JP2012067645A - Evaporative fuel control apparatus of internal combustion engine - Google Patents

Evaporative fuel control apparatus of internal combustion engine Download PDF

Info

Publication number
JP2012067645A
JP2012067645A JP2010211682A JP2010211682A JP2012067645A JP 2012067645 A JP2012067645 A JP 2012067645A JP 2010211682 A JP2010211682 A JP 2010211682A JP 2010211682 A JP2010211682 A JP 2010211682A JP 2012067645 A JP2012067645 A JP 2012067645A
Authority
JP
Japan
Prior art keywords
passage
intake
evaporative fuel
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010211682A
Other languages
Japanese (ja)
Other versions
JP5579554B2 (en
JP2012067645A5 (en
Inventor
Junji Shirai
準二 白井
Kuniaki Takahashi
邦彰 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keihin Corp
Original Assignee
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Corp filed Critical Keihin Corp
Priority to JP2010211682A priority Critical patent/JP5579554B2/en
Priority to EP11175942.9A priority patent/EP2434136B1/en
Publication of JP2012067645A publication Critical patent/JP2012067645A/en
Publication of JP2012067645A5 publication Critical patent/JP2012067645A5/ja
Application granted granted Critical
Publication of JP5579554B2 publication Critical patent/JP5579554B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0836Arrangement of valves controlling the admission of fuel vapour to an engine, e.g. valve being disposed between fuel tank or absorption canister and intake manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/10Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
    • F02D9/109Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps having two or more flaps
    • F02D9/1095Rotating on a common axis, e.g. having a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0872Details of the fuel vapour pipes or conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/089Layout of the fuel vapour installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M2025/0845Electromagnetic valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an evaporative fuel control apparatus which has a simplified structure, thereby achieving reduction in the number of assembly steps and which causes evaporative fuel to be combusted reliably and efficiently.SOLUTION: In the evaporative fuel control apparatus 10, a first passage 48 of a bypass conduit 40 is connected between an upstream side of an intake passage 24b and a switching valve 42, and second passages 50a to 50d interconnect the switching valve 42 and downstream sides of intake passages 24a to 24d, whereas a purge conduit 46 to which the evaporative fuel is supplied is connected to the switching valve 42. The switching valve 42 is operated responsive to a driven state of an internal combustion engine 12, thus switching between a communication state between the first passage 48 and the second passages 50a to 50d, and a communication state between the purge conduit 46 and the second passages 50a to 50d, such that intake air or the evaporative fuel is made to flow to the intake passages 24a to 24d.

Description

本発明は、車両に搭載される内燃機関において、燃料から蒸発した蒸発燃料を前記内燃機関へと循環させるための内燃機関の蒸発燃料制御装置に関する。   The present invention relates to an evaporative fuel control device for an internal combustion engine for circulating evaporative fuel evaporated from fuel to the internal combustion engine in an internal combustion engine mounted on a vehicle.

従来から、車両の燃料タンクにおいて発生した蒸発燃料をキャニスタで吸着させると共に、前記キャニスタから脱離した蒸発燃料を内燃機関の吸気系にパージする蒸発燃料制御装置が知られている。   2. Description of the Related Art Conventionally, an evaporative fuel control apparatus is known in which evaporative fuel generated in a vehicle fuel tank is adsorbed by a canister and evaporative fuel desorbed from the canister is purged to an intake system of an internal combustion engine.

例えば、この蒸発燃料制御装置では、多気筒の内燃機関に対応させるためにキャニスタの下流側に第1パージ配管を接続し、該第1パージ配管の下流側に分岐した二股状の第2パージ配管を設けると共に、該第2パージ配管の下流側にそれぞれ二股状に分岐した4本の第3パージ配管を接続し、前記第3パージ配管がそれぞれスロットル弁を有した各スロットルボディに接続している。そして、キャニスタから脱離した蒸発燃料を、第1〜第3パージ配管を通じて4本のスロットルボディへとそれぞれ供給し、内燃機関へとパージしている(例えば、特許文献1参照)。   For example, in this evaporative fuel control device, a first purge pipe is connected to the downstream side of the canister to correspond to a multi-cylinder internal combustion engine, and the bifurcated second purge pipe branched to the downstream side of the first purge pipe. And four third purge pipes branched in a bifurcated manner are connected to the downstream side of the second purge pipe, and the third purge pipes are connected to throttle bodies each having a throttle valve. . The evaporated fuel desorbed from the canister is supplied to the four throttle bodies through the first to third purge pipes, respectively, and purged to the internal combustion engine (see, for example, Patent Document 1).

しかしながら、上述したような蒸発燃料制御装置では、内燃機関に対して組み付ける際、複数の第1〜第3パージ配管同士の組付作業が非常に煩雑であり、しかも、前記第3パージ配管をスロットルボディに対して接続するためのジョイントも必要となるため、前記蒸発燃料制御装置の組付効率が低下して製造性の悪化を招くという問題がある。   However, in the evaporative fuel control apparatus as described above, when assembling the internal combustion engine, the assembling work between the plurality of first to third purge pipes is very complicated, and the third purge pipe is throttled. Since a joint for connecting to the body is also required, there is a problem that the assembly efficiency of the evaporated fuel control device is lowered and the productivity is deteriorated.

そこで、複雑な配管構成を簡素化して組付効率を向上させるために、特許文献2に開示されるエンジンの配管構成を蒸発燃料制御装置に適用することが想定される。このエンジンでは、吸入空気の導入されるサージタンクに対してバイパス流路が接続され、該バイパス流路の下流側が分岐してそれぞれ吸気マニホールドに対して接続されると共に、燃料の貯えられるベーパータンクと前記バイパス流路の途中とがベント通路によって接続されている。また、バイパス流路において、ベント通路が接続される接続部位の下流側には、コントロールバルブが設けられ、内燃機関のアイドル状態に弁開状態となり、前記バイパス流路を通じて吸気マニホールドへと吸入空気を流通させている。   Therefore, in order to simplify the complicated piping configuration and improve the assembly efficiency, it is assumed that the engine piping configuration disclosed in Patent Document 2 is applied to the evaporated fuel control device. In this engine, a bypass flow path is connected to a surge tank into which intake air is introduced, a downstream side of the bypass flow path is branched and connected to an intake manifold, and a vapor tank for storing fuel The middle of the bypass flow path is connected by a vent passage. In addition, a control valve is provided on the downstream side of the connection portion to which the vent passage is connected in the bypass passage, and the valve is opened to the idle state of the internal combustion engine, and the intake air is supplied to the intake manifold through the bypass passage. It is distributed.

特開平4−342863号公報JP-A-4-342863 特開2000−186653号公報JP 2000-186653 A

しかしながら、特許文献2に開示された配管システムにおいては、特許文献1の構成と比較し、その配管構成を簡素化することは可能であるが、吸入空気の制御を行うためのコントロールバルブが、前記バイパス流路における接続部位の下流側に設けられているため、ベーパータンクで気化したパージガスを、ベント通路及びバイパス流路を通じて吸気マニホールドへと流通させる場合、内燃機関のアイドル状態にのみ流通させることができ、通常運転時には流通させることができない。   However, in the piping system disclosed in Patent Literature 2, it is possible to simplify the piping configuration as compared with the configuration of Patent Literature 1, but a control valve for controlling intake air includes Since the purge gas vaporized in the vapor tank is circulated to the intake manifold through the vent passage and the bypass passage, it can be circulated only in the idling state of the internal combustion engine because it is provided downstream of the connection site in the bypass passage. It can be distributed during normal operation.

本発明は、前記の課題を考慮してなされたものであり、構成を簡素化して組付工数の削減を図ると共に、蒸発燃料を確実且つ効率的に燃焼させることが可能な内燃機関の蒸発燃料制御装置を提供することを目的とする。   The present invention has been made in consideration of the above-mentioned problems, and is intended to reduce the number of assembling steps by simplifying the configuration, and can evaporate the evaporated fuel with certainty and efficiency. An object is to provide a control device.

前記の目的を達成するために、本発明は、複数のシリンダ室に吸入空気を供給する吸気通路と、該吸気通路に設けられ前記吸入空気の流量を制御するスロットルバルブとを有した内燃機関に用いられ、気化した蒸発燃料を前記吸気通路を通じて前記シリンダ室へと供給する蒸発燃料制御装置において、
前記吸気通路における前記スロットルバルブの上流側に接続される上流側通路と、該吸気通路における前記スロットルバルブの下流側に接続される複数の下流側通路とからなるバイパス通路と、
前記バイパス通路に接続され、ボディと、該ボディの内部に変位自在に設けられる弁体と、該弁体を軸線方向に沿って変位させる駆動部とを有し、前記弁体の変位によって前記バイパス通路の連通状態を切換自在な切換弁と、
前記切換弁に接続され前記蒸発燃料の流通するパージ通路と、
を備え、
前記パージ通路及びバイパス通路は、前記ボディにおいて軸線方向に沿って互いに離間して接続され、前記弁体を変位させることによって該弁体に設けられた連通部を介して前記下流側通路に対する前記上流側通路、又は、前記パージ通路の連通状態を切り換えることを特徴とする。
In order to achieve the above object, the present invention provides an internal combustion engine having an intake passage for supplying intake air to a plurality of cylinder chambers and a throttle valve provided in the intake passage for controlling the flow rate of the intake air. An evaporative fuel control apparatus for supplying vaporized evaporative fuel to the cylinder chamber through the intake passage;
A bypass passage comprising an upstream passage connected to the upstream side of the throttle valve in the intake passage, and a plurality of downstream passages connected to the downstream side of the throttle valve in the intake passage;
A body connected to the bypass passage; a valve body provided inside the body so as to be displaceable; and a drive unit that displaces the valve body along an axial direction. A switching valve capable of switching the communication state of the passage,
A purge passage connected to the switching valve and through which the evaporated fuel flows;
With
The purge passage and the bypass passage are connected apart from each other along the axial direction in the body and displace the valve body to displace the upstream passage with respect to the downstream passage through a communication portion provided in the valve body. The communication state of the side passage or the purge passage is switched.

本発明によれば、複数のシリンダ室に吸入空気を供給する吸気通路と、該吸気通路に設けられ前記吸入空気の流量を制御するスロットルバルブとを有した内燃機関において、前記スロットルバルブの上流側となる吸気通路に対して上流側通路を接続し、該スロットルバルブの下流側となる前記吸気通路に対して下流側通路を接続すると共に、前記上流側通路及び下流側通路を切換弁に対して接続している。また、気化した蒸発燃料の流通するパージ通路を前記切換弁に対して接続している。   According to the present invention, in an internal combustion engine having an intake passage that supplies intake air to a plurality of cylinder chambers and a throttle valve that is provided in the intake passage and controls the flow rate of the intake air, an upstream side of the throttle valve An upstream passage is connected to the intake passage, and a downstream passage is connected to the intake passage downstream of the throttle valve, and the upstream passage and the downstream passage are connected to the switching valve. Connected. Further, a purge passage through which the evaporated fuel vapor flows is connected to the switching valve.

そして、例えば、車両の走行速度や内燃機関の回転数等に基づいて切換弁の弁体を軸線方向に沿って変位させることにより、前記弁体に設けられた連通部を介して前記下流側通路に対する前記上流側通路、又は、前記パージ通路の連通状態を切り換えることができる。従って、単一の切換弁によって複数の吸気通路に対する吸入空気の供給と、蒸発燃料の供給とをそれぞれ制御することができるため、前記蒸発燃料を各吸気通路に供給するための配管を別個に設ける必要がなく、その配管構成の簡素化を図ることができ、それに伴って、蒸発燃料制御装置における部品点数の削減及び組付効率の向上を図ることができる。   And, for example, the downstream passage is connected via the communicating portion provided in the valve body by displacing the valve body of the switching valve along the axial direction based on the traveling speed of the vehicle, the rotational speed of the internal combustion engine, or the like. The communication state of the upstream side passage or the purge passage can be switched. Accordingly, since the supply of intake air to the plurality of intake passages and the supply of evaporated fuel can be controlled by a single switching valve, piping for supplying the evaporated fuel to each intake passage is provided separately. There is no need to simplify the piping configuration, and accordingly, the number of parts in the fuel vapor control apparatus can be reduced and the assembly efficiency can be improved.

また、切換弁の切換作用下に所望のタイミングで蒸発燃料を吸気通路へと流通させることができるため、前記蒸発燃料を確実且つ効率的に前記吸気通路へと流通させ、シリンダ室内で燃焼させることが可能となる。   Further, since the evaporated fuel can be distributed to the intake passage at a desired timing under the switching action of the switching valve, the evaporated fuel can be reliably and efficiently distributed to the intake passage and burned in the cylinder chamber. Is possible.

さらに、連通部は、切換弁の外周面において、軸線方向に沿った中央部に形成された環状の凹部からなり、前記凹部を介してパージ通路と下流側通路とを連通させるとよい。   Furthermore, the communication part is preferably composed of an annular recess formed in the central part along the axial direction on the outer peripheral surface of the switching valve, and the purge passage and the downstream passage are communicated with each other via the recess.

さらにまた、連通部は、切換弁の外周面において、軸線方向に沿って延在し、下流側通路の開口部に臨んで形成された溝部からなり、前記溝部を介してパージ通路と下流側通路とを連通させるとよい。   Further, the communication portion is formed of a groove portion extending along the axial direction on the outer peripheral surface of the switching valve and facing the opening portion of the downstream side passage, and the purge passage and the downstream side passage through the groove portion. It is good to communicate with.

本発明によれば、以下の効果が得られる。   According to the present invention, the following effects can be obtained.

すなわち、車両の走行速度や内燃機関の回転数等に基づいて切換弁の弁体を軸線方向に沿って変位させることにより、前記弁体に設けられた連通部を介してバイパス通路における下流側通路に対する上流側通路、又は、パージ通路の連通状態を切り換えることができる。その結果、単一の切換弁で複数の吸気通路に対する吸入空気の供給と、パージ通路を通じた蒸発燃料の供給とをそれぞれ制御することができるため、前記蒸発燃料を各吸気通路に供給するための配管を別個に設ける必要がなく、その配管構成の簡素化を図り、蒸発燃料制御装置における部品点数の削減及び組付効率の向上を図ることができる。また、切換弁の切換作用下に所望のタイミングで蒸発燃料を吸気通路へと流通させることができるため、前記蒸発燃料を確実且つ効率的に前記吸気通路へと流通させ、シリンダ室内で燃焼させることができる。   That is, the downstream side passage in the bypass passage through the communicating portion provided in the valve body by displacing the valve body of the switching valve along the axial direction based on the traveling speed of the vehicle, the rotational speed of the internal combustion engine, etc. The communication state of the upstream side passage or the purge passage can be switched. As a result, it is possible to control the supply of intake air to a plurality of intake passages and the supply of evaporated fuel through the purge passages with a single switching valve, so that the evaporated fuel is supplied to each intake passage. There is no need to provide a separate pipe, the piping configuration can be simplified, the number of parts in the evaporated fuel control device can be reduced, and the assembly efficiency can be improved. Further, since the evaporated fuel can be distributed to the intake passage at a desired timing under the switching action of the switching valve, the evaporated fuel can be reliably and efficiently distributed to the intake passage and burned in the cylinder chamber. Can do.

本発明の実施の形態に係る蒸発燃料制御装置及び該蒸発燃料制御装置の用いられる内燃機関の構成を示す概略構成図である。1 is a schematic configuration diagram illustrating a configuration of an evaporated fuel control device according to an embodiment of the present invention and an internal combustion engine used in the evaporated fuel control device. 図2Aは、図1の蒸発燃料制御装置を構成する切換弁において第1通路部と第2通路部とが連通した状態を示す断面図であり、図2Bは、図2Aの切換弁における弁体によって第1及び第2通路部、パージ配管が閉塞された全閉状態を示す断面図であり、図2Cは、図2Bの弁体が下降し、パージ配管と第2通路部とが連通した状態を示す断面図である。2A is a cross-sectional view showing a state in which the first passage portion and the second passage portion communicate with each other in the switching valve constituting the fuel vapor control apparatus of FIG. 1, and FIG. 2B is a valve body in the switching valve of FIG. 2A. FIG. 2C is a cross-sectional view showing the fully closed state in which the first and second passage portions and the purge pipe are closed by FIG. 2, and FIG. 2C is a state in which the valve body in FIG. 2B is lowered and the purge pipe and the second passage portion communicate with each other. FIG. 図2CのIII−III線に沿った断面図である。It is sectional drawing which followed the III-III line of FIG. 2C. 図4Aは、変形例に係る切換弁の全体断面図であり、図4Bは、図4Aの弁体が下降した状態を示す全体断面図であり、図4Cは、図4BのIVC−IVC線に沿った断面図である。4A is an overall cross-sectional view of a switching valve according to a modified example, FIG. 4B is an overall cross-sectional view showing a state where the valve body of FIG. 4A is lowered, and FIG. 4C is taken along line IVC-IVC in FIG. FIG.

本発明に係る内燃機関の蒸発燃料制御装置について好適な実施の形態を挙げ、添付の図面を参照しながら以下詳細に説明する。   A preferred embodiment of an evaporative fuel control apparatus for an internal combustion engine according to the present invention will be described in detail below with reference to the accompanying drawings.

図1において、参照符号10は、本発明の実施の形態に係る内燃機関の蒸発燃料制御装置を示す。   In FIG. 1, reference numeral 10 indicates an evaporated fuel control device for an internal combustion engine according to an embodiment of the present invention.

先ず、この蒸発燃料制御装置10が装着される内燃機関12について図1を参照しながら簡単に説明する。なお、この内燃機関12が搭載される車両としては、例えば、自動車や自動二輪車等が挙げられる。   First, the internal combustion engine 12 to which the evaporated fuel control device 10 is mounted will be briefly described with reference to FIG. Examples of the vehicle on which the internal combustion engine 12 is mounted include an automobile and a motorcycle.

この内燃機関12は、図示しないピストンの収容される複数のシリンダ室14を有した本体部16と、該シリンダ室14にそれぞれ接続され吸入空気を導入する吸気マニホールド18と、前記吸気マニホールド18の内部に設けられ、前記吸入空気の流量を制御可能なスロットルバルブ20と、前記吸気マニホールド18に設けられ燃料を噴射するインジェクタ22とを含む。   The internal combustion engine 12 includes a main body 16 having a plurality of cylinder chambers 14 in which pistons (not shown) are accommodated, an intake manifold 18 connected to each of the cylinder chambers 14 for introducing intake air, and an interior of the intake manifold 18. And a throttle valve 20 that can control the flow rate of the intake air, and an injector 22 that is provided in the intake manifold 18 and injects fuel.

吸気マニホールド18は、吸入空気の流通する複数の吸気通路24a〜24dを有し、並列に設けられた前記吸気通路24a〜24dには、それぞれ前記吸入空気の流量を制御するためのスロットルバルブ20が開閉自在に設けられる。なお、吸気マニホールド18の上流側には、図示しない吸気ダクトが設けられ、該吸気ダクトを通じて外気が導入される。   The intake manifold 18 has a plurality of intake passages 24a to 24d through which intake air flows, and a throttle valve 20 for controlling the flow rate of the intake air is provided in each of the intake passages 24a to 24d provided in parallel. It can be opened and closed freely. An intake duct (not shown) is provided on the upstream side of the intake manifold 18, and outside air is introduced through the intake duct.

スロットルバルブ20は、例えば、各吸気通路24a〜24dに対応してそれぞれバルブ27の設けられた多連スロットルバルブであり、前記バルブ27がシャフト26を介して一体的に連結されると共に、吸気マニホールド18の外部に設けられた回転駆動源28(例えば、ステッピングモータ)によって回動させることにより前記吸気通路24a〜24dの通路断面積を変更して吸入空気の流量制御を行う。   The throttle valve 20 is, for example, a multiple throttle valve provided with a valve 27 corresponding to each intake passage 24a to 24d. The valve 27 is integrally connected via a shaft 26, and an intake manifold. The flow rate of the intake air is controlled by changing the passage cross-sectional area of the intake passages 24a to 24d by being rotated by a rotation drive source 28 (for example, a stepping motor) provided outside the motor 18.

インジェクタ22は、吸気マニホールド18においてスロットルバルブ20の下流側(矢印A方向)に設けられ、図示しない制御ユニットからの制御信号に基づいて吸気通路24a〜24d内に燃料(例えば、ガソリン)を噴射し、該燃料と吸入空気とを混合させた状態で本体部16のシリンダ室14へと供給される。このインジェクタ22は、燃料チューブ30に対してそれぞれ接続され、該燃料チューブ30の内部を通じて供給される燃料を噴射する。   The injector 22 is provided downstream of the throttle valve 20 (in the direction of arrow A) in the intake manifold 18 and injects fuel (for example, gasoline) into the intake passages 24a to 24d based on a control signal from a control unit (not shown). The fuel and the intake air are mixed and supplied to the cylinder chamber 14 of the main body 16. The injectors 22 are respectively connected to the fuel tube 30 and inject fuel supplied through the inside of the fuel tube 30.

なお、燃料チューブ30は、燃料配管32を介して燃料の貯えられた燃料タンク34に接続され、該燃料タンク34の内部に設けられた燃料ポンプ36によって前記燃料が供給される。   The fuel tube 30 is connected to a fuel tank 34 in which fuel is stored via a fuel pipe 32, and the fuel is supplied by a fuel pump 36 provided in the fuel tank 34.

また、燃料タンク34は、燃料配管32を介してキャニスタ38に接続され、該燃料タンク34内で気化した蒸発燃料が前記キャニスタ38に吸着される。   The fuel tank 34 is connected to the canister 38 through the fuel pipe 32, and the evaporated fuel vaporized in the fuel tank 34 is adsorbed by the canister 38.

次に、上述した内燃機関12に用いられる蒸発燃料制御装置10について、図1〜図3を参照しながら説明する。この蒸発燃料制御装置10は、吸気マニホールド18の吸気通路24a〜24dにおいて上流側と下流側とを接続するバイパス配管(バイパス通路)40と、前記バイパス配管40の連通状態を切り換える切換弁42と、前記切換弁42を切換動作させる駆動部44と、前記切換弁42に接続されキャニスタ38から脱離された蒸発燃料の流通するパージ配管(パージ通路)46とを含む。   Next, the evaporated fuel control apparatus 10 used for the internal combustion engine 12 described above will be described with reference to FIGS. The evaporative fuel control device 10 includes a bypass pipe (bypass passage) 40 that connects the upstream side and the downstream side in the intake passages 24 a to 24 d of the intake manifold 18, and a switching valve 42 that switches the communication state of the bypass pipe 40. A drive unit 44 that switches the switching valve 42 and a purge pipe (purge passage) 46 that is connected to the switching valve 42 and through which evaporated fuel desorbed from the canister 38 flows.

バイパス配管40は、吸気通路24bにおいてスロットルバルブ20の上流側(矢印B方向)に接続され、後述する切換弁42の連通室52と連通する第1通路部(上流側通路)48と、前記連通室52と吸気マニホールド18の各吸気通路24a〜24dにおいて前記スロットルバルブ20の下流側(矢印A方向)にそれぞれ接続される第2通路部(下流側通路)50a〜50dとからなる。第1通路部48は、複数の吸気通路24a〜24dのうちの1本に接続され、一方、第2通路部50a〜50dは、吸気通路24a〜24dの数量に対応して4本設けられる。   The bypass pipe 40 is connected to the upstream side (in the direction of arrow B) of the throttle valve 20 in the intake passage 24b, and communicates with a first passage portion (upstream side passage) 48 that communicates with a communication chamber 52 of a switching valve 42 described later. The chamber 52 and the intake passages 24a to 24d of the intake manifold 18 include second passage portions (downstream passages) 50a to 50d respectively connected to the downstream side (arrow A direction) of the throttle valve 20. The first passage portion 48 is connected to one of the plurality of intake passages 24a to 24d, while four second passage portions 50a to 50d are provided corresponding to the number of intake passages 24a to 24d.

換言すれば、第1通路部48は、吸気通路24a〜24dにおいてスロットルバルブ20の上流側(矢印B方向)に接続される上流側通路であり、第2通路部50a〜50dは、前記吸気通路24a〜24dにおいて前記スロットルバルブ20の下流側(矢印A方向)に接続される下流側通路である。   In other words, the first passage portion 48 is an upstream passage connected to the upstream side (in the direction of arrow B) of the throttle valve 20 in the intake passages 24a to 24d, and the second passage portions 50a to 50d are the intake passages. 24a to 24d are downstream passages connected to the downstream side of the throttle valve 20 (in the direction of arrow A).

切換弁42は、内部に連通室52の形成された有底筒状のボディ54と、該ボディ54の連通室52に沿って変位自在に設けられる弁体56とを備え、前記ボディ54の軸線方向(矢印C、D方向)に沿った下端部には、バイパス配管40を構成する第1通路部48が接続され、前記ボディ54の内部と連通する。一方、ボディ54の軸線方向に沿った上端部には駆動部44が接続されることによって閉塞される。   The switching valve 42 includes a bottomed cylindrical body 54 in which a communication chamber 52 is formed, and a valve body 56 slidably provided along the communication chamber 52 of the body 54. A first passage portion 48 that constitutes the bypass pipe 40 is connected to a lower end portion in the direction (directions of arrows C and D) and communicates with the inside of the body 54. On the other hand, the upper end portion of the body 54 along the axial direction is closed by connecting the drive unit 44.

この駆動部44は、例えば、図示しない制御ユニットからの制御信号に基づいて回転変位するステッピングモータが用いられ、その中央部に設けられた駆動シャフト58に対して弁体56が螺合されている。そして、駆動部44の回転作用下に駆動シャフト58が回転することにより、弁体56がボディ54に沿って上下方向(矢印C、D方向)に変位する。この駆動シャフト58は、例えば、金属製材料から形成される。   For example, a stepping motor that is rotationally displaced based on a control signal from a control unit (not shown) is used as the drive unit 44, and a valve body 56 is screwed to a drive shaft 58 provided at the center thereof. . Then, when the drive shaft 58 rotates under the rotational action of the drive unit 44, the valve body 56 is displaced along the body 54 in the vertical direction (arrow C, D direction). The drive shaft 58 is made of, for example, a metal material.

また、ボディ54の側面には、第1通路部48側(矢印C方向)となる下方に複数の第2通路部50a〜50dが接続され、その内部の連通室52とそれぞれ連通すると共に、前記第2通路部50a〜50dは、図3に示されるように、前記ボディ54の周方向に沿って互いに等間隔離間して配置される。   A plurality of second passage portions 50a to 50d are connected to the side surface of the body 54 below the first passage portion 48 (in the direction of arrow C), and communicate with the internal communication chamber 52, respectively. As shown in FIG. 3, the second passage portions 50 a to 50 d are disposed at equal intervals along the circumferential direction of the body 54.

さらに、ボディ54の側面には、第2通路部50a〜50dに対して駆動部44側(矢印D方向)となる上方にパージ配管46が接続され該ボディ54の連通室52と連通している。このパージ配管46は、キャニスタ38と切換弁42との間を接続するように設けられ、前記キャニスタ38から脱離された蒸発燃料が前記切換弁42へと供給する。   Further, a purge pipe 46 is connected to the side surface of the body 54 above the second passage portions 50 a to 50 d on the drive portion 44 side (arrow D direction), and communicates with the communication chamber 52 of the body 54. . The purge pipe 46 is provided so as to connect between the canister 38 and the switching valve 42, and the evaporated fuel desorbed from the canister 38 is supplied to the switching valve 42.

弁体56は、円柱状に形成され、その外周面がボディ54の内壁面に当接して軸線方向(矢印C、D方向)に沿って変位自在に案内されると共に、該弁体56の上端部中央には、駆動部44の駆動力が伝達される駆動シャフト58が連結され、該駆動シャフト58を介して前記弁体56が上下方向(矢印C、D方向)に付勢される。   The valve body 56 is formed in a columnar shape, and its outer peripheral surface abuts on the inner wall surface of the body 54 and is guided to be displaceable along the axial direction (arrow C, D direction). A drive shaft 58 to which the drive force of the drive unit 44 is transmitted is connected to the center of the unit, and the valve body 56 is urged in the vertical direction (arrow C, D direction) via the drive shaft 58.

また、弁体56の外周面には、軸線方向に沿った略中央部に半径内方向に窪んだ環状凹部60が形成されると共に、該環状凹部60の上部に設けられる第1ランド部62と、前記環状凹部60の下部に設けられる第2ランド部64とを備える。そして、弁体56において、環状凹部60とボディ54の内壁面との間に形成された空間が、吸入空気及び蒸発燃料の流通する連通路となる。   Further, on the outer peripheral surface of the valve body 56, an annular recess 60 that is recessed radially inward is formed at a substantially central portion along the axial direction, and a first land portion 62 provided on the upper portion of the annular recess 60 and And a second land portion 64 provided at a lower portion of the annular recess 60. In the valve body 56, a space formed between the annular recess 60 and the inner wall surface of the body 54 serves as a communication path through which intake air and evaporated fuel flow.

さらに、弁体56の外周面には、図3に示されるように、軸線方向に沿ったガイド溝66が形成され、該ガイド溝66には、ボディ54に固定され内部へと突出したガイドピン68が挿通される。すなわち、弁体56は、そのガイド溝66に対してガイドピン68が挿通されることによって前記ボディ54に対して回転変位することが規制され、軸線方向に沿ってのみ変位可能となる。換言すれば、ガイドピン68及びガイド溝66は、弁体56の回転変位を規制する回転変位規制手段として機能する。   Further, as shown in FIG. 3, a guide groove 66 is formed along the axial direction on the outer peripheral surface of the valve body 56. The guide groove 66 is fixed to the body 54 and protrudes to the inside. 68 is inserted. That is, the valve body 56 is restricted from being rotationally displaced with respect to the body 54 when the guide pin 68 is inserted into the guide groove 66, and can only be displaced along the axial direction. In other words, the guide pin 68 and the guide groove 66 function as rotational displacement restricting means for restricting the rotational displacement of the valve body 56.

本発明の実施の形態に係る内燃機関12の蒸発燃料制御装置10は、基本的には以上のように構成されるものであり、次にその動作並びに作用効果について説明する。   The evaporative fuel control apparatus 10 for the internal combustion engine 12 according to the embodiment of the present invention is basically configured as described above. Next, the operation and effects thereof will be described.

先ず、内燃機関12を始動させた直後であり、運転者が図示しないアクセルペダルを操作していないファーストアイドル状態では、図示しない制御ユニットからの制御信号が切換弁42へと出力され、図2Aに示されるように、前記切換弁42の弁体56が上昇し、第2ランド部64がバイパス配管40の第2通路部50a〜50dより上方に配置されることにより、バイパス配管40の第1通路部48と第2通路部50a〜50dとが連通室52を通じて連通する。一方、パージ配管46は、その開口部が第2ランド部64によって閉塞されているため、連通室52との連通が遮断された状態となり、蒸発ガスが前記連通室52内に供給されることがない。なお、このアイドル状態では、スロットルバルブ20によって各吸気通路24a〜24dの上流側と下流側との連通が遮断された状態にある。   First, immediately after starting the internal combustion engine 12, in a fast idle state in which the driver does not operate an accelerator pedal (not shown), a control signal from a control unit (not shown) is output to the switching valve 42, and FIG. As shown, the valve body 56 of the switching valve 42 is raised, and the second land portion 64 is disposed above the second passage portions 50a to 50d of the bypass piping 40, whereby the first passage of the bypass piping 40 is shown. The portion 48 and the second passage portions 50 a to 50 d communicate with each other through the communication chamber 52. On the other hand, since the opening of the purge pipe 46 is closed by the second land portion 64, the communication with the communication chamber 52 is blocked, and the evaporated gas is supplied into the communication chamber 52. Absent. In this idle state, the throttle valve 20 is in a state where communication between the upstream side and the downstream side of each of the intake passages 24a to 24d is blocked.

これにより、吸気マニホールド18の吸気通路24a〜24dに供給された吸入空気が、第1通路部48を通じて切換弁42へと流通し、その連通室52を介して複数の第2通路部50a〜50dへと流通する。そして、この吸入空気が、各吸気通路24a〜24dにおけるスロットルバルブ20の下流側(矢印A方向)へと流通して本体部16のシリンダ室14内へと供給される。   As a result, the intake air supplied to the intake passages 24 a to 24 d of the intake manifold 18 flows to the switching valve 42 through the first passage portion 48, and the plurality of second passage portions 50 a to 50 d through the communication chamber 52. Circulate to Then, the intake air flows to the downstream side (in the direction of arrow A) of the throttle valve 20 in each of the intake passages 24 a to 24 d and is supplied into the cylinder chamber 14 of the main body 16.

次に、内燃機関12が加温された暖気状態、又は、運転者が図示しないアクセルペダルを操作して車両を定速走行させている通常状態では、図示しない制御ユニットからの制御信号が切換弁42へと出力され、図2Bに示されるように、前記切換弁42の弁体56が図2Aの状態から若干だけ下降し(矢印C方向)、その第2ランド部64が第2通路部50a〜50dに臨む位置となり、該第2通路部50a〜50dと連通室52との連通を遮断すると共に、環状凹部60がパージ配管46に臨むように配置されているため、該パージ配管46から導入される蒸発燃料が、該環状凹部60を経て第1及び第2通路部48、50a〜50d側へと流通することがない。   Next, in a warm-up state where the internal combustion engine 12 is heated, or in a normal state where the driver operates an accelerator pedal (not shown) to drive the vehicle at a constant speed, a control signal from a control unit (not shown) 2B, as shown in FIG. 2B, the valve body 56 of the switching valve 42 is slightly lowered from the state of FIG. 2A (in the direction of the arrow C), and the second land portion 64 is the second passage portion 50a. Since the annular recess 60 is disposed so as to face the purge pipe 46, it is introduced from the purge pipe 46. The evaporated fuel to be discharged does not flow to the first and second passage portions 48, 50a to 50d through the annular recess 60.

さらに、例えば、車両の加速状態等において内燃機関12が高速又は高負荷運転時には、図示しない制御ユニットからの制御信号が切換弁42へと出力され、図2Cに示されるように、前記切換弁42の弁体56が図2Bの状態からさらに若干だけ下降し(矢印C方向)、その環状凹部60が、バイパス配管40の第2通路部50a〜50d及びパージ配管46に臨んだ位置となる。これにより、パージ配管46と第2通路部50a〜50dとが連通室52を介して連通した状態となり、蒸発燃料が前記パージ配管46から切換弁42の内部を経て第2通路部50a〜50dを通じて各吸気通路24a〜24dへと供給される。そして、蒸発燃料は、各吸気通路24a〜24dから本体部16のシリンダ室14内に導入され、インジェクタ22から供給される燃料と共に燃焼される。   Further, for example, when the internal combustion engine 12 is operating at a high speed or a high load in an acceleration state of the vehicle, a control signal from a control unit (not shown) is output to the switching valve 42, and as shown in FIG. 2B is further lowered slightly from the state of FIG. 2B (in the direction of arrow C), and the annular recess 60 is located at the position facing the second passage portions 50a to 50d of the bypass pipe 40 and the purge pipe 46. As a result, the purge pipe 46 and the second passage parts 50a to 50d communicate with each other via the communication chamber 52, and the evaporated fuel passes through the purge pipe 46, the inside of the switching valve 42, and the second passage parts 50a to 50d. It supplies to each intake passage 24a-24d. Then, the evaporated fuel is introduced into the cylinder chamber 14 of the main body 16 from the intake passages 24 a to 24 d and burned together with the fuel supplied from the injector 22.

この際、バイパス配管40の第1通路部48は、弁体56の第2ランド部64によって閉塞されているため、該第1通路部48と第2通路部50a〜50dとの連通が遮断されている。   At this time, since the first passage portion 48 of the bypass pipe 40 is closed by the second land portion 64 of the valve body 56, the communication between the first passage portion 48 and the second passage portions 50a to 50d is blocked. ing.

以上のように、本実施の形態では、例えば、車両の走行速度や内燃機関12の回転数等に基づいた制御信号を、図示しない制御ユニットから蒸発燃料制御装置10の切換弁42へと出力し、弁体56を上下方向(矢印C、D方向)へと進退動作させることによってパージ配管46、バイパス配管40の連通状態を単一の切換弁42でそれぞれ切り換えることが可能となる。換言すれば、単一の切換弁42によって各吸気通路24a〜24dに対する吸入空気の供給と、蒸発燃料の供給とをそれぞれ制御することができる。   As described above, in the present embodiment, for example, a control signal based on the traveling speed of the vehicle, the rotational speed of the internal combustion engine 12, and the like is output from a control unit (not shown) to the switching valve 42 of the evaporated fuel control device 10. The communication state of the purge pipe 46 and the bypass pipe 40 can be switched by the single switching valve 42 by moving the valve body 56 back and forth in the vertical direction (arrow C, D direction). In other words, the supply of intake air to the intake passages 24a to 24d and the supply of evaporated fuel can be controlled by the single switching valve 42, respectively.

その結果、蒸発燃料を各吸気通路24a〜24dへと供給するための配管を別個に設ける必要がなく、従来技術に係る蒸発燃料制御装置と比較し、その配管構成の簡素化を図ることができ、それに伴って、蒸発燃料制御装置10における部品点数の削減及び組付効率の向上を図ることが可能となる。   As a result, it is not necessary to separately provide piping for supplying the evaporated fuel to the intake passages 24a to 24d, and the piping configuration can be simplified as compared with the evaporated fuel control device according to the prior art. Accordingly, it is possible to reduce the number of parts and improve the assembling efficiency in the evaporated fuel control device 10.

特に、複数の吸気通路24a〜24dに対応したバルブ27を有した多連のスロットルバルブ20を用いた場合には効果的である。   This is particularly effective when a multiple throttle valve 20 having valves 27 corresponding to the plurality of intake passages 24a to 24d is used.

また、切換弁42を切り換えることによって所望のタイミングで蒸発燃料を各吸気通路24a〜24dへと流通させることができるため、前記蒸発燃料を確実且つ効率的に各吸気通路24a〜24dへと流通させ、シリンダ室14内で燃焼させることが可能となる。   Further, by switching the switching valve 42, the evaporated fuel can be circulated to the intake passages 24a to 24d at a desired timing, so that the evaporated fuel can be reliably and efficiently circulated to the intake passages 24a to 24d. It becomes possible to burn in the cylinder chamber 14.

さらに、弁体56の外周面に環状凹部60を設け、該環状凹部60を介してバイパス配管40における第2通路部50a〜50dとパージ配管46とを連通させる構成としているため、駆動部44を構成する駆動シャフト58が蒸発燃料に直接的に晒されることが回避され、該蒸発燃料による前記駆動シャフト58の劣化を抑制することができる。その結果、駆動部44の耐久性を向上させることが可能となり、長期間にわたって安定的に作動させることができる。特に、駆動シャフト58のように外周面にねじの刻設されたシャフトにおいては、その劣化を効果的に抑制することが可能となる。   Further, the annular recess 60 is provided on the outer peripheral surface of the valve body 56, and the second passage portions 50a to 50d in the bypass pipe 40 and the purge pipe 46 are communicated with each other via the annular recess 60. It is avoided that the drive shaft 58 that is configured is directly exposed to the evaporated fuel, and deterioration of the drive shaft 58 due to the evaporated fuel can be suppressed. As a result, the durability of the drive unit 44 can be improved, and the drive unit 44 can be stably operated over a long period of time. In particular, in a shaft in which a screw is engraved on the outer peripheral surface such as the drive shaft 58, the deterioration can be effectively suppressed.

一方、上述したように切換弁42は、弁体56の外周面に環状に形成された環状凹部60を有する構成としているが、このような構成に限定されるものではなく、例えば、図4A〜図4Cに示される切換弁100のように、外周面に軸線方向に沿って延在し、且つ、周方向に沿って等間隔離間した4本の溝部104a〜104dを外周面に有した弁体102を用いるようにしてもよい。   On the other hand, as described above, the switching valve 42 has the annular recess 60 formed annularly on the outer peripheral surface of the valve body 56, but is not limited to such a configuration. For example, FIGS. Like the switching valve 100 shown in FIG. 4C, a valve body that has four grooves 104 a to 104 d on the outer peripheral surface that extend along the axial direction on the outer peripheral surface and are spaced at equal intervals along the circumferential direction. 102 may be used.

この溝部104a〜104dは、例えば、断面矩形状に形成され、弁体102の外周面から所定深さだけ窪んで形成されると共に、前記弁体102の上端部から下方(矢印C方向)に向かって延在している。   The groove portions 104a to 104d are formed, for example, in a rectangular cross section, and are recessed by a predetermined depth from the outer peripheral surface of the valve body 102, and are directed downward (in the direction of arrow C) from the upper end portion of the valve body 102. It is extended.

また、溝部104a〜104dの長さは、図4Aに示される弁体102が上昇した際に、第2通路部50a〜50dに対して上方(矢印D方向)に位置し、且つ、図4Bに示される前記弁体102が下降した際に、その下端部が前記第2通路部50a〜50dに臨む位置となるように設定される(図4C参照)。   Further, the lengths of the groove portions 104a to 104d are located above (in the direction of the arrow D) with respect to the second passage portions 50a to 50d when the valve body 102 shown in FIG. When the valve body 102 shown in the figure is lowered, the lower end portion thereof is set so as to face the second passage portions 50a to 50d (see FIG. 4C).

そして、内燃機関12のファーストアイドル状態では、図4Aに示されるように、弁体102が駆動部44の駆動作用下に上昇し、バイパス配管40を構成する第1通路部48と第2通路部50a〜50dとが連通室52を通じて連通した状態となる。これにより、吸気マニホールド18の吸気通路24a〜24dに供給された吸入空気が、バイパス配管40を通じてスロットルバルブ20の下流側へと流通した後、本体部16へと供給される。   In the fast idle state of the internal combustion engine 12, as shown in FIG. 4A, the valve body 102 rises under the drive action of the drive portion 44, and the first passage portion 48 and the second passage portion constituting the bypass pipe 40. 50a to 50d communicate with each other through the communication chamber 52. As a result, the intake air supplied to the intake passages 24 a to 24 d of the intake manifold 18 flows to the downstream side of the throttle valve 20 through the bypass pipe 40 and is then supplied to the main body 16.

この際、パージ配管46は、弁体102の上方に設けられたパージ連通室106と連通しており、該パージ連通室106に導入された蒸発燃料が各溝部104a〜104dに導入されている。   At this time, the purge pipe 46 communicates with the purge communication chamber 106 provided above the valve body 102, and the evaporated fuel introduced into the purge communication chamber 106 is introduced into the grooves 104a to 104d.

一方、内燃機関12の高速又は高負荷運転時には、弁体102が図4Aの状態から下降し(矢印C方向)、図4B及び図4Cに示されるように、その溝部104a〜104dの下端部が、それぞれ第2通路部50a〜50dの開口部に臨む位置となる。これにより、パージ配管46からの蒸発燃料が、パージ連通室106、溝部104a〜104dを経て第2通路部50a〜50dへと流通し、各吸気通路24a〜24dへと供給される。そして、蒸発燃料は、各吸気通路24a〜24dから本体部16のシリンダ室14内に導入され、インジェクタ22から供給される燃料と共に燃焼される。   On the other hand, at the time of high speed or high load operation of the internal combustion engine 12, the valve body 102 descends from the state of FIG. 4A (in the direction of arrow C), and as shown in FIGS. 4B and 4C, the lower ends of the grooves 104a to 104d These are positions facing the openings of the second passage portions 50a to 50d. As a result, the evaporated fuel from the purge pipe 46 flows through the purge communication chamber 106 and the groove portions 104a to 104d to the second passage portions 50a to 50d and is supplied to the intake passages 24a to 24d. Then, the evaporated fuel is introduced into the cylinder chamber 14 of the main body 16 from the intake passages 24 a to 24 d and burned together with the fuel supplied from the injector 22.

すなわち、このような弁体102を有した切換弁100を用いることにより、前記弁体102を、金型を用いた成形等で形成する際に溝部104a〜104dを同時且つ容易に形成することが可能となる。   That is, by using the switching valve 100 having such a valve body 102, the grooves 104a to 104d can be formed simultaneously and easily when the valve body 102 is formed by molding using a mold or the like. It becomes possible.

なお、本発明に係る内燃機関の蒸発燃料制御装置は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。   The evaporative fuel control apparatus for an internal combustion engine according to the present invention is not limited to the above-described embodiment, and can of course adopt various configurations without departing from the gist of the present invention.

10…蒸発燃料制御装置 12…内燃機関
16…本体部 18…吸気マニホールド
20…スロットルバルブ 22…インジェクタ
24a〜24d…吸気通路 34…燃料タンク
38…キャニスタ 40…バイパス配管
42、100…切換弁 44…駆動部
46…パージ配管 48…第1通路部
50a〜50d…第2通路部 52…連通室
54…ボディ 56、102…弁体
58…駆動シャフト 60…環状凹部
104a〜104d…溝部
DESCRIPTION OF SYMBOLS 10 ... Evaporative fuel control apparatus 12 ... Internal combustion engine 16 ... Main-body part 18 ... Intake manifold 20 ... Throttle valve 22 ... Injector 24a-24d ... Intake passage 34 ... Fuel tank 38 ... Canister 40 ... Bypass piping 42, 100 ... Switching valve 44 ... Drive part 46 ... purge piping 48 ... first passage part 50a-50d ... second passage part 52 ... communication chamber 54 ... body 56, 102 ... valve body 58 ... drive shaft 60 ... annular recess 104a-104d ... groove

Claims (3)

複数のシリンダ室に吸入空気を供給する吸気通路と、該吸気通路に設けられ前記吸入空気の流量を制御するスロットルバルブとを有した内燃機関に用いられ、気化した蒸発燃料を前記吸気通路を通じて前記シリンダ室へと供給する蒸発燃料制御装置において、
前記吸気通路における前記スロットルバルブの上流側に接続される上流側通路と、該吸気通路における前記スロットルバルブの下流側に接続される複数の下流側通路とからなるバイパス通路と、
前記バイパス通路に接続され、ボディと、該ボディの内部に変位自在に設けられる弁体と、該弁体を軸線方向に沿って変位させる駆動部とを有し、前記弁体の変位によって前記バイパス通路の連通状態を切換自在な切換弁と、
前記切換弁に接続され前記蒸発燃料の流通するパージ通路と、
を備え、
前記パージ通路及びバイパス通路は、前記ボディにおいて軸線方向に沿って互いに離間して接続され、前記弁体を変位させることによって該弁体に設けられた連通部を介して前記下流側通路に対する前記上流側通路、又は、前記パージ通路の連通状態を切り換えることを特徴とする内燃機関の蒸発燃料制御装置。
Used in an internal combustion engine having an intake passage that supplies intake air to a plurality of cylinder chambers, and a throttle valve that is provided in the intake passage and controls the flow rate of the intake air. In the evaporative fuel control device that supplies the cylinder chamber,
A bypass passage comprising an upstream passage connected to the upstream side of the throttle valve in the intake passage, and a plurality of downstream passages connected to the downstream side of the throttle valve in the intake passage;
A body connected to the bypass passage; a valve body provided inside the body so as to be displaceable; and a drive unit that displaces the valve body along an axial direction. A switching valve capable of switching the communication state of the passage,
A purge passage connected to the switching valve and through which the evaporated fuel flows;
With
The purge passage and the bypass passage are connected apart from each other along the axial direction in the body and displace the valve body to displace the upstream passage with respect to the downstream passage through a communication portion provided in the valve body. An evaporative fuel control device for an internal combustion engine, wherein the communication state of the side passage or the purge passage is switched.
請求項1記載の蒸発燃料制御装置において、
前記連通部は、前記切換弁の外周面において、軸線方向に沿った中央部に形成された環状の凹部からなり、前記凹部を介して前記パージ通路と前記下流側通路とが連通可能に設けられることを特徴とする内燃機関の蒸発燃料制御装置。
The evaporative fuel control device according to claim 1,
The communication portion is formed of an annular recess formed in the central portion along the axial direction on the outer peripheral surface of the switching valve, and is provided so that the purge passage and the downstream passage can communicate with each other via the recess. An evaporative fuel control apparatus for an internal combustion engine characterized by the above.
請求項1記載の蒸発燃料制御装置において、
前記連通部は、前記切換弁の外周面において、軸線方向に沿って延在し、前記下流側通路の開口部に臨んで形成された溝部からなり、前記溝部を介して前記パージ通路と前記下流側通路とが連通可能に設けられることを特徴とする内燃機関の蒸発燃料制御装置。
The evaporative fuel control device according to claim 1,
The communication portion includes a groove portion that extends along the axial direction on the outer peripheral surface of the switching valve and faces the opening portion of the downstream side passage, and the purge passage and the downstream side through the groove portion. An evaporative fuel control device for an internal combustion engine, characterized in that the side passage is provided so as to be able to communicate therewith.
JP2010211682A 2010-09-22 2010-09-22 Evaporative fuel control device for internal combustion engine Expired - Fee Related JP5579554B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010211682A JP5579554B2 (en) 2010-09-22 2010-09-22 Evaporative fuel control device for internal combustion engine
EP11175942.9A EP2434136B1 (en) 2010-09-22 2011-07-29 Evaporative fuel control apparatus for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010211682A JP5579554B2 (en) 2010-09-22 2010-09-22 Evaporative fuel control device for internal combustion engine

Publications (3)

Publication Number Publication Date
JP2012067645A true JP2012067645A (en) 2012-04-05
JP2012067645A5 JP2012067645A5 (en) 2013-07-25
JP5579554B2 JP5579554B2 (en) 2014-08-27

Family

ID=44993975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010211682A Expired - Fee Related JP5579554B2 (en) 2010-09-22 2010-09-22 Evaporative fuel control device for internal combustion engine

Country Status (2)

Country Link
EP (1) EP2434136B1 (en)
JP (1) JP5579554B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3176418B1 (en) * 2014-08-08 2019-09-18 Yamaha Hatsudoki Kabushiki Kaisha Engine unit and saddle-type vehicle
EP3176417B1 (en) * 2014-08-08 2019-09-18 Yamaha Hatsudoki Kabushiki Kaisha Engine unit and saddled vehicle
EP3176419B1 (en) * 2014-08-08 2020-01-08 Yamaha Hatsudoki Kabushiki Kaisha Engine unit and saddled vehicle
JP6869150B2 (en) * 2017-09-13 2021-05-12 日立Astemo株式会社 Evaporative fuel processing device for internal combustion engine with supercharger

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04342863A (en) * 1991-05-21 1992-11-30 Toyota Motor Corp Purge system for evaporated fuel in multi-cylinder internal combustion engine
JPH08507119A (en) * 1993-12-21 1996-07-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Tank venting methods and equipment
JPH10259766A (en) * 1997-03-18 1998-09-29 Toyota Motor Corp Purge amount regulating mechanism for evaporated fuel gas
JP2000186653A (en) * 1998-12-22 2000-07-04 Sanshin Ind Co Ltd Engine
JP2001027217A (en) * 1999-07-16 2001-01-30 Cosmo Industry:Kk Nut with stopper
JP2007198131A (en) * 2006-01-23 2007-08-09 Toyota Motor Corp Evaporated-fuel treatment device of multi-cylinder internal combustion engine
JP2009097342A (en) * 2007-10-12 2009-05-07 Toyota Motor Corp Control device for internal combustion engine
JP2009167962A (en) * 2008-01-18 2009-07-30 Toyota Motor Corp Evaporated fuel treatment device for internal combustion engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2704601B1 (en) * 1993-04-26 1995-07-13 Renault Air supply system for fuel injectors of the air mantle type fitted to an internal combustion engine.
DE4430971A1 (en) * 1994-08-31 1996-03-07 Bayerische Motoren Werke Ag Method and device for supplying fuel vapor into an intake manifold of an internal combustion engine in motor vehicles

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04342863A (en) * 1991-05-21 1992-11-30 Toyota Motor Corp Purge system for evaporated fuel in multi-cylinder internal combustion engine
JPH08507119A (en) * 1993-12-21 1996-07-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Tank venting methods and equipment
JPH10259766A (en) * 1997-03-18 1998-09-29 Toyota Motor Corp Purge amount regulating mechanism for evaporated fuel gas
JP2000186653A (en) * 1998-12-22 2000-07-04 Sanshin Ind Co Ltd Engine
JP2001027217A (en) * 1999-07-16 2001-01-30 Cosmo Industry:Kk Nut with stopper
JP2007198131A (en) * 2006-01-23 2007-08-09 Toyota Motor Corp Evaporated-fuel treatment device of multi-cylinder internal combustion engine
JP2009097342A (en) * 2007-10-12 2009-05-07 Toyota Motor Corp Control device for internal combustion engine
JP2009167962A (en) * 2008-01-18 2009-07-30 Toyota Motor Corp Evaporated fuel treatment device for internal combustion engine

Also Published As

Publication number Publication date
EP2434136B1 (en) 2016-04-27
JP5579554B2 (en) 2014-08-27
EP2434136A2 (en) 2012-03-28
EP2434136A3 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
US10221818B2 (en) Method and system for vacuum generation using a throttle comprising a hollow passage
JP4706775B2 (en) Intake device for internal combustion engine
US10082092B2 (en) Method and system for vacuum generation using a throttle
US20080035094A1 (en) Integrated valve device
EP2895727B1 (en) Gas mixer for internal combustion engines
JP5579554B2 (en) Evaporative fuel control device for internal combustion engine
US20090050094A1 (en) Intake control device for internal combustion engine
JP4888541B2 (en) Intake device for internal combustion engine
JP4309351B2 (en) engine
US10119503B2 (en) Method and system for vacuum generation in an intake
US10590892B2 (en) Methods and systems for vacuum generation using a throttle
RU2683355C2 (en) System for creating vacuum with a baffler (options)
JP2011185228A (en) Arrangement structure of fuel feed system parts
JP2010518306A (en) Intake device for motorcycle engine
JP4434119B2 (en) Spark ignition direct injection engine
JP2010071163A (en) Multi-cylinder internal combustion engine provided with bypass air control device
EP0820561B1 (en) fuel-injection system provided with a valve with combined valve members
JP2020041507A (en) Evaporated fuel treatment device
RU2679063C1 (en) Method and system (options) to provide a vacuum for a vacuum device
JP2010019185A (en) Intake system control device for internal combustion engine
JP2011231735A (en) Evaporation fuel supply device
TWI804583B (en) Fuel supply system with improved carburetor for internal combustion engine, internal combustion engine and related motor vehicle
JP2010014018A (en) Intake manifold
EP2746560B1 (en) Gas mixer for internal combustion engine
JP2022068406A (en) Fluid control valve and EGR unit

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140709

R150 Certificate of patent or registration of utility model

Ref document number: 5579554

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees