JP2012067431A - Fiber material modifier and method for modifying fiber material using the same - Google Patents

Fiber material modifier and method for modifying fiber material using the same Download PDF

Info

Publication number
JP2012067431A
JP2012067431A JP2011178761A JP2011178761A JP2012067431A JP 2012067431 A JP2012067431 A JP 2012067431A JP 2011178761 A JP2011178761 A JP 2011178761A JP 2011178761 A JP2011178761 A JP 2011178761A JP 2012067431 A JP2012067431 A JP 2012067431A
Authority
JP
Japan
Prior art keywords
fiber material
flexibility
water
water absorption
modifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011178761A
Other languages
Japanese (ja)
Other versions
JP5979830B2 (en
Inventor
Hiroaki Niwa
弘明 丹羽
Koji Sato
広司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ipposha Oil Industries Co Ltd
Original Assignee
Ipposha Oil Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ipposha Oil Industries Co Ltd filed Critical Ipposha Oil Industries Co Ltd
Priority to JP2011178761A priority Critical patent/JP5979830B2/en
Publication of JP2012067431A publication Critical patent/JP2012067431A/en
Application granted granted Critical
Publication of JP5979830B2 publication Critical patent/JP5979830B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a fiber material modifier imparting sufficient flexibility to a fiber material, preventing flexibility effect from easily reducing even when washed, allowing relatively easy availability and having versatility high enough to manufacture and a method for modifying it; and further a method for modifying a fiber material capable of imparting flexibility and also water repellency or water absorption to a fiber material.SOLUTION: With a reaction product of a tertiary amine having at least one of hydrocarbon groups having a carbon number of 6 to 25 and hydrocarbon groups having a carbon number of 1 to 5 or a polyoxyalkylene group with epihalohydrin as a modifier for a fiber material, a fiber material is treated in an aqueous alkaline solution to impart flexibility along with water repellency or water absorption to a fiber product. The fiber product treated with the fiber material modifier of the present invention exhibits excellent washing durability and also is subsequently treated with an anionic compound or an amphoteric compound to further improve its water repellency or water absorption.

Description

本発明は、繊維素材改質剤ならび該改質剤を用いた繊維素材の改質方法に関する。さらに詳しくは、好適には活性水素を含有する繊維に対して、柔軟性と撥水性あるいは吸水性を付与し、かつこれらの効果が洗濯によっても失われずに持続する繊維素材改質剤ならびに改質方法に関する。   The present invention relates to a fiber material modifier and a method for modifying a fiber material using the modifier. More specifically, a fiber material modifier and a modification which imparts flexibility and water repellency or water absorption to a fiber containing active hydrogen, and maintains these effects without being lost even by washing. Regarding the method.

一般に、繊維製品は、糸の形態から織物または編物を経て縫製されることによって製品となるが、繊維が本来備えている性質だけでは多岐にわたる消費者ニーズを満たすことができないため、繊維の加工処理の段階で各種の機能性付与剤を用いて繊維を処理することにより、消費者ニーズに合ったものに改質されている。   In general, textile products become products by sewing from the form of yarn through woven or knitted fabrics, but the nature of the fibers alone cannot satisfy a wide range of consumer needs, so the fiber processing In this stage, the fibers are treated with various functionalizing agents to be modified to meet consumer needs.

繊維に好ましい触感を付与する機能性付与剤として柔軟仕上剤があり、カチオン性界面活性剤、非イオン性界面活性剤、アニオン性界面活性剤からなる各種の薬剤が知られている。   As a functional imparting agent that imparts a preferable tactile sensation to fibers, there are soft finishes, and various agents comprising a cationic surfactant, a nonionic surfactant, and an anionic surfactant are known.

例えば、特許文献1には、スルホン酸塩型アニオン性界面活性剤と、エステル基もしくはアミド基を有する3級アミン化合物の中和塩または4級化物とを含有する柔軟仕上剤が開示されている。   For example, Patent Document 1 discloses a softening agent containing a sulfonate type anionic surfactant and a neutralized salt or quaternized product of a tertiary amine compound having an ester group or an amide group. .

特許文献2には、スルホコハク酸エステル型アニオン性界面活性剤と、ポリエチレンポリアミン高級脂肪酸アミド型カチオン性界面活性剤と、非イオン性界面活性剤とからなる柔軟仕上剤において、当該カチオン性界面活性剤としてジエチレントリアミンなどのポリエチレンポリアミンに高級脂肪酸を反応させたアミド化合物に、さらにエピクロロヒドリンを付加した化合物が開示されている。   Patent Document 2 discloses that a cationic surfactant in a soft finish comprising a sulfosuccinate ester type anionic surfactant, a polyethylene polyamine higher fatty acid amide type cationic surfactant, and a nonionic surfactant. A compound obtained by further adding epichlorohydrin to an amide compound obtained by reacting a higher fatty acid with a polyethylene polyamine such as diethylenetriamine is disclosed.

しかしながら、従来の柔軟仕上剤は、繊維の処理直後の柔軟性付与には効果があるものの、耐洗濯性や耐ドライクリーニング性が劣り、実際の使用において耐久性のある柔軟性を満足できないという問題点があった。   However, conventional soft finishes are effective in imparting flexibility immediately after fiber processing, but are inferior in washing resistance and dry cleaning resistance and cannot satisfy durable flexibility in actual use. There was a point.

また、従来から耐洗濯性などの耐久性のある柔軟仕上剤として使用されているポリエステル樹脂、ポリウレタン樹脂、ポリアクリル樹脂等は、繊維素材に対して満足な耐久柔軟性を付与できないことが多い。また、初期柔軟性も十分でなく、実用性に欠けるという問題がある。さらに、耐久性の点では、オリゴマーから高分子の領域に属する化合物は、それが有する特有の接着力により耐久性のある柔軟性を有するが、同時に繊維相互間を接着し繊維間の静摩擦や動摩擦を大きくするため、柔軟効果自体が十分ではないという問題がある。   In addition, polyester resins, polyurethane resins, polyacrylic resins, and the like that have been conventionally used as durable soft finishes such as washing resistance often cannot provide satisfactory durability flexibility to fiber materials. In addition, there is a problem that initial flexibility is not sufficient and practicality is lacking. Furthermore, in terms of durability, a compound belonging to the region from oligomer to polymer has durability and flexibility due to its unique adhesive force, but at the same time, the fibers are bonded to each other so that static friction and dynamic friction between the fibers can be obtained. There is a problem that the flexible effect itself is not sufficient to increase the size.

一方、特許文献3には、N,N,N´,N´テトラメチル−1,2−ジアミノエタンなどの2つ以上の3級窒素原子を有するポリアミン化合物と、エピクロルヒドリンとを反応させた化合物が開示されている。しかし、この化合物は、精製セルロース繊維のフィブリル化防止剤であり、繊維自体が持つ風合いを阻害しないことが示されているに過ぎない。   On the other hand, Patent Document 3 discloses a compound obtained by reacting a polyamine compound having two or more tertiary nitrogen atoms such as N, N, N ′, N′tetramethyl-1,2-diaminoethane and epichlorohydrin. It is disclosed. However, this compound is an anti-fibrillation agent for purified cellulose fibers and has only been shown not to inhibit the texture of the fibers themselves.

特開2005−171399号公報(請求項1)Japanese Patent Laying-Open No. 2005-171399 (Claim 1) 特開平5−311575号公報(請求項1、段落[0010])JP-A-5-311575 (Claim 1, paragraph [0010]) 特開平11−279944号公報(請求項1)JP-A-11-279944 (Claim 1)

本発明は、前記従来の問題を解決するため、繊維素材に対して洗濯しても容易に柔軟効果が低下することがない耐久性のある柔軟性を付与する繊維素材改質剤、及びそれを用いた繊維素材の改質方法を提供することを目的とする。
また、同時に、繊維素材に対して撥水性や吸水性を付与することができる繊維素材の改質方法を提供することを目的とする。
In order to solve the above-described conventional problems, the present invention provides a fiber material modifier that imparts a durable flexibility that does not easily deteriorate the flexibility effect even when the fiber material is washed, and It aims at providing the modification method of the used fiber raw material.
Moreover, it aims at providing the modification | reformation method of the fiber raw material which can provide water repellency and water absorption with respect to a fiber raw material simultaneously.

前記目的を達成するため、本発明の繊維素材改質剤は、一般式(1)で表される3級アミンと、エピハロヒドリンとの反応生成物を含有することを特徴とする。
(式(1)中、R1は炭素数6〜25の飽和または不飽和炭化水素基であり、R2、R3は互いに独立して、炭素数6〜25の飽和または不飽和炭化水素基または炭素数1〜5の炭化水素基または−(AO)nH基である。なお、Aは炭素数2〜3のアルキレン基、nはオキシアルキレン基(AO)の平均付加モル数を表す整数である。)
In order to achieve the above object, the fiber material modifier of the present invention is characterized by containing a reaction product of a tertiary amine represented by the general formula (1) and an epihalohydrin.
(In Formula (1), R1 is a saturated or unsaturated hydrocarbon group having 6 to 25 carbon atoms, and R2 and R3 are independently of each other a saturated or unsaturated hydrocarbon group having 6 to 25 carbon atoms or a carbon number. 1 to 5 hydrocarbon group or — (AO) nH group, wherein A is an alkylene group having 2 to 3 carbon atoms, and n is an integer representing the average number of added moles of the oxyalkylene group (AO).

本発明の繊維素材の改質方法は、繊維素材を、上記の繊維素材改質剤を含有するアルカリ水溶液の浴中で処理することを特徴とする。これにより、繊維素材に柔軟性とともに撥水性あるいは吸水性を付与することができる。また、繊維素材改質剤を適宜選択することにより、繊維素材の撥水性や吸水性をコントロールすることができる。   The fiber material modification method of the present invention is characterized in that the fiber material is treated in a bath of an aqueous alkaline solution containing the fiber material modifier. Thereby, water repellency or water absorption can be imparted to the fiber material together with flexibility. Further, the water repellency and water absorption of the fiber material can be controlled by appropriately selecting the fiber material modifier.

また、本発明の繊維素材の改質方法は、繊維素材を、上記の繊維素材改質剤を含有するアルカリ水溶液の浴中で処理した後、さらにアニオン性化合物または両性化合物から選ばれる1種以上の化合物を含有する浴中で処理することを特徴とする。これにより、繊維素材の撥水性あるいは吸水性がさらに向上するので、繊維素材改質剤と組合せることによって、繊維素材の撥水性や吸水性をコントロールすることができる。   Moreover, the method for modifying a fiber material according to the present invention is one or more selected from an anionic compound or an amphoteric compound after treating the fiber material in a bath of an alkaline aqueous solution containing the fiber material modifier. The treatment is performed in a bath containing the compound of As a result, the water repellency or water absorption of the fiber material is further improved, and the water repellency and water absorption of the fiber material can be controlled by combining with the fiber material modifier.

本発明の繊維素材改質剤を繊維素材の改質加工に使用することにより、繊維素材に柔軟性とともに撥水性あるいは吸水性を付与することができ、しかもこれらの効果は、洗濯後においても維持することが可能である。したがって、従来のカチオン性界面活性剤、アニオン性界面活性剤、非イオン性界面活性剤からなる柔軟剤と比較して、洗濯による繊維素材からの脱落がほとんどないので、洗濯の度に処理をすることなく柔軟効果と、撥水効果あるいは吸水効果を持続することができる。また、高分子タイプの柔軟剤と比較すると、繊維同士を接着することがないので、良好な柔軟性を付与することができる。   By using the fiber material modifier of the present invention for the modification processing of the fiber material, the fiber material can be imparted with water repellency or water absorption as well as flexibility, and these effects are maintained even after washing. Is possible. Therefore, compared with conventional softeners made of cationic surfactants, anionic surfactants, and nonionic surfactants, there is almost no dropout from the fiber material due to washing, so each time washing is performed It is possible to maintain the softening effect, the water repellent effect or the water absorbing effect without any problems. Moreover, compared with a polymer type softening agent, the fibers are not bonded to each other, and therefore, good flexibility can be imparted.

さらに、本発明の繊維素材の改質方法により改質した繊維素材は、繊維製品に吸水性、速乾性などの機能を付与することが可能となる。   Furthermore, the fiber material modified by the fiber material modification method of the present invention can impart functions such as water absorption and quick drying to the fiber product.

繊維素材改質剤による推定改質モデル。Estimated modification model with fiber material modifier.

本発明の繊維素材改質剤は、前記一般式(1)で表される3級アミンと、エピハロヒドリンとの反応生成物を含有することを特徴とするものであり、反応には一般式(1)に示される3級アミンが使用される。
一般式(1)において、R1は炭素数6〜25、好ましくは炭素数10〜22、さらに好ましくは炭素数12〜18の飽和または不飽和炭化水素基である。炭化水素基としては、アルキル基またはアルケニル基等の脂肪族基があげられる。
R2、R3は互いに独立して、炭素数6〜25、好ましくは炭素数10〜22、さらに好ましくは炭素数12〜18の飽和または不飽和炭化水素基、または、炭素数1〜5、好ましくは炭素数1〜3の直鎖または分岐の炭化水素基、または、−(AO)nH基である。なお、Aは炭素数2〜3のアルキレン基、nはオキシアルキレン基(AO)の平均付加モル数を表す整数である。
The fiber material modifier of the present invention contains a reaction product of a tertiary amine represented by the general formula (1) and an epihalohydrin, and the reaction is represented by the general formula (1). The tertiary amine shown in) is used.
In the general formula (1), R1 is a saturated or unsaturated hydrocarbon group having 6 to 25 carbon atoms, preferably 10 to 22 carbon atoms, and more preferably 12 to 18 carbon atoms. Examples of the hydrocarbon group include aliphatic groups such as alkyl groups and alkenyl groups.
R2 and R3 are each independently a saturated or unsaturated hydrocarbon group having 6 to 25 carbon atoms, preferably 10 to 22 carbon atoms, more preferably 12 to 18 carbon atoms, or 1 to 5 carbon atoms, preferably It is a C1-C3 linear or branched hydrocarbon group, or-(AO) nH group. In addition, A is a C2-C3 alkylene group, n is an integer showing the average addition mole number of an oxyalkylene group (AO).

上記R1、R2、R3の炭素数が全て5以下の場合は、十分な柔軟性が得られなくなり、本発明の目的を達し得なくなる。一方、分子中に炭素数26以上の炭化水素基を有する場合は、反応生成物の水に対する溶解性が低くなるため処理浴が増粘して使用し難くなる場合や、反応生成物が水に溶解しなくなり改質剤となり得なくなる場合がある。   When the carbon numbers of R1, R2, and R3 are all 5 or less, sufficient flexibility cannot be obtained and the object of the present invention cannot be achieved. On the other hand, when the molecule has a hydrocarbon group having 26 or more carbon atoms, the solubility of the reaction product in water decreases, so that the treatment bath becomes thick and difficult to use, or the reaction product is in water. It may not dissolve and become a modifier.

一般式(1)において、炭素数1〜5の直鎖または分岐の炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基等があげられる。特にメチル基が好ましい。   In the general formula (1), examples of the linear or branched hydrocarbon group having 1 to 5 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group. A methyl group is particularly preferable.

一般式(1)において、−(AO)nH基は、Aが炭素数2〜3のアルキレン基であり、例えば、エチレン基、トリメチレン基、プロピレン基等があげられる。このうち、エチレン基またはプロピレン基が好ましい。平均付加モル数(n)は、好ましくは1〜50、さらに好ましくは1〜20である。また、ポリオキシアルキレン基が、エチレンオキサイドとプロピレンオキサイド共重合体の場合には、ブロック型、ランダム型の何れでも良い。   In the general formula (1), the — (AO) nH group is an alkylene group having 2 to 3 carbon atoms, and examples thereof include an ethylene group, a trimethylene group, and a propylene group. Among these, an ethylene group or a propylene group is preferable. The average added mole number (n) is preferably 1-50, more preferably 1-20. Further, when the polyoxyalkylene group is an ethylene oxide and propylene oxide copolymer, either a block type or a random type may be used.

具体的には、R1が炭素数6〜25の飽和または不飽和炭化水素基で、R2、R3が炭素数1〜5の直鎖または分岐の炭化水素基である3級アミンとしては、ジメチルオクチルアミン、ジメチルラウリルアミン、ジメチルステアリルアミン、ジメチルベヘニルアミン、ジブチルステアリルアミン等があげられる。   Specifically, the tertiary amine in which R1 is a saturated or unsaturated hydrocarbon group having 6 to 25 carbon atoms, and R2 and R3 are linear or branched hydrocarbon groups having 1 to 5 carbon atoms, includes dimethyloctyl. Examples include amine, dimethyl lauryl amine, dimethyl stearyl amine, dimethyl behenyl amine, and dibutyl stearyl amine.

R1、R2が炭素数6〜25の飽和または不飽和炭化水素基で、R3が炭素数1〜5の直鎖または分岐の炭化水素基である3級アミンとしては、メチルジオクチルアミン、メチルジラウリルアミン、メチルジステアリルアミン、メチルジオレイルアミン、メチルジベヘニルアミン等があげられる。   Tertiary amines in which R1 and R2 are saturated or unsaturated hydrocarbon groups having 6 to 25 carbon atoms and R3 is a linear or branched hydrocarbon group having 1 to 5 carbon atoms include methyldioctylamine and methyldilauryl Examples include amine, methyl distearyl amine, methyl dioleyl amine, and methyl dibehenyl amine.

R1が炭素数6〜25の飽和または不飽和炭化水素基で、R2、R3が−(AO)nH基である3級アミンとしては、N,N−ビス(ポリオキシエチレン(n=5))ベヘニルアミン、N,N−ビス(ポリオキシプロピレン(n=7.5))ステアリルアミン、N,N−ビス(ポリオキシエチレン(n=2.5)ポリオキシプロピレン(n=2.5))ラウリルアミン、N,N−ビス(ポリオキシエチレン(n=1))オクチルアミン等があげられる。
R1、R2が炭素数6〜25の飽和または不飽和炭化水素基で、R3が−(AO)nH基である3級アミンとしては、ポリオキシエチレン(n=20)ジステアリルアミン、オキシエチレン(n=1))ジラウリルアミン、ポリオキシエチレン(n=20)ジオレイルアミン等があげられる。
The tertiary amine in which R1 is a saturated or unsaturated hydrocarbon group having 6 to 25 carbon atoms and R2 and R3 are — (AO) nH groups includes N, N-bis (polyoxyethylene (n = 5)) Behenylamine, N, N-bis (polyoxypropylene (n = 7.5)) stearylamine, N, N-bis (polyoxyethylene (n = 2.5) polyoxypropylene (n = 2.5)) Examples include laurylamine, N, N-bis (polyoxyethylene (n = 1)) octylamine, and the like.
Tertiary amines in which R1 and R2 are saturated or unsaturated hydrocarbon groups having 6 to 25 carbon atoms and R3 is a — (AO) nH group include polyoxyethylene (n = 20) distearylamine, oxyethylene ( n = 1)) dilaurylamine, polyoxyethylene (n = 20) dioleylamine and the like.

R1、R2、R3が炭素数6〜25の飽和または不飽和炭化水素基である3級アミンとしては、トリラウリルアミン、トリステアリルアミン、トリベヘニルアミン等があげられる。   Examples of the tertiary amine in which R1, R2, and R3 are saturated or unsaturated hydrocarbon groups having 6 to 25 carbon atoms include trilaurylamine, tristearylamine, and tribehenylamine.

3級アミンの好ましい具体例としては、ジメチルアルキルアミン、ジメチルアルケニルアミン、メチルジアルキルアミン、メチルジアルケニルアミン、N,N−ビス(ポリオキシアルキレン)アルキルアミンまたはこれらの混合物があげられる。ここで、アルキル基およびアルケニル基は、炭素数6〜25、好ましくは炭素数10〜22、さらに好ましくは炭素数12〜18である。   Preferable specific examples of the tertiary amine include dimethylalkylamine, dimethylalkenylamine, methyldialkylamine, methyldialkenylamine, N, N-bis (polyoxyalkylene) alkylamine or a mixture thereof. Here, the alkyl group and the alkenyl group have 6 to 25 carbon atoms, preferably 10 to 22 carbon atoms, and more preferably 12 to 18 carbon atoms.

本発明で用いる一般式(1)で表わされる3級アミンは、商業的に入手できるものを使用することもできるし、公知の方法により合成することもできる。   As the tertiary amine represented by the general formula (1) used in the present invention, a commercially available one can be used, or it can be synthesized by a known method.

本発明の繊維素材改質剤は、繊維素材に対して柔軟性を付与すると同時に撥水性あるいは吸水性を付与することができる。撥水性あるいは吸水性の付与は、主に、前記3級アミンの炭化水素基の炭素鎖長を選択することで制御することができる。   The fiber material modifier of the present invention can impart flexibility to the fiber material and simultaneously impart water repellency or water absorption. The provision of water repellency or water absorption can be controlled mainly by selecting the carbon chain length of the hydrocarbon group of the tertiary amine.

例えば、柔軟性と同時に撥水性を付与するには、R1が炭素数20〜25の飽和炭化水素基で、R2、R2が炭素数1〜5の直鎖または分岐の炭化水素基である、3級アミンが好ましい。   For example, in order to impart water repellency simultaneously with flexibility, R1 is a saturated hydrocarbon group having 20 to 25 carbon atoms, and R2 and R2 are linear or branched hydrocarbon groups having 1 to 5 carbon atoms. Secondary amines are preferred.

一方で、柔軟性と同時に吸水性を付与するには、R1が炭素数6〜18の飽和または不飽和の炭化水素基で、R2、R3が互いに独立して、炭素数1〜5の直鎖または分岐の炭化水素基またはポリオキシアルキレン基である、3級アミンが好ましい。   On the other hand, in order to impart water absorption simultaneously with flexibility, R1 is a saturated or unsaturated hydrocarbon group having 6 to 18 carbon atoms, and R2 and R3 are independent of each other, and are straight chain having 1 to 5 carbon atoms. Or the tertiary amine which is a branched hydrocarbon group or a polyoxyalkylene group is preferable.

エピハロヒドリンとしては、エピクロロヒドリン、エピブロモヒドリン、エピヨードヒドリンがあげられるが、汎用性やコストの面からエピクロロヒドリンが好ましい。   Examples of the epihalohydrin include epichlorohydrin, epibromohydrin, and epiiodohydrin, and epichlorohydrin is preferable from the viewpoint of versatility and cost.

前記の3級アミンとエピハロヒドリンとの反応は、無機酸を用いるか否かによって、3通りの方法により実施することができる。   The reaction of the tertiary amine and epihalohydrin can be carried out by three methods depending on whether or not an inorganic acid is used.

無機酸を用いる場合には2通りの方法があり、1つは、3級アミンに塩酸等の無機酸水溶液を滴下して3級アミンの塩を調製した後、エピハロヒドリンを滴下する方法であり、もう1つの方法は、3級アミンにエピハロヒドリンを滴下して反応させた後、さらに塩酸等の無機酸水溶液を滴下する方法である。   In the case of using an inorganic acid, there are two methods, one is a method in which an aqueous salt of an inorganic acid such as hydrochloric acid is added dropwise to a tertiary amine to prepare a tertiary amine salt, and then epihalohydrin is added dropwise. Another method is a method in which an epihalohydrin is dropped into a tertiary amine and reacted, and then an aqueous inorganic acid solution such as hydrochloric acid is further dropped.

無機酸としては、塩酸、フッ化水素酸、臭化水素酸、ヨウ化水素酸等の無機酸が好ましく、塩酸が特に好ましい。   As the inorganic acid, inorganic acids such as hydrochloric acid, hydrofluoric acid, hydrobromic acid and hydroiodic acid are preferable, and hydrochloric acid is particularly preferable.

残る1つの方法は塩酸等の無機酸を用いない方法であり、3級アミンにエピハロヒドリンを滴下して反応させるだけで反応を終了する方法である。   The remaining one is a method that does not use an inorganic acid such as hydrochloric acid, and is a method in which the reaction is terminated only by dropping an epihalohydrin into a tertiary amine to cause a reaction.

これらの方法による反応生成物の詳細は不明であるが、塩酸等の無機酸を用いる2つの方法の場合の反応生成物は、下記一般式(2)に示す4級アンモニウム塩が主成分であると推定される。
Although the details of the reaction product by these methods are unknown, the reaction product in the case of the two methods using an inorganic acid such as hydrochloric acid is mainly composed of a quaternary ammonium salt represented by the following general formula (2). It is estimated to be.

一方、塩酸等の無機酸を用いない場合の反応生成物は、下記一般式(3)に示す4級アンモニウム塩が主成分であると推定される。
On the other hand, it is presumed that the reaction product when no inorganic acid such as hydrochloric acid is used is mainly composed of a quaternary ammonium salt represented by the following general formula (3).

本発明の繊維素材改質剤による繊維素材の処理は、アルカリ水溶液中で実施する。アルカリ水溶液のpHは8以上、より好ましくは10以上であり、アルカリ水溶液としては水酸化ナトリウムや水酸化カリウムの水溶液が好適である。   The fiber material is treated with the fiber material modifier of the present invention in an aqueous alkaline solution. The pH of the alkaline aqueous solution is 8 or more, more preferably 10 or more. As the alkaline aqueous solution, an aqueous solution of sodium hydroxide or potassium hydroxide is suitable.

繊維素材を、本発明の繊維素材改質剤を含有するアルカリ浴中で処理する場合、繊維素材改質剤の使用量は、繊維素材に対して、有効成分で1〜300重量%であり、好ましくは10〜250重量%、さらに好ましくは20〜200重量%である。繊維素材改質剤の使用量が1重量%以上であれば、繊維素材に対して効率よく反応し、柔軟性とともに撥水性あるいは吸水性を付与することができる。一方、使用量が300重量%以下であれば、アルカリ浴の増粘や繊維素材改質剤の分離が発生することがなく、また必要以上に使用することによって不経済となるのを避けることができる。   When the fiber material is treated in an alkaline bath containing the fiber material modifier of the present invention, the amount of the fiber material modifier used is 1 to 300% by weight as an active ingredient with respect to the fiber material, Preferably it is 10-250 weight%, More preferably, it is 20-200 weight%. If the usage-amount of a fiber raw material modifier is 1 weight% or more, it can react efficiently with respect to a fiber raw material, and can provide water repellency or water absorption with a softness | flexibility. On the other hand, if the amount used is 300% by weight or less, the thickening of the alkaline bath and the separation of the fiber material modifier do not occur, and it is possible to avoid becoming uneconomical by using more than necessary. it can.

繊維素材改質剤の繊維素材に対する固着量は、0.05〜10重量%であり、好ましくは0.1〜8重量%、さらに好ましくは0.2〜5重量%である。   The fixing amount of the fiber material modifier to the fiber material is 0.05 to 10% by weight, preferably 0.1 to 8% by weight, and more preferably 0.2 to 5% by weight.

本発明の繊維素材改質剤を含有するアルカリ浴で繊維素材を処理する方法としては、特に限定されるものではなく、静置状態あるいは撹拌しながら繊維素材を浸漬する浸漬法、パッド・ロール法、カレンダー法、インクジェットプリント法、パッド・ドライ・キュアー法、パッド・スチーム法を含むパッディング法、捺染法、スプレー法、コールドバッチ法などを用いることができるが、中でも浸漬法が好ましい。   The method for treating the fiber material in the alkaline bath containing the fiber material modifier of the present invention is not particularly limited, and is a dipping method in which the fiber material is immersed while standing or stirring, a pad roll method. A calendering method, an ink jet printing method, a pad-dry cure method, a padding method including a pad-steam method, a textile printing method, a spray method, a cold batch method, and the like can be used.

本発明の繊維素材改質剤により繊維素材を改質する場合の、処理浴の浴比や処理温度、処理時間などの処理条件は、繊維素材改質剤の使用量や固着量に応じて適宜決定するが、通常、浴比は1:10〜1:20、処理温度は40〜80℃、処理時間は30〜120分で行う。   When modifying the fiber material with the fiber material modifier of the present invention, the treatment conditions such as the bath ratio of the treatment bath, the treatment temperature, and the treatment time are appropriately determined according to the use amount and the fixing amount of the fiber material modifier. Usually, the bath ratio is 1:10 to 1:20, the treatment temperature is 40 to 80 ° C., and the treatment time is 30 to 120 minutes.

本発明において、繊維素材は特に限定されるものではないが、繊維の構造中にヒドロキシル基やカルボキシル基などの活性水素を持つ繊維、中でも、セルロース繊維やポリビニルアルコール(ビニロン)繊維、ポリクラール繊維(ビニルアルコール−塩化ビニルグラフト繊維)が好適である。   In the present invention, the fiber material is not particularly limited, but fibers having active hydrogen such as hydroxyl group and carboxyl group in the fiber structure, among them, cellulose fiber, polyvinyl alcohol (vinylon) fiber, polyclar fiber (vinyl) Alcohol-vinyl chloride graft fibers) are preferred.

セルロース繊維としては、ビスコースレーヨン(普通レーヨン、ポリノジック、ポリビスコース等)、銅アンモニアレーヨン(キュプラ、ベンベルグ(登録商標)等)、精製セルロース(例えば英国コートールズ社製、製品名“テンセル”)などの再生セルロース繊維、酢酸セルロース(アセテート、ジアセテート、トリアセテート)繊維、半合成セルロース繊維、木綿繊維、麻繊維、木質繊維等があげられる。   Cellulose fibers include viscose rayon (ordinary rayon, polynosic, polyviscose, etc.), copper ammonia rayon (cupra, Bemberg (registered trademark), etc.), purified cellulose (for example, product name “Tencel” manufactured by Courtols, UK), etc. Regenerated cellulose fiber, cellulose acetate (acetate, diacetate, triacetate) fiber, semi-synthetic cellulose fiber, cotton fiber, hemp fiber, wood fiber and the like.

本発明の繊維素材改質剤は、アルカリ水溶液中で繊維素材中の活性水素と反応して脱ハロゲン反応を起こして繊維素材と反応するため、洗濯耐久性に優れた柔軟性と、同時に撥水性あるいは吸水性を付与する。   The fiber material modifier of the present invention reacts with the active hydrogen in the fiber material in an alkaline aqueous solution to cause a dehalogenation reaction to react with the fiber material, so that it has excellent washing durability and water repellency at the same time. Or water absorption is provided.

特にセルロース繊維は、ナイロン等の合成繊維と比べて吸水性が良好であり、肌着をはじめ、様々な用途に使用されているが、一方で繊維自身が合成繊維に比べて柔軟性に劣り、また、洗濯後の乾燥時に乾きにくいという難点がある。本発明の繊維素材改質剤を用いることにより、セルロース繊維等の繊維に対して柔軟性を与えることができ、かつ、撥水性あるいは吸水性をコントロールすることが可能となる。図1は、本発明の繊維素材改質剤をセルロース繊維に適用したときの推定モデル図である。   Cellulose fibers, in particular, have better water absorption than synthetic fibers such as nylon, and are used in various applications including underwear. On the other hand, the fibers themselves are less flexible than synthetic fibers. There is a drawback that it is difficult to dry after washing. By using the fiber material modifier of the present invention, flexibility such as cellulose fiber can be given, and water repellency or water absorption can be controlled. FIG. 1 is an estimated model diagram when the fiber material modifier of the present invention is applied to cellulose fibers.

本発明において、繊維素材の形態は、特に限定されず、綿(ワタ)、トウ、糸、織物、編物、不織布等、何れの形態でもよい。中でも、綿(ワタ)やトウあるいは糸の状態で、本発明の繊維素材改質剤ならびに改質方法により改質した繊維素材を織物や編物とする場合は、撥水性や吸水性の異なる2種以上の繊維を使用できるため、吸水速乾性や吸放湿性等の様々な機能を織物や編物に付与することができる。   In the present invention, the form of the fiber material is not particularly limited, and may be any form such as cotton, tow, thread, woven fabric, knitted fabric, and non-woven fabric. In particular, when the fiber material modified by the fiber material modifier and the modification method of the present invention is used as a woven fabric or a knitted fabric in the state of cotton, tow or yarn, two types having different water repellency and water absorption are used. Since the above fibers can be used, various functions such as water-absorbing quick-drying and moisture-absorbing / releasing properties can be imparted to the woven fabric and knitted fabric.

また、繊維素材としてパルプや木材チップを用いることもでき、紙パックなどの成型品の状態で改質、あるいは成型前のパルプスラリーや木材チップスラリーの状態で改質することもできるが、成型前のパルプスラリーや木材チップスラリー中に本発明の繊維素材改質剤を添加することが工程上好ましい。   Pulp and wood chips can also be used as the fiber material, and it can be modified in the form of a molded product such as a paper pack, or can be modified in the state of pulp slurry or wood chip slurry before molding. It is preferable in the process that the fiber material modifier of the present invention is added to the pulp slurry or wood chip slurry.

本発明の繊維素材改質剤は、エマルションとして水に分散して使用することもできる。エマルション化の方法は、本発明の繊維素材改質剤に水を加えて、ホモミキサー等の乳化機で乳化・分散してもよいし、界面活性剤を乳化剤として加えて乳化・分散してもよい。乳化剤としては、非イオン性界面活性剤またはカチオン性界面活性剤を用いることができるが、中でも、活性水素を持たない界面活性剤が好ましい。   The fiber material modifier of the present invention can also be used by dispersing in water as an emulsion. The emulsification method may be carried out by adding water to the fiber material modifier of the present invention and emulsifying / dispersing it with an emulsifier such as a homomixer or by adding a surfactant as an emulsifier. Good. As the emulsifier, a nonionic surfactant or a cationic surfactant can be used, and among them, a surfactant having no active hydrogen is preferable.

本発明の繊維素材改質剤を用いる場合に、本発明による効果を阻害しない範囲で、浸透性を付与するための各種界面活性剤や、公知の繊維用柔軟剤、あるいは繊維を連続的に処理する場合に均一性を付与するためのマイグレーション防止剤や増粘剤の、繊維製品に常用される薬剤を併用することもできる。併用する薬剤は、活性水素をもたない薬剤が好ましい。   When the fiber material modifier of the present invention is used, various surfactants for imparting permeability, known fiber softeners, or fibers are continuously treated within a range that does not impair the effects of the present invention. In this case, a migration inhibitor and a thickening agent for imparting uniformity can be used in combination with agents commonly used in textiles. The drug used in combination is preferably a drug having no active hydrogen.

本発明の繊維の改質法によれば、繊維素材を本発明の繊維素材改質剤で処理した後、引き続いて繊維素材をアニオン性化合物あるいは両性化合物で処理することにより、繊維素材の柔軟性に影響を及ぼすことなく、撥水性あるいは吸水性を制御することができる。また、柔軟性をさらに向上することも可能となる。アニオン性化合物、両性化合物としては、アニオン性界面活性剤あるいは両性界面活性剤から選ばれる少なくとも1種であることが、実用的であり好ましい。   According to the fiber modification method of the present invention, after the fiber material is treated with the fiber material modifier of the present invention, the fiber material is subsequently treated with an anionic compound or an amphoteric compound, so that the flexibility of the fiber material is improved. The water repellency or water absorption can be controlled without affecting the water content. In addition, the flexibility can be further improved. As an anionic compound and an amphoteric compound, it is practically preferable that it is at least one selected from an anionic surfactant or an amphoteric surfactant.

アニオン性界面活性剤としては、脂肪族カルボン酸塩、アルコールまたはアルコールのアルキレンオキサイド付加物の硫酸エステル塩、あるいはスルホン酸塩、リン酸エステル塩などが挙げられ、両性界面活性剤としてはイミダゾリニウムベタイン系、アミドプロピルベタイン系、アラニン系があげられる。   Examples of anionic surfactants include aliphatic carboxylates, sulfate esters of alcohols or alkylene oxide adducts of alcohols, sulfonates, phosphate esters, etc., and amphoteric surfactants include imidazolinium. Examples include betaine, amidopropyl betaine, and alanine.

これらのアニオン性化合物、両性化合物の中でも、アニオン性化合物が好ましい。アニオン性化合物は、本発明の繊維素材改質剤と強固に結合することが可能であるため、洗濯耐久性に優れ、また、その種類によって撥水性や吸水性がよりコントロールし易くなるためである。   Of these anionic compounds and amphoteric compounds, anionic compounds are preferred. This is because the anionic compound can be firmly bonded to the fiber material modifier of the present invention, so that it has excellent washing durability, and depending on the type, the water repellency and water absorption can be more easily controlled. .

撥水性を高めるのに用いられるアニオン性化合物としては、ステアリン酸Naやベヘン酸Naなどの炭素数18〜22の石鹸や、α−オレフィンスルホン酸Na、ラウリルリン酸エステルなどのリン酸エステルがあげられる。   Examples of anionic compounds used to increase water repellency include soaps having 18 to 22 carbon atoms such as Na stearate and Na behenate, and phosphate esters such as α-olefin sulfonate Na and lauryl phosphate. It is done.

一方、吸水性を高めるのに用いられるアニオン性化合物としては、ラウリン酸Naなどの炭素数10〜12の石鹸、ジオクチルスルホコハク酸Naやジオレイルスルホコハク酸Naなどのスルホコハク酸塩などがあげられる。   On the other hand, examples of the anionic compound used to increase water absorption include soaps having 10 to 12 carbon atoms such as Na laurate, and sulfosuccinates such as dioctyl sulfosuccinate Na and dioleyl sulfosuccinate Na.

また、繊維素材を本発明の繊維素材改質材で処理した後、引き続いて柔軟剤で処理することにより、さらに高い柔軟性および洗濯耐久性を付与することができる。柔軟剤は公知の化合物が使用できるが、アニオン性柔軟剤あるいは両性柔軟剤から選ばれる1種以上であることが実用的であり、中でもアニオン性柔軟剤が好ましい。   Further, after the fiber material is treated with the fiber material modifying material of the present invention, and subsequently treated with a softening agent, higher flexibility and durability to washing can be imparted. A known compound can be used as the softening agent, but it is practical that the softening agent is at least one selected from an anionic softening agent or an amphoteric softening agent, and among these, an anionic softening agent is preferable.

アニオン性柔軟剤としては、長鎖アルキルスルホン酸塩やアニオン変性シリコーンの他、市販のアニオン性柔軟剤を使用することができる。中でもアニオン変性シリコーンが好ましく、特にカルボキシ変性シリコーンが洗濯耐久性の向上の面より好ましい。   As an anionic softener, a commercially available anionic softener can be used in addition to a long-chain alkyl sulfonate and an anion-modified silicone. Among these, anion-modified silicone is preferable, and carboxy-modified silicone is particularly preferable from the viewpoint of improving washing durability.

これらのアニオン性化合物あるいは両性化合物による繊維素材の処理、および、アニオン性柔軟剤あるいは両性柔軟剤による繊維素材の処理は、本発明の繊維素材改質剤で改質した繊維素材を乾燥してから処理してもよいし、本発明の繊維素材改質剤で処理し絞った状態の湿潤状態の繊維素材を引き続き処理してもよい。   The treatment of the fiber material with these anionic compounds or amphoteric compounds and the treatment of the fiber material with the anionic softener or amphoteric softener are performed after drying the fiber material modified with the fiber material modifier of the present invention. You may process, and you may process the fiber material of the wet state of the state which processed with the fiber material modifier of this invention, and was squeezed.

アニオン性化合物あるいは両性化合物で繊維素材を処理する方法は、前記の本発明の繊維素材改質剤による処理方法と同様の方法で行うことができる。すなわち、これらのアニオン性化合物あるいは両性化合物の水溶液を調製し、静置状態あるいは撹拌しながら繊維素材を浸漬する浸漬法、パッド・ロール法、カレンダー法、インクジェットプリント法、パッド・ドライ・キュアー法、パッド・スチーム法を含むパッディング法、捺染法、スプレー法、コールドバッチ法などにより処理することができるが、中でも浸漬法が好ましい。   The method of treating a fiber material with an anionic compound or an amphoteric compound can be carried out in the same manner as the treatment method using the fiber material modifier of the present invention. That is, an aqueous solution of these anionic compounds or amphoteric compounds is prepared, a dipping method in which a fiber material is immersed while standing or stirring, a pad-roll method, a calendar method, an inkjet printing method, a pad-dry cure method, The padding method including the pad / steam method, the textile printing method, the spraying method, the cold batch method and the like can be used, but the dipping method is particularly preferable.

アニオン性化合物あるいは両性化合物の好ましい使用量は、繊維素材に対して有効成分で0.5〜15重量%である。   The preferred use amount of the anionic compound or amphoteric compound is 0.5 to 15% by weight as an active ingredient with respect to the fiber material.

本発明の繊維素材改質剤を含有するアルカリ水溶液の浴中で繊維素材を処理した後、さらにアニオン性化合物または両性化合物を含有する浴中で処理する場合の、処理浴の浴比や処理温度、処理時間などの処理条件は、処理化合物の種類に応じて適宜決定するが、通常、浴比は1:10〜1:20、処理温度は60〜100℃、処理時間は5〜60分で行う。その後、処理後の繊維素材を80〜100℃で30分〜60分乾燥することにより、改質した繊維素材を得ることができる。処理後の繊維素材は、必要に応じて水洗等の処理を行い、その後に乾燥してもよい。   After treating the fiber material in a bath of an alkaline aqueous solution containing the fiber material modifier of the present invention, and further treating in a bath containing an anionic compound or amphoteric compound, the bath ratio and treatment temperature of the treatment bath The treatment conditions such as the treatment time are appropriately determined according to the kind of the treatment compound. Usually, the bath ratio is 1:10 to 1:20, the treatment temperature is 60 to 100 ° C., and the treatment time is 5 to 60 minutes. Do. Then, the modified fiber material can be obtained by drying the treated fiber material at 80 to 100 ° C. for 30 to 60 minutes. The treated fiber material may be subjected to a treatment such as washing as necessary and then dried.

アニオン性柔軟剤あるいは両性柔軟剤で繊維素材を処理する方法も、前記のアニオン性化合物あるいは両性化合物による処理方法と同様の方法で行うことができる。すなわち、アニオン性柔軟剤あるいは両性柔軟剤の水溶液を調製し、静置状態あるいは撹拌しながら繊維素材を浸漬する浸漬法、パッド・ロール法、カレンダー法、インクジェットプリント法、パッド・ドライ・キュアー法、パッド・スチーム法を含むパッディング法、捺染法、スプレー法、コールドバッチ法などにより処理することができるが、中でも浸漬法が好ましい。   A method of treating a fiber material with an anionic softener or an amphoteric softener can also be carried out in the same manner as the treatment method using the anionic compound or amphoteric compound. In other words, an aqueous solution of an anionic softener or an amphoteric softener is prepared, a dipping method in which a fiber material is immersed while standing or stirring, a pad roll method, a calendar method, an ink jet printing method, a pad dry cure method, The padding method including the pad / steam method, the textile printing method, the spraying method, the cold batch method and the like can be used, but the dipping method is particularly preferable.

アニオン性柔軟剤あるいは両性柔軟剤の好ましい使用量は、繊維素材に対して有効成分で0.5〜50重量%である。   The preferred use amount of the anionic softener or amphoteric softener is 0.5 to 50% by weight as an active ingredient relative to the fiber material.

本発明の繊維素材改質剤を含有するアルカリ水溶液の浴中で繊維素材を処理した後、さらにアニオン性柔軟剤または両性柔軟剤を含有する浴中で処理する場合の、処理浴の浴比や処理温度、処理時間などの処理条件は、処理化合物の種類に応じて適宜決定するが、通常、浴比は1:10〜1:20、処理温度は60〜100℃、処理時間は5〜60分で行う。その後、処理後の繊維素材を80〜100℃で30分〜60分乾燥することにより、改質した繊維素材を得ることができる。処理後の繊維素材は、必要に応じて水洗等の処理を行い、その後に乾燥してもよい。   After treating the fiber material in a bath of an alkaline aqueous solution containing the fiber material modifier of the present invention, and further treating in a bath containing an anionic softener or amphoteric softener, The treatment conditions such as treatment temperature and treatment time are appropriately determined according to the type of treatment compound. Usually, the bath ratio is 1:10 to 1:20, the treatment temperature is 60 to 100 ° C., and the treatment time is 5 to 60. Do in minutes. Then, the modified fiber material can be obtained by drying the treated fiber material at 80 to 100 ° C. for 30 to 60 minutes. The treated fiber material may be subjected to a treatment such as washing as necessary and then dried.

以下に、実施例を挙げて本発明をさらに詳しく説明する。しかしながら、本発明はこれら実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(評価方法)
本発明に用いた評価方法は以下の通りである。
(1)柔軟性
綿ブロードを使用して処理を行い、JIS L1096E法(Handle−O−Meter法)に準じて柔軟性を測定した。数値(g)は小さい方が柔軟性良好と評価した。
(Evaluation methods)
The evaluation method used in the present invention is as follows.
(1) Flexibility Processing was performed using cotton broad, and the flexibility was measured according to JIS L1096E method (Handle-O-Meter method). The smaller the numerical value (g), the better the flexibility.

(2)撥水性、吸水性
綿ブロードを用いて処理を行い、JIS L1907吸水速度B法(バイレック法)に準じて測定を行った。数値(mm)が小さい方が撥水性良好、数値(mm)が大きい方が吸水性良好と評価した。
(2) Water repellency, water absorption A treatment was performed using cotton broad, and measurement was performed according to JIS L1907 water absorption speed B method (Byreck method). The smaller value (mm) was evaluated as good water repellency, and the larger value (mm) was evaluated as good water absorption.

(3)洗濯耐久性
綿ブロードを用いて処理を行い、JIS L0217 103法に準じて、家庭洗濯を10回繰り返した。洗濯後の柔軟性および撥水性、吸水性を上記の方法で測定し、洗濯前と洗濯後での差が少ないほど洗濯耐久性が良好と評価した。
(3) Durability for washing Treatment was performed using cotton broad, and household washing was repeated 10 times according to JIS L0217 103 method. The flexibility, water repellency and water absorption after washing were measured by the above methods, and the smaller the difference between before and after washing, the better the washing durability.

(合成例1)
撹拌機、コンデンサー、温度計、滴下装置を備えた500mlのコルベンに、100g(0.337mol)のジメチルステアリルアミンを仕込み、撹拌しながら80℃まで昇温した。80〜90℃にコントロールしながら塩酸溶液(36%)34.1g(0.337mol)を滴下した。滴下終了後、同じく80〜90℃にコントロールしながらエピクロロヒドリン31.1g(0.337mol)を滴下した。滴下終了後、90〜100℃にて2時間熟成して反応を終了し、目的の合成物を得た。次いで、水215gを添加して有効成分が40重量%になるように調製した。
(Synthesis Example 1)
A 500 ml Kolben equipped with a stirrer, a condenser, a thermometer, and a dropping device was charged with 100 g (0.337 mol) of dimethylstearylamine and heated to 80 ° C. while stirring. While controlling at 80 to 90 ° C., 34.1 g (0.337 mol) of a hydrochloric acid solution (36%) was added dropwise. After completion of the dropwise addition, 31.1 g (0.337 mol) of epichlorohydrin was dropped while controlling the temperature at 80 to 90 ° C. After completion of the dropwise addition, the reaction was terminated by aging at 90 to 100 ° C. for 2 hours to obtain the desired compound. Subsequently, 215 g of water was added to prepare an active ingredient to be 40% by weight.

(合成例2)
合成例1と同様にして、ジメチルドデシルアミンと塩酸溶液(36%)及びエピクロロヒドリンを各0.469mol使用し、反応させて目的の合成物を得た。次いで、水を添加して有効成分が40重量%になるように調製した。
(Synthesis Example 2)
In the same manner as in Synthesis Example 1, 0.469 mol of dimethyldodecylamine, hydrochloric acid solution (36%) and epichlorohydrin were used and reacted to obtain the target compound. Next, water was added to prepare an active ingredient to be 40% by weight.

(合成例3)
合成例1と同様にして、ジメチルベへニルアミンと塩酸溶液(36%)及びエピクロルヒドリンを各0.283mol使用し、反応させて目的の合成物を得た。次いで、水を添加して有効成分が40重量%になるように調製した。
(Synthesis Example 3)
In the same manner as in Synthesis Example 1, 0.283 mol each of dimethylbehenylamine, hydrochloric acid solution (36%) and epichlorohydrin were used and reacted to obtain the desired compound. Next, water was added to prepare an active ingredient to be 40% by weight.

(合成例4)
合成例1と同様にして、メチルジドデシルアミンと塩酸溶液(36%)及びエピクロルヒドリンを各0.272mol使用し、反応させて目的の合成物を得た。次いで、水を添加して有効成分が40重量%になるように調製した。
(Synthesis Example 4)
In the same manner as in Synthesis Example 1, 0.272 mol of methyl didodecylamine, hydrochloric acid solution (36%) and epichlorohydrin were used and reacted to obtain the desired compound. Next, water was added to prepare an active ingredient to be 40% by weight.

(合成例5)
合成例1と同様にして、メチルジオレイルアミンと塩酸溶液(36%)及びエピクロルヒドリンを各0.188mol使用し、反応させて目的の合成物を得た。次いで、水を添加して有効成分が40重量%になるように調製した。
(Synthesis Example 5)
In the same manner as in Synthesis Example 1, 0.188 mol of methyldioleylamine, hydrochloric acid solution (36%) and epichlorohydrin were used and reacted to obtain the desired compound. Next, water was added to prepare an active ingredient to be 40% by weight.

(合成例6)
合成例1と同様にして、N,N−ビス(ポリオキシエチレン(n=2))ステアリルアミンと塩酸溶液(36%)及びエピクロロヒドリンを各0.225mol使用し、反応させて目的の合成物を得た。次いで、水を添加して有効成分が40重量%になるように調製した。
(Synthesis Example 6)
In the same manner as in Synthesis Example 1, 0.225 mol each of N, N-bis (polyoxyethylene (n = 2)) stearylamine, hydrochloric acid solution (36%) and epichlorohydrin were used and reacted to obtain the target. A composite was obtained. Next, water was added to prepare an active ingredient to be 40% by weight.

(比較合成例1)
合成例1と同様にして、トリメチルアミンと塩酸溶液(36%)及びエピクロルヒドリンを各1.69mol使用し、反応させて目的の合成物を得た。次いで、水を添加して有効成分が40重量%になるように調製した。
(Comparative Synthesis Example 1)
In the same manner as in Synthesis Example 1, 1.69 mol each of trimethylamine, hydrochloric acid solution (36%) and epichlorohydrin were used and reacted to obtain the desired compound. Next, water was added to prepare an active ingredient to be 40% by weight.

(比較合成例2)
合成例1と同様にして、トリブチルアミンと塩酸溶液(36%)及びエピクロルヒドリンを各0.540mol使用し、反応させて目的の合成物を得た。次いで、水を添加して有効成分が40重量%になるように調製した。
(Comparative Synthesis Example 2)
In the same manner as in Synthesis Example 1, 0.540 mol each of tributylamine, hydrochloric acid solution (36%) and epichlorohydrin were used and reacted to obtain the desired compound. Next, water was added to prepare an active ingredient to be 40% by weight.

(比較合成例3)
撹拌機、コンデンサー、温度計、滴下装置を備えた500mlのコルベンに、100g(0.337mol)のジメチルステアリルアミンを仕込み、撹拌しながら80℃まで昇温した後、塩化ベンジル42.7g(0.337mol)と水50gを添加し、95〜100℃にて3時間熟成して反応を終了した。次いで、水164gを添加して有効成分が40重量%になるように調製した。
(Comparative Synthesis Example 3)
A 500 ml Kolben equipped with a stirrer, a condenser, a thermometer, and a dropping device was charged with 100 g (0.337 mol) of dimethylstearylamine, heated to 80 ° C. with stirring, and then 42.7 g (0. 337 mol) and 50 g of water were added and aged at 95-100 ° C. for 3 hours to complete the reaction. Next, 164 g of water was added to prepare an active ingredient to be 40% by weight.

(実施例1)
合成例1で得た水溶液100g(有効成分として40g)と水酸化ナトリウム10gを水で希釈して1Lとし処理液を調製した。
処理液を60℃に加温し、浴比が1:20となるよう綿ブロード50gを60分間浸漬した。60℃の温水で2回洗浄し、次いで水で1回洗浄し、pH6に中和した後、100℃で30分間乾燥して、本発明の加工布を得た。
得られた加工布について、柔軟性ならびに撥水性、吸水性を測定した。ついで、加工布の洗濯を10回繰り返した後、柔軟性ならび撥水性、吸水性を測定した。
Example 1
A treatment liquid was prepared by diluting 100 g of the aqueous solution obtained in Synthesis Example 1 (40 g as an active ingredient) and 10 g of sodium hydroxide with water to 1 L.
The treatment liquid was heated to 60 ° C., and 50 g of cotton broad was immersed for 60 minutes so that the bath ratio was 1:20. Washed twice with hot water at 60 ° C., then washed once with water, neutralized to pH 6 and then dried at 100 ° C. for 30 minutes to obtain a work cloth of the present invention.
The obtained processed fabric was measured for flexibility, water repellency and water absorption. Subsequently, after washing of the processed cloth was repeated 10 times, flexibility, water repellency and water absorption were measured.

(実施例2〜6)
合成例2〜6で調製した水溶液を用いる以外は、それぞれ実施例1と同様にして本発明の加工布を得た。得られた加工布の柔軟性ならびに撥水性、吸水性を測定し、ついで、加工布の洗濯を10回繰り返した後、柔軟性ならび撥水性、吸水性を測定した。
(Examples 2 to 6)
A processed fabric of the present invention was obtained in the same manner as in Example 1 except that the aqueous solutions prepared in Synthesis Examples 2 to 6 were used. The softness, water repellency, and water absorption of the processed fabric thus obtained were measured, and after washing the processed fabric 10 times, the flexibility, water repellency, and water absorbency were measured.

(実施例7)
合成例1で調製した水溶液25g(有効成分として10g)と水酸化カリウム2.5gを水で希釈して1Lとし処理液を調製した。
得られた処理液を用いて、実施例1と同様にして本発明の加工布を得た。得られた加工布の柔軟性ならびに撥水性、吸水性を測定し、ついで、加工布の洗濯を10回繰り返した後、柔軟性ならび撥水性、吸水性を測定した。
(Example 7)
A treatment solution was prepared by diluting 25 g of the aqueous solution prepared in Synthesis Example 1 (10 g as an active ingredient) and 2.5 g of potassium hydroxide with water to 1 L.
Using the obtained treatment liquid, a processed cloth of the present invention was obtained in the same manner as in Example 1. The softness, water repellency, and water absorption of the processed fabric thus obtained were measured, and after washing the processed fabric 10 times, the flexibility, water repellency, and water absorbency were measured.

(比較例1〜3)
比較合成例1〜3で得た水溶液を用いる以外は、それぞれ実施例1と同様にして加工布を得た。得られた加工布の柔軟性ならびに撥水性、吸水性を測定し、ついで、加工布の洗濯を10回繰り返した後、柔軟性ならび撥水性、吸水性を測定した。
(Comparative Examples 1-3)
Work cloths were obtained in the same manner as in Example 1 except that the aqueous solutions obtained in Comparative Synthesis Examples 1 to 3 were used. The softness, water repellency, and water absorption of the processed fabric thus obtained were measured, and after washing the processed fabric 10 times, the flexibility, water repellency, and water absorbency were measured.

(比較例4)
処理液を水のみとした以外は、実施例1と同様にして加工布を得た。得られた加工布の柔軟性ならびに撥水性、吸水性を測定し、ついで、加工布の洗濯を10回繰り返した後、柔軟性ならび撥水性、吸水性を測定した。
(Comparative Example 4)
A processed cloth was obtained in the same manner as in Example 1 except that the treatment liquid was only water. The softness, water repellency, and water absorption of the processed fabric thus obtained were measured, and after washing the processed fabric 10 times, the flexibility, water repellency, and water absorbency were measured.

実施例1〜7ならびに比較例1〜4の柔軟性ならびに撥水性、吸水性の測定結果を表1に示す。   Table 1 shows the measurement results of flexibility, water repellency, and water absorption of Examples 1 to 7 and Comparative Examples 1 to 4.

表1より、実施例1〜7の本発明の加工布は柔軟性に優れており、かつ、洗濯後も柔軟性の低下がないことがわかる。   From Table 1, it can be seen that the work cloths of the present invention of Examples 1 to 7 are excellent in flexibility and that there is no decrease in flexibility even after washing.

(実施例8)
実施例1と同様にして加工布を得た。得られた加工布をステアリン酸Na水溶液(処理濃度:10%owf)の浴中に、浴比1:20で、80℃で30分間浸漬し、水で1回洗浄した後、100℃、30分間乾燥して、アニオン処理加工布を得た。
得られたアニオン処理加工布について、柔軟性ならびに撥水性、吸水性を測定した。ついで、洗濯を10回繰り返した後、柔軟性ならび撥水性、吸水性を測定した。結果を表2に示す。
(Example 8)
A processed cloth was obtained in the same manner as in Example 1. The obtained processed cloth was immersed in a sodium stearate aqueous solution (treatment concentration: 10% owf) at a bath ratio of 1:20 at 80 ° C. for 30 minutes, washed once with water, and then at 100 ° C., 30 It was dried for a minute to obtain an anion-treated fabric.
The obtained anion-treated fabric was measured for flexibility, water repellency and water absorption. Subsequently, after washing was repeated 10 times, flexibility, water repellency and water absorption were measured. The results are shown in Table 2.

(実施例9〜14)
用いるアニオン性化合物を、表2に示すように代えた以外は、実施例8と同様にしてアニオン処理加工布を得た。なお、実施例14におけるラウリル燐酸エステルNaは、モノラウリル燐酸エステルNaとジラウリル燐酸エステルNaの混合物を使用した。
得られたアニオン処理加工布について、柔軟性ならびに撥水性、吸水性を測定した。ついで、洗濯を10回繰り返した後、柔軟性ならび撥水性、吸水性を測定した。
(Examples 9 to 14)
An anion-treated fabric was obtained in the same manner as in Example 8 except that the anionic compound used was changed as shown in Table 2. The lauryl phosphate Na in Example 14 was a mixture of monolauryl phosphate Na and dilauryl phosphate Na.
The obtained anion-treated fabric was measured for flexibility, water repellency and water absorption. Subsequently, after washing was repeated 10 times, flexibility, water repellency and water absorption were measured.

(実施例15)
実施例2と同様にして加工布を得た。得られた加工布をステアリン酸Na水溶液(処理濃度:10%owf)の浴中に、浴比1:20で、80℃で30分間浸漬し、水で1回洗浄した後、100℃、30分間乾燥して、アニオン処理加工布を得た。
得られたアニオン処理加工布について、柔軟性ならびに撥水性、吸水性を測定した。ついで、洗濯を10回繰り返した後、柔軟性ならび撥水性、吸水性を測定した。
(Example 15)
A work cloth was obtained in the same manner as in Example 2. The obtained processed cloth was immersed in a sodium stearate aqueous solution (treatment concentration: 10% owf) at a bath ratio of 1:20 at 80 ° C. for 30 minutes, washed once with water, and then at 100 ° C., 30 It was dried for a minute to obtain an anion-treated fabric.
The obtained anion-treated fabric was measured for flexibility, water repellency and water absorption. Subsequently, after washing was repeated 10 times, flexibility, water repellency and water absorption were measured.

(実施例16〜17)
用いるアニオン性化合物を、表2に示すように代えた以外は、実施例15と同様にしてアニオン処理加工布を得た。
得られたアニオン処理加工布について、柔軟性ならびに撥水性、吸水性を測定した。ついで、洗濯を10回繰り返した後、柔軟性ならび撥水性、吸水性を測定した。
(Examples 16 to 17)
An anion-treated fabric was obtained in the same manner as in Example 15 except that the anionic compound used was changed as shown in Table 2.
The obtained anion-treated fabric was measured for flexibility, water repellency and water absorption. Subsequently, after washing was repeated 10 times, flexibility, water repellency and water absorption were measured.

(実施例18)
アニオン性化合物としてベヘン酸Naを用い、その処理濃度を5%owfに代えた以外は、実施例15と同様にしてアニオン処理布を得た。
得られたアニオン処理加工布について、柔軟性ならびに撥水性、吸水性を測定した。ついで、洗濯を10回繰り返した後、柔軟性ならび撥水性、吸水性を測定した。
(Example 18)
An anion-treated cloth was obtained in the same manner as in Example 15 except that Na behenate was used as the anionic compound and the treatment concentration was changed to 5% owf.
The obtained anion-treated fabric was measured for flexibility, water repellency and water absorption. Subsequently, after washing was repeated 10 times, flexibility, water repellency and water absorption were measured.

(実施例19)
アニオン性化合物としてステアリン酸Naを用い、その処理濃度を1%owfに代えた以外は、実施例15と同様にしてアニオン処理布を得た。
得られたアニオン処理加工布について、柔軟性ならびに撥水性、吸水性を測定した。ついで、洗濯を10回繰り返した後、柔軟性ならび撥水性、吸水性を測定した。
(Example 19)
An anion-treated cloth was obtained in the same manner as in Example 15 except that Na stearate was used as the anionic compound and the treatment concentration was changed to 1% owf.
The obtained anion-treated fabric was measured for flexibility, water repellency and water absorption. Subsequently, after washing was repeated 10 times, flexibility, water repellency and water absorption were measured.

(実施例20)
両性化合物としてオクタデシルベタインを用い、その処理濃度を1%owfに代えた以外は、実施例15と同様にして両性処理布を得た。
得られた両性処理加工布について、柔軟性ならびに撥水性、吸水性を測定した。ついで、洗濯を10回繰り返した後、柔軟性ならび撥水性、吸水性を測定した。
(Example 20)
An amphoteric treated fabric was obtained in the same manner as in Example 15 except that octadecylbetaine was used as the amphoteric compound and the treatment concentration was changed to 1% owf.
The obtained amphoteric treated fabric was measured for flexibility, water repellency and water absorption. Subsequently, after washing was repeated 10 times, flexibility, water repellency and water absorption were measured.

(比較例5〜7)
比較例2と同様にして加工布を得た。得られた加工布を、表2に示すアニオン性化合物の水溶液(処理濃度:10%owf)の浴中に、浴比1:20で、80℃で30分間浸漬し、水で1回洗浄した後、100℃、30分間乾燥して、アニオン処理加工布を得た。
得られたアニオン処理加工布について、柔軟性ならびに撥水性、吸水性を測定した。ついで、洗濯を10回繰り返した後、柔軟性ならび撥水性、吸水性を測定した。
(Comparative Examples 5-7)
A processed cloth was obtained in the same manner as in Comparative Example 2. The obtained work cloth was immersed in an aqueous solution of an anionic compound shown in Table 2 (treatment concentration: 10% owf) at a bath ratio of 1:20 at 80 ° C. for 30 minutes and washed once with water. Then, it dried at 100 degreeC for 30 minutes, and obtained the anion-processed cloth.
The obtained anion-treated fabric was measured for flexibility, water repellency and water absorption. Subsequently, after washing was repeated 10 times, flexibility, water repellency and water absorption were measured.

実施例8〜20ならびに比較例5〜7の結果を表2に示す。なお、表2には、各実施例および各比較例の対照となるアニオン処理を行う前の加工布のデータも併せて記載した。   The results of Examples 8 to 20 and Comparative Examples 5 to 7 are shown in Table 2. In Table 2, the data of the processed cloth before anion treatment as a control of each Example and each Comparative Example are also shown.

(合成例7)
撹拌機、コンデンサー、温度計、滴下装置を備えた500mlのコルベンに、100g(0.337mol)のジメチルステアリルアミンを仕込み、撹拌しながら80℃まで昇温した。80〜90℃にコントロールしながらエピクロロヒドリン31.1g(0.337mol)を滴下した。滴下終了後、90〜100℃で2時間熟成して反応させた後、80〜90℃にコントロールしながら塩酸溶液(36%)34.1g(0.337mol)を滴下し、目的の合成物を得た。次いで、水を添加して有効成分が40重量%になるように調製した。
(Synthesis Example 7)
A 500 ml Kolben equipped with a stirrer, a condenser, a thermometer, and a dropping device was charged with 100 g (0.337 mol) of dimethylstearylamine and heated to 80 ° C. while stirring. Epichlorohydrin 31.1g (0.337mol) was dripped, controlling at 80-90 degreeC. After completion of the dropwise addition, the mixture was aged at 90 to 100 ° C. for 2 hours and reacted, and then 34.1 g (0.337 mol) of hydrochloric acid solution (36%) was added dropwise while controlling at 80 to 90 ° C. to obtain the desired compound. Obtained. Next, water was added to prepare an active ingredient to be 40% by weight.

(合成例8)
撹拌機、コンデンサー、温度計、滴下装置を備えた500mlのコルベンに、100g(0.337mol)のジメチルステアリルアミンを仕込み、撹拌しながら80℃まで昇温した。80〜90℃にコントロールしながらエピクロロヒドリン31.1g(0.337mol)を滴下した。滴下終了後、90〜100℃で2時間熟成して反応させて目的の合成物を得た。次いで、水を添加して有効成分が40重量%になるように調製した。
(Synthesis Example 8)
A 500 ml Kolben equipped with a stirrer, a condenser, a thermometer, and a dropping device was charged with 100 g (0.337 mol) of dimethylstearylamine and heated to 80 ° C. while stirring. Epichlorohydrin 31.1g (0.337mol) was dripped, controlling at 80-90 degreeC. After completion of the dropwise addition, the mixture was aged at 90 to 100 ° C. for 2 hours and reacted to obtain the desired compound. Next, water was added to prepare an active ingredient to be 40% by weight.

(実施例21)
合成例7で調製した水溶液を用いる以外は、実施例1と同様にして本発明の加工布を得た。得られた加工布について、柔軟性ならびに撥水性、吸水性を測定した。ついで、加工布の洗濯を10回繰り返した後、柔軟性ならび撥水性、吸水性を測定した。
(Example 21)
A processed fabric of the present invention was obtained in the same manner as in Example 1 except that the aqueous solution prepared in Synthesis Example 7 was used. The obtained processed fabric was measured for flexibility, water repellency and water absorption. Subsequently, after washing of the processed cloth was repeated 10 times, flexibility, water repellency and water absorption were measured.

(実施例22)
合成例8で調製した水溶液を用いる以外は、実施例1と同様にして本発明の加工布を得た。得られた加工布について、柔軟性ならびに撥水性、吸水性を測定した。ついで、加工布の 洗濯を10回繰り返した後、柔軟性ならび撥水性、吸水性を測定した。
(Example 22)
A processed fabric of the present invention was obtained in the same manner as in Example 1 except that the aqueous solution prepared in Synthesis Example 8 was used. The obtained processed fabric was measured for flexibility, water repellency and water absorption. Then, after washing the processed cloth 10 times, the flexibility, water repellency and water absorption were measured.

実施例21ならびに22の結果を表3に示す。なお、表3には、実施例1のデータも対比として併せて記載した。   The results of Examples 21 and 22 are shown in Table 3. In Table 3, the data of Example 1 is also shown as a comparison.

(柔軟剤合成例1)
片末端カルボキシ変性シリコーンX−22−3710ST(信越化学工業株式会社製)20重量%に、非イオン系界面活性剤ノイゲンXL−100、XL140およびXL−160(第一工業製薬株式会社製)を用い、XL−100/XL−140/XL−160=3/1/2の重量比で、合計濃度が10重量%になるように添加した後、水を加えて乳化し、KOH水溶液(50%)でpHを8.0に調整して有効成分30%の柔軟剤を得た。
(Softening agent synthesis example 1)
Nonionic surfactant Neugen XL-100, XL140 and XL-160 (Daiichi Kogyo Seiyaku Co., Ltd.) are used for 20% by weight of one-terminal carboxy-modified silicone X-22-3710ST (Shin-Etsu Chemical Co., Ltd.). , XL-100 / XL-140 / XL-160 = 3/1/2, so that the total concentration is 10% by weight, water is added to emulsify, and aqueous KOH solution (50%) The pH was adjusted to 8.0 to obtain a softener with 30% active ingredient.

(柔軟剤合成例2)
片末端カルボキシ変性シリコーンとしてBY−16−880(東レ・ダウコーニング株式会社製)を用いる以外は、柔軟剤合成例1と同様にして乳化し、KOH水溶液(50%)でpHを8.0に調整して有効成分30%の柔軟剤を得た。
(Softener synthesis example 2)
Except for using BY-16-880 (manufactured by Toray Dow Corning Co., Ltd.) as the one-terminal carboxy-modified silicone, emulsification was performed in the same manner as in Softener Synthesis Example 1, and the pH was adjusted to 8.0 with KOH aqueous solution (50%). A softener with 30% active ingredient was obtained by adjustment.

(実施例23)
実施例2と同様に処理して調製した加工布を、柔軟剤合成例1で得られた柔軟剤の浴中に、有効成分として30%owf、浴比1:20で、60℃で60分間浸漬した後、水で1回洗浄し、次いで100℃で30分間乾燥して、アニオン性柔軟剤処理加工布を得た。
得られたアニオン性柔軟剤処理加工布の柔軟性ならびに撥水性、吸水性を測定し、ついで、洗濯を10回繰り返した後、柔軟性ならび撥水性、吸水性を測定した。
(Example 23)
A processed fabric prepared by treating in the same manner as in Example 2 was added to the softener bath obtained in Softener Synthesis Example 1 as an active ingredient at 30% owf and a bath ratio of 1:20 at 60 ° C. for 60 minutes. After soaking, it was washed once with water and then dried at 100 ° C. for 30 minutes to obtain an anionic softener-treated fabric.
The softness, water repellency and water absorption of the resulting anionic fabric treated with softener were measured, and after washing was repeated 10 times, the flexibility, water repellency and water absorption were measured.

(実施例24)
使用するアニオン性柔軟剤として、柔軟剤合成例2で得られた柔軟剤を用いる以外は実施例23と同様にして、アニオン性柔軟剤処理加工布を得た。
得られたアニオン性柔軟剤処理加工布の柔軟性ならびに撥水性、吸水性を測定し、ついで、洗濯を10回繰り返した後、柔軟性ならび撥水性、吸水性を測定した。
(Example 24)
An anionic softener-treated fabric was obtained in the same manner as in Example 23 except that the softener obtained in Softener Synthesis Example 2 was used as the anionic softener to be used.
The softness, water repellency and water absorption of the resulting anionic fabric treated with softener were measured, and after washing was repeated 10 times, the flexibility, water repellency and water absorption were measured.

(実施例25)
アニオン性柔軟剤として、アニオン性の変性シリコーンであるシリコーランANS−30(一方社油脂株式会社製、有効成分24%)を用いる以外は実施例23と同様にして、アニオン性柔軟剤処理加工布を得た。
得られたアニオン性柔軟剤処理加工布の柔軟性ならびに撥水性、吸水性を測定し、ついで、洗濯を10回繰り返した後、柔軟性ならび撥水性、吸水性を測定した。
(Example 25)
An anionic softening agent-treated fabric is treated in the same manner as in Example 23, except that an anionic softening agent Silicollan ANS-30 (manufactured by Yushi Co., Ltd., active ingredient 24%) is used as the anionic softening agent. Obtained.
The softness, water repellency and water absorption of the resulting anionic fabric treated with softener were measured, and after washing was repeated 10 times, the flexibility, water repellency and water absorption were measured.

実施例23〜25 の結果を表4に示す。なお、表4には、実施例2のデータも対比として併せて記載した。   The results of Examples 23 to 25 are shown in Table 4. In Table 4, the data of Example 2 is also shown as a comparison.

表4より、本発明の繊維素材改質剤で処理した後、さらに柔軟剤で処理することにより、加工布の柔軟性はさらに向上し、かつ洗濯後も柔軟性の低下がないことがわかる。   From Table 4, it can be seen that by treating with the fiber material modifier of the present invention and further treating with a softening agent, the flexibility of the work cloth is further improved and there is no decrease in flexibility even after washing.

次に、繊維素材として綿ブロードの代わりに紙素材を用いて試験を実施した。紙素材として、キムワイプ(パルプ100%、日本製紙クレシア株式会社製)を用い、柔軟性ならびに撥水性、吸水性の評価は以下のようにして行った。
(1)紙素材の柔軟性
官能(ハンドリング性)にて、処理前の紙と比較して、以下の基準で評価した。
柔軟性が認められる:○、柔軟性がやや認められる:△、柔軟性が認められない:×
(2)紙素材の撥水性、吸水性
綿ブロードの場合と同様、JIS L1907吸水速度B法(バイレック法)に準じて測定を行った。数値(mm)が小さい方が撥水性良好、数値(mm)が大きい方が吸水性良好と評価した。
Next, a test was performed using a paper material instead of cotton broad as the fiber material. As a paper material, Kimwipe (100% pulp, manufactured by Nippon Paper Crecia Co., Ltd.) was used, and the flexibility, water repellency and water absorption were evaluated as follows.
(1) Flexibility of paper material In terms of sensuality (handling properties), the following criteria were evaluated in comparison with the paper before treatment.
Flexibility is recognized: ○, flexibility is somewhat recognized: Δ, flexibility is not recognized: ×
(2) Water repellency and water absorption of paper material As in the case of cotton broad, measurement was performed according to JIS L1907 water absorption speed B method (Byreck method). The smaller value (mm) was evaluated as good water repellency, and the larger value (mm) was evaluated as good water absorption.

(実施例26)
合成例2で得た水溶液100g(有効成分として40g)と水酸化ナトリウム10gを水で希釈して1Lとし処理液を調製した。
処理液を60℃に加温し、浴比が1:20となるよう紙50gを60分間浸漬した。40℃の温水で2回洗浄し、次いで水で1回洗浄し、pH6に中和した後、風乾燥して、本発明の加工紙素材を得た。
得られた加工紙素材について、柔軟性ならびに撥水性、吸水性を測定した。
(Example 26)
A treatment solution was prepared by diluting 100 g of the aqueous solution obtained in Synthesis Example 2 (40 g as an active ingredient) and 10 g of sodium hydroxide with water to 1 L.
The treatment liquid was heated to 60 ° C., and 50 g of paper was immersed for 60 minutes so that the bath ratio was 1:20. Washed twice with warm water of 40 ° C., then washed once with water, neutralized to pH 6 and then air-dried to obtain the processed paper material of the present invention.
The resulting processed paper material was measured for flexibility, water repellency and water absorption.

(実施例27)
実施例26と同様にして加工紙素材を得た。得られた加工紙素材をベヘン酸カリウム溶液(処理濃度20%owf)の浴中に、浴比1:20で、80℃で30分間浸漬した後、水で1回洗浄し、風乾燥して、アニオン処理加工紙素材を得た。
得られたアニオン処理加工紙素材について、柔軟性ならびに撥水性、吸水性を測定した。
(Example 27)
A processed paper material was obtained in the same manner as in Example 26. The obtained processed paper material was immersed in a bath of potassium behenate solution (treatment concentration 20% owf) at a bath ratio of 1:20 at 80 ° C. for 30 minutes, washed once with water, and air-dried. An anion-treated processed paper material was obtained.
The obtained anion-treated processed paper material was measured for flexibility, water repellency and water absorption.

(比較例8)
処理液を水とした以外は、実施例26と同様にして加工繊維素材を得た。得られた加工繊維素材について、柔軟性ならびに撥水性、吸水性を測定した。
(Comparative Example 8)
A processed fiber material was obtained in the same manner as in Example 26 except that the treatment liquid was water. The obtained processed fiber material was measured for flexibility, water repellency and water absorption.

実施例26、27および比較例8の結果を表5に示す。   The results of Examples 26 and 27 and Comparative Example 8 are shown in Table 5.

表5より、本発明の繊維素材改質剤で処理することにより、パルプ素材に柔軟性と撥水性が付与できること、そして、さらにアニオン性化合物で処理することにより、柔軟性ならびに撥水性がさらに向上することがわかる。   From Table 5, it is possible to impart flexibility and water repellency to the pulp material by treating with the fiber material modifier of the present invention, and further improving flexibility and water repellency by treating with the anionic compound. I understand that

本発明の繊維素材改質剤および改質方法を用いて、繊維を改質することにより、繊維に良好な柔軟性と、同時に撥水性あるいは吸水性を付与することができる。しかも、これらの柔軟性や撥水性、吸水性の機能は洗濯を繰り返しても維持されるため、柔軟な風合いと速乾機能あるいは柔軟な風合いと吸水機能を併せ持つ衣料製品に好適な繊維素材を得ることができる。   By modifying the fiber using the fiber material modifier and the modification method of the present invention, it is possible to impart good flexibility and water repellency or water absorption to the fiber at the same time. Moreover, since these flexibility, water repellency, and water absorption functions are maintained even after repeated washing, a fiber material suitable for clothing products having a flexible texture and quick drying function or a flexible texture and water absorption function is obtained. be able to.

また、本発明の繊維素材改質剤および改質方法を用いてパルプや木材チップを改質することにより、これらの改質したパルプや木材チップを、木材などの植物繊維を成形した繊維板(例えばパーティクルボードやMDF)や外壁用のパルプセメントあるいは木質セメントなどに適用することができる。   In addition, by modifying pulp and wood chips using the fiber material modifier and the modification method of the present invention, these modified pulp and wood chips are converted into fiberboards formed from plant fibers such as wood ( For example, it can be applied to particle board, MDF), pulp cement or wood cement for outer walls.

パルプに柔軟性を付与することにより、セメントスラリーに添加した場合のパルプの分散がより容易となり、かつ機械による混合を停止しても分散状態を維持できるため、成形後のボードの強度向上や品質の安定化が図れる。また、撥水性を付与することにより、繊維板等が吸湿して膨潤し外観を損ねるという不具合を防止することが可能となる。   By imparting flexibility to the pulp, it becomes easier to disperse the pulp when added to the cement slurry, and the dispersed state can be maintained even if the mixing by the machine is stopped. Can be stabilized. Further, by imparting water repellency, it is possible to prevent the problem that the fiberboard or the like absorbs moisture and swells to impair the appearance.

Claims (6)

一般式(1)で表される3級アミンと、エピハロヒドリンとの反応生成物を含有することを特徴とする繊維素材改質剤。
(式(1)中、R1は炭素数6〜25の飽和または不飽和炭化水素基であり、R2、R3は互いに独立して、炭素数6〜25の飽和または不飽和炭化水素基または炭素数1〜5の炭化水素基または−(AO)nH基である。なお、Aは炭素数2〜3のアルキレン基、nはオキシアルキレン基(AO)の平均付加モル数を表す整数である。)
A fiber material modifier comprising a reaction product of a tertiary amine represented by the general formula (1) and an epihalohydrin.
(In Formula (1), R1 is a saturated or unsaturated hydrocarbon group having 6 to 25 carbon atoms, and R2 and R3 are independently of each other a saturated or unsaturated hydrocarbon group having 6 to 25 carbon atoms or a carbon number. 1 to 5 hydrocarbon group or — (AO) nH group, wherein A is an alkylene group having 2 to 3 carbon atoms, and n is an integer representing the average number of added moles of the oxyalkylene group (AO).
繊維素材を、請求項1に記載の繊維素材改質剤を含有するアルカリ水溶液の浴中で処理することを特徴とする繊維素材の改質方法。   A method for modifying a fiber material, comprising treating the fiber material in a bath of an alkaline aqueous solution containing the fiber material modifier according to claim 1. 繊維素材を、請求項1に記載の繊維素材改質剤を含有するアルカリ水溶液の浴中で処理した後、さらにアニオン性化合物または両性化合物から選ばれる1種以上の化合物を含有する浴中で処理することを特徴とする繊維素材の改質方法。   The fiber material is treated in a bath of an alkaline aqueous solution containing the fiber material modifier according to claim 1, and further treated in a bath containing one or more compounds selected from anionic compounds and amphoteric compounds. A method for modifying a fiber material, characterized in that: 繊維素材が活性水素を有する繊維素材である請求項2または3に記載の繊維素材の改質方法。   The method for modifying a fiber material according to claim 2 or 3, wherein the fiber material is a fiber material having active hydrogen. 繊維素材が、綿、トウ、糸、織物、編物及び不織布から選ばれる少なくとも1つの形態である請求項2〜4のいずれかに記載の繊維素材の改質方法。   The method for modifying a fiber material according to any one of claims 2 to 4, wherein the fiber material is at least one form selected from cotton, tow, yarn, woven fabric, knitted fabric and non-woven fabric. 請求項2〜5のいずれかに記載の繊維素材の改質方法により改質された繊維素材。
A fiber material modified by the fiber material modification method according to claim 2.
JP2011178761A 2010-08-23 2011-08-18 Modification method of fiber material Active JP5979830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011178761A JP5979830B2 (en) 2010-08-23 2011-08-18 Modification method of fiber material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010185716 2010-08-23
JP2010185716 2010-08-23
JP2011178761A JP5979830B2 (en) 2010-08-23 2011-08-18 Modification method of fiber material

Publications (2)

Publication Number Publication Date
JP2012067431A true JP2012067431A (en) 2012-04-05
JP5979830B2 JP5979830B2 (en) 2016-08-31

Family

ID=46165017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011178761A Active JP5979830B2 (en) 2010-08-23 2011-08-18 Modification method of fiber material

Country Status (1)

Country Link
JP (1) JP5979830B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108049023A (en) * 2017-12-12 2018-05-18 杭州可靠护理用品股份有限公司 Concave-convex type non-woven fabrics and its application on paper diaper and paper diaper
WO2022025245A1 (en) 2020-07-30 2022-02-03 花王株式会社 Lubricant

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143580A (en) * 1981-01-10 1982-09-04 Sandoz Ag Treatment of fiber material
JPS58220872A (en) * 1982-06-10 1983-12-22 東レ株式会社 Flexible cellulose fiber excellent in durability and production thereof
JPS63295778A (en) * 1987-05-27 1988-12-02 神奈川県 Production of dark dyed modified protein fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143580A (en) * 1981-01-10 1982-09-04 Sandoz Ag Treatment of fiber material
JPS58220872A (en) * 1982-06-10 1983-12-22 東レ株式会社 Flexible cellulose fiber excellent in durability and production thereof
JPS63295778A (en) * 1987-05-27 1988-12-02 神奈川県 Production of dark dyed modified protein fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108049023A (en) * 2017-12-12 2018-05-18 杭州可靠护理用品股份有限公司 Concave-convex type non-woven fabrics and its application on paper diaper and paper diaper
WO2022025245A1 (en) 2020-07-30 2022-02-03 花王株式会社 Lubricant

Also Published As

Publication number Publication date
JP5979830B2 (en) 2016-08-31

Similar Documents

Publication Publication Date Title
JP6272588B1 (en) Water repellent agent and method for producing the same
US4327133A (en) Additives for clothes dryers
US4238531A (en) Additives for clothes dryers
US4012326A (en) Additives for clothes dryers
US4421792A (en) Additives for clothes dryers
US2694688A (en) Antistatic compositions for textiles
JP5979830B2 (en) Modification method of fiber material
JPH07145560A (en) Finishing agent composition for fiber
JP2700292B2 (en) Softener for textiles
EP0394689A2 (en) Method of treating fabrics and other substrates with exhaustible cationic silicones
Ammayappan et al. Performance properties of multi-functional finishes on the enzyme-pretreated wool/cotton blend fabrics
JP5137732B2 (en) Textile treatment composition
WO2003044263A2 (en) Treated textile article having improved moisture transport
JP2852898B2 (en) Soft finish for textile
JP4198597B2 (en) Permanent press processing of fabric
JP2763651B2 (en) Soft finish
US3664952A (en) Aqueous textile softening composition
JPH05263365A (en) Fabric softener containing both fatty acid and release agent
US3247018A (en) Process for treating textile materials
JPH06184934A (en) Soft-finishing agent
US3411945A (en) Process for providing a durable antistatic finish for synthetic textile materials
JPH0718578A (en) Article for treating fiber product
JPH07197376A (en) Finishing oil composition for antimicrobial fiber
JPH04100974A (en) Soft-finishing agent
WO1997007279A1 (en) Modified fiber, process for producing the same, and fiber product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160726

R150 Certificate of patent or registration of utility model

Ref document number: 5979830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350