波の振幅と位相を導波管開口部などの半値幅の広いアンテナで受信し、アレイファクタを用いて近傍界遠方界変換を行ってRCSを測定する装置。  A rotating sample is irradiated with a plane wave, and the amplitude and phase of the reflected wave from each point of the sample are received by a wide-bandwidth antenna such as a waveguide opening, and near-field far-field conversion is performed using an array factor. A device that measures RCS. 照射している平面波と試料との線上から、試料を軸にして水平面上、及び、または垂直面上に受信アンテナの角度が取れる、請求項1の装置。  The apparatus according to claim 1, wherein an angle of the receiving antenna can be taken on a horizontal plane and / or a vertical plane with respect to the sample as an axis from the line of the irradiating plane wave and the sample. 照射している平面波と試料との線上から、試料を軸にして水平面上に角度が取れ、しかも上下に移動できる受信アンテナを持つ、請求項1の装置。  2. The apparatus according to claim 1, further comprising a receiving antenna capable of moving at an angle on a horizontal plane from the line of the irradiating plane wave and the sample with the sample as an axis and moving up and down. 照射している平面波と試料との線上から、試料を軸にして水平面上の複数の角度の位置に各々受信アンテナを持つ、請求項1,2,3の装置。  4. The apparatus according to claim 1, wherein the receiving antenna is provided at a plurality of angular positions on a horizontal plane from the line of the irradiating plane wave and the sample with the sample as an axis. コンパクトレンジ法を用いて平面波をつくる、請求項1,2,3,4の装置。  Apparatus according to claim 1, 2, 3, 4 for producing plane waves using the compact range method.
JP2010230970A 2010-09-24 2010-09-24 Radar cross section (rcs) measurement system Pending JP2012068222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010230970A JP2012068222A (en) 2010-09-24 2010-09-24 Radar cross section (rcs) measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010230970A JP2012068222A (en) 2010-09-24 2010-09-24 Radar cross section (rcs) measurement system

Publications (1)

Publication Number Publication Date
JP2012068222A true JP2012068222A (en) 2012-04-05

Family

ID=46165660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010230970A Pending JP2012068222A (en) 2010-09-24 2010-09-24 Radar cross section (rcs) measurement system

Country Status (1)

Country Link
JP (1) JP2012068222A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102680970A (en) * 2012-05-15 2012-09-19 北京理工大学 Strategic location protection radar network detection method adopting forward scattering radar
CN104597841A (en) * 2014-12-17 2015-05-06 北京无线电计量测试研究所 System and method for compensating planeness of compact field plane scanning frame
JP2019035687A (en) * 2017-08-18 2019-03-07 横浜ゴム株式会社 Reflection performance measurement device
CN109884606A (en) * 2019-03-18 2019-06-14 西安电子科技大学 Based on single antenna radar cross section rcs measurement device and method for analyzing performance
CN109975778A (en) * 2019-03-25 2019-07-05 中国计量科学研究院 A kind of antenna structure design measurement method, device and computer equipment
CN117630511A (en) * 2024-01-25 2024-03-01 北京理工大学 Equivalent far-field RCS measurement method and system based on Longber lens antenna

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102680970A (en) * 2012-05-15 2012-09-19 北京理工大学 Strategic location protection radar network detection method adopting forward scattering radar
CN104597841A (en) * 2014-12-17 2015-05-06 北京无线电计量测试研究所 System and method for compensating planeness of compact field plane scanning frame
JP2019035687A (en) * 2017-08-18 2019-03-07 横浜ゴム株式会社 Reflection performance measurement device
CN109884606A (en) * 2019-03-18 2019-06-14 西安电子科技大学 Based on single antenna radar cross section rcs measurement device and method for analyzing performance
CN109975778A (en) * 2019-03-25 2019-07-05 中国计量科学研究院 A kind of antenna structure design measurement method, device and computer equipment
CN117630511A (en) * 2024-01-25 2024-03-01 北京理工大学 Equivalent far-field RCS measurement method and system based on Longber lens antenna
CN117630511B (en) * 2024-01-25 2024-04-05 北京理工大学 Equivalent far-field RCS measurement method and system based on Longber lens antenna

Similar Documents

Publication Publication Date Title
US10754018B2 (en) Frequency modulated continuous wave antenna system
JP2012068222A (en) Radar cross section (rcs) measurement system
JP5825995B2 (en) Radar cross section measuring device
CN107677895B (en) System and method for determining a radiation pattern
US11372096B2 (en) Frequency modulated continuous wave antenna system
CN106771673B (en) A kind of GPS antenna directionality test method and system
RU2480782C1 (en) Method and device to resolve moving targets along angular directions in surveillance radars
JP6678554B2 (en) Antenna measuring device
JPH1062467A (en) Unnecessary electromagnetic wave measuring system
RU2371730C1 (en) Method of measuring scattering cross-section of objects and radar system to this end
JP4944834B2 (en) Far-field measurement system, far-field measurement method
JP5253332B2 (en) Radar cross-section measuring device and method, and storage medium recording control program therefor
JP2008241689A (en) Radar cross section measurement method and radar cross section measurement device
RU105466U1 (en) AUTOMATED COMPLEX FOR MEASUREMENTS OF RADIOTECHNICAL CHARACTERISTICS OF Aperture Antennas
Sensani et al. Radar image based near-field to far-field conversion algorithm in RCS measurements
RU2326400C1 (en) Method of measurement of efficient scattering area of large dimension objects in polygon conditions
CN113917241B (en) Method, system, equipment and terminal for rapidly measuring and predicting antenna pattern
JP2000206230A (en) Method for measuring radar sectional area and apparatus for measuring the same
Kobayashi et al. Near-field to far-field transformation by using antenna array factor
JP6939981B2 (en) Object detection device and object detection method
JPH0933245A (en) Measuring apparatus for scattering cross section
CN113075657B (en) Method and device for testing height of scattering source
RU2723706C1 (en) Method of obtaining a two-dimensional radar image of an object in multi-frequency pulse sounding and inverse synthesis of an aperture with determination of the third coordinate of the elements of the formed image
JP2000338238A (en) Radar equipment
RU2789466C1 (en) Method for measuring the characteristics of the radiation pattern of a digital phased array antenna