JP2012067256A - Method for producing foam-molded body - Google Patents

Method for producing foam-molded body Download PDF

Info

Publication number
JP2012067256A
JP2012067256A JP2010215531A JP2010215531A JP2012067256A JP 2012067256 A JP2012067256 A JP 2012067256A JP 2010215531 A JP2010215531 A JP 2010215531A JP 2010215531 A JP2010215531 A JP 2010215531A JP 2012067256 A JP2012067256 A JP 2012067256A
Authority
JP
Japan
Prior art keywords
resin
foam
citric acid
molded body
master batch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010215531A
Other languages
Japanese (ja)
Other versions
JP5633274B2 (en
Inventor
Masaru Igarashi
優 五十嵐
Masaaki Onodera
正明 小野寺
Yoshinori Ono
慶詞 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoraku Co Ltd
Original Assignee
Kyoraku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoraku Co Ltd filed Critical Kyoraku Co Ltd
Priority to JP2010215531A priority Critical patent/JP5633274B2/en
Publication of JP2012067256A publication Critical patent/JP2012067256A/en
Application granted granted Critical
Publication of JP5633274B2 publication Critical patent/JP5633274B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a foam-molded body which produces a foam-molded body having low apparent density using a chemical foaming agent.SOLUTION: In the method for producing a foam-molded body, the foam-molded body is molded by extruding a mixed resin from an extruder, wherein the mixed resin is obtained by loading a sodium bicarbonate master batch, a citric acid master batch formed separately from the sodium bicarbonate master batch, and a raw material resin each into the extruder and kneading the same.

Description

本発明は、化学発泡剤を用いた発泡成形体の製造方法に関するものである。   The present invention relates to a method for producing a foamed molded article using a chemical foaming agent.

従来、発泡成形体を得る方法として重曹とクエン酸(又はクエン酸塩)とを使用した無機系化学発泡剤を用いる方法が知られている(特許文献1参照)。この化学発泡剤は、酸(クエン酸)と塩基(重曹)との化学反応により炭酸ガスを発生させ、そのガスにより熱可塑性樹脂を発泡させるというものである。重曹、クエン酸は、それぞれ粉末状態で使用することもできるが、取り扱い性の観点から、重曹とクエン酸とを1つのマスターバッチとして、当該マスターバッチを基材樹脂と混練して成形するのが一般的である。   Conventionally, a method using an inorganic chemical foaming agent using sodium bicarbonate and citric acid (or citrate) is known as a method for obtaining a foamed molded product (see Patent Document 1). This chemical foaming agent generates carbon dioxide gas by a chemical reaction between an acid (citric acid) and a base (bicarbonate), and foams a thermoplastic resin with the gas. Baking soda and citric acid can be used in powder form, but from the viewpoint of handleability, baking soda and citric acid are used as one master batch, and the master batch is kneaded with the base resin and molded. It is common.

特開2000−225638号公報JP 2000-225638 A

しかし、従来の化学発泡剤マスターバッチを用いた場合、重曹とクエン酸との酸塩基反応が、マスターバッチを作製してから保管するまでの段階で起こる。そのため、発泡成形をする際には発生する炭酸ガスの量が低下する。   However, when a conventional chemical blowing agent masterbatch is used, an acid-base reaction between baking soda and citric acid occurs at a stage from preparation of the masterbatch to storage. For this reason, the amount of carbon dioxide generated during foam molding is reduced.

本発明は、上記のような問題を解決するためになされたものであり、化学発泡剤を用いて見掛け密度の小さい発泡成形体を製造できる発泡成形体の製造方法を提供する。   The present invention has been made to solve the above-described problems, and provides a method for producing a foamed molded product that can produce a foamed molded product having a small apparent density using a chemical foaming agent.

本発明は、重曹マスターバッチと、当該重曹マスターバッチとは別に形成されたクエン酸マスターバッチと、基材樹脂と、をそれぞれ押出機に投入し混練してなる混合樹脂を、前記押出機から押し出して発泡成形体を成形することを特徴とする。   The present invention is to extrude a mixed resin obtained by charging a sodium bicarbonate master batch, a citric acid master batch formed separately from the sodium bicarbonate master batch, and a base resin into an extruder and kneading them from the extruder. Forming a foamed molded product.

本発明によれば、化学発泡剤を用いて見掛け密度の小さい発泡成形体を製造できる。   According to the present invention, it is possible to produce a foamed molded article having a small apparent density using a chemical foaming agent.

重曹とクエン酸の添加重量比率を示す図である。It is a figure which shows the addition weight ratio of baking soda and a citric acid. 張力検出用プーリーと連結する検出機により検出される紐状物のMTを経時的に測定した結果を示す図である。It is a figure which shows the result of having measured MT of the string-like object detected with the detector connected with the pulley for tension detection with time.

以下、添付図面を参照しながら、本実施形態の発泡成形体の製造方法について説明する。   Hereinafter, the manufacturing method of the foaming molding of this embodiment is demonstrated, referring an accompanying drawing.

本実施形態の発泡成形体の製造方法は、重曹マスターバッチと、当該重曹マスターバッチとは別に形成されたクエン酸マスターバッチと、基材樹脂と、をそれぞれ押出機に投入し混練してなる混合樹脂を、押出機から押し出して発泡成形体を成形する。なお、マスターバッチとして使用する重曹、クエン酸の粉末粒子径は特に限定しないが、100μm以下であることが望ましい。   The method for producing a foamed molded product of the present embodiment is a mixing method in which a baking soda master batch, a citric acid master batch formed separately from the baking soda master batch, and a base resin are put into an extruder and kneaded. Resin is extruded from an extruder to form a foamed molded article. The powder particle size of baking soda and citric acid used as a master batch is not particularly limited, but is preferably 100 μm or less.

また、重曹とクエン酸の添加重量比率は、図1に示す通り、クエン酸が重曹よりも多量になると見掛け密度が下がりにくくなる為、重曹:クエン酸=3以上:1であることが望ましい。即ち、重曹とクエン酸の添加重量比率が、重曹:クエン酸=3以上:1となるように、重曹マスターバッチと、クエン酸マスターバッチと、を原料樹脂に配合することが望ましい。   Further, as shown in FIG. 1, the added weight ratio of baking soda and citric acid is preferably baking soda: citric acid = 3 or more: 1 because the apparent density is hardly lowered when citric acid becomes larger than baking soda. That is, it is desirable to add the baking soda master batch and the citric acid master batch to the raw material resin so that the added weight ratio of baking soda and citric acid is baking soda: citric acid = 3 or more: 1.

発泡剤の添加量(重曹の重量とクエン酸の重量との和)は、基材となる樹脂やブロー成形温度、所望の見掛け密度によっても異なるが0.2〜3.0wt%の範囲内で添加するのが望ましく、0.8〜1.2wt%の範囲内であるのがより好ましい。   The amount of foaming agent added (the sum of the weight of baking soda and citric acid) depends on the base resin, blow molding temperature, and the desired apparent density, but it should be added within the range of 0.2 to 3.0 wt%. Is desirable, and it is more preferably within the range of 0.8 to 1.2 wt%.

原料樹脂は、200℃におけるメルトテンション(MT)が7gf以上かつ200℃におけるMTとメルトフローレイト(MFR)の積が15g2/10min以上有することが好ましい。MTが7gfより小さい樹脂は、溶融樹脂表面から気泡の破裂(破泡)が発生し、パリソンを十分に発泡させることが困難である。又、MTとMFRの積が小さい樹脂は、流動性の悪さが発泡性に悪影響を及ぼす傾向がある他、型内で賦形する際、形状を転写することが困難になる虞がある。 Raw material resin preferably has a product of melt tension at 200 ℃ (MT) MT and the melt flow rate at that 7gf more and 200 ° C. (MFR) is 15 g 2 / 10min or more. Resins with MT smaller than 7 gf cause bubble burst (bubble breakage) from the surface of the molten resin, and it is difficult to sufficiently foam the parison. In addition, a resin having a small product of MT and MFR tends to have an adverse effect on foamability due to poor fluidity, and it may be difficult to transfer the shape when forming in a mold.

原料樹脂は、単独で用いるのみならず、2種類以上を混合して用いても良い。例えば、主原料の特性が損なわれない範囲で、ポリプロピレン系樹脂、高密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン等のエチレン系樹脂、ブテン系樹脂、スチレン系樹脂等の他の樹脂成分を必要に応じて混合しても良い。   The raw material resins may be used alone or in combination of two or more. For example, other resin components such as polypropylene resins, high-density polyethylene, low-density polyethylene, linear low-density polyethylene, and other ethylene-based resins, butene-based resins, and styrene-based resins, as long as the characteristics of the main raw material are not impaired. May be mixed as necessary.

尚、必要に応じて気泡調整剤を用いて気泡径を調整することができる。代表的なものとしては、タルク、シリカ、ゼオライト、モレキュラーシーブ、酸化亜鉛、炭酸カルシウム等の無機系気泡調整剤がある。これらの無機系気泡調整剤は気泡生成時の核となり、気泡をより微細にすることができる。その他の気泡調整剤としては発泡助剤として使用する有機酸の有機酸塩を気泡調整剤として用いる方法がある。これらは緩衝作用により、酸・塩基反応を穏やかにし、気泡の過度の成長を抑えることができる。   In addition, a bubble diameter can be adjusted using a bubble regulator as needed. Typical examples include inorganic bubble regulators such as talc, silica, zeolite, molecular sieve, zinc oxide, and calcium carbonate. These inorganic bubble regulators serve as nuclei at the time of bubble generation and can make the bubbles finer. As another bubble regulator, there is a method of using an organic acid salt of an organic acid used as a foaming aid as a bubble regulator. These can moderate acid / base reaction and suppress excessive growth of bubbles by buffering action.

(MTの測定方法)
原料樹脂のMTは、例えば、株式会社東洋精機製作所製のメルトテンションテスターII型等によって測定することができる。具体的にはオリフィス径2.095mm、長さ8mmのオリフィスを有するメルトテンションテスターを用い、上記オリフィスから樹脂温度200℃、押出のピストン速度10mm/minの条件で樹脂を紐状に押出して、この紐状物を直径45mmの張力検出用プーリーに掛けたあと、直径50mmの巻取りローラーで巻取り速度4 rpmで巻き取る。
(MT measurement method)
The MT of the raw material resin can be measured by, for example, a melt tension tester type II manufactured by Toyo Seiki Seisakusho Co., Ltd. Specifically, using a melt tension tester having an orifice with an orifice diameter of 2.095 mm and a length of 8 mm, the resin is extruded into a string from the orifice under the conditions of a resin temperature of 200 ° C. and an extrusion piston speed of 10 mm / min. The product is hung on a tension detection pulley having a diameter of 45 mm, and then wound with a winding roller having a diameter of 50 mm at a winding speed of 4 rpm.

MTを求めるには、ピストン内に原料を入れ、ピストン内の温度が200±0.2℃になったあと予備荷重をかけ、4分間保持する(このとき考えられる原料の種類としては、バージン原料樹脂、予め溶融混練を行なった樹脂の細断物、成形体から切り出し細断した樹脂の3種類が考えられる)。予備荷重はMFRによって異なり、表1の通りである。その後、巻取り速度5rpmにおいて、巻取りを行い、張力検出用プーリーと連結する検出機により検出される紐状物のMTを経時的に測定し、縦軸にMT(gf)を、横軸に時間(秒)を取り、チャートに示すと図2のように振幅をもったグラフが得られる。図2においてMTは、振幅の安定した部分の振幅の中央値(X)をとる。尚、希に発生する特異的な振幅は無視するものとする。   To obtain the MT, put the raw material in the piston, apply the preload after the temperature in the piston reaches 200 ± 0.2 ° C, and hold it for 4 minutes (conceivable types of raw materials include virgin raw resin, Three types are possible: a resin shredded product that has been melt-kneaded in advance, and a resin that has been cut from a molded product and shredded). The preload varies according to the MFR and is shown in Table 1. Thereafter, winding is performed at a winding speed of 5 rpm, and the MT of the string-like material detected by a detector connected to the tension detection pulley is measured over time, and MT (gf) is plotted on the vertical axis and MT (gf) on the horizontal axis. When time (seconds) is taken and shown in the chart, a graph having an amplitude as shown in FIG. 2 is obtained. In FIG. 2, MT takes the median value (X) of the amplitude where the amplitude is stable. It should be noted that a specific amplitude that occurs rarely is ignored.

Figure 2012067256
Figure 2012067256

(MFRの測定方法)
MFRはJIS K7210に記載されている200℃、荷重2.16kgfで測定した値を採用するものとする。
(Measurement method of MFR)
The value measured at 200 ° C and a load of 2.16kgf described in JIS K7210 shall be used for MFR.

(見掛け密度の測定方法)
発泡成形体の見掛け密度は、発泡成形体の一部を切り出したものを試験片とし、この試験片の重量(g)を該試験片の体積(cm3)で割って求める。
尚、発泡成形体がブロー成形品の場合は、試験片としてはブロー圧が作用している面を使用する(コンプレッション部は使用しない)。
(Apparent density measurement method)
The apparent density of the foam molded article is obtained by dividing a part of the foam molded article as a test piece and dividing the weight (g) of the test piece by the volume (cm 3 ) of the test piece.
In addition, when a foaming molding is a blow molded product, the surface on which blow pressure acts is used as a test piece (the compression portion is not used).

(発泡剤マスターバッチ/発泡助剤マスターバッチの作製)
発泡剤MBは、低密度ポリエチレン(融点106℃、MFR 14g/10min)に重曹(平均粒子径50〜200μm程度のもの)をドライブレンドし、二軸押出機にて混練したものとした。尚、重曹は、発泡剤MB全体の40wt%を占めるように混合した。
発泡助剤MBは、低密度ポリエチレン(融点106℃、MFR 14g/10min)にクエン酸(平均粒子径50〜100μm程度のもの)をドライブレンドし、二軸押出機にて混練したものとした。尚、クエン酸は、発泡剤MB全体の40wt%を占めるように混合した。
重量比が、発泡剤MB:発泡助剤MB=6:1となるように、発泡剤MBと発泡助剤MBとをドライブレンドしたものを化学発泡剤として使用した。
(Production of foaming agent masterbatch / foaming aid masterbatch)
The foaming agent MB was obtained by dry blending sodium bicarbonate (having an average particle size of about 50 to 200 μm) into low density polyethylene (melting point: 106 ° C., MFR: 14 g / 10 min) and kneading with a twin screw extruder. Baking soda was mixed so as to occupy 40 wt% of the entire foaming agent MB.
Foaming aid MB was obtained by dry blending citric acid (having an average particle size of about 50 to 100 μm) into low density polyethylene (melting point: 106 ° C., MFR: 14 g / 10 min) and kneading with a twin screw extruder. Citric acid was mixed so as to occupy 40 wt% of the entire foaming agent MB.
A dry blend of foaming agent MB and foaming aid MB was used as the chemical foaming agent so that the weight ratio was foaming agent MB: foaming aid MB = 6: 1.

(ブロー成形体の作製1)
表2に示す配合の基材樹脂100重量部に対して化学発泡剤を3重量部添加したものをシリンダ径75mm押出機に供給し、アキュームレ−ターヘッドを介して発泡パリソンを形成した。アキュームレ−ターで溶融樹脂を溜める際は、アキュームレ−ター内で溶融樹脂が発泡しない程度に加圧することが望ましい。次いで、得られた発泡パリソンを金型で挟み、吹き込み針にて金型内に0.05MPaの圧縮空気を送り込み、ダクト形状の中空発泡成形体を賦形した。中空発泡成形体の印字部やブロー比が高くなる部分はスリットベント等の真空ベントを設けることが好ましい。成形体は肉厚1.5〜2.0mmとなるように重量調整を行なった。
(Preparation of blow molded product 1)
What added 3 weight part of chemical foaming agents with respect to 100 weight part of base resin of the mixing | blending shown in Table 2 was supplied to the cylinder diameter 75mm extruder, and the foaming parison was formed through the accumulator head. When accumulating molten resin with an accumulator, it is desirable to apply pressure to the extent that the molten resin does not foam in the accumulator. Next, the obtained foamed parison was sandwiched between molds, and compressed air of 0.05 MPa was fed into the mold with a blow needle to shape a duct-shaped hollow foamed molded product. It is preferable to provide a vacuum vent such as a slit vent in the printed part of the hollow foamed molded product or a part where the blow ratio becomes high. The weight of the molded body was adjusted so that the thickness was 1.5 to 2.0 mm.

ここで、中空発泡成形体の肉厚は、以下のように算出する。
中空発泡成形体の表面積S(cm2)及び重量W(g)を測定し、前記見掛け密度より下記(1)式より算出する。
中空発泡成形体の厚み(mm)=W/(S×ρ×10)・・・・(1)式
W:中空発泡成形体の重量(g)
S:中空発泡成形体の表面積(cm2
ρ:中空発泡成形体の見掛け密度(g/cm3
Here, the thickness of the hollow foamed molded product is calculated as follows.
The surface area S (cm 2 ) and weight W (g) of the hollow foamed molded article are measured, and calculated from the following equation (1) from the apparent density.
Hollow foam molded product thickness (mm) = W / (S x ρ x 10) ··· (1)
W: Weight of hollow foam molding (g)
S: Surface area of the hollow foamed molded product (cm 2 )
ρ: Apparent density of hollow foamed molded product (g / cm 3 )

表2に見掛け密度と外観の評価結果を示す。尚、表2の2MB方式とは、発泡剤MBと発泡助剤MBをそれぞれ別個のMBにして使用した方式であり、1MB方式とは発泡剤と発泡助剤が同一のMBを使用した方式である。また、基材樹脂の原料として用いた樹脂は以下の通りである。
PP1:プロピレン単独重合体(ボレアリス社製、商品名:Daploy WB130)、MT=40cN(190℃)、MFR=2.1g/10min(230℃)、密度=900kg/m3
PP2:結晶性エチレン−プロピレンブロック共重合体(日本ポリプロ株式会社製、商品名:ニューフォーマー FB3312)、MT=7cN(190℃)、MFR=3g/10min(230℃)、密度=900kg/m3
LLDPE:メタロセン系触媒により重合された直鎖状超低密度ポリエチレンであるエチレン−ヘキセン−1共重合体(住友化学株式会社製、エクセレン CX2001)、MFR=2g/10min(230℃)、密度=898kg/m3
LDPE:低密度ポリエチレン(住友化学株式会社製、スミカセン F108)、MFR=0.42g/10min(230℃)、密度=920kg/m3
Table 2 shows the evaluation results of the apparent density and the appearance. The 2MB system in Table 2 is a system that uses the foaming agent MB and the foaming aid MB as separate MBs. The 1MB system uses the same MB for the foaming agent and the foaming aid. is there. Moreover, the resin used as a raw material of base resin is as follows.
PP1: Propylene homopolymer (manufactured by Borealis, trade name: Daploy WB130), MT = 40 cN (190 ° C.), MFR = 2.1 g / 10 min (230 ° C.), density = 900 kg / m 3 .
PP2: crystalline ethylene-propylene block copolymer (manufactured by Nippon Polypro Co., Ltd., trade name: New Former FB3312), MT = 7cN (190 ° C), MFR = 3g / 10min (230 ° C), density = 900kg / m 3 .
LLDPE: ethylene-hexene-1 copolymer (Sumitomo Chemical Co., Ltd., Exelen CX2001), linear ultra-low density polyethylene polymerized by metallocene catalyst, MFR = 2g / 10min (230 ° C), density = 898kg / m 3 .
LDPE: Low density polyethylene (Sumitomo Chemical Co., Sumikasen F108), MFR = 0.42 g / 10 min (230 ° C.), density = 920 kg / m 3 .

Figure 2012067256
Figure 2012067256

実施例1は、2MB方式であるため、1MB方式の比較例1に比べて、見掛け密度が小さく(発泡倍率が高く)なっている。
また、実施例1は、200℃におけるメルトテンション(MT)が7gf以上で、200℃におけるメルトフローレイト(MFR)とMTの積が15g2/10min以上であるため、実施例2、実施例3、実施例4に比べて見掛け密度が小さく成形できている。また、外観も、実施例2、実施例3に比べて優れている。
実施例2はMT、MT×MFRともに低すぎた為に、実施例1に比べ見掛け密度は大きくなり、又、成形品表面も劣る結果となった。
実施例3はMTが低すぎたことによる破泡が見られ、実施例1に比べ見掛け密度は大きくなった。また、表面が破泡した状態で固化した為に表面が鮫肌状になり、外観も劣る結果となった。
実施例4はMTが高かった為に、破泡は見られなかったが、MT×MFRが低かったことにより、溶融樹脂の流動性が見掛け密度にも悪影響を及ぼす結果となった。又、金型の転写性が実施例1、実施例3よりも若干劣っていた。
比較例1は重曹とクエン酸の酸塩基相互作用が発泡に悪影響を及ぼし、十分な見掛け密度を得ることができなかった。
Since Example 1 is a 2 MB system, the apparent density is smaller (the foaming ratio is higher) than Comparative Example 1 of the 1 MB system.
In Example 1, since a melt tension at 200 ° C. (MT) is at least 7 gf, is melt flow rate (MFR) and the product of MT is 15 g 2 / 10min or more at 200 ° C., Example 2, Example 3 Compared to Example 4, the apparent density is small. In addition, the external appearance is also superior to that of Example 2 and Example 3.
In Example 2, since both MT and MT × MFR were too low, the apparent density was larger than that in Example 1, and the surface of the molded product was inferior.
In Example 3, bubbles were broken due to MT being too low, and the apparent density was higher than that in Example 1. Moreover, since the surface solidified in the state where the foam was broken, the surface became a skin-like shape, resulting in poor appearance.
In Example 4, since the MT was high, no bubble breakage was observed, but due to the low MT × MFR, the fluidity of the molten resin had an adverse effect on the apparent density. Also, the transferability of the mold was slightly inferior to those of Examples 1 and 3.
In Comparative Example 1, the acid-base interaction between sodium bicarbonate and citric acid had an adverse effect on foaming, and a sufficient apparent density could not be obtained.

(ブロー成形体の作製2)
原料系樹脂は表3に示すものとし、原料樹脂100重量部に対して化学発泡剤を1〜3重量部添加したものを、上述した(ブロー成形体の作製1)と同様の方法でダクト形状の中空発泡成形体を作製した。尚、表2の2MB方式とは、発泡剤MBと発泡助剤MBをそれぞれ別個のMBにして使用した方式であり、1MB方式とは発泡剤と発泡助剤が同一のMBを使用した方式である。また、基材樹脂の原料として用いた樹脂は、上述したPP1、PP2の他、以下の通りである。
PE:エチレン重合体(東ソー株式会社製、08S55A)、MT=4.19cN、MFR=4g/10min(230℃)、密度=952kg/cm3
(Production of blow molded product 2)
The raw material resin is as shown in Table 3, and 1 to 3 parts by weight of a chemical foaming agent is added to 100 parts by weight of the raw material resin in the same manner as described above (Preparation of blow molded body 1). A hollow foamed molded article was prepared. The 2MB system in Table 2 is a system that uses the foaming agent MB and the foaming aid MB as separate MBs. The 1MB system uses the same MB for the foaming agent and the foaming aid. is there. In addition to the PP1 and PP2 described above, the resin used as the raw material for the base resin is as follows.
PE: ethylene polymer (manufactured by Tosoh Corporation, 08S55A), MT = 4.19 cN, MFR = 4 g / 10 min (230 ° C.), density = 952 kg / cm 3 .

Figure 2012067256
Figure 2012067256

実施例5〜8と比較例2〜5を比較すると、発泡剤の添加量が違ういずれの場合においても2MB方式である実施例2〜5の方が、見掛け密度が下がり易いことがわかった。   When Examples 5 to 8 and Comparative Examples 2 to 5 were compared, it was found that in any case where the amount of addition of the foaming agent was different, the apparent density was more likely to decrease in Examples 2 to 5 using the 2MB system.

以上、本発明の実施形態及び実施例について説明したが、上記実施形態及び実施例のみに本発明の範囲を限定するものではなく、本発明の要旨を逸脱しない範囲において種々の変更を施した形態での実施が可能である。   Although the embodiments and examples of the present invention have been described above, the scope of the present invention is not limited to the above-described embodiments and examples, and various modifications are made without departing from the scope of the present invention. Implementation is possible.

Claims (2)

重曹マスターバッチと、当該重曹マスターバッチとは別に形成されたクエン酸マスターバッチと、原料樹脂と、をそれぞれ押出機に投入し混練してなる混合樹脂を、前記押出機から押し出して発泡成形体を成形することを特徴とする発泡成形体の製造方法。   Baking soda masterbatch, a citric acid masterbatch formed separately from the baking soda masterbatch, and a raw material resin are respectively introduced into an extruder and kneaded to extrude a mixed resin from the extruder to obtain a foam molded product. A method for producing a foamed molded article, comprising molding. 前記原料樹脂は、200℃におけるメルトテンション(MT)が7gf以上で、200℃におけるメルトフローレイト(MFR)とMTの積が15 g2/10min以上であることを特徴とする請求項1に記載の発泡成形体の製造方法。 The raw material resin is a melt tension at 200 ° C. (MT) is more than 7 gf, according to claim 1, the product of the melt flow rate (MFR) and MT at 200 ° C. is characterized in that it is 15 g 2 / 10min or more A method for producing an expanded molded article.
JP2010215531A 2010-09-27 2010-09-27 Method for producing foam molded article Active JP5633274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010215531A JP5633274B2 (en) 2010-09-27 2010-09-27 Method for producing foam molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010215531A JP5633274B2 (en) 2010-09-27 2010-09-27 Method for producing foam molded article

Publications (2)

Publication Number Publication Date
JP2012067256A true JP2012067256A (en) 2012-04-05
JP5633274B2 JP5633274B2 (en) 2014-12-03

Family

ID=46164893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010215531A Active JP5633274B2 (en) 2010-09-27 2010-09-27 Method for producing foam molded article

Country Status (1)

Country Link
JP (1) JP5633274B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016098489A1 (en) * 2014-12-18 2016-06-23 Dic株式会社 Styrene foam sheet and molded article using same
KR20180017110A (en) 2015-08-18 2018-02-20 교라꾸 가부시끼가이샤 Resin for foam molding, method for producing expanded molded article
WO2019044650A1 (en) 2017-08-30 2019-03-07 キョーラク株式会社 Resin for foam molding, foam molded article, and method for producing foam molded article

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004330464A (en) * 2003-04-30 2004-11-25 Kanegafuchi Chem Ind Co Ltd Polypropylene resin foamed sheet, its manufacturing method and molded object of the foamed sheet
JP2010280141A (en) * 2009-06-04 2010-12-16 Japan Polypropylene Corp Foamed, laminated polyolefin based resin sheet used in thermoforming, and thermoformed article using the sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004330464A (en) * 2003-04-30 2004-11-25 Kanegafuchi Chem Ind Co Ltd Polypropylene resin foamed sheet, its manufacturing method and molded object of the foamed sheet
JP2010280141A (en) * 2009-06-04 2010-12-16 Japan Polypropylene Corp Foamed, laminated polyolefin based resin sheet used in thermoforming, and thermoformed article using the sheet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016098489A1 (en) * 2014-12-18 2016-06-23 Dic株式会社 Styrene foam sheet and molded article using same
JPWO2016098489A1 (en) * 2014-12-18 2017-09-28 Dic株式会社 Styrene foam sheet and molded body using the same
KR20180017110A (en) 2015-08-18 2018-02-20 교라꾸 가부시끼가이샤 Resin for foam molding, method for producing expanded molded article
US10988592B2 (en) 2015-08-18 2021-04-27 Kyoraku Co., Ltd. Foam molding resin and method for manufacturing foam molded article
WO2019044650A1 (en) 2017-08-30 2019-03-07 キョーラク株式会社 Resin for foam molding, foam molded article, and method for producing foam molded article
KR20200046055A (en) 2017-08-30 2020-05-06 교라꾸 가부시끼가이샤 Resin for foam molding, foamed molded body, method for manufacturing foamed molded body
US11434342B2 (en) 2017-08-30 2022-09-06 Kyoraku Co., Ltd. Resin for foam molding, foam molded article, and method for producing foam molded article

Also Published As

Publication number Publication date
JP5633274B2 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
JP3745960B2 (en) Foam blow molded article and method for producing the same
CN101864107B (en) Hollow foam moulding body through blow molding
JP5360975B2 (en) Method for producing polyethylene resin foam blow molded article and polyethylene resin foam blow molded article
JP5470129B2 (en) Resin foam sheet and method for producing resin foam sheet
CN106883490B (en) Micro-foaming master batch, preparation method thereof and refrigerator foaming plate
WO2016060162A1 (en) Polypropylene resin foamed particles, in-mold foam molded body of polypropylene resin, and method for manufacturing same
WO1991007461A1 (en) Resin composition for film and process for producing film using the same
JP2010270228A (en) Method for producing polypropylene-based resin foam and polypropylene-based resin foam
JP2011132420A (en) Method for producing polypropylene-based resin foam and polypropylene-based resin foam
TWI691534B (en) Thermoplastic resin foaming particle
JP2017039812A (en) Foam-forming resin and production method of foam-formed body
JP6170765B2 (en) Method for producing polyolefin resin foam molding with skin
JP5633274B2 (en) Method for producing foam molded article
KR20080042046A (en) Constructional heat-insulating foam board and process for production thereof
JP5707048B2 (en) Resin foam sheet and method for producing resin foam sheet
CN107107407A (en) Method for producing foam film laminate and application thereof
JP2019044011A (en) Resin for foam molding, foam molding, and method for producing foam molding
JP4539238B2 (en) Vacuum forming method for thermoplastic resin foam sheet
JP2010037367A (en) Polyolefin resin foam and production method thereof
KR102206610B1 (en) method of manufacturing foamed film
JP5633366B2 (en) Method for producing foam molded article
JP2018141031A (en) Resin for foam molding, foam molding and method for producing the same
JP2012116011A (en) Method of manufacturing multilayer foam body, and the multilayer foam body
JP2009154441A (en) Manufacturing method of polypropylene-based resin foam
JP5457072B2 (en) Method for extruding laminated foamed sheet using polyolefin resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140929

R150 Certificate of patent or registration of utility model

Ref document number: 5633274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250