JP2012067624A - Control device of internal combustion engine - Google Patents

Control device of internal combustion engine Download PDF

Info

Publication number
JP2012067624A
JP2012067624A JP2010211065A JP2010211065A JP2012067624A JP 2012067624 A JP2012067624 A JP 2012067624A JP 2010211065 A JP2010211065 A JP 2010211065A JP 2010211065 A JP2010211065 A JP 2010211065A JP 2012067624 A JP2012067624 A JP 2012067624A
Authority
JP
Japan
Prior art keywords
increase rate
fuel increase
fuel
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010211065A
Other languages
Japanese (ja)
Other versions
JP5482600B2 (en
Inventor
Gakubu Okamura
学武 岡村
Hisao Kawasaki
尚夫 川崎
Takashi Nakazawa
孝志 中沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2010211065A priority Critical patent/JP5482600B2/en
Publication of JP2012067624A publication Critical patent/JP2012067624A/en
Application granted granted Critical
Publication of JP5482600B2 publication Critical patent/JP5482600B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem that the acceleration performance at engine acceleration degrades when a fuel amount increase rate is set to 1 (0% increase) in most of the engine operation region including a supercharging area.SOLUTION: A device calculates a first fuel amount increase rate F1 corresponding to a current intake air amount (S11) and a second fuel amount increase rate F2 corresponding to an output mixture ration (S12), and determines whether or not an internal combustion engine is under an acceleration operation state (S14) on the basis of an intake air amount detected by an air flow meter and engine rotation speed. When the internal combustion engine is determined not to be under an acceleration operation state, the first fuel amount increase rate F1 is set to a fuel amount increase rate F0 (S17). When the engine internal combustion engine is determined to be under an acceleration operation state, the larger one of the first fuel amount increase rate F1 and second fuel amount increase rate F2 is set as the fuel amount increase rate F0 (S15-S17). Fuel injection control is executed on the basis of the set fuel amount increase rate F0.

Description

本発明は、内燃機関の制御装置に関し、特に、燃料増量率の設定に関する。   The present invention relates to a control device for an internal combustion engine, and more particularly to setting of a fuel increase rate.

特許文献1には、排気エネルギーを利用して過給を行う過給機を備えた内燃機関において、第1燃料増量率と、機関回転速度と吸入空気量に基づいて求められる第2燃料増量率のうち、大きい方を燃料増量率として設定している。第1燃料増量率は、アクセル開度が所定の基準値以下の非加速状態では1、つまり0%の増量率とされ、アクセル開度が基準値を超える加速運転状態である場合には過給圧に応じて設定され、つまり過給圧が所定の基準値以上であれば、パワー空燃比に応じた最大値である16%の増量とされる。一方、過給圧が基準値未満の場合には、第1燃料増量率が変速比に応じて設定され、機関出力の向上と燃費改善のために最大値よりも小さな値(6%〜16%の増量)とされる。   Patent Document 1 discloses a second fuel increase rate obtained based on a first fuel increase rate, an engine rotation speed, and an intake air amount in an internal combustion engine including a supercharger that performs supercharging using exhaust energy. The larger one is set as the fuel increase rate. The first fuel increase rate is 1 in the non-accelerated state where the accelerator opening is equal to or less than a predetermined reference value, that is, 0%, and supercharging is performed in the acceleration operation state where the accelerator opening exceeds the reference value. It is set according to the pressure, that is, if the supercharging pressure is equal to or higher than a predetermined reference value, the amount is increased by 16% which is the maximum value according to the power air-fuel ratio. On the other hand, when the supercharging pressure is less than the reference value, the first fuel increase rate is set according to the gear ratio, and is smaller than the maximum value (6% to 16%) for improving engine output and improving fuel efficiency. Increase).

特開2008−144736号公報JP 2008-144736

近年、排気エミッション規制が厳しくなるなか、例えばターボ過給機を備えた内燃機関であっても、燃費や排気エミッションの低減化を図るために、一部の高回転高負荷域を除き、過給域を含む大半の機関運転領域で、燃料増量を行わず、燃料増量率を1(0%の増量)、つまり理論空燃比で運転を行うことが検討されている。このような内燃機関では過給域でのエミッションを考慮して燃料噴射制御を行うために吸入空気量を噴射制御のパラメータとしている。   In recent years, regulations on exhaust emissions have become stricter. For example, even in an internal combustion engine equipped with a turbocharger, in order to reduce fuel consumption and exhaust emissions, the turbocharger is excluded except for some high-speed and high-load areas. In most engine operation regions including the engine range, it is considered that the fuel increase rate is 1 (0% increase), that is, the operation is performed at the stoichiometric air-fuel ratio without increasing the fuel. In such an internal combustion engine, the intake air amount is used as a parameter for the injection control in order to perform the fuel injection control in consideration of the emission in the supercharging region.

しかしながら、ドライバの加速要求によって内燃機関が加速運転状態にある場合には、燃料増量率が吸入空気量に見合った1(0%の増量)のままでは十分な加速性能が得られず、燃料増量を行う必要がある。   However, when the internal combustion engine is in an accelerating operation state due to the driver's acceleration request, if the fuel increase rate is 1 (0% increase) corresponding to the intake air amount, sufficient acceleration performance cannot be obtained, and the fuel increase amount Need to do.

一方、加速運転を判定した際に単に出力混合比となるように燃料増量率を設定したとしても、高負荷時であれば排気系の部品保護のために設定された増量率(出力混合比のための増量率より大きい)が反映されず、加速運転時に排気系部品の保護が不十分となってしまう可能性がある。   On the other hand, even if the fuel increase rate is set so that the output mixture ratio is simply determined when accelerating operation is determined, if the load is high, the increase rate set for protecting the exhaust system parts (output mix ratio Therefore, the exhaust system parts may not be sufficiently protected during acceleration operation.

そこで、本発明では、燃費や排気エミッションの低減化を図るために、高負荷域の一部を除き、過給域を含む大半の機関運転領域で、燃料増量を行わないエンジンにおいて、過給領域でもエミッションを満足し、更に、ドライバが加速要求を行った場合でも、加速満足しつつ、排気系部品の保護等も十分に行える内燃機関の制御装置を提供することを目的とする。   Therefore, in the present invention, in order to reduce fuel consumption and exhaust emissions, in the engine that does not perform fuel increase in most engine operation regions including the supercharge region except for a part of the high load region, the supercharge region However, it is an object of the present invention to provide a control device for an internal combustion engine that satisfies the emission and further can sufficiently protect the exhaust system parts while satisfying the acceleration even when the driver makes an acceleration request.

本発明は、このような事情に鑑みてなされたものである。すなわち本発明は、吸入空気量を検出する吸入空気量検出手段と、この吸入空気量検出手段により検出された吸入空気量に基づいて第1燃料増量率を算出する第1燃料増量率算出手段と、出力混合比に相当する第2燃料増量率を算出する第2燃料増量率算出手段と、内燃機関が加速運転状態であるか否かを判定する加速判定手段と、上記加速判定手段により加速運転状態でないと判定された場合には、上記第1燃料増量率を燃料増量率として設定する一方、加速運転状態であると判定された場合には、上記第1燃料増量率と第2燃料増量率の大きい方を燃料増量率として設定し、設定された燃料増量率に基づいて燃料噴射制御を行う燃料増量率設定手段と、を有することを特徴としている。   The present invention has been made in view of such circumstances. That is, the present invention includes an intake air amount detection unit that detects an intake air amount, and a first fuel increase rate calculation unit that calculates a first fuel increase rate based on the intake air amount detected by the intake air amount detection unit. A second fuel increase rate calculating means for calculating a second fuel increase rate corresponding to the output mixture ratio, an acceleration determining means for determining whether or not the internal combustion engine is in an accelerated operation state, and an acceleration operation by the acceleration determining means When it is determined that it is not in the state, the first fuel increase rate is set as the fuel increase rate. On the other hand, when it is determined that it is in the acceleration operation state, the first fuel increase rate and the second fuel increase rate are set. And a fuel increase rate setting means for setting the fuel increase rate as the fuel increase rate and performing fuel injection control based on the set fuel increase rate.

非加速運転状態のときには、現在の機関回転速度と吸入空気量に見合った第1燃料増量率が燃料噴射制御に用いられる燃料増量率として設定されるために、例えば大半の運転領域で第1燃料増量率を理論空燃比に対応する1(0%の増量)とすることで、燃費や排気エミッションの低減化を図ることができる。   In the non-accelerated operation state, the first fuel increase rate corresponding to the current engine speed and intake air amount is set as the fuel increase rate used for fuel injection control. By setting the increase rate to 1 (0% increase) corresponding to the stoichiometric air-fuel ratio, it is possible to reduce fuel consumption and exhaust emission.

一方、運転者がアクセルを急に踏み込んだ急加速時などでは、加速運転状態であると判定され、この場合、出力空燃比に対応した第2燃料増量率が第1燃料増量率を上回ることとなり、この第2燃料増量率が燃料増量率として設定されることで、速やかに燃料増量が行われ、加速性能を向上することができる。特に、ターボ過給機を備えた内燃機関の場合には、燃料増量により排気ボリュームが増加することになり、過給の立ち上がりを早めることができる。   On the other hand, when the driver suddenly depresses the accelerator, it is determined that the vehicle is in an accelerated operation state. In this case, the second fuel increase rate corresponding to the output air-fuel ratio exceeds the first fuel increase rate. Since the second fuel increase rate is set as the fuel increase rate, the fuel increase is quickly performed and the acceleration performance can be improved. In particular, in the case of an internal combustion engine equipped with a turbocharger, the exhaust volume increases due to the increase in fuel, and the start-up of supercharging can be accelerated.

更に、部品保護の点から燃料増量を必要とする高回転高負荷域では、機関回転速度と吸入空気量(負荷)に応じて設定される第1燃料増量率が高い値となり、この第1燃料増量率が燃料噴射制御に用いる燃料増量率として設定されることで、燃料増量により排気温度を適切に低下させることができる。   Further, in the high rotation and high load range where fuel increase is required from the viewpoint of component protection, the first fuel increase rate set according to the engine speed and the intake air amount (load) becomes a high value. By setting the increase rate as the fuel increase rate used for the fuel injection control, the exhaust gas temperature can be appropriately lowered by the fuel increase.

本発明によれば、加速運転状態における加速性能を確保した上で、燃費や排気エミッションの低減化を図ることができ、排気性能と加速性能とを両立することができる。   According to the present invention, it is possible to reduce fuel consumption and exhaust emission while ensuring acceleration performance in an accelerated operation state, and to achieve both exhaust performance and acceleration performance.

本発明の一実施例に係る内燃機関の制御装置を簡略的に示すシステム構成図。BRIEF DESCRIPTION OF THE DRAWINGS The system block diagram which shows simply the control apparatus of the internal combustion engine which concerns on one Example of this invention. 本実施例に係る燃料増量率の設定処理を示すフローチャート。The flowchart which shows the setting process of the fuel increase rate which concerns on a present Example. 図2の加速判定処理のサブルーチンを示すフローチャート。The flowchart which shows the subroutine of the acceleration determination process of FIG. 本実施例に係る第1燃料増量率の設定マップを示す図。The figure which shows the setting map of the 1st fuel increase rate which concerns on a present Example. 本実施例に係る第2燃料増量率の設定マップを示す図。The figure which shows the setting map of the 2nd fuel increase rate which concerns on a present Example. 本実施例に係る加速前後の燃料増量率等の変化を示すタイミングチャート。The timing chart which shows changes, such as a fuel increase rate before and behind acceleration which concerns on a present Example.

以下、この発明の好ましい実施の形態を図面に基づいて詳細に説明する。図1は、この発明の一実施例として、ターボ過給機を備えた火花点火式のガソリン内燃機関を簡略的に示している。内燃機関のシリンダブロック1には複数(この例では4つ)のシリンダ2が直列に配置されており、各シリンダ2内にピストンが摺動可能に嵌合している。シリンダ2へ空気を供給する吸気通路3には、吸気量を調整する電制のスロットル(弁)4が配置され、その上流側には、ターボ過給機9、具体的にはそのコンプレッサ9aが介装されている。スロットル4は、運転者によるアクセルペダル17の操作とは独立して開度を調整可能な電制のものである。コンプレッサ9aを駆動する排気タービン9bは排気通路5に介装されている。また、吸気通路3のスロットル4の下流側に、スロットル下流の吸気圧すなわち過給圧Pbを検出する過給圧センサ12が配設されている。排気タービン9bよりも下流側の排気通路5には周知の三元触媒21が介装されている。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 schematically shows a spark ignition type gasoline internal combustion engine equipped with a turbocharger as an embodiment of the present invention. A plurality (four in this example) of cylinders 2 are arranged in series in the cylinder block 1 of the internal combustion engine, and pistons are slidably fitted in the cylinders 2. In the intake passage 3 for supplying air to the cylinder 2, an electrically controlled throttle (valve) 4 for adjusting the intake air amount is arranged, and on the upstream side thereof, a turbocharger 9, specifically, a compressor 9a is provided. It is intervened. The throttle 4 is electrically controlled so that the opening degree can be adjusted independently of the operation of the accelerator pedal 17 by the driver. An exhaust turbine 9 b that drives the compressor 9 a is interposed in the exhaust passage 5. Further, a boost pressure sensor 12 for detecting an intake pressure downstream of the throttle, that is, a boost pressure Pb, is disposed downstream of the throttle 4 in the intake passage 3. A known three-way catalyst 21 is interposed in the exhaust passage 5 downstream of the exhaust turbine 9b.

過給圧を調整する手段として、この実施例では排気タービン9bの出口側と入口側とが排気バイパス通路10により接続されており、このバイパス通路10に電制のウエイストゲートバルブ11が介装されている。このウエイストゲートバルブ11は、過給圧を所定の特性に保つように機関高速側で開かれるものである。   As a means for adjusting the supercharging pressure, in this embodiment, the outlet side and the inlet side of the exhaust turbine 9b are connected by an exhaust bypass passage 10, and an electrically controlled wastegate valve 11 is interposed in the bypass passage 10. ing. The waste gate valve 11 is opened on the engine high speed side so as to keep the supercharging pressure at a predetermined characteristic.

制御部としてのコントロールユニット13には、運転者により操作されるアクセルペダル17の開度を検出するアクセル開度センサ18によるアクセル開度APO、回転速度センサ15により検出される機関回転速度、吸入空気量検出手段としてのエアフロメータ16により検出される吸入空気量、上記過給圧センサ12により検出される過給圧の他、冷却水温や油圧等の検出信号が入力される。そして、コントロールユニット13は、これらの機関運転状態を表す各種検出信号に基づいて、燃料噴射弁や点火装置へインジェクタ信号19や点火信号20を出力して、燃料噴射時期、燃料噴射量及び点火時期などを制御するとともに、スロットル4へ制御信号を出力してスロットル開度などを制御する。   The control unit 13 as a control unit includes an accelerator opening APO by an accelerator opening sensor 18 that detects an opening of an accelerator pedal 17 operated by a driver, an engine rotational speed detected by a rotational speed sensor 15, and intake air. In addition to the intake air amount detected by the air flow meter 16 as the amount detecting means and the supercharging pressure detected by the supercharging pressure sensor 12, detection signals such as cooling water temperature and hydraulic pressure are input. The control unit 13 then outputs an injector signal 19 and an ignition signal 20 to the fuel injection valve and the ignition device based on various detection signals representing these engine operating states, so that the fuel injection timing, the fuel injection amount, and the ignition timing are output. And a control signal is output to the throttle 4 to control the throttle opening and the like.

図2は、本実施例に係る制御処理の流れを示すフローチャートであり、本ルーチンは上記コントロールユニット13により例えば10ms毎に繰り返し実行される。このルーチンで設定された燃料増量率F0に基づいて、燃料噴射弁による燃料噴射制御が行われることとなる。   FIG. 2 is a flowchart showing the flow of control processing according to this embodiment, and this routine is repeatedly executed by the control unit 13 every 10 ms, for example. Based on the fuel increase rate F0 set in this routine, fuel injection control by the fuel injection valve is performed.

ステップS11では、機関回転速度と吸入空気量とに基づいて図4に示す予め設定された制御マップを参照して、現在の吸入空気量に対応した燃料増量率である第1燃料増量率F1を算出する。機関回転速度は上記の回転速度センサ15により検出される。吸入空気量は、下記の[1]〜[4]のいずれか一つを用いて求められる。なお、図示していないが、スロットル開度センサはスロットル4の開度を検出するものであり、吸気温度センサは吸気温度を検出するものであり、大気圧センサは大気圧を検出するものである。
[1]エアフロメータ16
[2]過給圧センサ(コレクタ圧力センサ)12
[3]スロットル開度センサと吸気温度センサと大気圧センサ
[4]スロットル開度センサと吸気温度センサと過給圧センサ(スロットル上流部圧力センサ)
図4に示すように、この実施例では、排気通路5に設けられた三元触媒21(図1参照)が有効に機能して排気エミッションを低減するように、ターボ過給機9による過給が行われる過給域を含め、高回転高負荷域を除く大半の機関運転領域で、空燃比が理論空燃比となるように、第1燃料増量率F1を1に設定している。そして、高回転高負荷側では、排気温度の過度な上昇を抑制するために、第1燃料増量率F1を1より高くして、空燃比をリッチ側としている。
In step S11, referring to a preset control map shown in FIG. 4 based on the engine speed and the intake air amount, the first fuel increase rate F1, which is the fuel increase rate corresponding to the current intake air amount, is determined. calculate. The engine rotation speed is detected by the rotation speed sensor 15 described above. The intake air amount is obtained using any one of the following [1] to [4]. Although not shown, the throttle opening sensor detects the opening of the throttle 4, the intake air temperature sensor detects the intake air temperature, and the atmospheric pressure sensor detects the atmospheric pressure. .
[1] Air flow meter 16
[2] Supercharging pressure sensor (collector pressure sensor) 12
[3] Throttle opening sensor, intake air temperature sensor, and atmospheric pressure sensor [4] Throttle opening sensor, intake air temperature sensor, and supercharging pressure sensor (throttle upstream pressure sensor)
As shown in FIG. 4, in this embodiment, supercharging by the turbocharger 9 is performed so that the three-way catalyst 21 (see FIG. 1) provided in the exhaust passage 5 functions effectively to reduce exhaust emissions. The first fuel increase rate F1 is set to 1 so that the air-fuel ratio becomes the stoichiometric air-fuel ratio in most engine operating regions except the high-speed high-load region including the supercharging region where the engine is operated. On the high rotation / high load side, in order to suppress an excessive increase in the exhaust gas temperature, the first fuel increase rate F1 is set higher than 1 to make the air-fuel ratio rich.

再び図2を参照して、ステップS12では、出力要求に対応した第2燃料増量率F2を算出する。この第2燃料増量率F2は、出力混合比に対応した燃料増量率であり、機関回転速度から図5に示すような予め設定された制御マップを参照して求められる。出力混合比は、発信時や加速時に用いられるもので、所定回転速度Ne0(1800〜2800rpm)以下の低回転域を除く大半の運転域で、理論空燃比よりもリッチ側の値である。従って、図5に示すように、第2燃料増量率は、所定回転速度Ne0以下の領域では、理論空燃比に相当する1とされ、所定回転速度Ne0を超える大半の回転域で、出力混合比に対応した1より大きな値、例えば約3%の燃料増量に相当する約1.03とされる。   Referring to FIG. 2 again, in step S12, a second fuel increase rate F2 corresponding to the output request is calculated. The second fuel increase rate F2 is a fuel increase rate corresponding to the output mixture ratio, and is obtained from the engine speed with reference to a preset control map as shown in FIG. The output mixture ratio is used at the time of transmission or acceleration, and is a value on the richer side than the stoichiometric air-fuel ratio in most of the operation range except for a low rotation speed range below a predetermined rotation speed Ne0 (1800 to 2800 rpm). Therefore, as shown in FIG. 5, the second fuel increase rate is set to 1 corresponding to the theoretical air-fuel ratio in the region where the predetermined rotational speed Ne0 or less, and in most of the rotational region exceeding the predetermined rotational speed Ne0, the output mixture ratio For example, a value greater than 1 corresponding to 1 is set to about 1.03 corresponding to a fuel increase of about 3%.

図2のステップS13では、後述する図3のサブルーチンにより、内燃機関が加速運転状態であるか否かが判定される。加速運転状態でないと判定されると、ステップS17へ進み、上記の第1燃料増量率F1を、燃料噴射制御に用いる燃料増量率F0として設定する。   In step S13 of FIG. 2, it is determined whether or not the internal combustion engine is in an acceleration operation state by a subroutine of FIG. 3 to be described later. If it is determined that the engine is not in the acceleration operation state, the process proceeds to step S17, and the first fuel increase rate F1 is set as the fuel increase rate F0 used for fuel injection control.

ステップS14で加速運転状態であると判定されると、ステップS15〜S17において、第1燃料増量率F1と第2燃料増量率F2のうち、大きい値の方を、燃料噴射制御に用いる燃料増量率F0として設定する。具体的には、ステップS15において、第2燃料増量率F2が第1燃料増量率F1より大きいかを判定する。第2燃料増量率F2が第1燃料増量率F1より大きければ、ステップS16へ進み、大きい方の第2燃料増量率F2を燃料増量率F0として設定する。一方、第2燃料増量率F2が第1燃料増量率F1以下であれば、ステップS17へ進み、大きい方の第1燃料増量率F1を燃料増量率F0として設定する。   If it is determined in step S14 that the vehicle is in the acceleration operation state, in steps S15 to S17, the larger value of the first fuel increase rate F1 and the second fuel increase rate F2 is used for fuel injection control. Set as F0. Specifically, in step S15, it is determined whether the second fuel increase rate F2 is greater than the first fuel increase rate F1. If the second fuel increase rate F2 is larger than the first fuel increase rate F1, the process proceeds to step S16, and the larger second fuel increase rate F2 is set as the fuel increase rate F0. On the other hand, if the second fuel increase rate F2 is equal to or less than the first fuel increase rate F1, the process proceeds to step S17, and the larger first fuel increase rate F1 is set as the fuel increase rate F0.

図3は、図2のステップS13における加速判定処理の詳細を示すサブルーチンである。このルーチンでは、スロットル開度による全開判定(ステップS21)と、アクセル開度による急加速判定(ステップS22,S23)とのいずれかを満たす場合に、内燃機関が加速運転状態であると判定している。   FIG. 3 is a subroutine showing details of the acceleration determination process in step S13 of FIG. In this routine, it is determined that the internal combustion engine is in an acceleration operation state when either the fully open determination based on the throttle opening (step S21) or the rapid acceleration determination based on the accelerator opening (steps S22, S23) is satisfied. Yes.

具体的には、ステップS21では、目標スロットル開度TGTVOが、スロットル全開に相当する所定の判定値sTGTVO以上であるかを判定する。目標スロットル開度TGTVOが判定値sTGTVO以上であれば、ステップS24へ進み、内燃機関が加速運転状態であると判定する。   Specifically, in step S21, it is determined whether the target throttle opening TGTVO is equal to or greater than a predetermined determination value sTGTVO corresponding to full throttle. If the target throttle opening degree TGTVO is greater than or equal to the determination value sTGTVO, the process proceeds to step S24, where it is determined that the internal combustion engine is in the acceleration operation state.

一方、目標スロットル開度TGTVOが判定値sTGTVO未満であれば、ステップS22へ進み、アクセル開度APOが所定の判定値sAPO以上であるかを判定する。ステップS23では、アクセル開度の増加率DAPOが、所定の判定値sDAPO以上であるかを判定する。アクセル開度の増加率DAPOは、例えば所定期間前のアクセル開度と現在のアクセル開度との差により求めることができる。アクセル開度APOが所定の判定値sAPO以上であり、かつ、アクセル開度の増加率DAPOが、所定の判定値sDAPO以上である場合には、急加速時のように運転者による加速要求が大きいと判断して、ステップS24へ進み、加速運転状態であると判定する。それ以外の場合には、ステップS25へ進み、加速運転状態ではない、つまり非加速運転状態であると判定する。   On the other hand, if the target throttle opening degree TGTVO is less than the determination value sTGTVO, the process proceeds to step S22, and it is determined whether the accelerator opening degree APO is equal to or greater than the predetermined determination value sAPO. In step S23, it is determined whether the accelerator opening increase rate DAPO is equal to or greater than a predetermined determination value sDAPO. The increase rate DAPO of the accelerator opening can be obtained, for example, from the difference between the accelerator opening before a predetermined period and the current accelerator opening. When the accelerator opening APO is equal to or greater than the predetermined determination value sAPO and the increase rate DAPO of the accelerator opening is equal to or greater than the predetermined determination value sDAPO, the acceleration request by the driver is large as in sudden acceleration. It progresses to step S24 and it determines with it being in an acceleration driving state. In other cases, the process proceeds to step S25, and it is determined that the engine is not in the accelerated operation state, that is, the non-accelerated operation state.

図6は、本実施例に係る加速過渡期における燃料増量率等の変化を示すタイミングチャートである。時刻t1以前の加速前の運転状態では、非加速状態であるために、第1燃料増量率F1が燃料増量率F0として設定される。過給域を含む大半の領域で第1燃料増量率F1は1(0%の増量)に設定されているために、燃費性能や排気性能の向上を図ることができる。   FIG. 6 is a timing chart showing changes in the fuel increase rate and the like in the acceleration transition period according to this embodiment. Since the driving state before acceleration before time t1 is a non-acceleration state, the first fuel increase rate F1 is set as the fuel increase rate F0. Since the first fuel increase rate F1 is set to 1 (0% increase) in most regions including the supercharging region, fuel efficiency and exhaust performance can be improved.

時刻t1において、アクセル開度の急激な増加から、加速運転状態であると判定されると(加速判定がON)、第1燃料増量率F1と第2燃料増量率F2のうち、大きい方が燃料増量率F0として設定される。本実施例においては、過給域を含む多くの領域で第1燃料増量率F1が1に設定されているために、加速直後の運転状態では、多くの場合、図6に示すように、出力混合比に対応した第2燃料増量率F2が燃料増量率F0として設定されることとなる。   If it is determined at time t1 that the accelerator is operating due to a rapid increase in the accelerator opening (acceleration determination is ON), the larger of the first fuel increase rate F1 and the second fuel increase rate F2 is the fuel. The increase rate F0 is set. In the present embodiment, since the first fuel increase rate F1 is set to 1 in many regions including the supercharging region, in many cases in the operating state immediately after acceleration, as shown in FIG. The second fuel increase rate F2 corresponding to the mixture ratio is set as the fuel increase rate F0.

このように、加速時に燃料増量が速やかに行われることで、加速性能を向上することができる。特に、本実施例のようにターボ過給機9を備えた内燃機関1の場合には、吸入空気量相当の増量では、過給遅れがあるために、吸入空気量に応じた燃料増量率が低く見積もられるために、実際の燃料増量が遅れてしまい、所期の加速要求を満足できない可能性がありものの、本実施例では、燃料増量により吸入空気量と燃料の合計の質量流量である排気ボリュームが増加することになり、過給の立ち上がりを早めることができる。   Thus, acceleration performance can be improved by quickly increasing the fuel amount during acceleration. In particular, in the case of the internal combustion engine 1 having the turbocharger 9 as in the present embodiment, there is a supercharging delay when the amount of increase corresponding to the amount of intake air is increased. Therefore, the fuel increase rate corresponding to the amount of intake air is increased. Although the actual fuel increase may be delayed due to the low estimation, it may not be possible to satisfy the desired acceleration request. However, in this embodiment, the exhaust gas, which is the total mass flow rate of intake air and fuel, is increased by increasing the fuel. The volume will increase, and the rise of supercharging can be accelerated.

また、高地などの気圧が低い状況下では、吸入空気量が減少してしまい、吸入空気量相当の燃料増量率では、所期の加速要求を満足できない可能性があるものの、本実施例では、このような状況下であっても、出力空燃比に対応した第2燃料増量率F2を用いることで、吸入空気量の低下にかかわらず適切な燃料増量を行うことができる。   In addition, under the condition of low atmospheric pressure such as high altitude, the amount of intake air decreases, and the fuel increase rate corresponding to the amount of intake air may not be able to satisfy the desired acceleration request. Even in such a situation, by using the second fuel increase rate F2 corresponding to the output air-fuel ratio, it is possible to perform an appropriate fuel increase regardless of a decrease in the intake air amount.

そして、機関負荷や回転速度の上昇に伴って第1燃料増量率F1が第2燃料増量率F2を超えた時点t2で、再び第1燃料増量率F1が燃料増量率F0として設定される。つまり、第1燃料増量率F1が第2燃料増量率F2に達した時点t2で燃料増量率F0が第2燃料増量率F2から第1燃料増量率F1に切り換えられるために、燃料増量率F0の急変を招くことがなく、機関負荷や回転速度の上昇に伴って第1燃料増量率F1(つまりは燃料増量率F0)が増加していくことから、適切な燃料増量により排気温度の過度な上昇を防止することができる。   Then, at the time t2 when the first fuel increase rate F1 exceeds the second fuel increase rate F2 as the engine load and the rotational speed increase, the first fuel increase rate F1 is set again as the fuel increase rate F0. That is, since the fuel increase rate F0 is switched from the second fuel increase rate F2 to the first fuel increase rate F1 at the time point t2 when the first fuel increase rate F1 reaches the second fuel increase rate F2, the fuel increase rate F0 Since the first fuel increase rate F1 (that is, the fuel increase rate F0) increases as the engine load and the rotational speed increase without causing a sudden change, the exhaust temperature excessively increases due to an appropriate fuel increase. Can be prevented.

以上のように本発明を具体的な実施例に基づいて説明してきたが、本発明は上記実施例に限定されるものではなく、その趣旨を逸脱しない範囲で、種々の変形・変更を含むものである。例えば、上記実施例では所定回転速度Ne0以上のときの第2燃料増量率F2を一定の値(1.03)としているが、機関回転速度が高くなるほど第2燃料増量率F2を段階的あるいは連続的に変化させるようにしても良い。また、本発明はターボ過給機を備える内燃機関に限らず、ターボ過給機を有さない自然吸気(NA)式の内燃機関に適用することもできる。   As described above, the present invention has been described based on the specific embodiments. However, the present invention is not limited to the above-described embodiments, and includes various modifications and changes without departing from the spirit of the present invention. . For example, in the above embodiment, the second fuel increase rate F2 at a predetermined rotation speed Ne0 or higher is set to a constant value (1.03). However, as the engine speed increases, the second fuel increase rate F2 is increased stepwise or continuously. It may be changed as desired. The present invention is not limited to an internal combustion engine provided with a turbocharger, but can also be applied to a naturally aspirated (NA) type internal combustion engine that does not have a turbocharger.

1…内燃機関
9…ターボ過給機
13…コントロールユニット
16…エアフロメータ(吸入空気量検出手段)
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 9 ... Turbocharger 13 ... Control unit 16 ... Air flow meter (intake air amount detection means)

Claims (3)

吸入空気量を検出する吸入空気量検出手段と、
この吸入空気量検出手段により検出された吸入空気量に基づいて第1燃料増量率を算出する第1燃料増量率算出手段と、
出力混合比に相当する第2燃料増量率を算出する第2燃料増量率算出手段と、
内燃機関が加速運転状態であるか否かを判定する加速判定手段と、
上記加速判定手段により加速運転状態でないと判定された場合には、上記第1燃料増量率を燃料増量率として設定する一方、加速運転状態であると判定された場合には、上記第1燃料増量率と第2燃料増量率の大きい方を燃料増量率として設定し、設定された燃料増量率に基づいて燃料噴射制御を行う燃料増量率設定手段と、
を有することを特徴とする内燃機関の制御装置。
An intake air amount detection means for detecting an intake air amount;
First fuel increase rate calculating means for calculating a first fuel increase rate based on the intake air amount detected by the intake air amount detecting means;
A second fuel increase rate calculating means for calculating a second fuel increase rate corresponding to the output mixture ratio;
Acceleration determining means for determining whether or not the internal combustion engine is in an accelerated operation state;
When it is determined by the acceleration determining means that the engine is not in the accelerated operation state, the first fuel increase rate is set as the fuel increase rate. On the other hand, when it is determined that the engine is in the accelerated operation state, the first fuel increase rate is set. A fuel increase rate setting means for setting a larger one of the rate and the second fuel increase rate as a fuel increase rate, and performing fuel injection control based on the set fuel increase rate;
A control apparatus for an internal combustion engine, comprising:
内燃機関の排気エネルギーにより過給を行うターボ過給機が設けられ、
上記第1燃料増量率算出手段は、過給域を含む大半の機関運転領域において、上記第1燃料増量率を1に設定することを特徴とする請求項1に記載の内燃機関の制御装置。
A turbocharger is provided for supercharging with the exhaust energy of the internal combustion engine;
2. The control device for an internal combustion engine according to claim 1, wherein the first fuel increase rate calculating means sets the first fuel increase rate to 1 in most engine operation regions including a supercharging region.
上記第2燃料増量率算出手段は、機関回転速度に基づいて第2燃料増量率を算出することを特徴とする請求項1又は2に記載の内燃機関の制御装置。   3. The control apparatus for an internal combustion engine according to claim 1, wherein the second fuel increase rate calculating means calculates a second fuel increase rate based on the engine speed.
JP2010211065A 2010-09-21 2010-09-21 Control device for internal combustion engine Active JP5482600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010211065A JP5482600B2 (en) 2010-09-21 2010-09-21 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010211065A JP5482600B2 (en) 2010-09-21 2010-09-21 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2012067624A true JP2012067624A (en) 2012-04-05
JP5482600B2 JP5482600B2 (en) 2014-05-07

Family

ID=46165185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010211065A Active JP5482600B2 (en) 2010-09-21 2010-09-21 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5482600B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH094492A (en) * 1995-04-19 1997-01-07 Nissan Motor Co Ltd Engine control device
JPH0942021A (en) * 1995-07-28 1997-02-10 Unisia Jecs Corp Diagnostic device for combustion improving mechanism in internal combustion engine
JP2006258015A (en) * 2005-03-18 2006-09-28 Nissan Motor Co Ltd Control device for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH094492A (en) * 1995-04-19 1997-01-07 Nissan Motor Co Ltd Engine control device
JPH0942021A (en) * 1995-07-28 1997-02-10 Unisia Jecs Corp Diagnostic device for combustion improving mechanism in internal combustion engine
JP2006258015A (en) * 2005-03-18 2006-09-28 Nissan Motor Co Ltd Control device for internal combustion engine

Also Published As

Publication number Publication date
JP5482600B2 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
EP2803842B1 (en) Control device for internal combustion engine
JP4186438B2 (en) Vehicle control apparatus equipped with continuously variable transmission
JP4434174B2 (en) Control device for an internal combustion engine with a supercharger
JP4577656B2 (en) Control device for an internal combustion engine with a supercharger
WO2012086002A1 (en) Control device for internal combustion engine equipped with supercharger
CN109973279B (en) Control device for internal combustion engine
JP3846223B2 (en) Control device for vehicle having internal combustion engine with supercharger and transmission
JP2014015846A (en) Control device of internal combustion engine with supercharger, and vehicle equipped with internal combustion engine with supercharger
JP5051008B2 (en) Turbocharger control device and control method
JP2007247540A (en) Method for controlling egr system and egr system
JP6112397B2 (en) Supercharger control device for internal combustion engine
JP6447027B2 (en) EGR control device for engine
JP5490053B2 (en) Vehicle control device
JP5531987B2 (en) Control device for an internal combustion engine with a supercharger
JP5991405B2 (en) Control device for internal combustion engine
JP4965603B2 (en) Vehicle control device
JP6536299B2 (en) Internal combustion engine control method and internal combustion engine control device
JP5482600B2 (en) Control device for internal combustion engine
JP2006152894A (en) Throttle control device of internal combustion engine with supercharger
JP2015229437A (en) Vehicle control unit
JP2006125352A (en) Controller for internal combustion engine with supercharger
JP6331690B2 (en) Control unit for gasoline engine
JP2011241713A (en) Control device of internal combustion engine
JP2012188994A (en) Control apparatus for internal combustion engine with supercharger
KR102237073B1 (en) Engine system and control method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140203

R151 Written notification of patent or utility model registration

Ref document number: 5482600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151