JP2012068031A - Polarization multiple signal analysis device and method - Google Patents

Polarization multiple signal analysis device and method Download PDF

Info

Publication number
JP2012068031A
JP2012068031A JP2010210574A JP2010210574A JP2012068031A JP 2012068031 A JP2012068031 A JP 2012068031A JP 2010210574 A JP2010210574 A JP 2010210574A JP 2010210574 A JP2010210574 A JP 2010210574A JP 2012068031 A JP2012068031 A JP 2012068031A
Authority
JP
Japan
Prior art keywords
polarization
light
multiplexed signal
amplitude
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010210574A
Other languages
Japanese (ja)
Inventor
Takao Tanimoto
隆生 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2010210574A priority Critical patent/JP2012068031A/en
Publication of JP2012068031A publication Critical patent/JP2012068031A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

PROBLEM TO BE SOLVED: To separate each polarized light of a polarization multiple signal light in which orthogonal polarized waves with the same wavelength are multiplexed, and to evaluate the characteristics of each signal light.SOLUTION: Rays of light made incident on a light incidence part 21 and transmitted through a variable wavelength optical filter 22 are received by a pre-processing part 23 and subjected to change of a polarization state and conversion from phase change to amplitude change. The rays of light are made incident on a polarization beam splitter 26, and the strength of one polarization component separated by the polarization beam splitter 26 is detected by a first light reception part 30, and the strength of the other polarization component is detected by a second light reception part 31. Also, both the separated polarization components are made incident on a differential balance type third light reception part 33, and the strength of a difference signal between both polarization components is detected, and the amplitude of the difference signal is detected by an amplitude detection part 34. An evaluation processing part 40 receives outputs of the first light reception part 30, the second light reception part 31, and the amplitude detection part 34 while controlling the variable wavelength optical filter 22 and the pre-processing part 23, and searches for characteristics necessary for evaluation of the polarization multiple signal light made incident on the light incidence part 21.

Description

本発明は、偏波多重信号光の特性を評価するための偏波多重信号解析装置および方法に関する。   The present invention relates to a polarization multiplexed signal analyzing apparatus and method for evaluating characteristics of polarization multiplexed signal light.

光通信の大容量化に伴い、近年では100Gbps/チャンネルクラスの長距離伝送が要求されている。   In recent years, with the increase in capacity of optical communication, long distance transmission of 100 Gbps / channel class is required.

これを実現するために、光ファイバの分散や波長フィルタリングに対する耐力確保のために、1つの信号(シンボル上)に複数データを乗せる多値変調技術や、偏波面を利用して搬送路を増やす偏波多重技術を用いて大容量伝送することが必要になっている。   In order to achieve this, in order to secure the tolerance to optical fiber dispersion and wavelength filtering, multi-level modulation technology that puts multiple data on one signal (on a symbol), or a polarization that increases the number of transport paths using polarization planes. It is necessary to transmit a large volume using a wave multiplexing technique.

偏波多重技術は、伝送する光の水平偏波および垂直偏波にデータ情報をもたせ同時に伝送することで、情報量を2倍にすることができる。   In the polarization multiplexing technique, the amount of information can be doubled by providing data information in the horizontal polarization and the vertical polarization of the transmitted light and transmitting them simultaneously.

例えば、直交2偏波多重と、4値変調であるQPSKを組合せた偏波多重QPSK方式は、25[G/シンボル]の信号で、その4倍の100Gbpsクラスの伝送を行うことが可能であり、大きな注目を集めている。   For example, the polarization multiplexing QPSK scheme, which combines orthogonal two-polarization multiplexing and QPSK, which is quaternary modulation, can transmit 100 Gbps class, which is four times that of 25 [G / symbol] signals. Has attracted a great deal of attention.

このような新たな多重方式の通信の評価を行うために偏波解析技術が必要となる。
従来の偏波解析技術として、ストークスパラメータをポアンカレ球に表示する方法が知られている。
In order to evaluate such a new multiplex communication, a polarization analysis technique is required.
As a conventional polarization analysis technique, a method of displaying Stokes parameters on a Poincare sphere is known.

この方法は、偏波状態を球面上に表すもので、赤道上の位置は直線偏波状態、北極と南極は円偏波状態、その他のエリアは楕円偏波状態を表し、右回りの偏光状態は北半球、左回りの偏光状態は南半球に表示される。   In this method, the polarization state is represented on a spherical surface, the position on the equator represents the linear polarization state, the north and south poles represent the circular polarization state, the other areas represent the elliptical polarization state, and the clockwise polarization state. Is displayed in the northern hemisphere, and the counterclockwise polarization state is displayed in the southern hemisphere.

ストークスパラメータとは、光の全光量S、x偏光とy偏光の光量差S、45度偏光と135度偏光の光量差S、右回り偏光と左回り偏光の光量差Sを表しており、例えば、図13のように、入力光の全光量Itotalを検出する受光器11、入力光のうち0度偏光子12を透過した光量Iを検出する受光器13、入力光のうち45度偏光子14を透過した光量I45を検出する受光器15、入力光のうちλ/4板16および0度偏光子17を透過した光量Iq0を検出する受光器18からなるモニタ10を用い、得られた4種類の光量から次の演算によって求めることができる。 The Stokes parameter represents the total light quantity S 0 , the light quantity difference S 1 between x-polarized light and y-polarized light, the light quantity difference S 2 between 45-degree polarized light and 135-degree polarized light, and the light quantity difference S 3 between right-handed polarized light and left-handed polarized light. For example, as shown in FIG. 13, the light receiver 11 that detects the total light amount Itotal of the input light, the light receiver 13 that detects the light amount I 0 that has passed through the 0-degree polarizer 12 out of the input light, and the input light A monitor 10 comprising a light receiver 15 for detecting a light quantity I 45 transmitted through a 45-degree polarizer 14 and a light receiver 18 for detecting a light quantity I q0 transmitted through a λ / 4 plate 16 and a 0-degree polarizer 17 out of input light. It can be obtained by the following calculation from the obtained four kinds of light amounts.

=Itotal
=2・I−Itotal
=2・I45−Itotal
=2・Iq0−Itotal
S 0 = Itotal
S 1 = 2 · I 0 −Itotal
S 2 = 2 · I 45 −Itotal
S 3 = 2 · I q0 −Itotal

なお、このようなストークスパラメータによる偏波解析技術は、例えば次の特許文献1、2に記載されている。   Such polarization analysis technology using Stokes parameters is described in, for example, the following Patent Documents 1 and 2.

特開2006−284397号公報JP 2006-28497A 特開2010−002190号公報JP 2010-002190 A

しかしながら、上記した従来の偏波解析方法は、1チャンネル(1波長)の偏波多重信号光の偏波を分離して解析することができず、両偏光の平均偏光として測定されるため、偏波多重信号光の両偏光を分離して信号光の特性を評価することはできなかった。   However, the above-described conventional polarization analysis method cannot separate and analyze the polarization of the polarization multiplexed signal light of one channel (one wavelength), and is measured as an average polarization of both polarizations. It was impossible to evaluate the characteristics of the signal light by separating both polarizations of the wave multiplexed signal light.

本発明は、この問題を解決し、同一波長の直交する偏波が多重化された偏波多重信号光の各偏光を分離し、各信号光の特性を評価することができる偏波多重信号解析装置および方法を提供することを目的としている。   The present invention solves this problem, separates each polarization of polarization multiplexed signal light in which orthogonal polarizations of the same wavelength are multiplexed, and evaluates the characteristics of each signal light. An object is to provide an apparatus and method.

前記目的を達成するために、本発明の請求項1の偏波多重信号解析装置は、
直交する偏波成分がそれぞれ位相変調されている偏波多重信号光を入射させるための光入射部(21)と、
前記光入射部に入射された偏波多重信号光を受け、所望波長の光を抽出する可変波長光フィルタ(22)と、
入力光の偏波状態を変化させて出射する偏波コントローラ(24)および入力光の位相変化を振幅変化に変換するPM−AM変換部(25)を有し、前記可変波長光フィルタの出射光に対する偏波状態の変更および位相変化から振幅変化への変換の処理を行う前処理部(23)と、
前記前処理部を通過した光を、互いに直交する偏光成分に分離する偏光ビームスプリッタ(26)と、
前記偏光ビームスプリッタによって分離された一方の偏光成分を2分岐する第1ビームスプリッタ(27)と、
前記偏光ビームスプリッタによって分離された他方の偏光成分を2分岐する第2ビームスプリッタ(28)と、
前記第1ビームスプリッタで分岐された一方の光を受けて前記一方の偏光成分の強度を検出する第1受光部(30)と、
前記第2ビームスプリッタで分岐された一方の光を受けて前記他方の成分の強度を検出する第2受光部(31)と、
前記第1ビームスプリッタで分岐された他方の光と前記第2ビームスプリッタで分岐された他方の光を、順方向直列接続された1対の受光素子でそれぞれ受け、その接続点の信号を検出する差動バランス型に構成され、前記一方の偏光成分と他方の偏光成分の差分信号の強度を検出する第3受光部(33)と、
前記第3受光部の出力信号の振幅を検出する振幅検出部(34)と、
前記可変波長光フィルタおよび前記前処理部を制御しつつ、前記第1受光部、第2受光部および振幅検出部の出力を受けて、前記光入射部に入射された偏波多重信号光の評価に必要な特性を求める評価処理部(40)とを備えている。
In order to achieve the above object, a polarization multiplexed signal analyzer according to claim 1 of the present invention comprises:
A light incident part (21) for making the polarization multiplexed signal light in which the orthogonal polarization components are respectively phase-modulated,
A variable wavelength optical filter (22) that receives the polarization multiplexed signal light incident on the light incident portion and extracts light of a desired wavelength;
A polarization controller (24) that emits by changing the polarization state of the input light, and a PM-AM converter (25) that converts the phase change of the input light into an amplitude change, and the output light of the variable wavelength optical filter A pre-processing unit (23) that performs a process of changing the polarization state and converting the phase change to the amplitude change with respect to
A polarization beam splitter (26) that separates the light that has passed through the preprocessing unit into mutually orthogonal polarization components;
A first beam splitter (27) for bifurcating one polarization component separated by the polarization beam splitter;
A second beam splitter (28) for bifurcating the other polarization component separated by the polarization beam splitter;
A first light receiving unit (30) that receives one light branched by the first beam splitter and detects the intensity of the one polarization component;
A second light receiving unit (31) that receives one light branched by the second beam splitter and detects the intensity of the other component;
The other light branched by the first beam splitter and the other light branched by the second beam splitter are respectively received by a pair of light receiving elements connected in series in the forward direction, and a signal at the connection point is detected. A third light receiving section (33) configured to be a differential balance type and detecting the intensity of a differential signal between the one polarization component and the other polarization component;
An amplitude detector (34) for detecting the amplitude of the output signal of the third light receiver;
While controlling the variable wavelength optical filter and the preprocessing unit, receiving the outputs of the first light receiving unit, the second light receiving unit, and the amplitude detecting unit, and evaluating the polarization multiplexed signal light incident on the light incident unit And an evaluation processing unit (40) for obtaining the necessary characteristics.

また、本発明の請求項2の偏波多重信号解析装置は、請求項1記載の偏波多重信号解析装置において、
前記評価処理部は、
前記振幅検出部で検出される振幅が最大となるように前記偏波コントローラを制御した状態で、前記可変波長光フィルタの波長を変化させながら前記第1受光部と第2受光部の出力を取得することで、前記解析対象の偏波多重信号光の偏光成分毎のスペクトラム特性を測定することを特徴としている。
The polarization multiplexed signal analyzer according to claim 2 of the present invention is the polarization multiplexed signal analyzer according to claim 1,
The evaluation processing unit
While the polarization controller is controlled so that the amplitude detected by the amplitude detector becomes maximum, the outputs of the first light receiver and the second light receiver are obtained while changing the wavelength of the variable wavelength optical filter. Thus, the spectrum characteristic for each polarization component of the polarization multiplexed signal light to be analyzed is measured.

また、本発明の請求項3の偏波多重信号解析装置は、請求項1記載の偏波多重信号解析装置において、
前記評価処理部は、
前記振幅検出部で検出される振幅が最大となるように前記偏波コントローラを制御した時の前記第1受光部と第2受光部の出力値、前記振幅検出部で検出される振幅が最小となるように前記偏波コントローラを制御した時の前記第1受光部と第2受光部の出力値を求め、これらの値から前記解析対象の偏波多重信号光の偏光直交度のずれを算出することを特徴としている。
The polarization multiplexed signal analyzer according to claim 3 of the present invention is the polarization multiplexed signal analyzer according to claim 1,
The evaluation processing unit
The output values of the first light receiving unit and the second light receiving unit when the polarization controller is controlled so that the amplitude detected by the amplitude detecting unit is maximized, and the amplitude detected by the amplitude detecting unit is minimum. The output values of the first light receiving unit and the second light receiving unit when the polarization controller is controlled to be obtained are calculated, and the deviation of the polarization orthogonality of the polarization multiplexed signal light to be analyzed is calculated from these values. It is characterized by that.

また、本発明の請求項4の偏波多重信号解析装置は、請求項1記載の偏波多重信号解析装置において、
前記評価処理部は、
前記偏波コントローラを可変制御した時の前記第1受光部、第2受光部、振幅検出部の各出力に基づいて得られた前記一方の偏光成分と他方の偏光成分の強度比と、前記波長可変光フィルタの波長を変化させながら前記第1受光部と第2受光部の出力を取得して測定した各偏光成分の光スペクトラムと、該光スペクトラムで解析対象の偏波多重信号光の近傍で異なる二つの波長における前記第1受光部と第2受光部の出力とから、ASEノイズレベルを算出し、該ASEノイズレベルと偏波多重信号光のパワーとからその光信号ノイズ比を求めることを特徴としている。
The polarization multiplexed signal analyzer according to claim 4 of the present invention is the polarization multiplexed signal analyzer according to claim 1,
The evaluation processing unit
The intensity ratio between the one polarization component and the other polarization component obtained based on the outputs of the first light receiving unit, the second light receiving unit, and the amplitude detecting unit when the polarization controller is variably controlled, and the wavelength The optical spectrum of each polarization component measured by acquiring the outputs of the first light receiving unit and the second light receiving unit while changing the wavelength of the variable optical filter, and in the vicinity of the polarization multiplexed signal light to be analyzed in the optical spectrum An ASE noise level is calculated from outputs of the first light receiving unit and the second light receiving unit at two different wavelengths, and an optical signal noise ratio is obtained from the ASE noise level and the power of the polarization multiplexed signal light. It is a feature.

また、本発明の請求項5の偏波多重信号解析装置は、請求項4記載の偏波多重信号解析装置において、
前記前処理部には、入射光に含まれる2つの偏光成分の強度に差を与える偏波依存性損失発生部(50)が設けられていることを特徴としている。
The polarization multiplexed signal analyzer according to claim 5 of the present invention is the polarization multiplexed signal analyzer according to claim 4,
The pre-processing unit is provided with a polarization-dependent loss generation unit (50) that provides a difference in intensity between two polarization components included in incident light.

また、本発明の請求項6の偏波多重信号解析方法は、
解析対象の偏波多重信号光の偏光成分を位相変調光から強度変調光に変換して偏光分離処理を行う段階と、
前記偏光分離された光の差分信号を求める段階と、
解析対象の偏波多重信号光の偏波状態を可変して前記差分信号の振幅が最大となる偏波状態に設定する段階と、
前記差分信号の振幅が最大となる偏波状態に設定した後に、入射される解析対象の偏波多重信号光に対する波長掃引処理を行い、該偏波多重信号光の両偏光成分のスペクトラム特性を求める段階とを含んでいる。
Moreover, the polarization multiplexed signal analysis method according to claim 6 of the present invention includes:
Converting the polarization component of the polarization multiplexed signal light to be analyzed from phase-modulated light to intensity-modulated light and performing polarization separation processing;
Obtaining a differential signal of the polarization separated light;
Varying the polarization state of the polarization multiplexed signal light to be analyzed and setting the polarization state so that the amplitude of the differential signal is maximized;
After setting the polarization state in which the amplitude of the differential signal is maximized, wavelength sweep processing is performed on the incident polarization multiplexed signal light to be analyzed, and the spectrum characteristics of both polarization components of the polarization multiplexed signal light are obtained. Including stages.

また、本発明の請求項7の偏波多重信号解析方法は、
解析対象の偏波多重信号光の偏光成分を位相変調光から強度変調光に変換して偏光分離処理を行う段階と、
前記偏光分離された光の差分信号を求める段階と、
解析対象の偏波多重信号光の偏波状態を可変して前記差分信号の振幅が最大となる偏波状態に設定し、該偏波状態における前記偏光分離された光の強度を検出する段階と、
解析対象の偏波多重信号光の偏波状態を可変して前記差分信号の振幅が最小となる偏波状態に設定し、該偏波状態における前記偏光分離された光の強度を検出する段階と、
前記検出した光強度の値から解析対象の偏波多重信号光の偏光直交度のずれを算出する段階とを含んでいる。
Moreover, the polarization multiplexed signal analysis method according to claim 7 of the present invention includes:
Converting the polarization component of the polarization multiplexed signal light to be analyzed from phase-modulated light to intensity-modulated light and performing polarization separation processing;
Obtaining a differential signal of the polarization separated light;
Varying the polarization state of the polarization multiplexed signal light to be analyzed, setting the polarization state so that the amplitude of the differential signal is maximized, and detecting the intensity of the polarization separated light in the polarization state; ,
Varying the polarization state of the polarization multiplexed signal light to be analyzed, setting the polarization state so that the amplitude of the differential signal is minimum, and detecting the intensity of the polarization-separated light in the polarization state; ,
Calculating a deviation in polarization orthogonality of the polarization multiplexed signal light to be analyzed from the detected light intensity value.

また、本発明の請求項8の偏波多重信号解析方法は、
解析対象の偏波多重信号光の偏光成分を位相変調光から強度変調光に変換して偏光分離処理を行う段階と、
前記偏光分離された光の差分信号を求める段階と、
解析対象の偏波多重信号光の偏波状態を可変したときの前記偏光分離された光の強度、前記差分信号の大きさに基づいて偏波多重信号光の一方の偏光成分と他方の偏光成分の強度比を求める段階と、
偏波多重信号光のスペクトラム特性を求める段階と、
前記スペクトラム特性で解析対象の偏波多重信号光の近傍の第1波長における偏光分離された光の強度と、偏波多重信号光の近傍で前記第1波長と異なる第2波長の偏光分離された光の強度とを求め、該各強度と前記強度比とからASEノイズレベルを算出する段階と、
前記ASEノイズレベルと偏波多重信号光のパワーとから光信号ノイズ比を求める段階とを含んでいる。
Moreover, the polarization multiplexed signal analysis method according to claim 8 of the present invention includes:
Converting the polarization component of the polarization multiplexed signal light to be analyzed from phase-modulated light to intensity-modulated light and performing polarization separation processing;
Obtaining a differential signal of the polarization separated light;
One polarization component and the other polarization component of the polarization multiplexed signal light based on the intensity of the polarization separated light when the polarization state of the polarization multiplexed signal light to be analyzed is varied, and the magnitude of the difference signal Determining the intensity ratio of
Obtaining the spectrum characteristics of polarization multiplexed signal light;
The intensity of the polarization-separated light at the first wavelength in the vicinity of the polarization multiplexed signal light to be analyzed in the spectrum characteristics and the polarization separation of the second wavelength different from the first wavelength in the vicinity of the polarization multiplexed signal light Determining the intensity of light, and calculating an ASE noise level from each intensity and the intensity ratio;
Obtaining an optical signal-to-noise ratio from the ASE noise level and the power of the polarization multiplexed signal light.

上記のように構成されているため、本発明の請求項1の偏波多重信号解析装置は、偏波多重信号光の各偏光を分離し、各信号光の特性を評価することができ、従来では困難であった偏波多重信号光に対する正確な評価が行える。   Since it is configured as described above, the polarization multiplexed signal analyzer according to claim 1 of the present invention can separate each polarization of the polarization multiplexed signal light and evaluate the characteristics of each signal light. Therefore, it is possible to accurately evaluate polarization multiplexed signal light, which is difficult to do.

また、請求項2、6では、偏波コントローラの制御により振幅検出部の出力が最大となるように設定することで、入射光の偏光成分を偏光ビームスプリッタで正しく分離することができ、両偏光成分のスペクトラム特性を正しく測定できる。   Further, in the second and sixth aspects, the polarization component of the incident light can be correctly separated by the polarization beam splitter by setting so that the output of the amplitude detector is maximized by the control of the polarization controller. The spectrum characteristics of components can be measured correctly.

また、請求項3、7では、偏波コントローラの制御により振幅検出部の出力が最大および最小となるように設定したときの第1受光部、第2受光部の出力値から解析対象の偏波多重信号光の偏光直交度のずれを正確に算出することができる。   Further, in claims 3 and 7, the polarization to be analyzed is determined from the output values of the first light receiving unit and the second light receiving unit when the output of the amplitude detecting unit is set to be maximum and minimum by the control of the polarization controller. The deviation of the polarization orthogonality of the multiplexed signal light can be accurately calculated.

また、請求項4、8では、偏波コントローラを可変制御して得られた両偏光成分の強度比と、可変波長光フィルタの制御によって得られた偏波多重信号光のスペクトラム特性と、そのスペクトラムで偏波多重信号光の近傍で異なる波長における第1受光部と第2受光部の出力とから、ASEノイズレベルを算出することができ、それにより光信号ノイズ比を容易に算出することができる。   Further, in claims 4 and 8, the intensity ratio of both polarization components obtained by variably controlling the polarization controller, the spectrum characteristics of the polarization multiplexed signal light obtained by controlling the variable wavelength optical filter, and the spectrum thereof Thus, the ASE noise level can be calculated from the outputs of the first light receiving unit and the second light receiving unit at different wavelengths in the vicinity of the polarization multiplexed signal light, whereby the optical signal noise ratio can be easily calculated. .

また、請求項5では、前処理部に、入射光に含まれる2つの偏光成分の強度に差を与える偏波依存性損失発生部を設けたので、2つの偏光成分の強度が等しい場合であっても、ASEノイズレベルおよびOSNRの算出が可能となる。   Further, in claim 5, since the polarization dependent loss generation unit that provides a difference in the intensity of the two polarization components included in the incident light is provided in the preprocessing unit, the intensity of the two polarization components is equal. However, it is possible to calculate the ASE noise level and the OSNR.

本発明の実施形態の全体構成図Overall configuration diagram of an embodiment of the present invention 実施形態の要部の構成図Configuration diagram of the main part of the embodiment スペクトラム測定処理の手順を示すフローチャートFlow chart showing the procedure of spectrum measurement processing スペクトラム測定図Spectrum measurement diagram 入射光の偏波成分と、偏光分離の結果を示す図Diagram showing the polarization component of incident light and the result of polarization separation 入射光と偏光分離の軸が一致した状態を示すベクトル図Vector diagram showing the state where the incident light and polarization separation axes coincide 入射光と偏光分離の軸が一致していない状態を示すベクトル図Vector diagram showing the state where the incident light and polarization separation axes do not match 直交度ずれ測定処理の手順を示すフローチャートFlow chart showing the procedure of orthogonality deviation measurement processing 直交度ずれ有りで入射光と偏光分離の一方の軸が一致した状態を示すベクトル図Vector diagram showing a state where one axis of incident light and polarization separation coincide with each other with a deviation of orthogonality 直交度ずれ有りで入射光と偏光分離の両方の軸が一致しない状態を示すベクトル図A vector diagram showing a state where both axes of incident light and polarization separation do not coincide with each other with a deviation in orthogonality OSNR測定処理の手順を示すフローチャートFlow chart showing the procedure of OSNR measurement processing 偏波依存性損失発生部を含む実施形態の全体構成図Overall configuration diagram of an embodiment including a polarization dependent loss generation unit 従来の偏波解析技術の一例を示す図Diagram showing an example of conventional polarization analysis technology

以下、図面に基づいて本発明の実施の形態を説明する。
図1は、本発明を適用した偏波多重信号解析装置20の構成を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows the configuration of a polarization multiplexed signal analyzer 20 to which the present invention is applied.

この偏波多重信号解析装置20は、直交する偏波成分がそれぞれ位相変調されている解析対象の偏波多重信号光Pinを光入射部21から入射させる。   The polarization multiplexed signal analyzing apparatus 20 causes the polarization multiplexed signal light Pin to be analyzed, in which orthogonal polarization components are respectively phase-modulated, to be incident from the light incident unit 21.

光入射部21は、ファイバ接続可能なコネクタ21aやコリメート21b等を含み、偏波多重信号光Pinを装置内に入射させる。   The light incident part 21 includes a connector 21a, a collimator 21b, and the like that can be connected to a fiber, and makes the polarization multiplexed signal light Pin enter the apparatus.

光入射部21に入射された偏波多重信号光Pinは可変波長光フィルタ22に入射される。この可変波長光フィルタ22は、例えばエタロンなどにより構成され、解析対象の偏波多重信号光Pinの波長を含む所定波長範囲から所望波長の成分(実際には通過帯域をする)を抽出する。この波長は、後述する評価処理部40によって可変制御される。   The polarization multiplexed signal light Pin incident on the light incident portion 21 is incident on the variable wavelength optical filter 22. The variable wavelength optical filter 22 is composed of an etalon, for example, and extracts a component of a desired wavelength (actually a pass band) from a predetermined wavelength range including the wavelength of the polarization multiplexed signal light Pin to be analyzed. This wavelength is variably controlled by an evaluation processing unit 40 described later.

可変波長光フィルタ22の出射光Pin(λ)は前処理部23に入射される。前処理部23は、入力光の偏波状態を変化させて出射する偏波コントローラ24および入力光の位相変化を振幅変化に変換するPM−AM変換部25を有しており、可変波長光フィルタ22の出射光Pin(λ)に対する偏波状態の変更および位相変化から振幅変化への変換の処理を行う。なお、ここでは、偏波コントローラ24による偏波状態を変化処理を先に行ってからPM−AM変換処理を行っているが、この順序は逆でもよい。   The output light Pin (λ) of the variable wavelength optical filter 22 is incident on the preprocessing unit 23. The pre-processing unit 23 includes a polarization controller 24 that emits light by changing the polarization state of the input light, and a PM-AM conversion unit 25 that converts the phase change of the input light into an amplitude change. The change of the polarization state and the conversion from the phase change to the amplitude change for the 22 outgoing light Pin (λ) are performed. Here, the PM-AM conversion processing is performed after the polarization state change processing by the polarization controller 24 is performed first, but this order may be reversed.

PM−AM変換部25は、入力光を分岐器25aで2分岐し、その一方の分岐光に遅延器25bにより1ビットの整数倍分の遅延を与えて、他方の分岐光と合波器25cで合波する構造を有している。例えば入力光がQPSKのような位相変調光の場合、前後のシンボルの位相が同相であれば両者が互いに強めあって最大強度(理論的に2倍)となり、逆相であれば両者が互いに弱めあって最小強度(理論的に0)になり、前後のシンボルの位相差90度であればその間の強度(理論的に√2倍)となり、位相変調が強度変調に変換されることになる。   The PM-AM conversion unit 25 splits the input light into two by the branching unit 25a, gives a delay corresponding to an integer multiple of 1 bit to the one branched light by the delay unit 25b, and combines the other branched light with the multiplexer 25c. It has a structure to multiplex. For example, when the input light is phase-modulated light such as QPSK, if the preceding and following symbols are in phase, they are mutually intensified and have the maximum intensity (theoretically doubled), and if they are out of phase, they are weakened each other. Thus, the intensity becomes the minimum intensity (theoretically 0), and if the phase difference between the preceding and following symbols is 90 degrees, the intensity between them is (theoretically √2 times), and phase modulation is converted into intensity modulation.

前処理部23を通過した光Pin(λ)′は、偏光ビームスプリッタ(PBS)26に入射され、互いに直交する偏光成分Pp、Psに分離される。   The light Pin (λ) ′ that has passed through the preprocessing unit 23 enters the polarization beam splitter (PBS) 26 and is separated into mutually orthogonal polarization components Pp and Ps.

偏光ビームスプリッタ26によって分離された一方の偏光成分Ppは、第1ビームスプリッタ(BS1)27に入射されて2分岐され、他方の偏光成分Psも同様に第2ビームスプリッタ(BS2)28に入射されて2分岐される。   One polarization component Pp separated by the polarization beam splitter 26 is incident on the first beam splitter (BS1) 27 and branched into two, and the other polarization component Ps is also incident on the second beam splitter (BS2) 28. Branch into two.

第1ビームスプリッタ27で分岐された一方の光Pp1は第1受光部30の受光器30aに入射される。受光器30aの出力はローパスフィルタ(LPF)30bに入力され、ローパスフィルタ30bからは、一方の偏光成分Ppの強度に対応した信号Spが出力される。   One light Pp1 branched by the first beam splitter 27 enters the light receiver 30a of the first light receiving unit 30. The output of the light receiver 30a is input to a low-pass filter (LPF) 30b, and a signal Sp corresponding to the intensity of one polarization component Pp is output from the low-pass filter 30b.

また、第2ビームスプリッタ28で分岐された一方の光Ps1は第2受光部31の受光器31aに入射される。受光器31aの出力はローパスフィルタ(LPF)31bに入力され、ローパスフィルタ31bからは、他方の偏光成分Psの強度に対応した信号Ssが出力される。   One light Ps 1 branched by the second beam splitter 28 is incident on the light receiver 31 a of the second light receiving unit 31. The output of the light receiver 31a is input to a low-pass filter (LPF) 31b, and a signal Ss corresponding to the intensity of the other polarization component Ps is output from the low-pass filter 31b.

さらに、第1ビームスプリッタ27で分岐された他方の光Pp2と第2ビームスプリッタ28で分岐された他方の光Ps2は第3受光部33に入射される。   Further, the other light Pp 2 branched by the first beam splitter 27 and the other light Ps 2 branched by the second beam splitter 28 are incident on the third light receiving unit 33.

第3受光部33は、順方向に直列接続された1対の受光素子33a、33bで、光Pp2、Ps2をそれぞれ受け、その受光素子33a、33bの接続点cの信号を検出するバランス型のものであって、一方の偏光成分Ppと他方の偏光成分Psの強度の差分に対応した差分信号dを検出する。なお、符号33cは抵抗、符号33dは増幅器である。   The third light receiving unit 33 is a balanced type that receives light Pp2 and Ps2 by a pair of light receiving elements 33a and 33b connected in series in the forward direction, and detects a signal at a connection point c of the light receiving elements 33a and 33b. The difference signal d corresponding to the difference in intensity between the one polarization component Pp and the other polarization component Ps is detected. Reference numeral 33c is a resistor, and reference numeral 33d is an amplifier.

第3受光部33の出力信号dは、振幅検出部34に入力され、差分信号dの振幅A(d)が検出される。ここで、振幅検出部34は、例えば図2に示すように、入力信号dを、ローカル発振器34a、ミキサ34bおよびBPF34cにより中間周波数帯に変換し、その中間周波数帯の信号を包絡線検波器34dで検波してその検波出力をLPF34eにより平均化することにより、振幅を検出する。   The output signal d of the third light receiving unit 33 is input to the amplitude detection unit 34, and the amplitude A (d) of the difference signal d is detected. Here, for example, as shown in FIG. 2, the amplitude detector 34 converts the input signal d into an intermediate frequency band by a local oscillator 34a, a mixer 34b, and a BPF 34c, and converts the signal in the intermediate frequency band into an envelope detector 34d. And the amplitude is detected by averaging the detected output by the LPF 34e.

第1受光部30の出力Sp、第2受光部31の出力Ssおよび振幅検出部34の出力A(d)は、それぞれA/D変換器36、37、38によって所定サンプリング周期でサンプリングされて、デジタルの時系列データに変換されて、評価処理部40に入力される。   The output Sp of the first light receiving unit 30, the output Ss of the second light receiving unit 31, and the output A (d) of the amplitude detecting unit 34 are sampled at predetermined sampling periods by the A / D converters 36, 37, and 38, respectively. It is converted into digital time series data and input to the evaluation processing unit 40.

評価処理部40は、可変波長光フィルタ22および前処理部23を制御しつつ、第1受光部30、第2受光部31および差分信号振幅検出部34の出力を受けて、光入射部21に入射された偏波多重信号光の評価に必要な特性を求める。   The evaluation processing unit 40 receives the outputs of the first light receiving unit 30, the second light receiving unit 31, and the differential signal amplitude detection unit 34 while controlling the variable wavelength optical filter 22 and the preprocessing unit 23, and sends it to the light incident unit 21. The characteristics required for the evaluation of the incident polarization multiplexed signal light are obtained.

ここで、評価処理部40は、偏波多重信号光評価に必要な特性として、光スペクトラム、偏光直交度ずれ、光信号ノイズ比(In Band OSNR)の測定を行う。   Here, the evaluation processing unit 40 measures the optical spectrum, the polarization orthogonality deviation, and the optical signal noise ratio (In Band OSNR) as characteristics necessary for the polarization multiplexed signal light evaluation.

評価処理部40によるスペクトラム測定の手順を図3のフローチャートに基づいて説明する。   The spectrum measurement procedure by the evaluation processing unit 40 will be described with reference to the flowchart of FIG.

始めに、可変波長光フィルタ22で偏波多重信号光の波長を含む任意の波長範囲を可変しながら、波長毎の第1受光部30の出力Sp、第2受光部31の出力Ssを取得し、図4のように、その和と波長の関係を表す偏波多重信号光の光スペクトラムを測定する(S1)。   First, the output Sp of the first light receiving unit 30 and the output Ss of the second light receiving unit 31 are acquired for each wavelength while varying the arbitrary wavelength range including the wavelength of the polarization multiplexed signal light by the variable wavelength optical filter 22. As shown in FIG. 4, the optical spectrum of the polarization multiplexed signal light representing the relationship between the sum and the wavelength is measured (S1).

次に、上記測定した偏波多重信号光の光スペクトラム中の任意の波長λ0(例えばレベル最大の波長)可変波長光フィルタ22を設定する(S2)。   Next, an arbitrary wavelength λ0 (for example, the maximum level wavelength) variable wavelength optical filter 22 in the measured optical spectrum of the polarization multiplexed signal light is set (S2).

ここで、偏波多重信号光の直交する2つの偏光(位相変調光)は、PM−AM変換部25に入射されて、例えば図5の(a)(b)のように、それぞれ異なるパターンの強度変調光に変換される。   Here, two orthogonal polarizations (phase-modulated light) of the polarization multiplexed signal light are incident on the PM-AM converter 25 and have different patterns as shown in FIGS. 5A and 5B, for example. It is converted into intensity modulated light.

この強度変調光は、偏光ビームスプリッタ26により2つの偏光成分に分離され、同一長の光路を経て、第3受光部33の1対の受光素子33a、33bにそれぞれ入射され、その差分成分の振幅が検出される。   The intensity-modulated light is separated into two polarization components by the polarization beam splitter 26, is incident on the pair of light receiving elements 33a and 33b of the third light receiving unit 33 through the same length optical path, and the amplitude of the difference component thereof. Is detected.

この状態で、差分成分の振幅が最大となるように偏波コントローラ24が制御される(S3)。この差分成分が最大の状態は、図6のように、偏光ビームスプリッタ26に入射される光の偏光軸S1、S2(S1を主軸とする)が、偏光ビームスプリッタ26の出力Ps、Ppの光軸に一致した状態を表し、この状態であれば、入射光の偏光軸S1の成分は、そのまま偏光成分Psとして出射され、入射光の偏光軸S2の成分もそのまま偏光成分Ppとして出射される。   In this state, the polarization controller 24 is controlled so that the amplitude of the difference component is maximized (S3). As shown in FIG. 6, the state where the difference component is the maximum is the light with the polarization axes S 1 and S 2 (with S 1 as the main axis) of the light incident on the polarization beam splitter 26 and the output Ps and Pp of the polarization beam splitter 26. In this state, the component of the polarization axis S1 of the incident light is output as it is as the polarization component Ps, and the component of the polarization axis S2 of the incident light is also output as it is as the polarization component Pp.

つまり、図5の(c)、(d)のように、入射光に含まれる一方の偏光成分S1に対して偏光ビームスプリッタ26からは、Psの軸方向にS1、Ppの軸方向に0が出力されることになる。また、入射光に含まれる他方の偏光成分S2に対して偏光ビームスプリッタ26からは、Psの軸方向に0、Ppの軸方向にS2が出力されることになる。   That is, as shown in FIGS. 5C and 5D, the polarization beam splitter 26 has S1 in the axial direction of Ps and 0 in the axial direction of Pp with respect to one polarization component S1 included in the incident light. Will be output. The polarization beam splitter 26 outputs 0 in the axial direction of Ps and S2 in the axial direction of Pp with respect to the other polarization component S2 included in the incident light.

したがって、図6のように偏光ビームスプリッタ26のPsの軸方向にはS1のみ、Ppの軸方向にはS2のみが出射され、両者が完全分離状態となる。   Therefore, as shown in FIG. 6, only S1 is emitted in the axial direction of Ps of the polarization beam splitter 26, and only S2 is emitted in the axial direction of Pp, and both are completely separated.

そして、この完全分離状態であれば、偏光ビームスプリッタ26の両出力Ps、Ppは、元の入力光の二つの偏波成分を強度変調光に変換したものであるから、互いに非相関であり、その非相関な信号同士の差分の平均値は一定で最大となる。   In this complete separation state, both outputs Ps and Pp of the polarization beam splitter 26 are obtained by converting two polarization components of the original input light into intensity-modulated light, and are thus uncorrelated with each other. The average value of the differences between the uncorrelated signals is constant and maximum.

これに対し、図7のように、入射光の偏光軸S1、S2が、偏光ビームスプリッタ26のPs、Ppの軸に対して45度傾いていると、入射光の偏光軸S1に沿った成分は、偏光ビームスプリッタ26のPs、Ppの軸にそれぞれ沿った均等な2成分に別れ、同様に、入射光の偏光軸S2に沿った成分も偏光ビームスプリッタ26のPs、Ppの軸にそれぞれ沿った均等な2成分に別れる。   On the other hand, as shown in FIG. 7, when the polarization axes S1 and S2 of the incident light are inclined 45 degrees with respect to the Ps and Pp axes of the polarization beam splitter 26, the components along the polarization axis S1 of the incident light. Is divided into two equal components along the Ps and Pp axes of the polarizing beam splitter 26, and similarly, the component along the polarization axis S2 of the incident light is also along the Ps and Pp axes of the polarizing beam splitter 26, respectively. It is divided into two equal components.

つまり、図5の(e)、(f)のように、偏光ビームスプリッタ26のPs側出力には、S1、S2それぞれの均等に別れた成分同士が現れ、同様にPp側出力にも、S1、S2それぞれの均等に別れた成分同士が現れて、Ps側出力とPp側出力は等しくなり、その差分は理論上0となる。   That is, as shown in (e) and (f) of FIG. 5, equally divided components of S1 and S2 appear in the Ps side output of the polarization beam splitter 26, and similarly, in the Pp side output, S1 , S2 equally divided components appear, the Ps side output and the Pp side output are equal, and the difference between them is theoretically zero.

なお、ここでは傾き45度の場合を示したが、上記完全分離状態以外の場合には、必ず2つの軸に沿った光には両方の偏光成分が含まれてしまい、互いに振幅相関の強い光となるので、その差分は、両者が非相関の場合と比べて小さくなる。   Here, the case where the inclination is 45 degrees is shown. However, in the case other than the complete separation state, the light along the two axes always includes both polarization components, and the light having a strong amplitude correlation with each other. Therefore, the difference is smaller than in the case where the two are not correlated.

このように、偏波コントローラ24によって、差分信号の振幅が最大となるように設定することで、入射光の直交偏波成分を偏光ビームスプリッタ26で完全分離することができる状態に設定できる。   Thus, by setting the polarization controller 24 so that the amplitude of the differential signal is maximized, the polarization beam splitter 26 can set the state where the orthogonal polarization component of the incident light can be completely separated.

そして、この状態から、波長可変光フィルタ22の波長を変化させながら、第1受光部30、第2受光部31の信号強度をそれぞれ求め、波長毎の信号強度を記憶すれば、偏波多重光の偏光成分毎の光スペクトラムのデータを正確に得ることができる(S4)。   From this state, the signal intensities of the first light receiving unit 30 and the second light receiving unit 31 are obtained while changing the wavelength of the wavelength tunable optical filter 22, and the signal intensities for each wavelength are stored. The data of the optical spectrum for each polarization component can be obtained accurately (S4).

このように、差分信号の振幅が最大となるように、偏光ビームスプリッタ26に入射される光の偏波を制御しているので、長距離を伝搬して直交する偏光成分の偏光状態が崩れている場合でも正しく分離が行え、偏光毎の光スペクトラムの特性を正しく測定することができる。   In this way, since the polarization of the light incident on the polarization beam splitter 26 is controlled so that the amplitude of the differential signal is maximized, the polarization state of the orthogonal polarization component propagating over a long distance collapses. Separation can be performed correctly, and the characteristics of the light spectrum for each polarization can be measured correctly.

図8は、偏光直交度ずれ測定の手順を示すフローチャートである。
始めに、波長可変光フィルタ22の波長を入力光の波長λ0に設定し、前記同様に、偏波コントローラ24を制御して、差分信号の振幅が最大となるように設定し、そのときの第1受光部30の出力PD1maxと第2受光部31の出力PD2maxを求める(S11〜S13)。
FIG. 8 is a flowchart showing a procedure for measuring polarization orthogonality deviation.
First, the wavelength of the wavelength tunable optical filter 22 is set to the wavelength λ0 of the input light, and similarly to the above, the polarization controller 24 is controlled so that the amplitude of the differential signal is maximized. The output PD1max of the first light receiving unit 30 and the output PD2max of the second light receiving unit 31 are obtained (S11 to S13).

また、差分信号の振幅が最小となるように設定し、そのときの第1受光部30の出力PD1minと第2受光部31の出力PD2minを求める(S14、S15)。なお、処理S12、S13と処理S14、S15の順序は逆でもよい。   Further, the difference signal is set to have the minimum amplitude, and the output PD1min of the first light receiving unit 30 and the output PD2min of the second light receiving unit 31 at that time are obtained (S14, S15). Note that the order of the processes S12 and S13 and the processes S14 and S15 may be reversed.

そして、次の演算によって、偏波多重信号光の直交度のずれαを求める(S6)。
α=arctan [(PD1min−PD2min)/(2×PD2max)]……(1)
Then, the orthogonality shift α of the polarization multiplexed signal light is obtained by the following calculation (S6).
α = arctan [(PD1min−PD2min) / (2 × PD2max)] (1)

次に上式(1)の導出について説明する。
入力光の2つの偏光成分のパワーをS1、S2(S1≧S2)とする。
図9のように、一方の偏光S2がPpの軸に対してα傾いて第3受光部33の出力が最大となる場合のPs側とPp側の光パワーは、それぞれ以下のようになる。
Next, the derivation of the above equation (1) will be described.
Assume that the powers of the two polarization components of the input light are S1 and S2 (S1 ≧ S2).
As shown in FIG. 9, the optical powers on the Ps side and the Pp side when one polarization S2 is inclined by α with respect to the axis of Pp and the output of the third light receiving unit 33 is maximized are as follows.

Ps側 PD1max=S1+S2・sin(α) ……(2)
Pp側 PD2max=S2・cos(α) ……(3)
Ps side PD1max = S1 + S2 · sin 2 (α) (2)
Pp side PD2max = S2 ・ cos 2 (α) (3)

また、その状態から図10のように入力光の偏光軸が45度傾いて、差分信号の振幅が最小となる場合のPs側とPp側の光パワーは、それぞれ以下のようになる。ここでPs側とPp側の偏光は直線偏光とした。   Further, the optical power on the Ps side and the Pp side when the polarization axis of the input light is inclined 45 degrees as shown in FIG. 10 and the amplitude of the differential signal is minimized as shown in FIG. Here, the polarized light on the Ps side and the Pp side was linearly polarized light.

(Ps側)
PD1min=S1・sin(45)+S2・sin(45+α)……(4)
(Pp側)
PD2min=S1・cos(45)+S2・cos(45+α)……(5)
(Ps side)
PD1min = S1 · sin 2 (45) + S2 · sin 2 (45 + α) (4)
(Pp side)
PD2min = S1 · cos 2 (45) + S2 · cos 2 (45 + α) (5)

中間式は省略するが、式(4)−式(5)により、
PD1min−PD2min=2・S2・cos(α)・sin(α)……(6)
が得られる。
Although the intermediate formula is omitted, according to formula (4) -formula (5),
PD1min-PD2min = 2 ・ S2 ・ cos (α) ・ sin (α) (6)
Is obtained.

また、式(6)/式(3)により、
tan(α)=(PD1min−PD2min)/(2×PD2max)……(7)
が得られ、これから、上式(1)が得られる。
Also, according to the formula (6) / formula (3),
tan (α) = (PD1min−PD2min) / (2 × PD2max) (7)
From this, the above equation (1) is obtained.

つまり、差分信号の振幅が最大となるように偏波コントローラ24を制御した時の第1受光部30、第2受光部31の出力を求めて、そのうちの小さい方を選び、差分信号の振幅が最小となる時の第1受光部30、第2受光部31の出力を求めて、上記式(1)に代入すれば、入射した偏波多重信号光の直交度のずれαを算出することができる。   That is, the outputs of the first light receiving unit 30 and the second light receiving unit 31 when the polarization controller 24 is controlled so that the amplitude of the differential signal is maximized are obtained, and the smaller one is selected, and the amplitude of the differential signal is If the outputs of the first light receiving unit 30 and the second light receiving unit 31 at the minimum are obtained and substituted into the above equation (1), the orthogonality deviation α of the incident polarization multiplexed signal light can be calculated. it can.

次に、光信号ノイズ比(In Band OSNR)の測定手順を、図11のフローチャートに基づいて説明する。   Next, the procedure for measuring the optical signal noise ratio (In Band OSNR) will be described based on the flowchart of FIG.

始めに、可変波長光フィルタ22の波長を所定波長λ0に設定し、偏波コントローラ24を制御したときの受光部30、31および差分信号の振幅に基づいて、入力光の一方の偏光成分と他方の偏光成分の強度比Rを求める(S21、S22)。   First, based on the amplitudes of the light receiving units 30 and 31 and the difference signal when the wavelength of the variable wavelength optical filter 22 is set to a predetermined wavelength λ0 and the polarization controller 24 is controlled, one polarization component of the input light and the other The intensity ratio R of the polarization components is obtained (S21, S22).

ここで、強度比Rは、偏波コントローラ24を制御して第1受光部30の出力が最大となる時の出力値(Py)、第2受光部31の出力が最大となる時の出力値(Px)から、Px/Py=Rによって求める。あるいは、偏波コントローラ24を制御して差分信号の振幅が最大となる時の第1受光部30の出力値(Py)、第2受光部31の出力値(Px)から、Px/Py=Rによって求める。   Here, the intensity ratio R is an output value (Py) when the output of the first light receiving unit 30 is maximized by controlling the polarization controller 24, and an output value when the output of the second light receiving unit 31 is maximized. From (Px), it is obtained by Px / Py = R. Alternatively, Px / Py = R from the output value (Py) of the first light receiving unit 30 and the output value (Px) of the second light receiving unit 31 when the amplitude of the differential signal is maximized by controlling the polarization controller 24. Ask for.

また、前記スペクトラム測定手順と同様に、波長可変光フィルタ22の波長を変化させながら第1受光部30と第2受光部31の出力を取得して、入射光の各偏光成分の光スペクトラムを測定し、そのスペクトラムから入射光パワーPsigを求める(S23、S24)。   Similarly to the spectrum measurement procedure, the outputs of the first light receiving unit 30 and the second light receiving unit 31 are acquired while changing the wavelength of the wavelength tunable optical filter 22, and the optical spectrum of each polarization component of the incident light is measured. Then, the incident light power Psig is obtained from the spectrum (S23, S24).

上記強度比Rと、解析対象の偏波多重信号光のピーク波長近傍の第1波長(λm1)の時の第1受光部30の出力PD1[λm1]と第2受光部31の出力PD2[λm1]、第1波長λm1と僅かに異なる第2波長λm2に設定したときの第1受光部30の出力PD1[λm2]と第2受光部31の出力PD2[λm2]とから、ASEノイズレベルPaseを算出する(S25)。なお、両波長についての各受光部の出力は、前記スペクトラム測定で得られているものを使えばよい。   The output PD1 [λm1] of the first light receiving unit 30 and the output PD2 [λm1 of the second light receiving unit 31 at the intensity ratio R and the first wavelength (λm1) near the peak wavelength of the polarization multiplexed signal light to be analyzed. ], The ASE noise level Pase is determined from the output PD1 [λm2] of the first light receiving unit 30 and the output PD2 [λm2] of the second light receiving unit 31 when the second wavelength λm2 is set slightly different from the first wavelength λm1. Calculate (S25). In addition, what is necessary is just to use what was obtained by the said spectrum measurement for the output of each light-receiving part about both wavelengths.

そして、このASEノイズPaseと入射光パワーPsigから光信号ノイズ比(In Band OSNR)を求める(S26)。   Then, an optical signal noise ratio (In Band OSNR) is obtained from the ASE noise Pase and the incident light power Psig (S26).

次に、上記処理の演算について説明する。
上記以外のパラメータとして、波長可変光フィルタ22の帯域幅をB0、信号光の偏波成分の分離比率をβとする。
Next, the calculation of the above process will be described.
As parameters other than the above, the bandwidth of the wavelength tunable optical filter 22 is B0, and the polarization component separation ratio of the signal light is β.

強度比Rの検出方法は、偏波コントローラ24による最大パワーPxを検出し、それと90度回転させた位置での光パワーPyを検出して、その比R(≒Px/Py)を求める。この場合、2つの偏光成分の間には、Ps2≒Ps1・Rの関係が成り立つ。   The detection method of the intensity ratio R detects the maximum power Px by the polarization controller 24, detects the optical power Py at a position rotated by 90 degrees, and obtains the ratio R (≈Px / Py). In this case, a relationship of Ps2≈Ps1 · R is established between the two polarization components.

また、偏波コントローラ24で入力光の偏波状態を可変したときの第1受光部30または第2受光部31の出力が最大となるときの第1受光部の出力(Py)および第2受光部の出力(Px)から比Rは求まる。なお、直交する偏光成分の同じパワーに調整されている場合には、R=1とする。   Further, the output (Py) of the first light receiving unit and the second light receiving when the output of the first light receiving unit 30 or the second light receiving unit 31 is maximized when the polarization state of the input light is changed by the polarization controller 24. The ratio R is obtained from the output (Px) of the part. Note that R = 1 when adjusted to the same power of orthogonal polarization components.

ここで、二つの偏光成分Ps1とPs2の偏光主軸が直交していることを前提にすると、下記の演算により、OSNRを求めることができる。   Here, assuming that the polarization main axes of the two polarization components Ps1 and Ps2 are orthogonal to each other, the OSNR can be obtained by the following calculation.

PD1[λm1]=Ps1[λm1](1−β)
+Ps2[λm1]・β+Pase B0/2 ……(8)
PD2[λm1]=Ps1[λm1]・β
+Ps2[λm1](1−β)+Pase B0/2 ……(9)
PD1[λm2]=Ps1[λm2](1−β)
+Ps2[λm2]・β+Pase B0/2 ……(10)
PD2[λm2]=Ps1[λm2]・β
+Ps2[λm2](1−β)+Pase B0/2 ……(11)
PD1 [λm1] = Ps1 [λm1] (1-β)
+ Ps2 [λm1] · β + Pase B0 / 2 (8)
PD2 [λm1] = Ps1 [λm1] · β
+ Ps2 [λm1] (1-β) + Pase B0 / 2 (9)
PD1 [λm2] = Ps1 [λm2] (1-β)
+ Ps2 [λm2] · β + Pase B0 / 2 (10)
PD2 [λm2] = Ps1 [λm2] · β
+ Ps2 [λm2] (1-β) + Pase B0 / 2 (11)

上式(8)〜(11)に、Ps2=Ps1・Rを適用すると、
PD1[λm1]=Ps1[λm1](1−β+R・β)
+Pase B0/2 ……(8′)
PD2[λm1]=Ps1[λm1]{β+R(1−β)}
+Pase B0/2 ……(9′)
PD1[λm2]=Ps1[λm2](1−β+R・β)
+Pase B0/2 ……(10′)
PD2[λm2]=Ps1[λm2]{β+R(1−β)}
+Pase B0/2 ……(11′)
となる。
When Ps2 = Ps1 · R is applied to the above equations (8) to (11),
PD1 [λm1] = Ps1 [λm1] (1-β + R · β)
+ Pase B0 / 2 (8 ')
PD2 [λm1] = Ps1 [λm1] {β + R (1-β)}
+ Pase B0 / 2 (9 ')
PD1 [λm2] = Ps1 [λm2] (1-β + R · β)
+ Pase B0 / 2 (10 ')
PD2 [λm2] = Ps1 [λm2] {β + R (1-β)}
+ Pase B0 / 2 (11 ')
It becomes.

式(8′)−式(10′)より、
PD1[λm1]−PD1[λm2]
=(1−β+R・β)(Ps1[λm1]−Ps1[λm2]) ……(12)
式(9′)−式(11′)より、
PD2[λm1]−PD2[λm2]
={β+R(1−β)}(Ps1[λm1]−Ps1[λm2]) ……(13)
From formula (8 ′)-formula (10 ′):
PD1 [λm1] −PD1 [λm2]
= (1-β + R · β) (Ps1 [λm1] −Ps1 [λm2]) (12)
From formula (9 ′)-formula (11 ′):
PD2 [λm1] −PD2 [λm2]
= {Β + R (1-β)} (Ps1 [λm1] −Ps1 [λm2]) (13)

式(12)/式(13)から、
(PD1[λm1]−PD1[λm2])/(PD2[λm1]−PD2[λm2])
=(1−β+R・β)/{β+R(1−β)} ……(14)
From formula (12) / formula (13),
(PD1 [λm1] −PD1 [λm2]) / (PD2 [λm1] −PD2 [λm2])
= (1-β + R · β) / {β + R (1-β)} (14)

(PD1[λm1]−PD1[λm2])/(PD2[λm1]−PD2[λm2])をAとおいて、上式(14)を展開し、βについて解くと、
β=(1−A・R)/(A−A・R+1−R) ……(15)
が得られる。
When (PD1 [λm1] −PD1 [λm2]) / (PD2 [λm1] −PD2 [λm2]) is A, the above equation (14) is expanded and β is solved.
β = (1−A · R) / (AA−R + 1−R) (15)
Is obtained.

一方、式(8′)×{β+R(1−β)}と式(9′)×(1−β+R・β)との差から、
{β+R(1−β)}PD1[λm1]−(1−β+R・β)PD2[λm1]
={(β+R−R・β)−(1−β+R・β)}Pase B0/2
=(2・β+R−1)Pase B0/2 ……(16)
が得られる。
On the other hand, from the difference between the equation (8 ′) × {β + R (1−β)} and the equation (9 ′) × (1−β + R · β),
{Β + R (1-β)} PD1 [λm1] − (1-β + R · β) PD2 [λm1]
= {(Β + R−R · β) − (1−β + R · β)} Pase B0 / 2
= (2.β + R-1) Pase B0 / 2 (16)
Is obtained.

よって、ASEノイズレベルPase は、以下の演算で求めることができる。   Therefore, the ASE noise level Pase can be obtained by the following calculation.

Pase
=(2/B0){{β+R(1−β)}PD1[λm1]
−(1−β+R・β)PD2[λm1]}/(2・β+R−1−2R・β)
……(17)
ただし、
β=(1−A・R)/(A−A・R+1−R)
A=(PD1[λm1]−PD1[λm2])
/(PD2[λm1]−PD2[λm2])
Pase
= (2 / B0) {{β + R (1-β)} PD1 [λm1]
-(1-β + R · β) PD2 [λm1]} / (2 · β + R-1-2R · β)
...... (17)
However,
β = (1−A · R) / (AA · R + 1−R)
A = (PD1 [λm1] −PD1 [λm2])
/ (PD2 [λm1] −PD2 [λm2])

このようにして、得られたASEノイズのパワーPase に対し、OSNRは、
OSNR=(Psig−Pase)/Pase
により算出できる。
In this way, for the power Pase of the ASE noise obtained, OSNR is
OSNR = (Psig-Pase) / Pase
Can be calculated.

ここで、Psigは、各偏波成分の任意の波長範囲のスペクトラムを積分することで得られるパワーもしくはピークパワーとする。   Here, Psig is a power or peak power obtained by integrating the spectrum of an arbitrary wavelength range of each polarization component.

また、トータルスペクトラム(各偏波成分の和)を強度比Rで分配することで、各偏波成分のスペクトラムを求めてもよい。また、実際の演算には、測定値の平均化処理あるいはフィッティング処理によって求めたASEノイズレベルPaseを用いることでより正確な値を得ることができる。   Further, the spectrum of each polarization component may be obtained by distributing the total spectrum (sum of each polarization component) at the intensity ratio R. In the actual calculation, a more accurate value can be obtained by using the ASE noise level Pase obtained by the averaging process or the fitting process of the measurement values.

上記したように、実施形態の偏波多重信号解析装置20は、各偏波成分のスペクトラム、直交度のずれおよび光信号ノイズ比(OSNR)の測定が可能である。   As described above, the polarization multiplexed signal analyzer 20 of the embodiment can measure the spectrum of each polarization component, the deviation of orthogonality, and the optical signal noise ratio (OSNR).

なお、前記したASEノイズの測定において、二つの直交する偏波成分の強度が等しい(R=1)場合、例えば、β=(1−A・R)/(A−A・R+1−R)の分母が0となってしまい、計算不能となる。   In the ASE noise measurement described above, when the intensity of two orthogonal polarization components are equal (R = 1), for example, β = (1−A · R) / (AA−R + 1−R) The denominator becomes 0, which makes calculation impossible.

そのような場合に対応するために、図12に示すように、前処理部23に偏波依存損失発生部50を設け、二つの直交する偏波成分に異なる損失を与え、直交する偏波成分の強度に差を与えるようにする。   In order to cope with such a case, as shown in FIG. 12, a polarization dependent loss generating unit 50 is provided in the preprocessing unit 23 to give different losses to two orthogonal polarization components, thereby orthogonal polarization components. Make a difference in strength.

ここで、偏波依存損失発生部50としては、音響光学素子、回折格子、EA変調器等が使用できる。   Here, as the polarization dependent loss generating unit 50, an acousto-optic element, a diffraction grating, an EA modulator, or the like can be used.

また、この場合、可変波長光フィルタ24の出力を分岐器51で分岐し、分岐した光の一方を偏波依存損失発生部50に入射させ、他方を第4受光部55の受光器55aに入射しその出力をLPF55bに与えて、入射光のトータルスペクトラム(Psig)を求めることができるようにしている(符号39は、LPF55bの出力をデジタル値に変換するA/D変換器である)。   Further, in this case, the output of the variable wavelength optical filter 24 is branched by the branching unit 51, one of the branched lights is incident on the polarization dependent loss generating unit 50, and the other is incident on the light receiving unit 55a of the fourth light receiving unit 55. The output is given to the LPF 55b so that the total spectrum (Psig) of the incident light can be obtained (reference numeral 39 is an A / D converter that converts the output of the LPF 55b into a digital value).

20……偏波多重信号解析装置、21……光入射部、22……可変波長光フィルタ、23……前処理部、24……偏波コントローラ、25……PM−AM変換部、26……偏光ビームスプリッタ、27……第1ビームスプリッタ、28……第2ビームスプリッタ、30……第1受光部、30a……受光器、30b……LPF、31……第2受光部、31a……受光器、31b……LPF、33……第3受光部、34……振幅検出部、40……評価処理部、50……偏波依存損失発生部、55……第4受光部   DESCRIPTION OF SYMBOLS 20 ... Polarization multiplexing signal analyzer, 21 ... Light incident part, 22 ... Variable wavelength optical filter, 23 ... Pre-processing part, 24 ... Polarization controller, 25 ... PM-AM conversion part, 26 ... ... Polarizing beam splitter, 27... First beam splitter, 28... Second beam splitter, 30... First light receiving portion, 30 a. ... Light receiver 31b... LPF 33... Third light receiver 34... Amplitude detector 40 .. evaluation processor 50... Polarization dependent loss generator 55.

Claims (8)

直交する偏波成分がそれぞれ位相変調されている偏波多重信号光を入射させるための光入射部(21)と、
前記光入射部に入射された偏波多重信号光を受け、所望波長の光を抽出する可変波長光フィルタ(22)と、
入力光の偏波状態を変化させて出射する偏波コントローラ(24)および入力光の位相変化を振幅変化に変換するPM−AM変換部(25)を有し、前記可変波長光フィルタの出射光に対する偏波状態の変更および位相変化から振幅変化への変換の処理を行う前処理部(23)と、
前記前処理部を通過した光を、互いに直交する偏光成分に分離する偏光ビームスプリッタ(26)と、
前記偏光ビームスプリッタによって分離された一方の偏光成分を2分岐する第1ビームスプリッタ(27)と、
前記偏光ビームスプリッタによって分離された他方の偏光成分を2分岐する第2ビームスプリッタ(28)と、
前記第1ビームスプリッタで分岐された一方の光を受けて前記一方の偏光成分の強度を検出する第1受光部(30)と、
前記第2ビームスプリッタで分岐された一方の光を受けて前記他方の成分の強度を検出する第2受光部(31)と、
前記第1ビームスプリッタで分岐された他方の光と前記第2ビームスプリッタで分岐された他方の光を、順方向直列接続された1対の受光素子でそれぞれ受け、その接続点の信号を検出する差動バランス型に構成され、前記一方の偏光成分と他方の偏光成分の差分信号の強度を検出する第3受光部(33)と、
前記第3受光部の出力信号の振幅を検出する振幅検出部(34)と、
前記可変波長光フィルタおよび前記前処理部を制御しつつ、前記第1受光部、第2受光部および振幅検出部の出力を受けて、前記光入射部に入射された偏波多重信号光の評価に必要な特性を求める評価処理部(40)とを備えた偏波多重信号解析装置。
A light incident part (21) for making the polarization multiplexed signal light in which the orthogonal polarization components are respectively phase-modulated,
A variable wavelength optical filter (22) that receives the polarization multiplexed signal light incident on the light incident portion and extracts light of a desired wavelength;
A polarization controller (24) that emits by changing the polarization state of the input light, and a PM-AM converter (25) that converts the phase change of the input light into an amplitude change, and the output light of the variable wavelength optical filter A pre-processing unit (23) that performs a process of changing the polarization state and converting the phase change to the amplitude change with respect to
A polarization beam splitter (26) that separates the light that has passed through the preprocessing unit into mutually orthogonal polarization components;
A first beam splitter (27) for bifurcating one polarization component separated by the polarization beam splitter;
A second beam splitter (28) for bifurcating the other polarization component separated by the polarization beam splitter;
A first light receiving unit (30) that receives one light branched by the first beam splitter and detects the intensity of the one polarization component;
A second light receiving unit (31) that receives one light branched by the second beam splitter and detects the intensity of the other component;
The other light branched by the first beam splitter and the other light branched by the second beam splitter are respectively received by a pair of light receiving elements connected in series in the forward direction, and a signal at the connection point is detected. A third light receiving section (33) configured to be a differential balance type and detecting the intensity of a differential signal between the one polarization component and the other polarization component;
An amplitude detector (34) for detecting the amplitude of the output signal of the third light receiver;
While controlling the variable wavelength optical filter and the preprocessing unit, receiving the outputs of the first light receiving unit, the second light receiving unit, and the amplitude detecting unit, and evaluating the polarization multiplexed signal light incident on the light incident unit A polarization multiplexed signal analyzing apparatus including an evaluation processing unit (40) for obtaining characteristics required for the operation.
前記評価処理部は、
前記振幅検出部で検出される振幅が最大となるように前記偏波コントローラを制御した状態で、前記可変波長光フィルタの波長を変化させながら前記第1受光部と第2受光部の出力を取得することで、前記解析対象の偏波多重信号光の偏光成分毎のスペクトラム特性を測定することを特徴とする請求項1記載の偏波多重信号解析装置。
The evaluation processing unit
While the polarization controller is controlled so that the amplitude detected by the amplitude detector becomes maximum, the outputs of the first light receiver and the second light receiver are obtained while changing the wavelength of the variable wavelength optical filter. The polarization multiplexed signal analyzing apparatus according to claim 1, wherein spectrum characteristics for each polarization component of the polarization multiplexed signal light to be analyzed are measured.
前記評価処理部は、
前記振幅検出部で検出される振幅が最大となるように前記偏波コントローラを制御した時の前記第1受光部と第2受光部の出力値、前記振幅検出部で検出される振幅が最小となるように前記偏波コントローラを制御した時の前記第1受光部と第2受光部の出力値を求め、これらの値から前記解析対象の偏波多重信号光の偏光直交度のずれを算出することを特徴とする請求項1記載の偏波多重信号解析装置。
The evaluation processing unit
The output values of the first light receiving unit and the second light receiving unit when the polarization controller is controlled so that the amplitude detected by the amplitude detecting unit is maximized, and the amplitude detected by the amplitude detecting unit is minimum. The output values of the first light receiving unit and the second light receiving unit when the polarization controller is controlled to be obtained are calculated, and the deviation of the polarization orthogonality of the polarization multiplexed signal light to be analyzed is calculated from these values. The polarization multiplexed signal analyzing apparatus according to claim 1.
前記評価処理部は、
前記偏波コントローラを可変制御した時の前記第1受光部、第2受光部、振幅検出部の各出力に基づいて得られた前記一方の偏光成分と他方の偏光成分の強度比と、前記波長可変光フィルタの波長を変化させながら前記第1受光部と第2受光部の出力を取得して測定した各偏光成分の光スペクトラムと、該光スペクトラムで解析対象の偏波多重信号光の近傍で異なる二つの波長における前記第1受光部と第2受光部の出力とから、ASEノイズレベルを算出し、該ASEノイズレベルと偏波多重信号光のパワーとからその光信号ノイズ比を求めることを特徴とする請求項1記載の偏波多重信号解析装置。
The evaluation processing unit
The intensity ratio between the one polarization component and the other polarization component obtained based on the outputs of the first light receiving unit, the second light receiving unit, and the amplitude detecting unit when the polarization controller is variably controlled, and the wavelength The optical spectrum of each polarization component measured by acquiring the outputs of the first light receiving unit and the second light receiving unit while changing the wavelength of the variable optical filter, and in the vicinity of the polarization multiplexed signal light to be analyzed in the optical spectrum An ASE noise level is calculated from outputs of the first light receiving unit and the second light receiving unit at two different wavelengths, and an optical signal noise ratio is obtained from the ASE noise level and the power of the polarization multiplexed signal light. The polarization multiplexed signal analyzer according to claim 1, wherein:
前記前処理部には、入射光に含まれる2つの偏光成分の強度に差を与える偏波依存性損失発生部(50)が設けられていることを特徴とする請求項4記載の偏波多重信号解析装置。   5. The polarization multiplexing according to claim 4, wherein the preprocessing unit is provided with a polarization-dependent loss generation unit that gives a difference in intensity between two polarization components included in incident light. Signal analysis device. 解析対象の偏波多重信号光の偏光成分を位相変調光から強度変調光に変換して偏光分離処理を行う段階と、
前記偏光分離された光の差分信号を求める段階と、
解析対象の偏波多重信号光の偏波状態を可変して前記差分信号の振幅が最大となる偏波状態に設定する段階と、
前記差分信号の振幅が最大となる偏波状態に設定した後に、入射される解析対象の偏波多重信号光に対する波長掃引処理を行い、該偏波多重信号光の両偏光成分のスペクトラム特性を求める段階とを含む偏波多重信号解析方法。
Converting the polarization component of the polarization multiplexed signal light to be analyzed from phase-modulated light to intensity-modulated light and performing polarization separation processing;
Obtaining a differential signal of the polarization separated light;
Varying the polarization state of the polarization multiplexed signal light to be analyzed and setting the polarization state so that the amplitude of the differential signal is maximized;
After setting the polarization state in which the amplitude of the differential signal is maximized, wavelength sweep processing is performed on the incident polarization multiplexed signal light to be analyzed, and the spectrum characteristics of both polarization components of the polarization multiplexed signal light are obtained. And a method for analyzing polarization multiplexed signals including stages.
解析対象の偏波多重信号光の偏光成分を位相変調光から強度変調光に変換して偏光分離処理を行う段階と、
前記偏光分離された光の差分信号を求める段階と、
解析対象の偏波多重信号光の偏波状態を可変して前記差分信号の振幅が最大となる偏波状態に設定し、該偏波状態における前記偏光分離された光の強度を検出する段階と、
解析対象の偏波多重信号光の偏波状態を可変して前記差分信号の振幅が最小となる偏波状態に設定し、該偏波状態における前記偏光分離された光の強度を検出する段階と、
前記検出した光強度の値から解析対象の偏波多重信号光の偏光直交度のずれを算出する段階とを含む偏波多重信号解析方法。
Converting the polarization component of the polarization multiplexed signal light to be analyzed from phase-modulated light to intensity-modulated light and performing polarization separation processing;
Obtaining a differential signal of the polarization separated light;
Varying the polarization state of the polarization multiplexed signal light to be analyzed, setting the polarization state so that the amplitude of the differential signal is maximized, and detecting the intensity of the polarization separated light in the polarization state; ,
Varying the polarization state of the polarization multiplexed signal light to be analyzed, setting the polarization state so that the amplitude of the differential signal is minimum, and detecting the intensity of the polarization-separated light in the polarization state; ,
Calculating a deviation in polarization orthogonality of the polarization multiplexed signal light to be analyzed from the detected light intensity value.
解析対象の偏波多重信号光の偏光成分を位相変調光から強度変調光に変換して偏光分離処理を行う段階と、
前記偏光分離された光の差分信号を求める段階と、
解析対象の偏波多重信号光の偏波状態を可変したときの前記偏光分離された光の強度、前記差分信号の大きさに基づいて偏波多重信号光の一方の偏光成分と他方の偏光成分の強度比を求める段階と、
偏波多重信号光のスペクトラム特性を求める段階と、
前記スペクトラム特性で解析対象の偏波多重信号光の近傍の第1波長における偏光分離された光の強度と、偏波多重信号光の近傍で前記第1波長と異なる第2波長の偏光分離された光の強度とを求め、該各強度と前記強度比とからASEノイズレベルを算出する段階と、
前記ASEノイズレベルと偏波多重信号光のパワーとから光信号ノイズ比を求める段階とを含む偏波多重信号解析方法。
Converting the polarization component of the polarization multiplexed signal light to be analyzed from phase-modulated light to intensity-modulated light and performing polarization separation processing;
Obtaining a differential signal of the polarization separated light;
One polarization component and the other polarization component of the polarization multiplexed signal light based on the intensity of the polarization separated light when the polarization state of the polarization multiplexed signal light to be analyzed is varied, and the magnitude of the difference signal Determining the intensity ratio of
Obtaining the spectrum characteristics of polarization multiplexed signal light;
The intensity of the polarization-separated light at the first wavelength in the vicinity of the polarization multiplexed signal light to be analyzed in the spectrum characteristics and the polarization separation of the second wavelength different from the first wavelength in the vicinity of the polarization multiplexed signal light Determining the intensity of light, and calculating an ASE noise level from each intensity and the intensity ratio;
A method of analyzing a polarization multiplexed signal, comprising: obtaining an optical signal noise ratio from the ASE noise level and the power of the polarization multiplexed signal light.
JP2010210574A 2010-09-21 2010-09-21 Polarization multiple signal analysis device and method Pending JP2012068031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010210574A JP2012068031A (en) 2010-09-21 2010-09-21 Polarization multiple signal analysis device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010210574A JP2012068031A (en) 2010-09-21 2010-09-21 Polarization multiple signal analysis device and method

Publications (1)

Publication Number Publication Date
JP2012068031A true JP2012068031A (en) 2012-04-05

Family

ID=46165493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010210574A Pending JP2012068031A (en) 2010-09-21 2010-09-21 Polarization multiple signal analysis device and method

Country Status (1)

Country Link
JP (1) JP2012068031A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004668A (en) * 2013-06-18 2015-01-08 富士通株式会社 Double polarization interference measurement optical signal-to-noise ratio monitoring device
US9207124B2 (en) 2013-08-06 2015-12-08 Seiko Epson Corporation Colorimetry apparatus
CN108418640A (en) * 2018-02-13 2018-08-17 西北工业大学 A kind of photoelectricity I/Q balance detection systems of palarization multiplexing
JP2019027948A (en) * 2017-07-31 2019-02-21 日東電工株式会社 Imaging device for polarizing film, inspection device, and method for inspection

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004668A (en) * 2013-06-18 2015-01-08 富士通株式会社 Double polarization interference measurement optical signal-to-noise ratio monitoring device
US9207124B2 (en) 2013-08-06 2015-12-08 Seiko Epson Corporation Colorimetry apparatus
JP2019027948A (en) * 2017-07-31 2019-02-21 日東電工株式会社 Imaging device for polarizing film, inspection device, and method for inspection
CN108418640A (en) * 2018-02-13 2018-08-17 西北工业大学 A kind of photoelectricity I/Q balance detection systems of palarization multiplexing
CN108418640B (en) * 2018-02-13 2020-07-14 西北工业大学 Polarization multiplexing photoelectric I/Q balance detection system

Similar Documents

Publication Publication Date Title
US9088370B2 (en) Coherent optical receiver, apparatus and method for detecting inter-channel skew in coherent optical receiver
CN105871500B (en) Using the optical communications link of relevant detection and outband channel identification
US8032025B2 (en) Polarization monitoring in polarization division multiplexing in optical communications
US8406621B2 (en) Method and apparatus for measuring a factor characterizing a balanced detection device
CN108463958B (en) Polarization insensitive self-homodyne detection receiver for space division multiplexing system
JP2005221500A (en) Heterodyne optical network analysis using signal modulation
US20030194166A1 (en) Apparatus and method for measurement and adaptive control of polarization mode dispersion in optical fiber transmission systems
CN105794129A (en) Polarisation-independent coherent optical receiver
WO2018084106A1 (en) Digital coherent receiver, and skew adjusting method for same
WO2016162903A1 (en) Polarization insensitive self-homodyne detection receiver
JP2012068031A (en) Polarization multiple signal analysis device and method
EP1231455A2 (en) Method and system for optical spectrum analysis with a depolarized local oscillator signal
JP5334619B2 (en) Optical path length control device
US7466425B2 (en) Elementary matrix based optical signal/network analyzer
US7068944B2 (en) Multi-function optical performance monitor
JP2003526794A (en) Device for detecting PMD of optoelectronics transmission line
JP2002188960A (en) Polarization measuring method and polarization quantity monitoring method
US20140111804A1 (en) Heterodyne Optical Spectrum Analyzer
JP6761782B2 (en) Optical receiver and coherent optical reception method
JP2014016197A (en) Optical signal measuring device
WO2018117149A1 (en) Light detection device, optical property analysis device, and light detection method
AU2006243809A1 (en) Method and device for in-band optical performance monitoring
BRPI1103951A2 (en) non-invasive system for pmd monitoring in optical links