JP2012067399A - Nonwoven fabric for cosmetic product and cosmetic product using the same - Google Patents

Nonwoven fabric for cosmetic product and cosmetic product using the same Download PDF

Info

Publication number
JP2012067399A
JP2012067399A JP2010210790A JP2010210790A JP2012067399A JP 2012067399 A JP2012067399 A JP 2012067399A JP 2010210790 A JP2010210790 A JP 2010210790A JP 2010210790 A JP2010210790 A JP 2010210790A JP 2012067399 A JP2012067399 A JP 2012067399A
Authority
JP
Japan
Prior art keywords
fiber
nonwoven fabric
cosmetic product
wet
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010210790A
Other languages
Japanese (ja)
Other versions
JP5558989B2 (en
Inventor
Yoshikazu Kobayashi
美一 小林
Kenji Inagaki
健治 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2010210790A priority Critical patent/JP5558989B2/en
Publication of JP2012067399A publication Critical patent/JP2012067399A/en
Application granted granted Critical
Publication of JP5558989B2 publication Critical patent/JP5558989B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Paper (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonwoven fabric for a cosmetic product, excellent in stickiness to skin and handleability, and a cosmetic product formed by using the nonwoven fabric.SOLUTION: Provided is a nonwoven fabric for a cosmetic product, having basis weight of 30 to 100 g/m, in which a humid dynamic friction coefficient is 2.0 or more, and humid bending resistance is in a range of 1 to 5 cm. Provided is a cosmetic product obtained by using the nonwoven fabric for a cosmetic product.

Description

本発明は、肌への貼り付き性および取扱い性に優れたコスメテイック製品用不織布、および該不織布を用いてなるコスメテイック製品に関する。   TECHNICAL FIELD The present invention relates to a non-woven fabric for cosmetic products having excellent adhesion to the skin and easy handling, and a cosmetic product using the non-woven fabric.

従来、フェイスマスクを中心とするコスメテイック製品(コスメ製品と称されることもある。)としてさまざまなものが提案されている。例えば、化粧液の含水性を考慮して親水性繊維を用いたもの、使用時の肌への密着性を高めるために極細繊維を用いたものなどが提案されている(例えば、特許文献1〜4参照)。
しかしながら、これらのコスメテイック製品では、肌への貼り付き性および取扱い性において、まだ満足とはいえなかった。
Conventionally, various products have been proposed as cosmetic products (sometimes referred to as cosmetic products) centering on face masks. For example, the thing using the hydrophilic fiber in consideration of the water content of the cosmetic liquid, the thing using the extra fine fiber in order to improve the adhesion to the skin at the time of use, etc. are proposed (for example, patent documents 1-1). 4).
However, these cosmetic products have not yet been satisfactory in terms of adhesion to the skin and handleability.

特開2006−274468号公報JP 2006-274468 A 特開2007−70347号公報JP 2007-70347 A 特開2009−97121号公報JP 2009-97121 A 特許第3944526号公報Japanese Patent No. 3944526

本発明は上記の背景に鑑みなされたものであり、その目的は、肌への貼り付き性および取扱い性に優れたコスメテイック製品用不織布、および該不織布を用いてなるコスメテイック製品を提供することにある。   The present invention has been made in view of the above-described background, and an object thereof is to provide a non-woven fabric for cosmetic products having excellent adhesion to the skin and handleability, and a cosmetic product using the non-woven fabric. .

本発明者らは上記の課題を達成するため鋭意検討した結果、特定の湿潤動摩擦係数および湿潤剛軟度を有する不織布を用いてフェイスマスクなどのコスメテイック製品を得ると、肌への貼り付き性および取扱い性に優れたコスメテイック製品が得られることを見出し、さらに鋭意検討を重ねることにより本発明を完成するに至った。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors have obtained a cosmetic product such as a face mask using a nonwoven fabric having a specific wet dynamic friction coefficient and wet bending resistance. The present inventors have found that a cosmetic product excellent in handleability can be obtained, and have further intensively studied to complete the present invention.

かくして、本発明によれば「目付けが30〜100g/mのコスメテイック製品用不織布であって、湿潤動摩擦係数が2.0以上であり、かつ湿潤剛軟度が1〜5cmの範囲内であることを特徴とするコスメテイック製品用不織布。」が提供される。
ただし、湿潤動摩擦係数および湿潤剛軟度は、温度20℃の水中に試料を浸漬させた後、温度20℃、相対湿度65%の環境下で10分間吊るした後、測定するものとする。
Thus, according to the present invention, “a non-woven fabric for cosmetic products having a basis weight of 30 to 100 g / m 2 , a wet dynamic friction coefficient of 2.0 or more, and a wet bending resistance in the range of 1 to 5 cm. A non-woven fabric for cosmetic products characterized by the above. "
However, the wet dynamic friction coefficient and the wet bending resistance are measured after the sample is immersed in water at a temperature of 20 ° C. and then suspended for 10 minutes in an environment at a temperature of 20 ° C. and a relative humidity of 65%.

その際、ポリエステルからなり単繊維径(D)が500〜1000nmかつ該単繊維径(D)nmに対する繊維長(L)nmの比(L/D)が600〜3000の範囲内である極細ポリエステル繊維Aと、単繊維繊度0.05〜1.0dtex、かつ繊維長3〜20mmの有機繊維Bとが、前者/後者の重量比1/99〜50/50で含まれることが好ましい。かかる極細ポリエステル繊維Aとしては、ポリエステルからなりかつ島径(D)が500〜1000nmである島成分と前記のポリエステルよりもアルカリ水溶液易溶解性ポリマーからなる海成分とを有する複合繊維にアルカリ減量加工を施すことにより、前記海成分を溶解除去したものであることが好ましい。   In this case, the polyester is a very fine polyester having a single fiber diameter (D) of 500 to 1000 nm and a ratio (L / D) of the fiber length (L) nm to the single fiber diameter (D) nm of 600 to 3000. It is preferable that the fiber A and the organic fiber B having a single fiber fineness of 0.05 to 1.0 dtex and a fiber length of 3 to 20 mm are included in the former / the latter weight ratio of 1/99 to 50/50. As such an ultra-fine polyester fiber A, an alkali weight loss processing is applied to a composite fiber comprising an island component made of polyester and having an island diameter (D) of 500 to 1000 nm and a sea component made of an aqueous alkali-soluble polymer than the polyester. It is preferable that the sea component is dissolved and removed by applying.

本発明のコスメテイック製品用不織布において、不織布の少なくとも片面に前記極細ポリエステル繊維Aが露出していることが好ましい。また、不織布が、湿式抄紙法によりシートを抄紙後、さらに高圧水流により繊維同士を絡合させた不織布であることが好ましい。また、不織布の引張強さが10N/5cm以上であることが好ましい。
また、本発明によれば、前記のコスメテイック製品用不織布を用いてなり、化粧液を含むコスメテイック製品が提供される。
In the nonwoven fabric for cosmetic products of the present invention, it is preferable that the ultra-fine polyester fiber A is exposed on at least one surface of the nonwoven fabric. Moreover, it is preferable that the nonwoven fabric is a nonwoven fabric in which fibers are entangled with each other by a high-pressure water stream after the sheet is formed by a wet papermaking method. Moreover, it is preferable that the tensile strength of a nonwoven fabric is 10 N / 5cm or more.
Moreover, according to this invention, the cosmetic product which uses the said nonwoven fabric for cosmetic products and contains a cosmetic liquid is provided.

本発明によれば、肌への貼り付き性および取扱い性に優れたコスメテイック製品用不織布、および該不織布を用いてなるコスメテイック製品が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the cosmetics nonwoven fabric excellent in the sticking property to skin and the handleability, and the cosmetics product using this nonwoven fabric are obtained.

以下、本発明の実施の形態について詳細に説明する。
まず、本発明のコスメテイック製品用不織布は、美容製品または化粧製品などのコスメテイック製品(コスメ製品と称されることもある。)用不織布であって、該不織布において、目付けが30〜100g/m(より好ましくは40〜90g/m)の範囲内であることが肝要である。該目付けが30g/mよりも小さいと、不織布の引張強さが低下するおそれがあり好ましくない。逆に、該目付けが100g/mよりも大きいと、肌沿いが悪くなるおそれがあり好ましくない。
Hereinafter, embodiments of the present invention will be described in detail.
First, the nonwoven fabric for cosmetic products of the present invention is a nonwoven fabric for cosmetic products (sometimes referred to as cosmetic products) such as beauty products or cosmetic products, and the basis weight is 30 to 100 g / m 2. It is important to be within the range of (more preferably 40 to 90 g / m 2 ). If the basis weight is less than 30 g / m 2 , the tensile strength of the nonwoven fabric may be lowered, which is not preferable. On the other hand, when the basis weight is larger than 100 g / m 2 , there is a possibility that the skin along the skin may be deteriorated.

次に、本発明のコスメテイック製品用不織布において、湿潤動摩擦係数が2.0以上(好ましくは2.0〜3.0)であることが肝要である。該湿潤動摩擦係数が2.0よりも小さいと、肌への貼り付き性が低下し好ましくない。該湿潤動摩擦係数が大きいほど肌への貼り付き性が良好となるが、3.0を越えると肌荒れのおそれがあるので、2.0〜3.0の範囲内とすることが好ましい。また、乾燥動摩擦係数と湿潤動摩擦係数との比(乾燥動摩擦係数/湿潤動摩擦係数)が0.5〜1.5の範囲内であることが好ましい。乾燥動摩擦係数/湿潤動摩擦係数が0.5よりも小さいと、化粧液が乾燥した状態でコスメテイック製品が肌からはがれやすくなるおそれがある。逆に、乾燥動摩擦係数/湿潤動摩擦係数が1.5よりも大きいと肌荒れのおそれがある。   Next, in the nonwoven fabric for cosmetic products of the present invention, it is important that the coefficient of wet dynamic friction is 2.0 or more (preferably 2.0 to 3.0). When the wet dynamic friction coefficient is less than 2.0, the sticking property to the skin is lowered, which is not preferable. The larger the wet dynamic friction coefficient, the better the sticking property to the skin. However, if it exceeds 3.0, there is a risk of rough skin, so it is preferably in the range of 2.0 to 3.0. Moreover, it is preferable that the ratio of the dry dynamic friction coefficient to the wet dynamic friction coefficient (dry dynamic friction coefficient / wet dynamic friction coefficient) is in the range of 0.5 to 1.5. If the dry dynamic friction coefficient / wet dynamic friction coefficient is less than 0.5, the cosmetic product may be easily peeled off from the skin when the cosmetic liquid is dry. On the other hand, if the dry dynamic friction coefficient / wet dynamic friction coefficient is greater than 1.5, rough skin may occur.

なお、湿潤動摩擦係数は、温度20℃の水中に試料を浸漬させた後、温度20℃、相対湿度65%の環境下で10分間吊るした直後、測定するものとする。一方、乾燥動摩擦係数は、温度20℃、相対湿度65%の環境下で1週間放置した直後、測定するものとする。   The wet dynamic friction coefficient is measured immediately after suspending a sample in water at a temperature of 20 ° C. and suspending it in an environment of a temperature of 20 ° C. and a relative humidity of 65% for 10 minutes. On the other hand, the dry dynamic friction coefficient is measured immediately after being left for one week in an environment of a temperature of 20 ° C. and a relative humidity of 65%.

また、本発明のコスメテイック製品用不織布において、湿潤剛軟度が1〜5cm(より好ましくは2〜4cm)の範囲内であることが肝要である。該湿潤剛軟度が1cmよりも小さいと、コスメ製品が開きにくくなり、取扱い性が低下するため好ましくない。逆に、該湿潤剛柔度が5cmよりも大きくなると、肌沿いが低下するため好ましくない。また、乾燥剛軟度と湿潤剛軟度との比(乾燥剛軟度/湿潤剛軟度)が2.0〜4.0の範囲内であることが好ましい。乾燥剛軟度/湿潤剛軟度が2.0よりも小さいと、乾燥時にシワが発生するおそれがある。逆に、乾燥剛軟度/湿潤剛軟度が4.0よりも大きいと乾燥時の浮きが大きくなるおそれがある。   Moreover, in the nonwoven fabric for cosmetic products of the present invention, it is important that the wet bending resistance is in the range of 1 to 5 cm (more preferably 2 to 4 cm). When the wet bending resistance is less than 1 cm, the cosmetic product is difficult to open, and the handleability is lowered, which is not preferable. On the other hand, when the wet stiffness is greater than 5 cm, it is not preferable because the along the skin is lowered. Moreover, it is preferable that the ratio of the dry bending resistance to the wet bending resistance (dry bending resistance / wetting bending resistance) is in the range of 2.0 to 4.0. If the dry bending resistance / wet bending resistance is less than 2.0, wrinkles may occur during drying. On the other hand, if the dry bending resistance / wet bending resistance is greater than 4.0, there is a risk that the floating during drying will increase.

なお、湿潤剛軟度は、温度20℃の水中に試料を浸漬させた後、温度20℃、相対湿度65%の環境下で10分間吊るした直後、測定するものとする。一方、乾燥剛軟度は、温度20℃、相対湿度65%の環境下で1週間放置した直後、測定するものとする。   The wet bending resistance is measured immediately after the sample is immersed in water at a temperature of 20 ° C. and then suspended for 10 minutes in an environment at a temperature of 20 ° C. and a relative humidity of 65%. On the other hand, the dry bending resistance is measured immediately after being left for 1 week in an environment of a temperature of 20 ° C. and a relative humidity of 65%.

以上のようなコスメテイック製品用不織布としては、例えば、ポリエステルからなり単繊維径(D)が500〜1000nmかつ該単繊維径(D)nmに対する繊維長(L)nmの比(L/D)が600〜3000の範囲内である極細ポリエステル繊維Aと、単繊維繊度0.05〜1.0dtex、かつ繊維長3〜20mmの有機繊維Bとを、前者/後者の重量比1/99〜50/50で含ませるとよい。   The non-woven fabric for cosmetic products as described above is made of polyester, for example, having a single fiber diameter (D) of 500 to 1000 nm and a ratio (L / D) of the fiber length (L) nm to the single fiber diameter (D) nm. An ultrafine polyester fiber A in the range of 600 to 3000, and an organic fiber B having a single fiber fineness of 0.05 to 1.0 dtex and a fiber length of 3 to 20 mm, the former / the latter weight ratio of 1/99 to 50 / 50 may be included.

ここで、前記不織布において、極細ポリエステル繊維Aの単繊維径が500〜1000nmの範囲内であることが好ましい。該単繊維径が500nm未満では、極細ポリエステル繊維A同士が擬似膠着しやすく均一分散しにくいため、前記の湿潤動摩擦係数や湿潤剛軟度が得られないおそれがある。逆に、該該単繊維径が1000nmより大きいと、極細ポリエステル繊維としての効果が低くなり、前記の湿潤動摩擦係数や湿潤剛軟度が得られないおそれがある。なお、単繊維の断面形状が丸断面以外の異型断面である場合には外接円の直径を単繊維径とする。また、単繊維径は、透過型電子顕微鏡で繊維の横断面を撮影することにより測定が可能である。   Here, in the said nonwoven fabric, it is preferable that the single fiber diameter of the ultra fine polyester fiber A exists in the range of 500-1000 nm. When the single fiber diameter is less than 500 nm, the ultra-fine polyester fibers A are apt to be pseudo-glueed and difficult to uniformly disperse, and thus the wet dynamic friction coefficient and the wet bending resistance may not be obtained. On the other hand, when the single fiber diameter is larger than 1000 nm, the effect as an ultrafine polyester fiber is lowered, and the wet dynamic friction coefficient and wet bending resistance may not be obtained. In addition, when the cross-sectional shape of the single fiber is an atypical cross section other than the round cross section, the diameter of the circumscribed circle is defined as the single fiber diameter. The single fiber diameter can be measured by photographing the cross section of the fiber with a transmission electron microscope.

また、前記極細ポリエステル繊維Aにおいて、単繊維径(D)nmに対する繊維長(L)nmの比(L/D)が600〜3000(好ましくは800〜1500)の範囲内であることが肝要である。該比(L/D)が600未満では、繊維長が短くなり過ぎるため、他の繊維との絡みが小さくなり、繊維が脱落する可能性が高くなり好ましくない。逆に、該該比(L/D)が3000を越える場合、繊維長が長くなりすぎ、極細ポリエステル繊維A自身の絡みが大きくなり、均一分散が阻害されるおそれがあり好ましくない。   In the ultra-fine polyester fiber A, it is important that the ratio (L / D) of the fiber length (L) nm to the single fiber diameter (D) nm is in the range of 600 to 3000 (preferably 800 to 1500). is there. If the ratio (L / D) is less than 600, the fiber length becomes too short, so that the entanglement with other fibers becomes small, and the possibility that the fibers fall off becomes unfavorable. On the contrary, when the ratio (L / D) exceeds 3000, the fiber length becomes too long, the entanglement of the ultrafine polyester fiber A itself is increased, and the uniform dispersion may be hindered.

前記極細ポリエステル繊維Aを形成するポリエステルの種類としては、ポリエチレンテレフタレートやポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ステレオコンプレックスポリ乳酸、ポリ乳酸、第3成分を共重合させたポリエステルなどが好ましく例示される。   Preferred examples of the polyester that forms the ultrafine polyester fiber A include polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, stereocomplex polylactic acid, polylactic acid, and polyester obtained by copolymerizing a third component.

前記のような極細ポリエステル繊維の製造方法としては特に限定されないが、国際公開第2005/095686号パンフレットに開示された方法が好ましい。すなわち、単繊維径およびその均一性の点で、ポリエステルポリマーからなりかつその島径(D)が500〜1000nmである島成分と、前記のポリエステルポリマーよりもアルカリ水溶液易溶解性ポリマー(以下、「易溶解性ポリマー」ということもある。)からなる海成分とを有する複合繊維にアルカリ減量加工を施し、前記海成分を溶解除去したものであることが好ましい。なお、前記島径は、透過型電子顕微鏡で繊維の横断面を撮影することにより測定が可能である。なお、島の形状が丸断面以外の異型断面である場合には、前記の島径(D)は、その外接円の直径を用いる。   Although it does not specifically limit as a manufacturing method of the above ultrafine polyester fibers, The method disclosed by the international publication 2005/095686 pamphlet is preferable. That is, in terms of single fiber diameter and uniformity thereof, an island component composed of a polyester polymer and having an island diameter (D) of 500 to 1000 nm, and an alkaline aqueous solution-soluble polymer (hereinafter, “ It is preferable that the composite fiber having a sea component composed of “easily soluble polymer”) is subjected to an alkali weight reduction process, and the sea component is dissolved and removed. The island diameter can be measured by photographing a cross section of the fiber with a transmission electron microscope. In addition, when the shape of the island is an atypical cross section other than a round cross section, the diameter of the circumscribed circle is used as the island diameter (D).

ここで、海成分を形成するアルカリ水溶液易溶解性ポリマーの、島成分を形成するポリエステルポリマーに対する溶解速度比が200以上(好ましくは300〜3000)であると、島分離性が良好となり好ましい。溶解速度が200倍未満の場合には、繊維断面中央部の海成分を溶解する間に、分離した繊維断面表層部の島成分が、繊維径が小さいために溶解されるため、海相当分が減量されているにもかかわらず、繊維断面中央部の海成分を完全に溶解除去できず、島成分の太さ斑や島成分自体の溶剤侵食につながり、均一な繊維径の超極細繊維が得ることができないおそれがある。   Here, it is preferable that the dissolution rate ratio of the aqueous alkali-soluble polymer that forms the sea component to the polyester polymer that forms the island component is 200 or more (preferably 300 to 3000) because the island separability is good. When the dissolution rate is less than 200 times, the island component of the separated fiber cross-section surface layer is dissolved because the fiber diameter is small while the sea component in the center of the fiber cross-section is dissolved. Despite being reduced in weight, the sea component at the center of the fiber cross section cannot be completely dissolved and removed, leading to thick spots on the island component and solvent erosion of the island component itself, resulting in ultra-fine fibers with a uniform fiber diameter. There is a risk that it will not be possible.

海成分を形成する易溶解性ポリマーとしては、特に繊維形成性の良いポリエステル類、脂肪族ポリアミド類、ポリエチレンやポリスチレン等のポリオレフィン類を好ましい例としてあげることができる。更に具体例を挙げれば、アルカリ水溶液易溶解性ポリマーとして、ポリ乳酸、超高分子量ポリアルキレンオキサイド縮合系ポリマー、ポリアルキレングリコール系化合物と5−ナトリウムスルホイソフタル酸の共重合ポリエステルが最適である。ここでアルカリ水溶液とは、水酸化カリウム、水酸化ナトリウム水溶液などを言う。これ以外にも、ナイロン6やナイロン66等の脂肪族ポリアミドに対するギ酸、ポリスチレンに対するトリクロロエチレン等やポリエチレン(特に高圧法低密度ポリエチレンや直鎖状低密度ポリエチレン)に対する熱トルエンやキシレン等の炭化水素系溶剤、ポリビニルアルコールやエチレン変性ビニルアルコール系ポリマーに対する熱水を例として挙げることができる。   Preferable examples of the easily soluble polymer forming the sea component include polyesters, aliphatic polyamides, and polyolefins such as polyethylene and polystyrene, which are particularly good in fiber formation. As specific examples, polylactic acid, an ultrahigh molecular weight polyalkylene oxide condensation polymer, and a copolymerized polyester of polyalkylene glycol compound and 5-sodium sulfoisophthalic acid are optimal as the alkaline water soluble polymer. Here, the alkaline aqueous solution refers to potassium hydroxide, sodium hydroxide aqueous solution and the like. Besides these, hydrocarbon solvents such as hot toluene and xylene for formic acid for aliphatic polyamides such as nylon 6 and nylon 66, trichloroethylene for polystyrene, and polyethylene (especially high-pressure low-density polyethylene and linear low-density polyethylene). Examples thereof include hot water for polyvinyl alcohol and ethylene-modified vinyl alcohol polymers.

ポリエステル系ポリマーの中でも、5−ナトリウムスルホイソフタル酸6〜12モル%と分子量4000〜12000のポリエチレングリコールを3〜10重量%共重合させた固有粘度が0.4〜0.6のポリエチレンテレフタレート系共重合ポリエステルが好ましい。ここで、5−ナトリウムスルホイソフタル酸は親水性と溶融粘度向上に寄与し、ポリエチレングリコール(PEG)は親水性を向上させる。また、PEGは分子量が大きいほど、その高次構造に起因すると考えられる親水性増加作用があるが、反応性が悪くなってブレンド系になるため、耐熱性や紡糸安定性の面で問題が生じる可能性がある。また、共重合量が10重量%以上になると、溶融粘度低下作用があるので、好ましくない。   Among polyester polymers, polyethylene terephthalate copolymer having an intrinsic viscosity of 0.4 to 0.6 obtained by copolymerizing 6 to 12 mol% of 5-sodium sulfoisophthalic acid and 3 to 10% by weight of polyethylene glycol having a molecular weight of 4000 to 12000. Polymerized polyester is preferred. Here, 5-sodium sulfoisophthalic acid contributes to improving hydrophilicity and melt viscosity, and polyethylene glycol (PEG) improves hydrophilicity. In addition, PEG has a hydrophilicity increasing action that is considered to be due to its higher-order structure as the molecular weight increases. However, since the reactivity becomes poor and a blend system is produced, problems arise in terms of heat resistance and spinning stability. there is a possibility. On the other hand, if the copolymerization amount is 10% by weight or more, there is an effect of decreasing the melt viscosity, which is not preferable.

一方、島成分を形成するポリエステルポリマーとしては、前述のとおりである。なお、海成分を形成するポリマーおよび島成分を形成するポリマーについて、製糸性および抽出後の超極細繊維の物性に影響を及ぼさない範囲で、必要に応じて、有機充填剤、酸化防止剤、熱安定剤、光安定剤、難燃剤、滑剤、帯電防止剤、防錆剤、架橋剤、発泡剤、蛍光剤、表面平滑剤、表面光沢改良剤、フッ素樹脂等の離型改良剤、等の各種添加剤を含んでいても差しつかえない。   On the other hand, the polyester polymer forming the island component is as described above. In addition, for the polymer that forms the sea component and the polymer that forms the island component, organic fillers, antioxidants, heat, and so on, as long as they do not affect the spinning properties and the properties of the ultrafine fibers after extraction. Stabilizers, light stabilizers, flame retardants, lubricants, antistatic agents, rust preventive agents, crosslinking agents, foaming agents, fluorescent agents, surface smoothing agents, surface gloss improvers, mold release improvers such as fluororesins, etc. Even if an additive is included, it is acceptable.

前記の海島型複合繊維において、溶融紡糸時における海成分の溶融粘度が島成分ポリマーの溶融粘度よりも大きいことが好ましい。かかる関係にある場合には、海成分の複合重量比率が40%未満と少なくなっても、島同士が接合したり、島成分の大部分が接合して海島型複合繊維とは異なるものになり難い。   In the sea-island type composite fiber, it is preferable that the melt viscosity of the sea component at the time of melt spinning is larger than the melt viscosity of the island component polymer. In such a relationship, even if the composite weight ratio of the sea component is less than 40%, the islands are joined together, or the majority of the island components are joined to be different from the sea-island type composite fiber. hard.

好ましい溶融粘度比(海/島)は、1.1〜2.0、特に1.3〜1.5の範囲である。この比が1.1倍未満の場合には溶融紡糸時に島成分が接合しやすくなり、一方2.0倍を越える場合には、粘度差が大きすぎるために紡糸調子が低下しやすい。   A preferred melt viscosity ratio (sea / island) is in the range of 1.1 to 2.0, especially 1.3 to 1.5. If this ratio is less than 1.1 times, the island components are likely to be joined during melt spinning, whereas if it exceeds 2.0 times, the viscosity difference is too large and the spinning tone tends to be lowered.

次に島数は、100以上(より好ましくは300〜1000)であることが好ましい。また、その海島複合重量比率(海:島)は、20:80〜80:20の範囲が好ましい。かかる範囲であれば、島間の海成分の厚みを薄くすることができ、海成分の溶解除去が容易となり、島成分の極細繊維への転換が容易になるので好ましい。ここで海成分の割合が80%を越える場合には海成分の厚みが厚くなりすぎ、一方20%未満の場合には海成分の量が少なくなりすぎて、島間に接合が発生しやすくなる。   Next, the number of islands is preferably 100 or more (more preferably 300 to 1000). The sea-island composite weight ratio (sea: island) is preferably in the range of 20:80 to 80:20. Within such a range, the thickness of the sea component between the islands can be reduced, the sea component can be easily dissolved and removed, and the conversion of the island component into ultrafine fibers is facilitated. Here, when the proportion of the sea component exceeds 80%, the thickness of the sea component becomes too thick. On the other hand, when the proportion is less than 20%, the amount of the sea component becomes too small, and joining between islands is likely to occur.

溶融紡糸に用いられる口金としては、島成分を形成するための中空ピン群や微細孔群を有するものなど任意のものを用いることができる。例えば、中空ピンや微細孔より押し出された島成分とその間を埋める形で流路を設計されている海成分流とを合流し、これを圧縮することにより海島断面が形成されるといった紡糸口金でもよい。吐出された海島型複合繊維は冷却風により固化され、所定の引き取り速度に設定した回転ローラーあるいはエジェクターにより引き取られ、未延伸糸を得る。この引き取り速度は特に限定されないが、200〜5000m/分であることが望ましい。200m/分以下では生産性が悪い。また、5000m/分以上では紡糸安定性が悪い。   As the die used for melt spinning, an arbitrary one such as a hollow pin group or a fine hole group for forming an island component can be used. For example, a spinneret in which a cross section of a sea island is formed by merging and compressing an island component extruded from a hollow pin or a fine hole and a sea component flow designed to fill the gap between them. Good. The discharged sea-island type composite fiber is solidified by cooling air and taken up by a rotating roller or an ejector set at a predetermined take-up speed to obtain an undrawn yarn. The take-up speed is not particularly limited, but is preferably 200 to 5000 m / min. Productivity is poor at 200 m / min or less. Also, spinning stability is poor at 5000 m / min or more.

得られた未延伸糸は、海成分を抽出後に得られる極細繊維の用途・目的に応じて、そのままカット工程あるいはその後の抽出工程に供してもよいし、目的とする強度・伸度・熱収縮特性に合わせるために、延伸工程や熱処理工程を経由して、カット工程あるいはその後の抽出工程に供することができる。延伸工程は紡糸と延伸を別ステップで行う別延方式でもよいし、一工程内で紡糸後直ちに延伸を行う直延方式を用いてもかまわない。   The obtained undrawn yarn may be subjected to the cutting process or the subsequent extraction process as it is depending on the use and purpose of the ultrafine fiber obtained after extracting the sea component, and the intended strength, elongation, and heat shrinkage may be used. In order to match the characteristics, it can be subjected to a cutting step or a subsequent extraction step via a stretching step or a heat treatment step. The stretching process may be a separate stretching method in which spinning and stretching are performed in separate steps, or a straight stretching method in which stretching is performed immediately after spinning in one process may be used.

次に、かかる複合繊維を、島径(D)に対する繊維長(L)の比(L/D)が前記の範囲内となるようにカットした後、アルカリ減量加工を施すことにより、前記海成分を溶解除去する。かかるカットは、未延伸糸または延伸糸をそのまま、または数十本〜数百万本単位に束ねたトウにしてギロチンカッターやロータリーカッターなどでカットすることが好ましい。   Next, after cutting such a composite fiber so that the ratio (L / D) of the fiber length (L) to the island diameter (D) is within the above range, the sea component is obtained by subjecting to an alkali weight reduction process. Is dissolved and removed. Such cutting is preferably performed by using a guillotine cutter, a rotary cutter, or the like with undrawn yarn or drawn yarn as it is or with a tow bundled in units of tens to millions.

前記のアルカリ減量加工は、不織布を製造後であってもよいし、不織布の製造前であってもよい。かかるアルカリ減量加工において、繊維とアルカリ液の比率(浴比)は0.1〜5%である事が好ましく、さらには0.4〜3%である事が好ましい。0.1%未満では繊維とアルカリ液の接触は多いものの、排水等の工程性が困難となるおそれがある。一方、5%以上では繊維量が多過ぎるため、アルカリ減量加工時に繊維同士の絡み合いが発生するおそれがある。なお、浴比は下記式にて定義する。
浴比(%)=(繊維質量(gr)/アルカリ水溶液質量(gr)×100)
The alkali weight loss processing may be after the nonwoven fabric is manufactured or before the nonwoven fabric is manufactured. In such alkali weight reduction processing, the ratio of fiber to alkaline solution (bath ratio) is preferably 0.1 to 5%, more preferably 0.4 to 3%. If it is less than 0.1%, the contact between the fiber and the alkali liquid is large, but the processability such as drainage may be difficult. On the other hand, if the amount is 5% or more, the amount of fibers is too large, and there is a risk that fibers will be entangled during alkali weight reduction processing. The bath ratio is defined by the following formula.
Bath ratio (%) = (Fiber mass (gr) / Alkaline aqueous solution mass (gr) × 100)

また、アルカリ減量加工の処理時間は5〜60分である事が好ましく、さらには10〜30分である事が好ましい。5分未満ではアルカリ減量が不十分となるおそれがある。一方、60分以上では島成分までも減量されるおそれがある。
また、アルカリ減量加工において、アルカリ濃度は2%〜10%である事が好ましい。2%未満では、アルカリ不足となり、減量速度が極めて遅くなるおそれがある。一方、10%を越えるとアルカリ減量が進みすぎ、島部分まで減量されるおそれがある。
Moreover, it is preferable that the processing time of an alkali weight reduction process is 5 to 60 minutes, Furthermore, it is preferable that it is 10 to 30 minutes. If it is less than 5 minutes, the alkali weight loss may be insufficient. On the other hand, in the case of 60 minutes or more, the island component may be reduced.
In the alkali weight reduction processing, the alkali concentration is preferably 2% to 10%. If it is less than 2%, the alkali is insufficient, and the weight loss rate may be extremely slow. On the other hand, if it exceeds 10%, the weight loss of alkali proceeds too much and there is a risk that the weight may be reduced to the island portion.

また、前記有機繊維Bの単繊維繊度が0.05〜1.0dtexの範囲内であることが好ましい。該単繊維繊度が0.05dtex未満では、風合いが柔らかくなるものの、抄紙工程における水流の影響を受け易く地合いが悪くなるおそれがある。逆に、該単繊維繊度が1.0dtexを越えると、柔軟性が損われるおそれがある。なお、単繊維繊度が0.05〜1.0dtexであれば、通常、単繊維径は1000nmよりも大となる。   Moreover, it is preferable that the single fiber fineness of the said organic fiber B exists in the range of 0.05-1.0 dtex. If the single fiber fineness is less than 0.05 dtex, the texture becomes soft, but it is likely to be affected by the water flow in the paper making process, and the texture may be deteriorated. Conversely, if the single fiber fineness exceeds 1.0 dtex, the flexibility may be impaired. In addition, if the single fiber fineness is 0.05 to 1.0 dtex, the single fiber diameter is usually larger than 1000 nm.

前記有機繊維Bの繊維長は3〜20mmの範囲内にあることが好ましい。該繊維長が3mm未満では、不織布の強度が低下するおそれがある。逆に、該繊維長が20mmを越えると、抄紙法による繊維分散が極めて悪くなり、地合いが悪化するおそれがある。
なお、前記有機繊維Bの繊維種類としては特に限定されず、前記のようなポリエステル繊維やポリオレフィン繊維などの合成繊維や、レーヨン繊維、綿繊維などいずれでもよい。
The fiber length of the organic fiber B is preferably in the range of 3 to 20 mm. If the fiber length is less than 3 mm, the strength of the nonwoven fabric may be reduced. On the contrary, if the fiber length exceeds 20 mm, fiber dispersion by the papermaking method is extremely deteriorated, and the texture may be deteriorated.
In addition, it does not specifically limit as a fiber kind of the said organic fiber B, Any of synthetic fibers, such as the above-mentioned polyester fiber and polyolefin fiber, rayon fiber, cotton fiber, etc. may be sufficient.

前記の不織布は、例えば以下の製造方法により製造することができる。まず、前記の極細ポリエステル繊維Aまたはその前駆体(海島型複合繊維)と、前記の有機繊維Bとを、極細ポリエステル繊維A(海島型複合繊維の海成分を溶解除去した後の重量)と有機繊維Bとの重量比が(前者/後者)1/99〜50/50の範囲内となるように用意する。ここで、極細ポリエステル繊維Aの重量割合が該重量比よりも小さいと、前記の湿潤動摩擦係数や湿潤剛軟度が得られないおそれがある。逆に、極細ポリエステル繊維Aの重量割合が該重量比よりも大きいと、不織布を製造する際の工程性が悪くなるおそれがあり好ましくない。なお、不織布全重量に対して10重量%以下であれば、他の繊維をも用いてもよい。   The said nonwoven fabric can be manufactured, for example with the following manufacturing methods. First, the ultra fine polyester fiber A or a precursor thereof (sea-island type composite fiber) and the organic fiber B are mixed with the ultra fine polyester fiber A (weight after dissolving and removing sea components of the sea-island type composite fiber) and organic. Prepare so that the weight ratio with the fiber B is in the range of (former / latter) 1/99 to 50/50. Here, when the weight ratio of the ultra fine polyester fiber A is smaller than the weight ratio, the wet dynamic friction coefficient and the wet bending resistance may not be obtained. On the contrary, when the weight ratio of the ultrafine polyester fiber A is larger than the weight ratio, the processability in producing the nonwoven fabric may be deteriorated, which is not preferable. In addition, as long as it is 10 weight% or less with respect to the total weight of a nonwoven fabric, you may use another fiber.

次いで、湿式抄造法によりウェブを形成した後、熱処理工程を経てから、高圧水流処理を施しても良いし、湿式抄造法により得られたウェブを未乾燥のまま、高圧水流処理を施しても良い。不織布の生産性を考慮した場合、熱処理工程を経てから高圧水流処理を施す方が好ましい。また、比較的長い短繊維を針の付いたローラーを用いて繊維を開繊混合するカード法か、比較的短い短繊維を穴明きドラムに送り空気により分散しウェブを形成するエアレイド法等によりウェブを形成した後、絡合/熱処理工程により構造を固定してもよいが、前記の湿式抄造法のほうが好ましい。   Next, after forming the web by a wet papermaking method, after passing through a heat treatment step, it may be subjected to a high-pressure water stream treatment, or the web obtained by the wet papermaking method may be subjected to a high-pressure water stream treatment without being dried. . In consideration of the productivity of the nonwoven fabric, it is preferable to perform the high-pressure water flow treatment after the heat treatment step. Also, a card method in which fibers are opened and mixed using a roller with a needle with relatively long short fibers, or an airlaid method in which relatively short short fibers are sent to a perforated drum and dispersed by air to form a web. After the web is formed, the structure may be fixed by an entanglement / heat treatment step, but the wet papermaking method is preferred.

なお、前記高圧水流を行う際、シートは単体でもよいし、原綿組成を互いに異にするシートを2層以上積層してもよい。また、前記高圧水流を行う際、前記シートと他の布帛とを積層してもよい。その際、かかる布帛としてはポリエステル繊維からなる織編物や不織布などが好ましい。   In addition, when performing the said high-pressure water flow, a sheet | seat may be a single body and you may laminate | stack two or more sheets which mutually differ in raw cotton composition. Moreover, when performing the said high pressure water flow, you may laminate | stack the said sheet | seat and another fabric. At that time, as the fabric, a woven or knitted fabric made of polyester fiber or a nonwoven fabric is preferable.

次いで、必要に応じて、前述のようにアルカリ減量加工を施すことにより、海島型複合繊維の海成分を溶解除去することにより、本発明の不織布が得られる。
かくして得られた柔軟性不織布において、不織布の少なくとも片面に前記極細ポリエステル繊維Aが露出していることが好ましい。前記極細ポリエステル繊維Aが露出していない場合は、前記の湿潤動摩擦係数が得られないおそれがある。
Next, if necessary, the nonwoven fabric of the present invention is obtained by dissolving and removing the sea components of the sea-island composite fibers by performing alkali weight reduction processing as described above.
In the thus obtained flexible nonwoven fabric, it is preferable that the ultrafine polyester fiber A is exposed on at least one surface of the nonwoven fabric. When the ultra fine polyester fiber A is not exposed, the wet dynamic friction coefficient may not be obtained.

また、不織布の引張強度が10N/5cm以上であることが好ましい。ただし、かかる引張強度は、JIS L1096(一般織物試験方法)により不織布のタテ方向とヨコ方向について測定しその平均値を求めるものとする。このような引張強度は前記の範囲内で適宜最適化することにより得られる。   Moreover, it is preferable that the tensile strength of a nonwoven fabric is 10 N / 5cm or more. However, the tensile strength is measured in the warp direction and the horizontal direction of the nonwoven fabric according to JIS L1096 (General Textile Testing Method), and the average value is obtained. Such tensile strength can be obtained by appropriately optimizing within the above range.

本発明の不織布は特定の湿潤動摩擦係数および湿潤剛軟度を有するので、肌への貼り付き性および取扱い性に優れ、コスメテイック製品用として特に好適に用いられる。
なお、本発明の不織布には、必要に応じて、常法の染色加工、カレンダー加工、エンボス加工、親水加工、撥水加工など適宜施してもよい。
Since the nonwoven fabric of the present invention has a specific wet dynamic friction coefficient and wet bending resistance, it has excellent adhesion to the skin and handleability, and is particularly suitably used for cosmetic products.
The nonwoven fabric of the present invention may be appropriately subjected to conventional dyeing processing, calendering processing, embossing processing, hydrophilic processing, water repellency processing, and the like as necessary.

次に、本発明のコスメテイック製品は前記のコスメテイック製品用不織布を用いてなり、化粧液(化粧水や美容液など)を含むコスメテイック製品(美容製品または化粧製品)である。かかるコスメテイック製品には、フェイスマスク(フェイスパック)、目元シート、首、ひじ、かかとなどに貼り付けて使用する製品などが含まれる。
かかるコスメテイック製品は前記のコスメテイック製品用不織布を用いているので、肌への貼り付き性および取扱い性に優れる。
Next, the cosmetic product of the present invention is a cosmetic product (beauty product or cosmetic product) containing the cosmetic liquid (such as lotion or cosmetic liquid) using the above-mentioned nonwoven fabric for cosmetic products. Such cosmetic products include products used by being applied to face masks (face packs), eye sheets, necks, elbows, heels, and the like.
Since this cosmetic product uses the above-mentioned nonwoven fabric for cosmetic products, it is excellent in adhesion to the skin and handleability.

次に本発明の実施例及び比較例を詳述するが、本発明はこれらによって限定されるものではない。なお、実施例中の各測定項目は下記の方法で測定した。   Next, although the Example and comparative example of this invention are explained in full detail, this invention is not limited by these. In addition, each measurement item in an Example was measured with the following method.

(1)溶融粘度
乾燥処理後のポリマーを紡糸時のルーダー溶融温度に設定したオリフィスにセットして5分間溶融保持したのち、数水準の荷重をかけて押し出し、そのときのせん断速度と溶融粘度をプロットする。そのプロットをなだらかにつないで、せん断速度−溶融粘度曲線を作成し、せん断速度が1000秒−1の時の溶融粘度を見た。
(1) Melt Viscosity The polymer after drying treatment is set in an orifice set at the melter melting temperature at the time of spinning, melted and held for 5 minutes, and then extruded with several levels of load. The shear rate and melt viscosity at that time are determined. Plot. The plot was gently connected to create a shear rate-melt viscosity curve, and the melt viscosity when the shear rate was 1000 seconds -1 was observed.

(2)溶解速度測定
海成分および島成分のポリマーを、各々、径0.3mm、長さ0.6mmのキャピラリーを24孔もつ口金から吐出し、1000〜2000m/分の紡糸速度で引き取って得た未延伸糸を残留伸度が30〜60%の範囲になるように延伸して、83dtex/24フィラメントのマルチフィラメントを作成した。これを所定の溶剤および溶解温度で浴比100として、溶解時間と溶解量から減量速度を算出した。
(2) Dissolution rate measurement Obtained by discharging the sea component and island component polymers from a die having a diameter of 0.3 mm and a length of 0.6 mm from a nozzle having 24 holes, and spinning at a spinning speed of 1000 to 2000 m / min. The undrawn yarn was drawn so that the residual elongation was in the range of 30 to 60% to prepare a multifilament of 83 dtex / 24 filament. Using this as a bath ratio of 100 at a predetermined solvent and dissolution temperature, the rate of weight loss was calculated from the dissolution time and the dissolution amount.

(3)島径との測定
透過型電子顕微鏡TEMで、倍率30000倍で繊維断面写真を撮影し、測定した。TEMの機械によっては測長機能を活用して測定し、また無いTEMについては、撮った写真を拡大コピーして、縮尺を考慮した上で定規にて測定すればよい。ただし、繊維径は、繊維断面におけるその外接円の直径を用いた(n数5の平均値)。
(3) Measurement with Island Diameter A transmission electron microscope TEM was used to take and measure a fiber cross-sectional photograph at a magnification of 30000 times. Depending on the TEM machine, the length measurement function is used for measurement, and for a TEM that does not exist, the photograph taken may be enlarged and copied with a ruler after taking the scale into consideration. However, the diameter of the circumscribed circle in the fiber cross section was used as the fiber diameter (average value of n number 5).

(4)繊維長
走査型電子顕微鏡(SEM)により、海成分溶解除去前の極細短繊維を基盤上に寝かせた状態とし、20〜500倍で測定した。SEMの測長機能を活用して測定した(n数5の平均値)。
(4) Fiber length Using a scanning electron microscope (SEM), the ultrafine short fibers before being dissolved and removed from the sea component were placed on the base and measured at 20 to 500 times. Measurement was performed by utilizing the length measurement function of SEM (average value of n number 5).

(5)引張強さ
JIS L1096(一般織物試験方法)に基づいて引張強さ(N/5cm)を測定した。
(5) Tensile strength Tensile strength (N / 5 cm) was measured based on JIS L1096 (general fabric test method).

(6)目付
JIS P8124(紙のメートル坪量測定方法)に基づいて測定した。
(6) Weight per unit area Measured based on JIS P8124 (Measuring basis weight of paper).

(7)厚み
JIS P8118(紙及び板紙の厚さと密度の試験方法)に基づいて測定した。
(7) Thickness Measured based on JIS P8118 (Test method for thickness and density of paper and paperboard).

(8)密度
JIS P8118(紙及び板紙の厚さと密度の試験方法)に基づいて測定した。
(8) Density The density was measured based on JIS P8118 (Testing method for thickness and density of paper and paperboard).

(9)剛軟度
JIS L1096 6.19.1A法(45° カンチレバー法)でタテ方向(長手方向)を測定した。
湿潤剛軟度は、温度20℃の水中に試料を浸漬させた後、温度20℃、相対湿度65%の環境下で10分間吊るした直後、測定した。一方、乾燥剛軟度は、温度20℃、相対湿度65%の環境下で1週間放置した直後、測定した。
(9) Bending softness The vertical direction (longitudinal direction) was measured by the JIS L1096 6.19.1A method (45 ° cantilever method).
The wet bending resistance was measured immediately after the sample was immersed in water at a temperature of 20 ° C. and then suspended for 10 minutes in an environment at a temperature of 20 ° C. and a relative humidity of 65%. On the other hand, the dry bending resistance was measured immediately after being left for 1 week in an environment of a temperature of 20 ° C. and a relative humidity of 65%.

(10)動摩擦係数
10cm×5cmの試料をヘッド(136g)の下に貼り付け、平滑な台の上に敷かれたシリコンラバー(擬似肌)上に置き、ヘッドを等速(10cm/min)で10cm以上動かした時の抵抗値(F)をUゲージで測定、記録した。(n数5の平均)なお、試料はタテ方向(長手方向)で測定した。動摩擦係数は次式より求めた。
動摩擦係数(μ)=Uゲージの読み(F)/ヘッドと試料の荷重(R)
湿潤動摩擦係数は、温度20℃の水中に試料を浸漬させた後、温度20℃、相対湿度65%の環境下で10分間吊るした直後、測定した。一方、乾燥動摩擦係数は、温度20℃、相対湿度65%の環境下で1週間放置した直後、測定した。
(10) Coefficient of dynamic friction A sample of 10 cm × 5 cm is attached under the head (136 g), placed on a silicon rubber (pseudo-skin) laid on a smooth base, and the head is moved at a constant speed (10 cm / min). The resistance value (F) when moved by 10 cm or more was measured and recorded with a U gauge. (Average of n number 5) The sample was measured in the vertical direction (longitudinal direction). The dynamic friction coefficient was obtained from the following equation.
Coefficient of dynamic friction (μ) = U gauge reading (F) / Head and specimen load (R)
The wet dynamic friction coefficient was measured immediately after the sample was immersed in water at a temperature of 20 ° C. and then suspended for 10 minutes in an environment at a temperature of 20 ° C. and a relative humidity of 65%. On the other hand, the dry friction coefficient was measured immediately after being left for 1 week in an environment of a temperature of 20 ° C. and a relative humidity of 65%.

(11)肌への貼り付き性
試料を顔の形に切り抜いた後、市販の化粧水を試料重量に対して500重量%含水させ、試験者3人が肌への貼り付き性を3級:優れている、2級:普通、1級:劣っている、の3段階に評価した。
(11) Adhesiveness to the skin After the sample was cut out in the shape of a face, a commercial lotion was moistened with 500% by weight with respect to the sample weight, and the three testers had a third-level adhesiveness to the skin: It was evaluated in three grades: excellent, second grade: normal, first grade: inferior.

(12)取扱い性
試料を顔の形に切り抜いた後、市販の化粧水を試料重量に対して500重量%含水させ、試験者3人が肌への取扱い性を3級:開きやすく取扱い性に優れている、2級:普通、1級:劣っているの3段階に評価した。
(12) Handleability After cutting the sample into the shape of a face, commercial skin lotion is hydrated by 500% by weight with respect to the sample weight. It was evaluated in three grades: excellent, second grade: normal, first grade: inferior.

[実施例1]
島成分に285℃での溶融粘度が120Pa・secのポリエチレンテレフタレート、海成分に285℃での溶融粘度が135Pa・secである平均分子量4000のポリエチレングリコールを4重量%、5−ナトリウムスルホイソフタル酸を9mol%共重合した改質ポリエチレンテレフタレートを使用し、海:島=10:90の重量比率で島数400の口金を用いて紡糸し、紡糸速度1500m/minで引き取った。海成分と島成分とのアルカリ減量速度比は1000倍であった。これを3.9倍に延伸した後、4%NaOH水溶液で75℃にて25%減量したところ、繊維径が比較的均一な極細繊維が生成していることを確認、該繊維をギロチンカッターにて1mmにカットして極細短繊維を得た。本繊維を極細ポリエステル繊維Aとした(単繊維径(D)が700nm、繊維長(L)が1000000nm、L/Dが1429)。
一方、基本ベース(有機繊維B)の原綿としてはポリエチレンテレフタレート繊維(単繊維繊度0.1dtex、繊維長5mm、単繊維径3.2μm)とレーヨン繊維(単繊維繊度0.8dtex、繊維長7mm、単繊維径8.7μm)を用いた。
[Example 1]
Polyethylene terephthalate with a melt viscosity at 285 ° C. of 120 Pa · sec as the island component, polyethylene glycol with an average molecular weight of 4000 with a melt viscosity at 285 ° C. of 135 Pa · sec as the sea component, 4% by weight of 5-sodium sulfoisophthalic acid Using 9 mol% copolymerized modified polyethylene terephthalate, spinning was performed using a die having a number of islands of 400 at a weight ratio of sea: island = 10: 90, and taken up at a spinning speed of 1500 m / min. The alkali weight loss rate ratio between the sea component and the island component was 1000 times. This was stretched 3.9 times and then reduced by 25% with a 4% NaOH aqueous solution at 75 ° C., and it was confirmed that ultrafine fibers having a relatively uniform fiber diameter were formed, and the fibers were used as a guillotine cutter. And cut to 1 mm to obtain ultrafine short fibers. This fiber was designated as ultra-fine polyester fiber A (single fiber diameter (D) was 700 nm, fiber length (L) was 1000000 nm, and L / D was 1429).
On the other hand, as a base cotton (organic fiber B), polyethylene terephthalate fiber (single fiber fineness 0.1 dtex, fiber length 5 mm, single fiber diameter 3.2 μm) and rayon fiber (single fiber fineness 0.8 dtex, fiber length 7 mm, A single fiber diameter of 8.7 μm) was used.

次いで、前記極細ポリエステル繊維Aと前記ポリエチレンテレフタレート繊維と前記レーヨン繊維とをこの順で10:50:40の重量比で混合攪拌した後、TAPPI(熊谷理工業製角型シートマシン、商品名)により目付け60g/mで抄紙し、これを150メッシュの金属メッシュの上に置き、ウォーターニードル試験機(ノズル0.1mmΦ、2列千鳥、水圧130kg/cm)、速度2m/min)で絡合処理を施した(表裏各1回)後、エアースルードライヤーで乾燥処理を施しコスメテイック製品用不織布を得た。該不織布において、極細ポリエステル繊維Aが両面に露出していた。得られた不織布の物性を表1に示す。また、肌への貼り付き性および取扱い性はともに3級であり、優れていた。
次いで、該不織布を用いて化粧液を含浸させてフェイスマスク(コスメテイック製品)を得たところ、肌への貼り付き性および取扱い性はともに優れていた。
Next, the ultrafine polyester fiber A, the polyethylene terephthalate fiber, and the rayon fiber were mixed and stirred in this order at a weight ratio of 10:50:40, and then TAPPI (square sheet machine manufactured by Kumagai Ri Industry Co., Ltd., trade name) Paper is made with a basis weight of 60 g / m 2 , placed on a 150-mesh metal mesh, and entangled with a water needle tester (nozzle 0.1 mmΦ, 2-row zigzag, water pressure 130 kg / cm 2 , speed 2 m / min) After the treatment (once each of the front and back surfaces), a drying treatment was performed with an air-through dryer to obtain a non-woven fabric for cosmetic products. In the nonwoven fabric, the ultra fine polyester fiber A was exposed on both sides. Table 1 shows the physical properties of the obtained nonwoven fabric. In addition, the sticking property to the skin and the handleability were both third grade and excellent.
Next, when the face mask (cosmetic product) was obtained by impregnating the cosmetic liquid using the nonwoven fabric, both the sticking property to the skin and the handleability were excellent.

[実施例2]
実施例1において、前記極細ポリエステル繊維Aと前記ポリエチレンテレフタレート繊維と前記レーヨン繊維とをこの順で20:50:30の重量比で混合攪拌すること以外は実施例1と同様にした。該不織布において、極細ポリエステル繊維Aが両面に露出していた。得られた不織布の物性を表1に示す。また、肌への貼り付き性および取扱い性はともに3級であり、優れていた。
[Example 2]
In Example 1, it carried out similarly to Example 1 except mixing and stirring the said ultra-fine polyester fiber A, the said polyethylene terephthalate fiber, and the said rayon fiber by the weight ratio of 20:50:30 in this order. In the nonwoven fabric, the ultra fine polyester fiber A was exposed on both sides. Table 1 shows the physical properties of the obtained nonwoven fabric. In addition, the sticking property to the skin and the handleability were both third grade and excellent.

[実施例3]
実施例1において2層構造とし、片面を実施例1と同じ比率で目付け30g/mとし、他方面を実施例1で用いたのと同じレーヨン繊維100%かつ目付け30g/mとし、一体品として絡合加工を施した不織布を得た。該不織布において、極細ポリエステル繊維Aが片面のみに露出していた。得られた不織布の物性を表1に示す。なお、動摩擦係数は極細ポリエステル繊維Aが露出する片面で測定した。また、肌への貼り付き性および取扱い性はともに3級であり、優れていた。なお、極細ポリエステル繊維Aが露出する片面が肌側に位置するよう用いた。また、肌への貼り付き性および取扱い性はともに3級であり、優れていた。
[Example 3]
In Example 1, a two-layer structure is used, with one side having a basis weight of 30 g / m 2 at the same ratio as Example 1, the other side having the same rayon fiber 100% and basis weight of 30 g / m 2 as used in Example 1, The nonwoven fabric which gave the entanglement process as a product was obtained. In the nonwoven fabric, the ultra fine polyester fiber A was exposed only on one side. Table 1 shows the physical properties of the obtained nonwoven fabric. The dynamic friction coefficient was measured on one side where the ultra fine polyester fiber A was exposed. In addition, the sticking property to the skin and the handleability were both third grade and excellent. In addition, it used so that the single side | surface which the ultra-fine polyester fiber A exposed may be located in the skin side. In addition, the sticking property to the skin and the handleability were both third grade and excellent.

[比較例1]
実施例1において目付を20g/mとすること以外は実施例1と同様にした。得られた不織布物性を表1に示す。また、肌への貼り付き性は3級、取扱い性は1級であった。
[Comparative Example 1]
Example 1 was the same as Example 1 except that the basis weight was 20 g / m 2 . The obtained nonwoven fabric properties are shown in Table 1. Moreover, the sticking property to the skin was grade 3, and the handleability was grade 1.

[比較例2]
実施例1において目付を150g/mとすること以外は実施例1と同様にした。得られた不織布物性を表1に示す。また、肌への貼り付き性は2級、取扱い性は3級であった。
[Comparative Example 2]
Example 1 was the same as Example 1 except that the basis weight was 150 g / m 2 . The obtained nonwoven fabric properties are shown in Table 1. Moreover, the sticking property to the skin was grade 2, and the handleability was grade 3.

[比較例3]
実施例1において、不織布組成として、ポリエチレンテレフタレート繊維(単繊維繊度0.1dtex、繊維長5mm、単繊維径3.2μm)のみを用いること以外は実施例1と同様にした。得られた不織布の物性を表1に示す。また、肌への貼り付き性は2級、取扱い性は3級であった。
[Comparative Example 3]
Example 1 was the same as Example 1 except that only polyethylene terephthalate fibers (single fiber fineness 0.1 dtex, fiber length 5 mm, single fiber diameter 3.2 μm) were used as the nonwoven fabric composition. Table 1 shows the physical properties of the obtained nonwoven fabric. Moreover, the sticking property to the skin was grade 2, and the handleability was grade 3.

[比較例4]
実施例1において、不織布組成として、レーヨン繊維(単繊維繊度0.8dtex、繊維長7mm、単繊維径8.7μm)のみを用いること以外は実施例1と同様にした。得られた不織布の物性を表1に示す。また、肌への貼り付き性は1級、取扱い性は2級であった。
[Comparative Example 4]
In Example 1, it was carried out similarly to Example 1 except using only a rayon fiber (single fiber fineness 0.8dtex, fiber length 7mm, single fiber diameter 8.7 micrometers) as a nonwoven fabric composition. Table 1 shows the physical properties of the obtained nonwoven fabric. Moreover, the sticking property to the skin was grade 1, and the handleability was grade 2.

[比較例5]
実施例1において、不織布組成として、綿繊維(単繊維繊度1.2dtex、繊維長7mm、単繊維径10.5μm)のみを用いること以外は実施例1と同様にした。得られた不織布の物性を表1に示す。また、肌への貼り付き性は2級、取扱い性は3級であった。
[Comparative Example 5]
In Example 1, it was carried out similarly to Example 1 except using only a cotton fiber (single fiber fineness 1.2dtex, fiber length 7mm, single fiber diameter 10.5micrometer) as a nonwoven fabric composition. Table 1 shows the physical properties of the obtained nonwoven fabric. Moreover, the sticking property to the skin was grade 2, and the handleability was grade 3.

Figure 2012067399
Figure 2012067399

本発明によれば、肌への貼り付き性および取扱い性に優れたコスメテイック製品用不織布、および該不織布を用いてなるコスメテイック製品が提供され、その工業的価値は極めて大である。   ADVANTAGE OF THE INVENTION According to this invention, the cosmetics nonwoven fabric excellent in the sticking property to skin and the handleability, and the cosmetics product using this nonwoven fabric are provided, The industrial value is very large.

Claims (7)

目付けが30〜100g/mのコスメテイック製品用不織布であって、湿潤動摩擦係数が2.0以上であり、かつ湿潤剛軟度が1〜5cmの範囲内であることを特徴とするコスメテイック製品用不織布。
ただし、湿潤動摩擦係数および湿潤剛軟度は、温度20℃の水中に試料を浸漬させた後、温度20℃、相対湿度65%の環境下で10分間吊るした後、測定するものとする。
A cosmetic product non-woven fabric having a basis weight of 30 to 100 g / m 2 , having a wet dynamic friction coefficient of 2.0 or more and a wet bending resistance of 1 to 5 cm. Non-woven fabric.
However, the wet dynamic friction coefficient and the wet bending resistance are measured after the sample is immersed in water at a temperature of 20 ° C. and then suspended for 10 minutes in an environment at a temperature of 20 ° C. and a relative humidity of 65%.
ポリエステルからなり単繊維径(D)が500〜1000nmかつ該単繊維径(D)nmに対する繊維長(L)nmの比(L/D)が600〜3000の範囲内である極細ポリエステル繊維Aと、単繊維繊度0.05〜1.0dtex、かつ繊維長3〜20mmの有機繊維Bとが、前者/後者の重量比1/99〜50/50で含まれる、請求項1に記載のコスメテイック製品用不織布。   An ultrafine polyester fiber A made of polyester and having a single fiber diameter (D) of 500 to 1000 nm and a ratio (L / D) of the fiber length (L) nm to the single fiber diameter (D) nm of 600 to 3000; The cosmetic product according to claim 1, wherein the organic fiber B having a single fiber fineness of 0.05 to 1.0 dtex and a fiber length of 3 to 20 mm is contained in a weight ratio of 1/99 to 50/50 of the former / the latter. Nonwoven fabric. 前記極細ポリエステル繊維Aが、ポリエステルからなりかつ島径(D)が500〜1000nmである島成分と前記のポリエステルよりもアルカリ水溶液易溶解性ポリマーからなる海成分とを有する複合繊維にアルカリ減量加工を施すことにより、前記海成分を溶解除去したものである、請求項2に記載のコスメテイック製品用不織布。   The ultra-fine polyester fiber A is made of polyester and subjected to alkali weight reduction processing on a composite fiber having an island component having an island diameter (D) of 500 to 1000 nm and a sea component made of an aqueous polymer that is more easily soluble in alkali solution than the polyester. The nonwoven fabric for cosmetic products according to claim 2, wherein the sea component is dissolved and removed by applying. 不織布の少なくとも片面に前記極細ポリエステル繊維Aが露出している、請求項2または請求項3に記載のコスメテイック製品用不織布。   The nonwoven fabric for cosmetic products according to claim 2 or 3, wherein the ultrafine polyester fiber A is exposed on at least one surface of the nonwoven fabric. 不織布が、湿式抄紙法によりシートを抄紙後、さらに高圧水流により繊維同士を絡合させた不織布である、請求項1〜4のいずれかに記載のコスメテイック製品用不織布。   The non-woven fabric for cosmetic products according to any one of claims 1 to 4, wherein the non-woven fabric is a non-woven fabric in which fibers are entangled with each other by a high-pressure water stream after a sheet is formed by a wet papermaking method. 不織布の引張強さが10N/5cm以上である、請求項1〜5のいずれかに記載のコスメテイック製品用不織布。   The nonwoven fabric for cosmetic products according to any one of claims 1 to 5, wherein the nonwoven fabric has a tensile strength of 10 N / 5 cm or more. 請求項1〜6のいずれかに記載のコスメテイック製品用不織布を用いてなり、化粧液を含むコスメテイック製品。   A cosmetic product comprising the cosmetic liquid comprising the non-woven fabric for cosmetic product according to any one of claims 1 to 6.
JP2010210790A 2010-09-21 2010-09-21 Non-woven fabric for cosmetic products and cosmetic products Active JP5558989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010210790A JP5558989B2 (en) 2010-09-21 2010-09-21 Non-woven fabric for cosmetic products and cosmetic products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010210790A JP5558989B2 (en) 2010-09-21 2010-09-21 Non-woven fabric for cosmetic products and cosmetic products

Publications (2)

Publication Number Publication Date
JP2012067399A true JP2012067399A (en) 2012-04-05
JP5558989B2 JP5558989B2 (en) 2014-07-23

Family

ID=46164989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010210790A Active JP5558989B2 (en) 2010-09-21 2010-09-21 Non-woven fabric for cosmetic products and cosmetic products

Country Status (1)

Country Link
JP (1) JP5558989B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013240432A (en) * 2012-05-18 2013-12-05 Angfa Co Ltd Face mask
JP2017150108A (en) * 2016-02-25 2017-08-31 クラレクラフレックス株式会社 Fiber sheet
JP2017150107A (en) * 2016-02-25 2017-08-31 クラレクラフレックス株式会社 Fiber sheet, and method for producing fiber sheet
WO2018047810A1 (en) * 2016-09-07 2018-03-15 東レ株式会社 Laminated nonwoven fabric
CN110770380A (en) * 2017-06-21 2020-02-07 东丽株式会社 Nonwoven fabric for skin care products

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012223396A (en) * 2011-04-20 2012-11-15 Teijin Fibers Ltd Nonwoven fabric for cosmetic product, and the cosmetic product

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321342A (en) * 2002-05-09 2003-11-11 Osaka Seiyaku:Kk Pack sheet
JP2007211371A (en) * 2006-02-09 2007-08-23 Daiwabo Co Ltd Laminated nonwoven fabric
JP2009197374A (en) * 2008-02-25 2009-09-03 Teijin Fibers Ltd Flexible nonwoven fabric

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321342A (en) * 2002-05-09 2003-11-11 Osaka Seiyaku:Kk Pack sheet
JP2007211371A (en) * 2006-02-09 2007-08-23 Daiwabo Co Ltd Laminated nonwoven fabric
JP2009197374A (en) * 2008-02-25 2009-09-03 Teijin Fibers Ltd Flexible nonwoven fabric

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013240432A (en) * 2012-05-18 2013-12-05 Angfa Co Ltd Face mask
JP2017150108A (en) * 2016-02-25 2017-08-31 クラレクラフレックス株式会社 Fiber sheet
JP2017150107A (en) * 2016-02-25 2017-08-31 クラレクラフレックス株式会社 Fiber sheet, and method for producing fiber sheet
WO2018047810A1 (en) * 2016-09-07 2018-03-15 東レ株式会社 Laminated nonwoven fabric
CN109642369A (en) * 2016-09-07 2019-04-16 东丽株式会社 Non-woven fabrics is laminated
JPWO2018047810A1 (en) * 2016-09-07 2019-06-24 東レ株式会社 Laminated non-woven fabric
CN109642369B (en) * 2016-09-07 2021-08-27 东丽株式会社 Laminated nonwoven fabric
CN109642369B9 (en) * 2016-09-07 2021-10-12 东丽株式会社 Laminated nonwoven fabric
CN110770380A (en) * 2017-06-21 2020-02-07 东丽株式会社 Nonwoven fabric for skin care products
EP3643825A4 (en) * 2017-06-21 2021-05-05 Toray Industries, Inc. Nonwoven fabric for skincare product

Also Published As

Publication number Publication date
JP5558989B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
JP5027688B2 (en) Flexible nonwoven fabric
JP4976487B2 (en) Wet nonwovens and filters
JP5558989B2 (en) Non-woven fabric for cosmetic products and cosmetic products
KR101441723B1 (en) Thin paper
JP2013256739A (en) Nonwoven fabric for mask and mask
US10550803B2 (en) Filter medium for filter, method for producing the same, and filter
JP4950472B2 (en) Method for producing short cut nanofibers
JP2010070870A (en) Method for producing nonwoven fabric, the nonwoven fabric, nonwoven fabric structure, and textile product
JP5284889B2 (en) Fiber products
JPWO2012057251A1 (en) Multilayer filter media and filters
JP2012223396A (en) Nonwoven fabric for cosmetic product, and the cosmetic product
JP2014074246A (en) Wet nonwoven fabric for liquid filtration filter and liquid filtration filter
JP2013256461A (en) Sheet for body skin contact and cosmetic product
JP4994313B2 (en) Method for producing short cut nanofiber and method for producing wet nonwoven fabric
JP2019199668A (en) Mask filter and face mask
JP2012092461A (en) Thin paper
JP2012237084A (en) Nonwoven fabric for filter and air filter
JP2012092466A (en) Wet-laid nonwoven fabric and textile product
JP2018016907A (en) Wiping sheet material and manufacturing method thereof
JP3185098U (en) Cosmetic puff
JP5908709B2 (en) Nonwoven fabric for filter, method for producing the same and filter
JP4922964B2 (en) Dry nonwoven fabric
JP6462368B2 (en) Wet nonwovens and shoji paper and products
JP3197714U (en) Gloves for cleaning
JP2013118950A (en) Facial oil blotting paper

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140605

R150 Certificate of patent or registration of utility model

Ref document number: 5558989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250