JP2012067033A - Method for producing aminomethylpyridine derivative - Google Patents

Method for producing aminomethylpyridine derivative Download PDF

Info

Publication number
JP2012067033A
JP2012067033A JP2010212438A JP2010212438A JP2012067033A JP 2012067033 A JP2012067033 A JP 2012067033A JP 2010212438 A JP2010212438 A JP 2010212438A JP 2010212438 A JP2010212438 A JP 2010212438A JP 2012067033 A JP2012067033 A JP 2012067033A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
aminomethylpyridine
producing
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010212438A
Other languages
Japanese (ja)
Inventor
Junko Sato
純子 佐藤
Katsuji Ujita
克爾 宇治田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2010212438A priority Critical patent/JP2012067033A/en
Publication of JP2012067033A publication Critical patent/JP2012067033A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an alkylthio-aminomethylpyridine in a high yield and inexpensively.SOLUTION: The method for producing an aminomethylpyridine derivative represented by formula (2) includes reacting a cyanopyridine represented by formula (1) and aluminum borohydride. In the formulae, R denotes a 1-8C alkyl group, a 3-6C cycloalkyl group, a 4-14C cycloalkylalkyl group, a 6-12C aryl group or a 7-16C aralkyl group.

Description

本発明は、高収率で、かつ安価にアミノメチルピリジン誘導体を製造する方法に関する。   The present invention relates to a method for producing an aminomethylpyridine derivative with high yield and low cost.

2−アルキルチオ−3−アミノメチルピリジン等のアミノメチルピリジン誘導体は、医薬、農薬等の中間体として有用である。
アミノメチルピリジン誘導体の製造方法として、特許文献1の段落〔0123〕の製造例261には、2−メチルチオニコチノニトリルのメタノール溶液に塩化コバルト(II)6水和物を加え、水素化ホウ素ナトリウムを加えて反応させ、1−(2−メチルチオピリジン−3−イル)メチルアミンを得る反応が示されている。
しかしながら、特許文献1の方法では、高価な塩化コバルトを大量に使用し、しかも収率は60%程度である(下記反応式(A)参照)。
Aminomethylpyridine derivatives such as 2-alkylthio-3-aminomethylpyridine are useful as intermediates for pharmaceuticals, agricultural chemicals and the like.
As a method for producing an aminomethylpyridine derivative, in Production Example 261 of paragraph [0123] of Patent Document 1, cobalt chloride (II) hexahydrate is added to a methanol solution of 2-methylthionicotinonitrile, and sodium borohydride is added. Is added to react to give 1- (2-methylthiopyridin-3-yl) methylamine.
However, in the method of Patent Document 1, a large amount of expensive cobalt chloride is used, and the yield is about 60% (see the following reaction formula (A)).

Figure 2012067033
Figure 2012067033

一方、非特許文献1には、ヒドリド試薬として水素化リチウムアルミニウムを用いて、2−メチルチオ−6−シアノピリミジン化合物を還元する方法が示されているが、ヘテロ環を有する化合物の場合、ヒドリド還元を行うと、側鎖よりもヘテロ環部分の還元が起き易いことが知られている(下記反応式(B)参照)。   On the other hand, Non-Patent Document 1 discloses a method of reducing a 2-methylthio-6-cyanopyrimidine compound using lithium aluminum hydride as a hydride reagent. In the case of a compound having a heterocycle, hydride reduction is performed. It is known that the reduction of the heterocyclic moiety occurs more easily than the side chain (see the following reaction formula (B)).

Figure 2012067033
Figure 2012067033

WO2010/024430号パンフレットWO2010 / 024430 pamphlet

Journal of the Chemical Society C 1968年,733頁Journal of the Chemical Society C 1968, 733

本発明は、上記の実情に鑑み、高収率で、かつ安価にアミノメチルピリジン誘導体を製造する方法を提供することを課題とする。   In view of the above circumstances, an object of the present invention is to provide a method for producing an aminomethylpyridine derivative with high yield and low cost.

本発明者らは、前記課題を解決するために鋭意研究した結果、水素化ホウ素アルミニウムを用いることにより、前記課題を解決し得ることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by using aluminum borohydride, and have completed the present invention.

すなわち、本発明は、次の〔1〕及び〔2〕を提供するものである。
〔1〕下記一般式(1)で表されるシアノピリジン(以下、「シアノピリジン(1)」ともいう。)と水素化ホウ素アルミニウムとを反応させることを特徴とする、下記一般式(2)で表されるアミノメチルピリジン誘導体(以下、「アミノメチルピリジン誘導体(2)」ともいう。)の製造方法。
That is, the present invention provides the following [1] and [2].
[1] A cyanopyridine represented by the following general formula (1) (hereinafter also referred to as “cyanopyridine (1)”) and aluminum borohydride are reacted, and the following general formula (2) A method for producing an aminomethylpyridine derivative represented by formula (hereinafter also referred to as “aminomethylpyridine derivative (2)”).

Figure 2012067033
(式中、Rは、炭素数1〜8のアルキル基、炭素数3〜6のシクロアルキル基、炭素数4〜14のシクロアルキルアルキル基、炭素数6〜12のアリール基、又は炭素数7〜16のアラルキル基を示す。)
Figure 2012067033
(In the formula, R is an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, a cycloalkylalkyl group having 4 to 14 carbon atoms, an aryl group having 6 to 12 carbon atoms, or 7 carbon atoms. -16 aralkyl groups are shown.)

Figure 2012067033
(式中、Rは前記定義のとおりである。)
Figure 2012067033
(Wherein R is as defined above.)

〔2〕下記一般式(3)で表される3−シアノピリジン(以下、「3−シアノピリジン(3)」ともいう。)と水素化ホウ素アルミニウムとを反応させることを特徴とする、下記一般式(4)で表される3−アミノメチルピリジン誘導体(以下、「3−アミノメチルピリジン誘導体(4)」」ともいう。)の製造方法。 [2] 3-cyanopyridine represented by the following general formula (3) (hereinafter also referred to as “3-cyanopyridine (3)”) and aluminum borohydride are reacted, A method for producing a 3-aminomethylpyridine derivative represented by the formula (4) (hereinafter also referred to as “3-aminomethylpyridine derivative (4)”).

Figure 2012067033
(式中、R'は、炭素数1〜8のアルキル基、炭素数3〜6のシクロアルキル基、炭素数4〜14のシクロアルキルアルキル基、炭素数6〜12のアリール基、又は炭素数7〜16のアラルキル基を示す。)
Figure 2012067033
(In the formula, R ′ is an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, a cycloalkylalkyl group having 4 to 14 carbon atoms, an aryl group having 6 to 12 carbon atoms, or the number of carbon atoms. 7 to 16 aralkyl groups are shown.)

Figure 2012067033
(式中、R'は前記定義のとおりである。)
Figure 2012067033
(In the formula, R ′ is as defined above.)

本発明によれば、高収率で、かつ安価にアミノメチルピリジン誘導体を製造する方法を提供できる。   According to the present invention, it is possible to provide a method for producing an aminomethylpyridine derivative with high yield and low cost.

本発明の、アミノメチルピリジン誘導体(2)の製造方法は、下記の反応式(C)に示すように、シアノピリジン(1)と水素化ホウ素アルミニウムとを反応させることを特徴とする。なお、式中、Rは前記定義のとおりである。   The method for producing an aminomethylpyridine derivative (2) of the present invention is characterized by reacting cyanopyridine (1) with aluminum borohydride as shown in the following reaction formula (C). In the formula, R is as defined above.

Figure 2012067033
Figure 2012067033

また、3−アミノメチルピリジン誘導体(4)の製造方法は、下記の反応式(D)に示すように、3−シアノピリジン(3)と水素化ホウ素アルミニウムとを反応させることを特徴とする。なお、式中、R'は前記定義のとおりである。   The method for producing the 3-aminomethylpyridine derivative (4) is characterized by reacting 3-cyanopyridine (3) with aluminum borohydride as shown in the following reaction formula (D). In the formula, R ′ is as defined above.

Figure 2012067033
Figure 2012067033

R又はR'が表す、炭素数1〜8のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、2−エチル−1−ブチル基、各種ペンチル基、各種ヘキシル基、各種へプチル基、各種オクチル基等が挙げられる。ここで、「各種」とは、直鎖又は分岐を意味する。中でも、炭素数1〜6のアルキル基が好ましく、炭素数1〜4のアルキル基がより好ましく、メチル基、エチル基、n−プロピル基、イソプロピル基が更に好ましく、メチル基が特に好ましい。
R又はR'が表す、炭素数3〜6のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基が挙げられ、シクロヘキシル基が好ましい。
Examples of the alkyl group having 1 to 8 carbon atoms represented by R or R ′ include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, and 2-ethyl. Examples include -1-butyl group, various pentyl groups, various hexyl groups, various heptyl groups, various octyl groups, and the like. Here, “various” means linear or branched. Among these, an alkyl group having 1 to 6 carbon atoms is preferable, an alkyl group having 1 to 4 carbon atoms is more preferable, a methyl group, an ethyl group, an n-propyl group, and an isopropyl group are further preferable, and a methyl group is particularly preferable.
Examples of the cycloalkyl group having 3 to 6 carbon atoms represented by R or R ′ include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group, and a cyclohexyl group is preferable.

R又はR'が表す、炭素数4〜14のシクロアルキルアルキル基とは、3〜6員環のシクロアルキル基で置換されている炭素数1〜6のアルキル基が好ましく、具体的には、シクロプロピルメチル基、シクロプロピルエチル基、シクロプロピルプロピル基、シクロプロピルブチル基、シクロブチルメチル基、シクロペンチルメチル基、シクロペンチルエチル基、シクロペンチルプロピル基、シクロヘキシルメチル基、シクロヘキシルエチル基、シクロヘキシルプロピル基等が挙げられる。中でも、3員環又は6員環のシクロアルキル基で置換されている炭素数1〜3のアルキル基がより好ましく、シクロプロピルメチル基、シクロプロピルエチル基、シクロヘキシルメチル基、シクロヘキシルエチル基が更に好ましい。   The C4-C14 cycloalkylalkyl group represented by R or R 'is preferably a C1-C6 alkyl group substituted with a 3- to 6-membered cycloalkyl group, specifically, Cyclopropylmethyl group, cyclopropylethyl group, cyclopropylpropyl group, cyclopropylbutyl group, cyclobutylmethyl group, cyclopentylmethyl group, cyclopentylethyl group, cyclopentylpropyl group, cyclohexylmethyl group, cyclohexylethyl group, cyclohexylpropyl group, etc. Can be mentioned. Among these, a C1-C3 alkyl group substituted with a 3-membered or 6-membered cycloalkyl group is more preferable, and a cyclopropylmethyl group, a cyclopropylethyl group, a cyclohexylmethyl group, and a cyclohexylethyl group are more preferable. .

R又はR'が表す、炭素数6〜12のアリール基としては、フェニル基、トリル基、キシリル基、エチルフェニル基、ナフチル基、メチルナフチル基、ジメチルナフチル基等が挙げられる。中でも、炭素数6〜10のアリール基が好ましく、フェニル基がより好ましい。
R又はR'が表す、炭素数7〜16のアラルキル基としては、炭素数6〜10のアリール基で置換されている炭素数1〜6のアルキル基が好ましく、具体的には、ベンジル基、フェニルエチル基、フェニルプロピル基、ナフチルメチル基、ナフチルエチル基等が挙げられる。中でも、フェニル基で置換されている炭素数1〜3のアルキル基がより好ましく、ベンジル基が更に好ましい。
R又はR'としては、反応性等の観点から、炭素数1〜8の直鎖又は分岐鎖のアルキル基が好ましく、炭素数1〜8の直鎖のアルキル基がより好ましい。
Examples of the aryl group having 6 to 12 carbon atoms represented by R or R ′ include a phenyl group, a tolyl group, a xylyl group, an ethylphenyl group, a naphthyl group, a methylnaphthyl group, and a dimethylnaphthyl group. Among these, an aryl group having 6 to 10 carbon atoms is preferable, and a phenyl group is more preferable.
The aralkyl group having 7 to 16 carbon atoms represented by R or R ′ is preferably an alkyl group having 1 to 6 carbon atoms substituted with an aryl group having 6 to 10 carbon atoms, specifically, a benzyl group, A phenylethyl group, a phenylpropyl group, a naphthylmethyl group, a naphthylethyl group, etc. are mentioned. Among them, an alkyl group having 1 to 3 carbon atoms substituted with a phenyl group is more preferable, and a benzyl group is more preferable.
R or R ′ is preferably a linear or branched alkyl group having 1 to 8 carbon atoms, and more preferably a linear alkyl group having 1 to 8 carbon atoms from the viewpoint of reactivity or the like.

本発明の製造方法は、反応促進の観点から、有機溶媒の存在下で行うことが好ましい。使用できる有機溶媒は、反応に影響を与えないものであれば特に制限はなく、例えばトルエン、キシレン、メシチレン等の芳香族炭化水素;ヘキサン、ヘプタン、オクタン等の炭素数5〜10の脂肪族炭化水素;ジエチルエーテル、ジイソプロピルエーテル、ジグライム、テトラヒドロフラン等のエーテル等が挙げられる。中でも、テトラヒドロフラン等のエーテルがより好ましい。
これらの有機溶媒は、1種単独で又は2種以上を混合して用いることができる。
有機溶媒の使用量は特に制限されないが、反応系の撹拌操作、反応時間、収率、製品品質等の観点から、シアノピリジン(1)又は3−シアノピリジン(3)に対して0.5〜100質量倍が好ましく、0.5〜20質量倍がより好ましい。
The production method of the present invention is preferably carried out in the presence of an organic solvent from the viewpoint of promoting the reaction. The organic solvent that can be used is not particularly limited as long as it does not affect the reaction. For example, aromatic hydrocarbons such as toluene, xylene, mesitylene, etc .; aliphatic carbons having 5 to 10 carbon atoms such as hexane, heptane, and octane. Hydrogen; ethers such as diethyl ether, diisopropyl ether, diglyme, and tetrahydrofuran are listed. Of these, ethers such as tetrahydrofuran are more preferable.
These organic solvents can be used individually by 1 type or in mixture of 2 or more types.
The amount of the organic solvent used is not particularly limited, but from the viewpoints of stirring operation of the reaction system, reaction time, yield, product quality, etc., 0.5 to 0.5 with respect to cyanopyridine (1) or 3-cyanopyridine (3). 100 mass times is preferable and 0.5-20 mass times is more preferable.

本発明の製造方法は、水素化ホウ素アルミニウムを用いることが最大の特徴である。
水素化ホウ素アルミニウムは還元剤として使用されるが、市販品をそのまま使用しても、公知の方法で調製してもよい。例えば、下記反応式に示すように、エーテル等の溶媒中で、水素化ホウ素ナトリウム3モルに対して塩化アルミニウム1モルで塩交換反応させることにより、容易に調製することができる。
3NaBH4 + AlCl3 → Al(BH43 + 3NaCl
水素化ホウ素アルミニウムの使用量は、反応促進の観点から、シアノピリジン(1)又は3−シアノピリジン(3)に対して、化学量論比で1〜10倍モルが好ましく、1〜5倍モルがより好ましく、1〜3倍モルが更に好ましい。
The production method of the present invention is most characterized by using aluminum borohydride.
Aluminum borohydride is used as a reducing agent, but a commercially available product may be used as it is or may be prepared by a known method. For example, as shown in the following reaction formula, it can be easily prepared by carrying out a salt exchange reaction with 1 mol of aluminum chloride per 3 mol of sodium borohydride in a solvent such as ether.
3NaBH 4 + AlCl 3 → Al (BH 4 ) 3 + 3NaCl
The amount of aluminum borohydride used is preferably 1 to 10 moles in terms of the stoichiometric ratio with respect to cyanopyridine (1) or 3-cyanopyridine (3) from the viewpoint of promoting the reaction, and 1 to 5 moles. Is more preferable, and a molar ratio of 1 to 3 is more preferable.

本発明の製造方法では、反応促進の観点から、反応温度は−30〜100℃が好ましく、−20〜80℃がより好ましく、−10〜60℃が更に好ましく、5〜40℃が特に好ましい。反応圧力は常圧でも加圧でもよい。反応時間は、反応温度等にもよるが、0.4〜50時間が好ましく、0.6〜30時間がより好ましく、0.8〜10時間が更に好ましい。
本発明の製造方法は、窒素等の不活性ガス雰囲気下、前記有機溶媒中で水素化ホウ素ナトリウムと塩化アルミニウムから水素化ホウ素アルミニウムを調製した後、続いてシアノピリジン(1)又は3−シアノピリジン(3)、又は前記有機溶媒溶液を添加し、所定温度で所定時間反応させることにより行うことができる。
または、不活性ガス雰囲気下、水素化ホウ素ナトリウムとシアノピリジン(1)又は3−シアノピリジン(3)を有機溶媒中で混合し、そこに塩化アルミニウムを添加し、かかる混合液に所定温度で所定時間反応させることにより行うことができる。
In the production method of the present invention, from the viewpoint of promoting the reaction, the reaction temperature is preferably -30 to 100 ° C, more preferably -20 to 80 ° C, still more preferably -10 to 60 ° C, and particularly preferably 5 to 40 ° C. The reaction pressure may be normal pressure or increased pressure. Although reaction time is based also on reaction temperature etc., 0.4-50 hours are preferable, 0.6-30 hours are more preferable, 0.8-10 hours are still more preferable.
In the production method of the present invention, aluminum borohydride is prepared from sodium borohydride and aluminum chloride in the organic solvent under an inert gas atmosphere such as nitrogen, and then cyanopyridine (1) or 3-cyanopyridine. (3) Alternatively, the organic solvent solution can be added and reacted at a predetermined temperature for a predetermined time.
Alternatively, sodium borohydride and cyanopyridine (1) or 3-cyanopyridine (3) are mixed in an organic solvent under an inert gas atmosphere, and aluminum chloride is added thereto, and the mixture is mixed at a predetermined temperature at a predetermined temperature. It can be performed by reacting for a period of time.

上記反応後は、塩酸水溶液、硫酸水溶液、リン酸水溶液、酢酸水溶液、塩化アンモニウム水溶液等を添加して、未反応の水素化ホウ素アルミニウムを失活させることが好ましい。
得られたアミノメチルピリジン誘導体(2)又は3−アミノメチルピリジン誘導体(4)は、公知の方法で単離精製することができる。
例えば、上記のようにして未反応の水素化ホウ素アルミニウムを失活させた後の反応混合液に塩基性化合物の水溶液を添加してpH7以上にした後、(i)芳香族炭化水素
等の有機溶媒で抽出し、分離する方法、(ii)前記と同様の処理をした後、蒸留により単離する方法、(iii)前記と同様の処理をした後、溶媒を留去し、析出した塩をろ取する方法等が挙げられる。
このようにして得られたアミノメチルピリジン誘導体(2)又は3−アミノメチルピリジン誘導体(4)は、例えば、塩酸、硫酸、硝酸等の無機塩と塩を形成させることにより、保存安定性を高めることができ、保存中も高品質を保つことができる。また、必要に応じて、再結晶、蒸留、昇華等で純度を更に高めることができる。
After the reaction, it is preferable to deactivate the unreacted aluminum borohydride by adding an aqueous hydrochloric acid solution, an aqueous sulfuric acid solution, an aqueous phosphoric acid solution, an aqueous acetic acid solution, an aqueous ammonium chloride solution, or the like.
The obtained aminomethylpyridine derivative (2) or 3-aminomethylpyridine derivative (4) can be isolated and purified by a known method.
For example, after adding an aqueous solution of a basic compound to the reaction mixture after deactivating the unreacted aluminum borohydride as described above to pH 7 or higher, (i) organics such as aromatic hydrocarbons (Ii) A method of separating by distillation after performing the same treatment as above, (iii) A method similar to the above, and then distilling off the solvent and removing the precipitated salt. The method of filtering, etc. are mentioned.
The aminomethylpyridine derivative (2) or the 3-aminomethylpyridine derivative (4) thus obtained has improved storage stability by forming a salt with an inorganic salt such as hydrochloric acid, sulfuric acid or nitric acid. And can maintain high quality during storage. If necessary, the purity can be further increased by recrystallization, distillation, sublimation or the like.

以下、実施例及び比較例を挙げて、本発明を更に具体的に説明するが、本発明はこれらの実施例により、なんら限定されるものではない。
実施例1(2−メチルチオ−3−アミノメチルピリジンの製造)
温度計及び撹拌装置を備えた内容積100mlの三口フラスコに、窒素雰囲気下、テトラヒドロフラン13.5gを仕込み、水素化ホウ素ナトリウム2.08g(55mmol)を加え、内温を10℃以下に冷却した。次いで、内温を30℃以下に保ちながら塩化アルミニウム2.43g(18mmol)を添加し、添加終了後15分間撹拌して、水素化ホウ素アルミニウムを含む混合液を調製した。
続いて、得られた上記混合液に、2−メチルチオ−3−シアノピリジンのテトラヒドロフラン溶液19.5g(30mmol)を、内温を30℃以下に保ちながら滴下し、滴下終了後20〜25℃で3時間撹拌した。
得られた反応混合液に、10%塩酸水溶液20gを内温を30℃以下に保ちながら滴下し、滴下終了後1時間撹拌した。次いで、20%水酸化ナトリウム水溶液16.5gを30℃で滴下し、反応混合液のpHを10以上として30分間撹拌した後、静置し、有機層と水層を分液した。
分液した有機層にトルエン30g及び水30gを加えて、抽出し、有機層を減圧下で濃縮して収率90%(4.16g:27mmol)で2−メチルチオ−3−アミノメチルピリジンを得た。得られた2−メチルチオ−3−アミノメチルピリジンをイソプロパノール20gに溶解させ、濃塩酸6.02g(59.4mmol)を加え、析出した塩をろ取、乾燥することにより、2−メチルチオ−3−アミノメチルピリジン二塩酸塩5.52g(24.3mmol)を得た。
得られた2−メチルチオ−3−アミノメチルピリジン二塩酸塩について、1H−NMR分析を行い、その構造を確認した。結果を以下に示す。
1H−NMR(400MHz,CDCl3,TMS)δ(ppm):1.49(2H,br),2.58(3H,s),3.84(2H,s),6.97−7.00(1H,dd,J=7.2Hz,4.8Hz),7.51−7.53(1H,m),8.34−8.36(1H,dd,J=4.8Hz,2.0Hz)
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated further more concretely, this invention is not limited at all by these Examples.
Example 1 (Production of 2-methylthio-3-aminomethylpyridine)
In a 100 ml three-necked flask equipped with a thermometer and a stirrer, 13.5 g of tetrahydrofuran was charged under a nitrogen atmosphere, 2.08 g (55 mmol) of sodium borohydride was added, and the internal temperature was cooled to 10 ° C. or lower. Next, 2.43 g (18 mmol) of aluminum chloride was added while maintaining the internal temperature at 30 ° C. or less, and the mixture was stirred for 15 minutes after the addition was completed to prepare a mixed solution containing aluminum borohydride.
Subsequently, 19.5 g (30 mmol) of a tetrahydrofuran solution of 2-methylthio-3-cyanopyridine was added dropwise to the obtained mixed solution while keeping the internal temperature at 30 ° C. or lower. Stir for 3 hours.
To the resulting reaction mixture, 20 g of a 10% aqueous hydrochloric acid solution was added dropwise while maintaining the internal temperature at 30 ° C. or lower, and the mixture was stirred for 1 hour after the completion of the addition. Next, 16.5 g of a 20% aqueous sodium hydroxide solution was added dropwise at 30 ° C., the reaction mixture was adjusted to pH 10 or higher and stirred for 30 minutes, and then allowed to stand to separate the organic layer and the aqueous layer.
To the separated organic layer, 30 g of toluene and 30 g of water were added for extraction, and the organic layer was concentrated under reduced pressure to obtain 2-methylthio-3-aminomethylpyridine in a yield of 90% (4.16 g: 27 mmol). It was. The obtained 2-methylthio-3-aminomethylpyridine was dissolved in 20 g of isopropanol, 6.02 g (59.4 mmol) of concentrated hydrochloric acid was added, and the precipitated salt was collected by filtration and dried to give 2-methylthio-3- 5.52 g (24.3 mmol) of aminomethylpyridine dihydrochloride was obtained.
The obtained 2-methylthio-3-aminomethylpyridine dihydrochloride was subjected to 1 H-NMR analysis, and its structure was confirmed. The results are shown below.
1 H-NMR (400 MHz, CDCl 3 , TMS) δ (ppm): 1.49 (2H, br), 2.58 (3H, s), 3.84 (2H, s), 6.97-7. 00 (1H, dd, J = 7.2 Hz, 4.8 Hz), 7.51-7.53 (1H, m), 8.34-8.36 (1H, dd, J = 4.8 Hz, 2. 0Hz)

比較例1
実施例1において、水素化ホウ素アルミニウムを調製して用いる代わりに、水素化ビス(2−メトキシエトキシ)アルミニウムナトリウムの70%トルエン溶液17.33g(60mmol)を用いた以外は、実施例1と同様の操作を行った。その結果、2−メチルチオ−3−アミノメチルピリジンの収率は7.5%であった。
比較例2
実施例1において、水素化ホウ素アルミニウムを調製して用いる代わりに、水素化リチウムアルミニウムを2.28g(60mmol)用いた以外は、実施例1と同様の操作を行った。その結果、2−メチルチオ−3−アミノメチルピリジンの収率は29.1%であった。
比較例3
実施例1において、水素化ホウ素アルミニウムを調製して用いる代わりに、水素化ホウ素ナトリウム2.27g(60mmol)と酢酸3.60g(60mmol)から調製した還元剤を用いた以外は、実施例1と同様の操作を行った結果、2−メチルチオ−3−アミノメチルピリジンの収率は17.7%であった。
Comparative Example 1
In Example 1, instead of preparing and using aluminum borohydride, the same as Example 1 except that 17.33 g (60 mmol) of a 70% toluene solution of sodium bis (2-methoxyethoxy) aluminum hydride was used. Was performed. As a result, the yield of 2-methylthio-3-aminomethylpyridine was 7.5%.
Comparative Example 2
In Example 1, instead of preparing and using aluminum borohydride, the same operation as in Example 1 was performed except that 2.28 g (60 mmol) of lithium aluminum hydride was used. As a result, the yield of 2-methylthio-3-aminomethylpyridine was 29.1%.
Comparative Example 3
In Example 1, instead of preparing and using aluminum borohydride, Example 1 was used except that a reducing agent prepared from 2.27 g (60 mmol) of sodium borohydride and 3.60 g (60 mmol) of acetic acid was used. As a result of the same operation, the yield of 2-methylthio-3-aminomethylpyridine was 17.7%.

本発明の製造方法によれば、高収率で、かつ安価にアミノメチルピリジン誘導体を製造することができるため、工業的に有利である。得られたアミノメチルピリジン誘導体は、医薬、農薬、その製品の中間体等として有用である。   According to the production method of the present invention, an aminomethylpyridine derivative can be produced at a high yield and at a low cost, which is industrially advantageous. The obtained aminomethylpyridine derivative is useful as a pharmaceutical, an agricultural chemical, an intermediate of the product, and the like.

Claims (2)

下記一般式(1)で表されるシアノピリジンと水素化ホウ素アルミニウムとを反応させることを特徴とする、下記一般式(2)で表されるアミノメチルピリジン誘導体の製造方法。
Figure 2012067033
(式中、Rは、炭素数1〜8のアルキル基、炭素数3〜6のシクロアルキル基、炭素数4〜14のシクロアルキルアルキル基、炭素数6〜12のアリール基、又は炭素数7〜16のアラルキル基を示す。)
Figure 2012067033
(式中、Rは前記定義のとおりである。)
A process for producing an aminomethylpyridine derivative represented by the following general formula (2), comprising reacting a cyanopyridine represented by the following general formula (1) with aluminum borohydride.
Figure 2012067033
(In the formula, R is an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, a cycloalkylalkyl group having 4 to 14 carbon atoms, an aryl group having 6 to 12 carbon atoms, or 7 carbon atoms. -16 aralkyl groups are shown.)
Figure 2012067033
(Wherein R is as defined above.)
下記一般式(3)で表される3−シアノピリジンと水素化ホウ素アルミニウムとを反応させることを特徴とする、下記一般式(4)で表される3−アミノメチルピリジン誘導体の製造方法。
Figure 2012067033
(式中、R'は、炭素数1〜8のアルキル基、炭素数3〜6のシクロアルキル基、炭素数4〜14のシクロアルキルアルキル基、炭素数6〜12のアリール基、又は炭素数7〜16のアラルキル基を示す。)
Figure 2012067033
(式中、R'は前記定義のとおりである。)
A process for producing a 3-aminomethylpyridine derivative represented by the following general formula (4), comprising reacting 3-cyanopyridine represented by the following general formula (3) with aluminum borohydride.
Figure 2012067033
(In the formula, R ′ is an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, a cycloalkylalkyl group having 4 to 14 carbon atoms, an aryl group having 6 to 12 carbon atoms, or the number of carbon atoms. 7 to 16 aralkyl groups are shown.)
Figure 2012067033
(In the formula, R ′ is as defined above.)
JP2010212438A 2010-09-22 2010-09-22 Method for producing aminomethylpyridine derivative Pending JP2012067033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010212438A JP2012067033A (en) 2010-09-22 2010-09-22 Method for producing aminomethylpyridine derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010212438A JP2012067033A (en) 2010-09-22 2010-09-22 Method for producing aminomethylpyridine derivative

Publications (1)

Publication Number Publication Date
JP2012067033A true JP2012067033A (en) 2012-04-05

Family

ID=46164745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010212438A Pending JP2012067033A (en) 2010-09-22 2010-09-22 Method for producing aminomethylpyridine derivative

Country Status (1)

Country Link
JP (1) JP2012067033A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097272A2 (en) 2012-12-21 2014-06-26 Mankind Research Centre Method for production of (s,s)-6-benzyloctahydro-1h-pyrrolo[3,4-b]pyridine, an intermediate of azabicyclo pyridine derivatives

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63239280A (en) * 1985-12-24 1988-10-05 Asahi Chem Ind Co Ltd Production of thienylethylamine
JP2008001633A (en) * 2006-06-22 2008-01-10 Showa Denko Kk Reduction reaction by borohydride compound in the presence of aluminum chloride using tetrahydropyran as solvent
WO2010024430A1 (en) * 2008-09-01 2010-03-04 アステラス製薬株式会社 2,4-diaminopyrimidine compound

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63239280A (en) * 1985-12-24 1988-10-05 Asahi Chem Ind Co Ltd Production of thienylethylamine
JP2008001633A (en) * 2006-06-22 2008-01-10 Showa Denko Kk Reduction reaction by borohydride compound in the presence of aluminum chloride using tetrahydropyran as solvent
WO2010024430A1 (en) * 2008-09-01 2010-03-04 アステラス製薬株式会社 2,4-diaminopyrimidine compound

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014016178; 日本化学会: 新実験化学講座15 酸化と還元II , 19850320, p.194, 丸善株式会社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097272A2 (en) 2012-12-21 2014-06-26 Mankind Research Centre Method for production of (s,s)-6-benzyloctahydro-1h-pyrrolo[3,4-b]pyridine, an intermediate of azabicyclo pyridine derivatives

Similar Documents

Publication Publication Date Title
US9006438B2 (en) Processes for the preparation of an apoptosis-inducing agent
Wang et al. Selective synthesis of quaternary carbon propargylamines from amines, alkynes, and alkynes under neat condition
JP2013528200A (en) Method for preparing ester amide compounds
JP2018507170A (en) Process for the preparation of diarylthiohydantoin compounds
TW201429924A (en) Production method of refined amine compound
EP1463729B1 (en) A process for producing phenserine and its analog
EP3498695B1 (en) Method for synthesizing 3-(difluoromethyl)-1-methyl-1h-pyrazole-4-carboxylic acid
US10654862B2 (en) Methods for the chemical synthesis of pyrrole-linked bivalent compounds, and compositions thereof
JP2012067033A (en) Method for producing aminomethylpyridine derivative
US20050277667A1 (en) Manufacturing process for methyl phenidate and intermediates thereof
EP2970164B1 (en) Crystalline form of a substituted thiazolylacetic acid triethylamine salt
KR100841407B1 (en) Allenyn-1,6-diol derivatives, and process for preparing them
CA2660348C (en) A novel process for preparing 3-amino-5-fluoro-4-dialkoxypentanoic acid ester
JP5119040B2 (en) Method for producing amine
CN110292948B (en) Application of imines-functionalized imidazole chloride salt as catalyst in preparation of aromatic heterocyclic formate compounds
JP3959178B2 (en) Method for producing hydrazine derivative, intermediate thereof and method for producing intermediate
JP5072030B2 (en) Cyclic α-hydroxy-α, β-unsaturated ketone compound and method for producing cyclopentenone compound
US9896463B2 (en) Preparation of purified phosphorodiamidite
JP2001026591A (en) Azoniaadamantane compound, production of azaadamantane compound from the same and production of the azoniaadamantane compound
JP2946678B2 (en) Chiral ferrocene derivatives
RU2551686C1 (en) Method of producing n',n'-bis{[n-allyl(thio)carbamoyl methyl]}aryl hydrazides
JP3526606B2 (en) Method for producing N-substituted pyrazinecarboxamides
WO2011150950A1 (en) 2-methyl-5-vinylpyridinium salts
US9233898B2 (en) Process for the preparation of 2-phenyl-1,3-propanediol
JP2008308458A (en) Production method of pyridinecarbonyl compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141028