JP2012066988A - Method for producing porous titanium oxide structure - Google Patents

Method for producing porous titanium oxide structure Download PDF

Info

Publication number
JP2012066988A
JP2012066988A JP2010215771A JP2010215771A JP2012066988A JP 2012066988 A JP2012066988 A JP 2012066988A JP 2010215771 A JP2010215771 A JP 2010215771A JP 2010215771 A JP2010215771 A JP 2010215771A JP 2012066988 A JP2012066988 A JP 2012066988A
Authority
JP
Japan
Prior art keywords
titanium oxide
organic resin
resin particles
porous
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010215771A
Other languages
Japanese (ja)
Inventor
Miki Inaoka
美希 稲岡
Hiroshi Yamauchi
博史 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2010215771A priority Critical patent/JP2012066988A/en
Publication of JP2012066988A publication Critical patent/JP2012066988A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a porous titanium oxide structure where superior photocatalytic functions such as air cleaning, deodorization, an antifouling function, an antibacterial function and the like are achieved when used for a photocatalyst.SOLUTION: The method for producing the porous titanium oxide structure comprises: a step to prepare a titanium oxide paste containing titanium oxide particles, titanium oxide composite organic resin particles and an organic solvent; a step to coat the titanium oxide paste; and a step to form the porous titanium oxide structure by drying the titanium oxide paste and then baking. The titanium oxide composite organic resin particles hold titanium oxide in the pore thereof, and the average pore diameter thereof is 200 nm or less.

Description

本発明は、光触媒に用いた場合、大気浄化、脱臭、防汚、抗菌等の優れた光触媒機能を実現することが可能な多孔質酸化チタン構造体を作製できる多孔質酸化チタン構造体の製造方法に関する。 The present invention is a method for producing a porous titanium oxide structure capable of producing a porous titanium oxide structure capable of realizing excellent photocatalytic functions such as air purification, deodorization, antifouling, and antibacterial when used in a photocatalyst. About.

酸化チタン等に代表される光触媒は、有害化学物質の分解及び除去、超親水性、水素生成等の優れた機能を有し、環境浄化、省エネルギーや新エネルギー等への用途が期待され、環境、エネルギー及び経済においてバランスの取れた持続可能な社会構築に貢献する素材であると目されている。
酸化チタン薄膜を形成する方法としては、コーティング法、浸漬法、スパッタリング法や酸素ガス雰囲気内に加熱蒸発させた金属蒸気を導入して反応させる熱CVD法等が知られている。コーティング法では、有機系バインダに酸化チタン粉末を少量分散してスラリーとし、このスラリーを膜状に塗布して光触媒を形成する。しかしながら、膜中に有機系バインダが存在すると、光触媒活性が損なわれ、充分な光触媒活性が得られないという問題があった。これは、表層に析出した二酸化チタン粒子のみが光触媒活性に関与するに過ぎないためであると考えられる。
Photocatalysts typified by titanium oxide have excellent functions such as decomposition and removal of harmful chemical substances, super hydrophilicity, hydrogen generation, etc., and are expected to be used for environmental purification, energy saving, new energy, etc. It is considered to be a material that contributes to building a balanced and sustainable society in energy and economy.
Known methods for forming a titanium oxide thin film include a coating method, a dipping method, a sputtering method, and a thermal CVD method in which a metal vapor heated and evaporated in an oxygen gas atmosphere is introduced and reacted. In the coating method, a small amount of titanium oxide powder is dispersed in an organic binder to form a slurry, and this slurry is applied in the form of a film to form a photocatalyst. However, when an organic binder is present in the film, there is a problem that the photocatalytic activity is impaired and sufficient photocatalytic activity cannot be obtained. This is considered to be because only the titanium dioxide particles deposited on the surface layer are only involved in the photocatalytic activity.

これに対して、充分な付着強度を持たせ、かつ、光触媒活性を維持するためには、素材表面に光触媒膜を直接形成する技術が有効である。特許文献1には、気化させたチタンアルコキシドを担体となる不活性ガスとともに、大気圧開放下で加熱された基材表面に吹き付けることで、基材表面に二酸化チタンからなる結晶配向膜を形成する方法が開示されている。
しかしながら、このような方法で得られる酸化チタン結晶配向膜を有する材料は、基材表面に形成された膜の表層が緻密に形成されているため、充分な光触媒活性を得ることができなかった。
On the other hand, in order to give sufficient adhesion strength and maintain photocatalytic activity, a technique of directly forming a photocatalytic film on the material surface is effective. In Patent Document 1, a vaporized titanium alkoxide and an inert gas serving as a carrier are sprayed onto a substrate surface heated under atmospheric pressure to form a crystal orientation film made of titanium dioxide on the substrate surface. A method is disclosed.
However, the material having a titanium oxide crystal alignment film obtained by such a method cannot obtain sufficient photocatalytic activity because the surface layer of the film formed on the substrate surface is densely formed.

また、特許文献2には、大気開放型化学気相析出法を用いて所定の膜厚及び気孔率を有する多孔質光触媒膜を作製する方法が開示されている。この方法では、大気開放下にて基材に原料ガスを吹き付けて、金属酸化物等の薄膜を形成することで、多孔質光触媒膜を作製しているが、実際には形成される空孔を所望の形状に制御することは極めて困難であった。また、この方法では、大気開放型CVD装置等の特殊で大型の製造装置を必要とし、製造工程も複雑なものとなっていた。 Patent Document 2 discloses a method for producing a porous photocatalyst film having a predetermined film thickness and porosity using an open-air chemical vapor deposition method. In this method, a porous photocatalyst film is produced by spraying a raw material gas on a base material in the open atmosphere to form a thin film of metal oxide or the like. It has been extremely difficult to control the desired shape. In addition, this method requires a special and large manufacturing apparatus such as an open-air type CVD apparatus, and the manufacturing process is complicated.

特許第3455653号公報Japanese Patent No. 3455653 特開2005−279366号公報JP 2005-279366 A

本発明は、光触媒に用いた場合、大気浄化、脱臭、防汚、抗菌等の優れた光触媒機能を実現することが可能な多孔質酸化チタン構造体を作製できる多孔質酸化チタン構造体の製造方法を提供することを目的とする。 The present invention is a method for producing a porous titanium oxide structure capable of producing a porous titanium oxide structure capable of realizing excellent photocatalytic functions such as air purification, deodorization, antifouling, and antibacterial when used in a photocatalyst. The purpose is to provide.

本発明は、酸化チタン粒子、酸化チタン複合有機樹脂粒子、及び、有機溶剤を含有する酸化チタンペーストを調製する工程、前記酸化チタンペーストを塗工する工程、及び、前記酸化チタンペーストを乾燥し、焼成することにより、酸化チタン構造体を形成する工程を有し、前記酸化チタン複合有機樹脂粒子は、酸化チタンを多孔質有機樹脂粒子の細孔内に有し、前記多孔質有機樹脂粒子は、平均細孔径が200nm以下である多孔質酸化チタン構造体の製造方法である。
以下に本発明を詳述する。
The present invention comprises preparing a titanium oxide particle, a titanium oxide composite organic resin particle, and a titanium oxide paste containing an organic solvent, applying the titanium oxide paste, and drying the titanium oxide paste. The titanium oxide composite organic resin particles have a step of forming a titanium oxide structure by firing, and the titanium oxide composite organic resin particles have titanium oxide in the pores of the porous organic resin particles. This is a method for producing a porous titanium oxide structure having an average pore diameter of 200 nm or less.
The present invention is described in detail below.

本発明者らは、鋭意検討の結果、多孔質酸化チタン構造体の作製において、所定の酸化チタン複合有機樹脂粒子を用いることで、光触媒に用いた場合、優れた光触媒機能を実現することが可能な多孔質酸化チタン構造体が得られることを見出し、本発明を完成させるに至った。 As a result of intensive studies, the present inventors can realize an excellent photocatalytic function when used as a photocatalyst by using predetermined titanium oxide composite organic resin particles in the production of a porous titanium oxide structure. The present inventors have found that a porous titanium oxide structure can be obtained and have completed the present invention.

本発明の多孔質酸化チタン構造体の製造方法では、まず、酸化チタン粒子、酸化チタン複合有機樹脂粒子、及び、有機溶剤を含有する酸化チタンペーストを調製する工程を行う。
具体的には、上記酸化チタン粒子、酸化チタン複合有機樹脂粒子、及び、有機溶剤を例えば、2本ロールミル、3本ロールミル、ビーズミル、ボールミル、ディスパー、プラネタリーミキサー、自転公転式攪拌装置、ニーダー、押し出し機、ミックスローター、スターラー等を用いて混合する方法等が挙げられる。
In the method for producing a porous titanium oxide structure of the present invention, first, a step of preparing a titanium oxide paste containing titanium oxide particles, titanium oxide composite organic resin particles, and an organic solvent is performed.
Specifically, the titanium oxide particles, the titanium oxide composite organic resin particles, and the organic solvent are, for example, a two roll mill, a three roll mill, a bead mill, a ball mill, a disper, a planetary mixer, a rotation and revolution type stirring device, a kneader, The method of mixing using an extruder, a mix rotor, a stirrer, etc. are mentioned.

上記酸化チタン粒子としては、特に限定されず、例えば、通常ルチル型の二酸化チタン粒子、アナターゼ型の二酸化チタン粒子、ブルッカイト型の二酸化チタン粒子及びこれら結晶性二酸化チタンを修飾した二酸化チタン粒子等を用いることができる。 The titanium oxide particles are not particularly limited. For example, rutile-type titanium dioxide particles, anatase-type titanium dioxide particles, brookite-type titanium dioxide particles, and titanium dioxide particles modified with these crystalline titanium dioxides are used. be able to.

上記酸化チタン粒子の粒子径としては、一次粒子の平均粒子径の好ましい下限が4nm、好ましい上限が300nmであり、より好ましい下限は6nm、より好ましい上限は250nmである。上記範囲内とすることで、充分な比表面積を得ることができ、また電子と正孔の再結合を防ぐことができる。また、粒子径分布の異なる2種類以上の微粒子を混合してもよい。 As the particle diameter of the titanium oxide particles, a preferable lower limit of the average particle diameter of primary particles is 4 nm, a preferable upper limit is 300 nm, a more preferable lower limit is 6 nm, and a more preferable upper limit is 250 nm. By setting it within the above range, a sufficient specific surface area can be obtained, and recombination of electrons and holes can be prevented. Two or more kinds of fine particles having different particle size distributions may be mixed.

上記酸化チタン複合有機樹脂粒子としては、酸化チタンを多孔質有機樹脂粒子の細孔内に有し、かつ、上記多孔質有機樹脂粒子が平均細孔径200nm以下であるものを用いる。
これにより、非常に均一で微細な酸化チタンを細孔内に作製することができる。
As the titanium oxide composite organic resin particles, those having titanium oxide in the pores of the porous organic resin particles and having the average pore diameter of 200 nm or less are used.
Thereby, very uniform and fine titanium oxide can be produced in the pores.

上記酸化チタン複合有機樹脂粒子は、酸化チタンを多孔質有機樹脂粒子の細孔内に有する。
上記多孔質有機樹脂粒子の平均細孔径は、上限が200nmである。上記多孔質有機樹脂粒子の平均細孔径が200nmを超えると、得られる酸化チタン複合有機樹脂粒子は、酸化チタンの微分散性が低下し、最終的に作製する酸化チタン焼結体の比表面積が低下してしまう。上記多孔質有機樹脂粒子の平均細孔径は、好ましい上限が150nm、より好ましい上限が100nmである。
また、上記多孔質有機樹脂粒子の平均細孔径の下限は特に限定されないが、好ましい下限は0.1nmである。上記多孔質有機樹脂粒子の平均細孔径が0.1nm未満であると、得られる酸化チタン複合有機樹脂粒子は、酸化チタンの含有量が低下することがある。
なお、本明細書中、多孔質有機樹脂粒子の平均細孔径とは、NOVA4200e(Sysmex社製)等のガス吸着式細孔径分布測定装置により測定した平均細孔径を意味する。
The titanium oxide composite organic resin particles have titanium oxide in the pores of the porous organic resin particles.
The upper limit of the average pore diameter of the porous organic resin particles is 200 nm. When the average pore diameter of the porous organic resin particles exceeds 200 nm, the resulting titanium oxide composite organic resin particles have a reduced fine dispersion of titanium oxide, and the specific surface area of the titanium oxide sintered body to be finally produced is It will decline. The upper limit of the average pore diameter of the porous organic resin particles is preferably 150 nm, and more preferably 100 nm.
The lower limit of the average pore diameter of the porous organic resin particles is not particularly limited, but a preferable lower limit is 0.1 nm. When the average pore diameter of the porous organic resin particles is less than 0.1 nm, the titanium oxide composite organic resin particles obtained may have a reduced titanium oxide content.
In the present specification, the average pore diameter of the porous organic resin particles means an average pore diameter measured by a gas adsorption type pore diameter distribution measuring device such as NOVA4200e (manufactured by Sysmex).

上記多孔質有機樹脂粒子の平均粒子径は特に限定されないが、好ましい下限が0.5μm、好ましい上限が50μmである。上記多孔質有機樹脂粒子の平均粒子径が0.5μm未満であると、得られる酸化チタン複合有機樹脂粒子を用いて製造した構造体において、酸化チタンの含有量が低下することがある。上記多孔質有機樹脂粒子の平均粒子径が50μmを超えると、得られる酸化チタン複合有機樹脂粒子は、塗工組成物中での分散性が低下することがあり、このような塗工組成物を用いて製造した構造体は、酸化チタンの分散性が低下することがある。上記多孔質有機樹脂粒子の平均粒子径は、より好ましい下限が1μm、より好ましい上限が30μmである。
なお、本明細書中、多孔質有機樹脂粒子の平均粒子径とは、LA920(HORIBA社製)等の光散乱回折型粒径分布計により測定した体積平均粒子径を意味する。
The average particle diameter of the porous organic resin particles is not particularly limited, but a preferable lower limit is 0.5 μm and a preferable upper limit is 50 μm. When the average particle diameter of the porous organic resin particles is less than 0.5 μm, the content of titanium oxide may be lowered in the structure produced using the obtained titanium oxide composite organic resin particles. When the average particle diameter of the porous organic resin particles exceeds 50 μm, the resulting titanium oxide composite organic resin particles may have reduced dispersibility in the coating composition. In the structure manufactured using the titanium oxide, the dispersibility of titanium oxide may be lowered. The average particle diameter of the porous organic resin particles is more preferably a lower limit of 1 μm and a more preferable upper limit of 30 μm.
In the present specification, the average particle size of the porous organic resin particles means a volume average particle size measured by a light scattering diffraction type particle size distribution analyzer such as LA920 (manufactured by HORIBA).

上記多孔質有機樹脂粒子のかさ比重は特に限定されないが、好ましい下限が0.01、好ましい上限が0.60である。上記多孔質有機樹脂粒子のかさ比重が0.01未満であると、多孔質有機樹脂粒子の平均細孔径が増大することがあり、得られる酸化チタン複合有機樹脂粒子は、酸化チタンの微分散性が低下することがある。上記多孔質有機樹脂粒子のかさ比重が0.60を超えると、多孔質有機樹脂粒子の細孔の数が低下することがあり、得られる酸化チタン複合有機樹脂粒子は、酸化チタンの含有量が低下することがある。上記多孔質有機樹脂粒子のかさ比重は、より好ましい下限が0.05、より好ましい上限が0.50である。
なお、本明細書中、多孔質有機樹脂粒子のかさ比重とは、JIS K 7365に準拠して測定したかさ比重を意味する。
Although the bulk specific gravity of the said porous organic resin particle is not specifically limited, A preferable minimum is 0.01 and a preferable upper limit is 0.60. When the bulk specific gravity of the porous organic resin particles is less than 0.01, the average pore diameter of the porous organic resin particles may increase, and the obtained titanium oxide composite organic resin particles have fine dispersion properties of titanium oxide. May decrease. When the bulk specific gravity of the porous organic resin particles exceeds 0.60, the number of pores of the porous organic resin particles may decrease, and the obtained titanium oxide composite organic resin particles have a titanium oxide content. May decrease. A more preferable lower limit of the bulk specific gravity of the porous organic resin particles is 0.05, and a more preferable upper limit is 0.50.
In addition, in this specification, the bulk specific gravity of porous organic resin particles means the bulk specific gravity measured based on JISK7365.

上記多孔質有機樹脂粒子の比表面積は特に限定されないが、好ましい下限が50m/gである。上記多孔質有機樹脂粒子の比表面積が50m/g未満であると、多孔質有機樹脂粒子の平均細孔径が低下することがあり、得られる酸化チタン複合有機樹脂粒子は、酸化チタンの含有量が低下することがある。上記多孔質有機樹脂粒子の比表面積は、より好ましい下限が100m/gである。また、上記多孔質有機樹脂粒子の比表面積の上限は特に限定されない。
なお、本明細書中、多孔質有機樹脂粒子の比表面積とは、NOVA4200e(Sysmex社製)等のガス吸着式細孔径分布測定装置により測定した比表面積を意味する。
The specific surface area of the porous organic resin particles is not particularly limited, but a preferred lower limit is 50 m 2 / g. When the specific surface area of the porous organic resin particles is less than 50 m 2 / g, the average pore diameter of the porous organic resin particles may decrease, and the obtained titanium oxide composite organic resin particles have a content of titanium oxide. May decrease. A more preferable lower limit of the specific surface area of the porous organic resin particles is 100 m 2 / g. Moreover, the upper limit of the specific surface area of the porous organic resin particles is not particularly limited.
In the present specification, the specific surface area of the porous organic resin particles means a specific surface area measured by a gas adsorption pore size distribution measuring device such as NOVA4200e (manufactured by Sysmex).

上記多孔質有機樹脂粒子の製造方法は特に限定されないが、重合性モノマーと、重合性モノマーとは反応しない有機溶剤とを混合した重合性モノマー溶液を調製した後、分散安定剤を含む極性溶媒に懸濁させる工程と、上記重合性モノマーを重合させ、上記有機溶剤を内包するポリマー粒子を得る工程と、得られたポリマー粒子中の上記有機溶剤を除去する工程とを有する方法(以下、方法(1)ともいう)が好ましい。
以下、上記方法(1)について説明する。
The method for producing the porous organic resin particles is not particularly limited, but after preparing a polymerizable monomer solution in which a polymerizable monomer and an organic solvent that does not react with the polymerizable monomer are prepared, a polar solvent containing a dispersion stabilizer is prepared. A method comprising a step of suspending, a step of polymerizing the polymerizable monomer to obtain polymer particles containing the organic solvent, and a step of removing the organic solvent in the obtained polymer particles (hereinafter referred to as method ( 1)) is preferred.
Hereinafter, the method (1) will be described.

上記方法(1)では、まず、重合性モノマーと、重合性モノマーとは反応しない有機溶剤とを混合した重合性モノマー溶液を調製した後、分散安定剤を含む極性溶媒に懸濁させる工程を行う。 In the above method (1), first, after preparing a polymerizable monomer solution in which a polymerizable monomer and an organic solvent that does not react with the polymerizable monomer are mixed, a step of suspending in a polar solvent containing a dispersion stabilizer is performed. .

上記重合性モノマーは特に限定されず、例えば、単官能性モノマー、多官能性モノマーが挙げられる。
上記単官能性モノマーは特に限定されず、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、クミル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ミリスチル(メタ)アクリレート、パルミチル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート、(メタ)アクリロニトリル、(メタ)アクリルアミド、(メタ)アクリル酸、グリシジル(メタ)アクリレート、2−ヒドロキシエチルメタクリレート、2−ヒドロキシプロピルメタクリレート等の極性基含有(メタ)アクリル系モノマー、スチレン、α−メチルスチレン、p−メチルスチレン、p−クロロスチレン等のスチレン系モノマー、酢酸ビニル、プロピオン酸ビニル等のビニルエステル、塩化ビニル、塩化ビニリデン等のハロゲン含有モノマー、ビニルピリジン、2−アクリロイルオキシエチルフタル酸、イタコン酸、フマル酸、エチレン、プロピレン等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
なかでも、重合する際の反応性が良好であることから、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、(メタ)アクリル酸等のアクリル系モノマーが好ましい。
The said polymerizable monomer is not specifically limited, For example, a monofunctional monomer and a polyfunctional monomer are mentioned.
The monofunctional monomer is not particularly limited. For example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, cumyl (meth) acrylate, cyclohexyl (meth) acrylate, myristyl Alkyl (meth) acrylates such as (meth) acrylate, palmityl (meth) acrylate, stearyl (meth) acrylate, isobornyl (meth) acrylate, (meth) acrylonitrile, (meth) acrylamide, (meth) acrylic acid, glycidyl (meth) Polar group-containing (meth) acrylic monomers such as acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, styrene, α-methylstyrene, p-methylstyrene, p-chlorostyrene Styrene monomers such as vinyl, vinyl esters such as vinyl acetate and vinyl propionate, halogen-containing monomers such as vinyl chloride and vinylidene chloride, vinyl pyridine, 2-acryloyloxyethylphthalic acid, itaconic acid, fumaric acid, ethylene, propylene, etc. Is mentioned. These may be used alone or in combination of two or more.
Among them, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile, (meth) acrylic acid because of good reactivity during polymerization Acrylic monomers such as are preferred.

上記多官能性モノマーは、得られる多孔質有機樹脂粒子の収縮を抑制し、耐圧縮強度を改善する目的で添加される。上記多官能性モノマーは特に限定されず、例えば、ジ(メタ)アクリレート、トリ(メタ)アクリレート、テトラ(メタ)アクリレート、ペンタ(メタ)アクリレート、ヘキサ(メタ)アクリレート、ジアリル化合物、トリアリル化合物、ジビニル化合物等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。 The polyfunctional monomer is added for the purpose of suppressing the shrinkage of the resulting porous organic resin particles and improving the compression resistance. The polyfunctional monomer is not particularly limited. For example, di (meth) acrylate, tri (meth) acrylate, tetra (meth) acrylate, penta (meth) acrylate, hexa (meth) acrylate, diallyl compound, triallyl compound, divinyl Compounds and the like. These may be used alone or in combination of two or more.

上記ジ(メタ)アクリレートは特に限定されず、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート等が挙げられる。
上記トリ(メタ)アクリレートは特に限定されず、例えば、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等が挙げられる。
上記テトラ(メタ)アクリレートは特に限定されず、例えば、テトラメチロールプロパンテトラ(メタ)アクリレート等が挙げられる。
上記ジビニル化合物は特に限定されず、例えば、ジビニルベンゼン等が挙げられる。
The di (meth) acrylate is not particularly limited. For example, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, Examples include trimethylolpropane di (meth) acrylate.
The tri (meth) acrylate is not particularly limited, and examples thereof include trimethylolpropane tri (meth) acrylate, ethylene oxide-modified trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, and the like.
The tetra (meth) acrylate is not particularly limited, and examples thereof include tetramethylolpropane tetra (meth) acrylate.
The divinyl compound is not particularly limited, and examples thereof include divinylbenzene.

上記有機溶剤は、上記重合性モノマーとは反応しなければ特に限定されず、例えば、ノルマルペンタン、イソペンタン、ノルマルヘキサン、シクロヘキサン、ノルマルヘプタン等の脂肪族炭化水素、トルエン、ベンゼン等の芳香族炭化水素、メチルエチルケトン、メチルイソブチルケトン等のケトン類、酢酸エチル等のエステル類等が挙げられる。 The organic solvent is not particularly limited as long as it does not react with the polymerizable monomer, and examples thereof include aliphatic hydrocarbons such as normal pentane, isopentane, normal hexane, cyclohexane and normal heptane, and aromatic hydrocarbons such as toluene and benzene. , Ketones such as methyl ethyl ketone and methyl isobutyl ketone, and esters such as ethyl acetate.

上記重合性モノマー溶液における上記有機溶剤の配合量は特に限定されないが、上記重合性モノマー100重量部に対して、好ましい下限が10重量部、好ましい上限が300重量部である。上記有機溶剤の配合量が10重量部未満であると、得られる多孔質有機樹脂粒子の空隙率が低下することがある。上記有機溶剤の配合量が300重量部を超えると、得られる多孔質有機樹脂粒子の強度が低下することがある。上記重合性モノマー溶液における上記有機溶剤の配合量の配合量は、より好ましい下限が20重量部、より好ましい上限が200重量部である。 Although the compounding quantity of the said organic solvent in the said polymerizable monomer solution is not specifically limited, A preferable minimum is 10 weight part and a preferable upper limit is 300 weight part with respect to 100 weight part of the said polymerizable monomers. The porosity of the obtained porous organic resin particle may fall that the compounding quantity of the said organic solvent is less than 10 weight part. When the compounding amount of the organic solvent exceeds 300 parts by weight, the strength of the obtained porous organic resin particles may be lowered. As for the compounding amount of the organic solvent in the polymerizable monomer solution, the more preferable lower limit is 20 parts by weight, and the more preferable upper limit is 200 parts by weight.

上記重合性モノマーと、上記有機溶剤とを混合した重合性モノマー溶液は、分散安定剤を含む極性溶媒に懸濁され、懸濁液が得られる。上記極性溶媒は特に限定されないが、水が好ましい。 A polymerizable monomer solution obtained by mixing the polymerizable monomer and the organic solvent is suspended in a polar solvent containing a dispersion stabilizer to obtain a suspension. The polar solvent is not particularly limited, but water is preferable.

上記分散安定剤は特に限定されず、例えば、シリカ、リン酸三カルシウム、水酸化マグネシウム、水酸化アルミニウム、水酸化第二鉄、硫酸バリウム、硫酸カルシウム、硫酸ナトリウム、シュウ酸カルシウム、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、酸化チタン等の無機物、部分ケン化ポリ酢酸ビニル、メチルセルロース、ポリビニルピロリドン、ポリアクリル酸ナトリウム塩、ポリオキシエチレン等の水溶性ポリマー、又は、各種アニオン系乳化剤、カチオン系乳化剤、ノニオン系乳化剤等が挙げられる。
上記分散安定剤の添加量は特に限定されず、分散安定剤の種類等により適宜決定されるが、上記重合性モノマー100重量部に対して、好ましい下限が0.1重量部、好ましい上限が20重量部である。
The dispersion stabilizer is not particularly limited. For example, silica, tricalcium phosphate, magnesium hydroxide, aluminum hydroxide, ferric hydroxide, barium sulfate, calcium sulfate, sodium sulfate, calcium oxalate, calcium carbonate, carbonate Inorganic substances such as barium, magnesium carbonate, titanium oxide, partially saponified polyvinyl acetate, methylcellulose, polyvinylpyrrolidone, polyacrylic acid sodium salt, water-soluble polymers such as polyoxyethylene, or various anionic emulsifiers, cationic emulsifiers, nonions And emulsifiers.
The addition amount of the dispersion stabilizer is not particularly limited and is appropriately determined depending on the kind of the dispersion stabilizer and the like, but the preferred lower limit is 0.1 parts by weight and the preferred upper limit is 20 parts with respect to 100 parts by weight of the polymerizable monomer. Parts by weight.

上記極性溶媒には、更に、分散安定助剤が添加されてもよい。
上記分散安定助剤は特に限定されず、例えば、ドデシルフェニルオキサイドジスルホン酸塩、ドデシルベンゼンスルホン酸ナトリウム、α−オレフィンスルホン酸ナトリウム等のアニオン系界面活性剤、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンオクチルフェノールエーテル等のノニオン系界面活性剤等が挙げられる。
A dispersion stabilizing aid may be further added to the polar solvent.
The dispersion stabilizing aid is not particularly limited, and examples thereof include anionic surfactants such as dodecylphenyl oxide disulfonate, sodium dodecylbenzenesulfonate, sodium α-olefinsulfonate, polyoxyethylene alkyl ether, polyoxyethylene octylphenol. Nonionic surfactants such as ether are listed.

上記重合性モノマー溶液の添加量は特に限定されないが、上記極性溶媒100重量部に対して、好ましい下限が10重量部、好ましい上限が10000重量部である。上記重合性モノマー添加量が10重量部未満であると、得られる多孔質中空樹脂粒子の強度が低下することがある。上記重合性モノマー溶液の添加量が10000重量部を超えると、得られる多孔質中空樹脂粒子の空隙率が低下することがある。上記重合性モノマーの添加量は、上記極性溶媒100重量部に対するより好ましい下限が25重量部、より好ましい上限が3233重量部である。 The addition amount of the polymerizable monomer solution is not particularly limited, but a preferable lower limit is 10 parts by weight and a preferable upper limit is 10,000 parts by weight with respect to 100 parts by weight of the polar solvent. If the amount of the polymerizable monomer added is less than 10 parts by weight, the strength of the obtained porous hollow resin particles may be lowered. When the addition amount of the polymerizable monomer solution exceeds 10,000 parts by weight, the porosity of the obtained porous hollow resin particles may be lowered. The addition amount of the polymerizable monomer is more preferably 25 parts by weight and more preferably 3233 parts by weight based on 100 parts by weight of the polar solvent.

上記方法(1)では、次いで、上記重合性モノマーを重合させ、上記有機溶剤を内包するポリマー粒子を得る工程を行う。
上記重合の際には、通常、重合開始剤を用いる。上記重合開始剤は特に限定されず、例えば、上記重合性モノマー溶液と相溶する油溶性のフリーラジカルを発生する化合物、例えば、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、ジブチルパーオキシジカーボネート、αークミルパーオキシネオデカノエート等の有機系過酸化物、アゾビスイソブチロニトリル等のアゾ系開始剤、レドックス開始剤等が挙げられる。
Next, in the method (1), a step of polymerizing the polymerizable monomer to obtain polymer particles including the organic solvent is performed.
In the polymerization, a polymerization initiator is usually used. The polymerization initiator is not particularly limited. For example, a compound that generates an oil-soluble free radical that is compatible with the polymerizable monomer solution, such as benzoyl peroxide, lauroyl peroxide, dibutyl peroxydicarbonate, α-cumium. Examples thereof include organic peroxides such as ruperoxyneodecanoate, azo initiators such as azobisisobutyronitrile, and redox initiators.

上記方法(1)では、次いで、得られたポリマー粒子中の上記有機溶剤を除去する工程を行う。これにより、上述した範囲の平均細孔径、平均粒子径、かさ比重、比表面積を有する上記多孔質有機樹脂粒子が得られる。このような多孔質有機樹脂粒子を用いることにより、酸化チタンが極めて微細に分散した酸化チタン複合有機樹脂粒子が得られる。 Next, in the method (1), a step of removing the organic solvent in the obtained polymer particles is performed. Thereby, the said porous organic resin particle which has the average pore diameter of the range mentioned above, an average particle diameter, a bulk specific gravity, and a specific surface area is obtained. By using such porous organic resin particles, titanium oxide composite organic resin particles in which titanium oxide is extremely finely dispersed can be obtained.

上記酸化チタン複合有機樹脂粒子中の酸化チタンの平均粒子径は特に限定されないが、好ましい下限が0.1nm、好ましい上限が200nmである。上記酸化チタン複合有機樹脂粒子中の酸化チタンの平均粒子径が0.1nm未満であると、最終的に得られる酸化チタン焼結体の緻密な構造を作るのに強度が不足することがある。上記酸化チタン複合有機樹脂粒子中の酸化チタンの平均粒子径が200nmを超えると、最終的に得られる酸化チタン焼結体の比表面積が低下してしまう。
なお、本明細書中、酸化チタン複合有機樹脂粒子中の酸化チタンの平均粒子径は、例えば、TEM/EDS装置を用いて元素マッピング画像を得た後、個数平均粒子径を算出することにより測定することができる。
Although the average particle diameter of the titanium oxide in the said titanium oxide composite organic resin particle is not specifically limited, A preferable minimum is 0.1 nm and a preferable upper limit is 200 nm. When the average particle diameter of titanium oxide in the titanium oxide composite organic resin particles is less than 0.1 nm, the strength may be insufficient to form a dense structure of the finally obtained titanium oxide sintered body. When the average particle diameter of titanium oxide in the titanium oxide composite organic resin particles exceeds 200 nm, the specific surface area of the finally obtained titanium oxide sintered body is lowered.
In the present specification, the average particle diameter of titanium oxide in the titanium oxide composite organic resin particles is measured by, for example, obtaining an element mapping image using a TEM / EDS apparatus and then calculating the number average particle diameter. can do.

上記酸化チタン複合有機樹脂粒子は、更に、周期律表2a〜4b族のうちの少なくとも1種の金属、又は、該金属からなる金属酸化物若しくは金属塩を有することが好ましい。
なお、上記周期律表2a〜4b族のうちの少なくとも1種の金属、又は、該金属からなる金属酸化物若しくは金属塩は、酸化チタンとは異なるものである。以下、上記周期律表2a〜4b族のうちの少なくとも1種の金属、又は、該金属からなる金属酸化物若しくは金属塩を「特定金属、特定金属酸化物又は特定金属塩」ともいう。
It is preferable that the titanium oxide composite organic resin particles further have at least one metal selected from Groups 2a to 4b of the periodic table, or a metal oxide or metal salt made of the metal.
In addition, the at least 1 sort (s) of the said periodic table 2a-4b group, or the metal oxide or metal salt which consists of this metal differs from a titanium oxide. Hereinafter, at least one kind of metal in the periodic table groups 2a to 4b, or a metal oxide or metal salt made of the metal is also referred to as “specific metal, specific metal oxide, or specific metal salt”.

上記周期律表2a〜4b族のうちの少なくとも1種の金属として、具体的には、例えば、白金、金、パラジウム、ニッケル、銅等が挙げられる。
上記周期律表2a〜4b族のうちの少なくとも1種の金属の金属酸化物として、具体的には、例えば、酸化セリウム、酸化ケイ素、酸化亜鉛、ジルコニア、酸化鉄、酸化マグネシウム、酸化銅、酸化コバルト、酸化インジウム、酸化アルミニウム、酸化亜鉛、酸化錫等が挙げられる。
上記周期律表2a〜4b族のうちの少なくとも1種の金属の金属塩として、具体的には、例えば、水酸化セリウム、水酸化チタン、水酸化マグネシウム、炭酸カルシウム、硫酸バリウム、水酸化(II)鉄、水酸化(III)鉄、水酸化ニッケル、硫酸銅、水酸化亜鉛、水酸化アルミニウム等が挙げられる。
Specific examples of the at least one metal in the periodic table groups 2a to 4b include platinum, gold, palladium, nickel, and copper.
Specific examples of the metal oxide of at least one metal from the groups 2a to 4b in the periodic table include, for example, cerium oxide, silicon oxide, zinc oxide, zirconia, iron oxide, magnesium oxide, copper oxide, and oxidation. Examples include cobalt, indium oxide, aluminum oxide, zinc oxide, and tin oxide.
Specific examples of the metal salt of at least one metal selected from the groups 2a to 4b in the periodic table include, for example, cerium hydroxide, titanium hydroxide, magnesium hydroxide, calcium carbonate, barium sulfate, hydroxide (II ) Iron, (III) hydroxide, nickel hydroxide, copper sulfate, zinc hydroxide, aluminum hydroxide and the like.

上記酸化チタン複合有機樹脂粒子における酸化チタンの含有量は特に限定されないが、好ましい下限が酸化チタン複合有機樹脂粒子全体の5重量%、好ましい上限が酸化チタン複合有機樹脂粒子全体の90重量%である。上記酸化チタンの含有量が5重量%未満であると、得られる酸化チタン複合有機樹脂粒子を用いて、所望とする緻密な構造体を製造できないことがある。上記酸化チタンの含有量が90重量%を超えると、得られる酸化チタン複合有機樹脂粒子は、酸化チタンの微分散性が低下することがあり、このような酸化チタン複合有機樹脂粒子を用いて製造した構造体は、酸化チタンの微分散性が低下することがある。上記酸化チタンの含有量は、より好ましい下限が酸化チタン複合有機樹脂粒子全体の10重量%、より好ましい上限が酸化チタン複合有機樹脂粒子全体の70重量%である。 The titanium oxide content in the titanium oxide composite organic resin particles is not particularly limited, but a preferable lower limit is 5% by weight of the entire titanium oxide composite organic resin particles, and a preferable upper limit is 90% by weight of the entire titanium oxide composite organic resin particles. . When the content of the titanium oxide is less than 5% by weight, a desired dense structure may not be produced using the obtained titanium oxide composite organic resin particles. When the titanium oxide content exceeds 90% by weight, the resulting titanium oxide composite organic resin particles may have reduced fine dispersion properties of titanium oxide, and are produced using such titanium oxide composite organic resin particles. Such a structure may reduce the fine dispersibility of titanium oxide. The more preferable lower limit of the titanium oxide content is 10% by weight of the entire titanium oxide composite organic resin particle, and the more preferable upper limit is 70% by weight of the entire titanium oxide composite organic resin particle.

上記酸化チタン複合有機樹脂粒子を製造する方法は特に限定されないが、水を主成分とする媒体中に多孔質有機樹脂粒子と金属イオンとを共存させた分散液を調製する工程と、前記金属イオンを中和、還元若しくは酸化するか、又は、前記金属イオンの溶解度を低下させることにより、前記多孔質有機樹脂粒子の細孔内に酸化チタンや、特定金属、特定金属酸化物又は特定金属塩を析出させる工程とを有する方法(以下、第1の酸化チタン複合有機樹脂粒子の製造方法ともいう)が好ましい。
また、上記酸化チタン複合有機樹脂粒子を製造する方法として、多孔質有機樹脂粒子と金属アルコキシドとを共存させた分散液を調製する工程と、前記金属アルコキシドを加水分解及び/又は脱水縮合することにより、前記多孔質有機樹脂粒子の細孔内に酸化チタンや、特定金属、特定金属酸化物又は特定金属塩を析出させる工程とを有する方法(以下、第2の酸化チタン複合有機樹脂粒子の製造方法ともいう)も好ましい。
The method for producing the titanium oxide composite organic resin particles is not particularly limited, but a step of preparing a dispersion in which porous organic resin particles and metal ions coexist in a medium containing water as a main component, and the metal ions By neutralizing, reducing or oxidizing the above, or by reducing the solubility of the metal ions, titanium oxide, a specific metal, a specific metal oxide or a specific metal salt is introduced into the pores of the porous organic resin particles. And a step of precipitation (hereinafter, also referred to as a production method of first titanium oxide composite organic resin particles).
Moreover, as a method for producing the titanium oxide composite organic resin particles, a step of preparing a dispersion in which porous organic resin particles and metal alkoxide coexist, and hydrolysis and / or dehydration condensation of the metal alkoxide. And a method of depositing titanium oxide, a specific metal, a specific metal oxide, or a specific metal salt in the pores of the porous organic resin particles (hereinafter referred to as the second titanium oxide composite organic resin particle production method) Also referred to as).

第1の酸化チタン複合有機樹脂粒子の製造方法では、まず、水を主成分とする媒体中に上述した多孔質有機樹脂粒子と金属イオンとを共存させた分散液を調製する工程を行う。
上記水を主成分とする媒体は、水を主成分としていれば特に限定されず、例えば、水や、エタノール、メタノール、イソプロパノール、アセトン等と水との混合物等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
In the first method for producing titanium oxide composite organic resin particles, first, a step of preparing a dispersion in which the above-described porous organic resin particles and metal ions coexist in a medium containing water as a main component is performed.
The medium containing water as a main component is not particularly limited as long as it contains water as a main component, and examples thereof include water and a mixture of water, ethanol, methanol, isopropanol, acetone, and the like. These may be used alone or in combination of two or more.

上記分散液中の上記多孔質有機樹脂粒子の配合量は特に限定されないが、好ましい下限が0.5重量%、好ましい上限が50重量%である。上記多孔質有機樹脂粒子の配合量が0.5重量%未満であると、上記多孔質有機樹脂粒子の細孔外で析出する酸化チタンや、特定金属、特定金属酸化物又は特定金属塩の量が増加し、析出した酸化チタンが酸化チタン複合有機樹脂粒子の製造に悪影響を及ぼすことがある。上記多孔質有機樹脂粒子の配合量が50重量%を超えると、多孔質有機樹脂粒子が凝集することがある。上記分散液中の上記多孔質有機樹脂粒子の配合量は、より好ましい下限が1重量%、より好ましい上限が30重量%である。 The blending amount of the porous organic resin particles in the dispersion is not particularly limited, but a preferred lower limit is 0.5% by weight and a preferred upper limit is 50% by weight. When the amount of the porous organic resin particles is less than 0.5% by weight, the amount of titanium oxide, specific metal, specific metal oxide, or specific metal salt precipitated outside the pores of the porous organic resin particles And the precipitated titanium oxide may adversely affect the production of titanium oxide composite organic resin particles. When the blending amount of the porous organic resin particles exceeds 50% by weight, the porous organic resin particles may aggregate. As for the compounding quantity of the said porous organic resin particle in the said dispersion liquid, a more preferable minimum is 1 weight% and a more preferable upper limit is 30 weight%.

上記金属イオンは、酸化チタン複合有機樹脂粒子に含まれる上記酸化チタンや、特定金属、特定金属酸化物又は特定金属塩を形成する金属のイオンであれば特に限定されず、具体的には、チタンイオンのほか、例えば、パラジウムイオン、ニッケルイオン、セリウムイオン、白金イオン、金イオン、セリウムイオン、亜鉛イオン、ジルコニウムイオン、鉄イオン、マグネシウムイオン、銅イオン、コバルトイオン、アルミニウムイオン、錫イオン等が挙げられる。 The metal ion is not particularly limited as long as it is a metal ion that forms the titanium oxide or the specific metal, the specific metal oxide, or the specific metal salt contained in the titanium oxide composite organic resin particles. In addition to ions, for example, palladium ion, nickel ion, cerium ion, platinum ion, gold ion, cerium ion, zinc ion, zirconium ion, iron ion, magnesium ion, copper ion, cobalt ion, aluminum ion, tin ion, etc. It is done.

上記分散液中の上記金属イオンの配合量は特に限定されないが、好ましい下限が0.001モル%、好ましい上限が10モル%である。上記金属イオンの配合量が0.001モル%未満であると、得られる酸化チタン複合有機樹脂粒子は、酸化チタンや、特定金属、特定金属酸化物又は特定金属塩の含有量が低下することがある。上記金属イオンの配合量が10モル%を超えると、上記多孔質有機樹脂粒子の細孔外で析出する酸化チタンや、特定金属、特定金属酸化物又は特定金属塩の量が増加し、得られる酸化チタン複合有機樹脂粒子との分離が困難になることがある。上記分散液中の上記金属イオンの配合量は、より好ましい下限が0.01モル%、より好ましい上限が5モル%である。 The compounding amount of the metal ions in the dispersion is not particularly limited, but a preferable lower limit is 0.001 mol% and a preferable upper limit is 10 mol%. When the compounding amount of the metal ions is less than 0.001 mol%, the obtained titanium oxide composite organic resin particles may have a decreased content of titanium oxide, a specific metal, a specific metal oxide, or a specific metal salt. is there. When the amount of the metal ions exceeds 10 mol%, the amount of titanium oxide, specific metal, specific metal oxide, or specific metal salt precipitated outside the pores of the porous organic resin particles is increased and obtained. Separation from the titanium oxide composite organic resin particles may be difficult. As for the compounding quantity of the said metal ion in the said dispersion liquid, a more preferable minimum is 0.01 mol% and a more preferable upper limit is 5 mol%.

上記分散液を調製する方法は特に限定されず、例えば、上記多孔質有機樹脂粒子を分散させた分散液と、上記金属イオンを含有する溶液とを混合する方法、上記多孔質有機樹脂粒子の乾燥体と、上記金属イオンを含有する溶液とを混合する方法、上記多孔質有機樹脂粒子を分散させた分散液と、上記金属イオンの乾燥体とを混合する方法等が挙げられる。
なお、上記分散液には、上記多孔質有機樹脂粒子の分散性を向上させるために、界面活性剤等の他の添加剤が添加されてもよい。
The method for preparing the dispersion is not particularly limited. For example, a method of mixing the dispersion in which the porous organic resin particles are dispersed and a solution containing the metal ions, drying of the porous organic resin particles. For example, a method of mixing a body and a solution containing the metal ion, a method of mixing a dispersion in which the porous organic resin particles are dispersed, and a dried body of the metal ion.
In addition, in order to improve the dispersibility of the said porous organic resin particle, other additives, such as surfactant, may be added to the said dispersion liquid.

第1の酸化チタン複合有機樹脂粒子の製造方法では、次いで、上記金属イオンを中和、還元若しくは酸化するか、又は、上記金属イオンの溶解度を低下させることにより、上記多孔質有機樹脂粒子の細孔内に酸化チタンや、特定金属、特定金属酸化物又は特定金属塩を析出させる工程を行う。これにより、酸化チタンや、特定金属、特定金属酸化物又は特定金属塩が極めて微細に分散した酸化チタン複合有機樹脂粒子が得られる。
上記金属イオンを中和する方法は特に限定されず、例えば、塩化マグネシウム水溶液に水酸化ナトリウムを添加する、硝酸セリウムにアンモニアを添加する、炭酸ナトリウム水溶液に二酸化炭素を添加する、塩化カルシウム水溶液に炭酸ナトリウムを添加する等の酸性物質にアルカリ性物質を添加したり、アルカリ性物質に酸性物質を添加したりする方法等が挙げられる。
上記金属イオンを還元する方法は特に限定されず、例えば、アンモニア等の還元剤を反応させる方法等が挙げられる。
In the first method for producing a titanium oxide composite organic resin particle, the metal organic ion is then neutralized, reduced or oxidized, or the solubility of the metal ion is reduced to reduce the fineness of the porous organic resin particle. A step of depositing titanium oxide, a specific metal, a specific metal oxide, or a specific metal salt in the hole is performed. Thereby, titanium oxide composite organic resin particles in which titanium oxide, a specific metal, a specific metal oxide, or a specific metal salt is dispersed extremely finely are obtained.
The method for neutralizing the metal ions is not particularly limited. For example, sodium hydroxide is added to an aqueous magnesium chloride solution, ammonia is added to cerium nitrate, carbon dioxide is added to an aqueous sodium carbonate solution, carbonic acid is added to an aqueous calcium chloride solution. Examples thereof include a method of adding an alkaline substance to an acidic substance such as adding sodium or adding an acidic substance to an alkaline substance.
The method for reducing the metal ion is not particularly limited, and examples thereof include a method of reacting a reducing agent such as ammonia.

第2の酸化チタン複合有機樹脂粒子の製造方法では、まず、上述した多孔質有機樹脂粒子と金属アルコキシドとを共存させた分散液を調製する工程を行う。 In the second method for producing titanium oxide composite organic resin particles, first, a step of preparing a dispersion in which the above-described porous organic resin particles and metal alkoxide coexist is performed.

上記分散液中の上記多孔質有機樹脂粒子の配合量は特に限定されず、第1の酸化チタン複合有機樹脂粒子の製造方法で用いられた配合量と同様の配合量を用いることができる。 The compounding quantity of the said porous organic resin particle in the said dispersion liquid is not specifically limited, The compounding quantity similar to the compounding quantity used with the manufacturing method of the 1st titanium oxide composite organic resin particle can be used.

上記金属アルコキシドは、上記酸化チタン複合有機樹脂粒子に含まれる酸化チタンのほか、特定金属、特定金属酸化物又は特定金属塩を形成する金属のアルコキシドであれば特に限定されず、具体的には、例えば、チタンテトライソプロポキシド、オルトテトラケイ酸エチル等が挙げられる。 The metal alkoxide is not particularly limited as long as it is a metal alkoxide that forms a specific metal, a specific metal oxide, or a specific metal salt, in addition to titanium oxide contained in the titanium oxide composite organic resin particles, specifically, For example, titanium tetraisopropoxide, ethyl orthotetrasilicate and the like can be mentioned.

上記分散液中の上記金属アルコキシドの配合量は特に限定されないが、好ましい下限が0.001モル%、好ましい上限が10モル%である。上記金属アルコキシドの配合量が0.001モル%未満であると、得られる酸化チタン複合有機樹脂粒子は、酸化チタンや、特定金属、特定金属酸化物又は特定金属塩の含有量が低下することがある。上記金属アルコキシドの配合量が10モル%を超えると、上記多孔質有機樹脂粒子の細孔外で析出する酸化チタンや、特定金属、特定金属酸化物又は特定金属塩の量が増加し、得られる酸化チタン複合有機樹脂粒子との分離が困難になることがある。上記分散液中の上記金属アルコキシドの配合量は、より好ましい下限が0.01モル%、より好ましい上限が5モル%である。 Although the compounding quantity of the said metal alkoxide in the said dispersion liquid is not specifically limited, A preferable minimum is 0.001 mol% and a preferable upper limit is 10 mol%. When the compounding amount of the metal alkoxide is less than 0.001 mol%, the obtained titanium oxide composite organic resin particles may have a decreased content of titanium oxide, a specific metal, a specific metal oxide, or a specific metal salt. is there. When the amount of the metal alkoxide exceeds 10 mol%, the amount of titanium oxide, specific metal, specific metal oxide or specific metal salt precipitated outside the pores of the porous organic resin particles is increased and obtained. Separation from the titanium oxide composite organic resin particles may be difficult. As for the compounding quantity of the said metal alkoxide in the said dispersion liquid, a more preferable minimum is 0.01 mol% and a more preferable upper limit is 5 mol%.

上記分散液を調製する方法は特に限定されず、例えば、上記多孔質有機樹脂粒子を分散させた分散液と、上記金属アルコキシドを含有する溶液とを混合する方法、上記多孔質有機樹脂粒子の乾燥粉体と、上記金属アルコキシドを含有する溶液とを混合する方法、上記多孔質有機樹脂粒子の乾燥粉体をエタノール等の水と容易に分散する水以外の溶媒に分散させた多孔質有機樹脂粒子分散液と、上記金属アルコキシドを含有する溶液とを混合する方法等が挙げられる。
なお、上記分散液には、上記多孔質有機樹脂粒子の分散性を向上させるために、界面活性剤等の他の添加剤が添加されてもよい。
The method for preparing the dispersion is not particularly limited. For example, a method of mixing the dispersion in which the porous organic resin particles are dispersed and a solution containing the metal alkoxide, drying the porous organic resin particles. A method of mixing powder and a solution containing the metal alkoxide, porous organic resin particles in which a dry powder of the porous organic resin particles is dispersed in a solvent other than water, such as ethanol, which is easily dispersed Examples include a method of mixing the dispersion and a solution containing the metal alkoxide.
In addition, in order to improve the dispersibility of the said porous organic resin particle, other additives, such as surfactant, may be added to the said dispersion liquid.

第2の酸化チタン複合有機樹脂粒子の製造方法では、次いで、上記金属アルコキシドを加水分解及び/又は脱水縮合することにより、上記多孔質有機樹脂粒子の細孔内に酸化チタンや、特定金属、特定金属酸化物又は特定金属塩を析出させる工程を行う。これにより、酸化チタンや、特定金属、特定金属酸化物又は特定金属塩が極めて微細に分散した酸化チタン複合有機樹脂粒子が得られる。
上記加水分解及び/又は脱水縮合する方法は特に限定されず、例えば、アンモニアを反応させる方法、硝酸を反応させる方法等が挙げられる。
Next, in the second method for producing a titanium oxide composite organic resin particle, the metal alkoxide is hydrolyzed and / or dehydrated and condensed to form titanium oxide, a specific metal, and a specific metal in the pores of the porous organic resin particle. A step of depositing a metal oxide or a specific metal salt is performed. Thereby, titanium oxide composite organic resin particles in which titanium oxide, a specific metal, a specific metal oxide, or a specific metal salt is dispersed extremely finely are obtained.
The method for the hydrolysis and / or dehydration condensation is not particularly limited, and examples thereof include a method of reacting ammonia and a method of reacting nitric acid.

第1及び第2の酸化チタン複合有機樹脂粒子の製造方法では、上述のようにして酸化チタン複合有機樹脂粒子を得た後、更に、得られた酸化チタン複合有機樹脂粒子に対して各工程を繰り返して行ってもよい。
より具体的には、例えば、第1の酸化チタン複合有機樹脂粒子の製造方法により得られた酸化チタン複合有機樹脂粒子と、新たな金属イオンとを、水を主成分とする媒体中に共存させた分散液を調製する工程を行い、次いで、上記新たな金属イオンを中和、還元又は酸化することにより、多孔質有機樹脂粒子の細孔内に新たな酸化チタンや、特定金属、特定金属酸化物又は特定金属塩を析出させる工程を行ってもよい。
In the manufacturing method of the 1st and 2nd titanium oxide composite organic resin particles, after obtaining the titanium oxide composite organic resin particles as described above, each step is further performed on the obtained titanium oxide composite organic resin particles. You may repeat.
More specifically, for example, a titanium oxide composite organic resin particle obtained by the first method for producing a titanium oxide composite organic resin particle and a new metal ion are allowed to coexist in a medium containing water as a main component. The step of preparing the dispersion is performed, and then the new metal ions are neutralized, reduced, or oxidized, so that new titanium oxide, specific metal, specific metal oxidation is formed in the pores of the porous organic resin particles. You may perform the process of depositing a thing or a specific metal salt.

また、第1及び第2の酸化チタン複合有機樹脂粒子では、上述のようにして酸化チタン複合有機樹脂粒子を得た後、析出した特定金属、特定金属酸化物又は特定金属塩を、更に酸化してもよい。
上記酸化する方法は特に限定されず、例えば、酸化チタン複合有機樹脂粒子を空気中で加熱する方法等が挙げられる。
In the first and second titanium oxide composite organic resin particles, after obtaining the titanium oxide composite organic resin particles as described above, the deposited specific metal, specific metal oxide or specific metal salt is further oxidized. May be.
The method for oxidizing is not particularly limited, and examples thereof include a method of heating titanium oxide composite organic resin particles in air.

上記有機溶剤としては、特に限定されず、例えば、メタノール、エタノール、1−プロパノール、2−プロパノール、テルピネオール、メチルエチルケトン、メチルイソブチルケトン、ベンゼン、シクロヘキサン、プロピレングリコール、ジエチレングリコール、トルエン、ジメチルスルホキシド、ジメチルアミン、ジオキサン、アセトン、テトラヒドロフラン等が挙げられる。 The organic solvent is not particularly limited. For example, methanol, ethanol, 1-propanol, 2-propanol, terpineol, methyl ethyl ketone, methyl isobutyl ketone, benzene, cyclohexane, propylene glycol, diethylene glycol, toluene, dimethyl sulfoxide, dimethylamine, Examples include dioxane, acetone, and tetrahydrofuran.

上記酸化チタンペーストは、バインダ樹脂を含有することが好ましい。上記バインダ樹脂として、例えば、エチルセルロース等のセルロース系化合物、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリエチレングリコール、ポリスチレン、アクリル樹脂、ポリ乳酸等が挙げられる。 The titanium oxide paste preferably contains a binder resin. Examples of the binder resin include cellulose compounds such as ethyl cellulose, polyvinyl alcohol (PVA), polyvinyl butyral (PVB), polyethylene glycol, polystyrene, acrylic resin, and polylactic acid.

本発明の多孔質酸化チタン構造体の製造方法は、上記酸化チタンペーストを塗工する工程を有する。
上記酸化チタンペーストを塗工する方法としては特に限定されないが、上記酸化チタン複合有機樹脂粒子の形状を維持したまま塗工できることから、スクリーン印刷法を用いることが好ましい。
The manufacturing method of the porous titanium oxide structure of this invention has the process of coating the said titanium oxide paste.
Although it does not specifically limit as a method to apply the said titanium oxide paste, It is preferable to use a screen-printing method from being able to apply, maintaining the shape of the said titanium oxide composite organic resin particle.

上記スクリーン印刷工程におけるスクリーン版の目開きの大きさ、スキージアタック角、スキージ速度、スキージ押圧力等については、適宜設定することが好ましい。 The size of the screen plate opening, the squeegee tack angle, the squeegee speed, the squeegee pressing force, and the like in the screen printing step are preferably set as appropriate.

本発明の多孔質酸化チタン構造体の製造方法は、酸化チタンペーストを乾燥し、焼成することにより、多孔質酸化チタン構造体を形成する工程を有する。 The method for producing a porous titanium oxide structure of the present invention includes a step of forming a porous titanium oxide structure by drying and baking the titanium oxide paste.

上酸化チタンペーストの乾燥及び焼成は、塗工する基板の種類等により、温度、時間、雰囲気等を適宜調整することができる。例えば、大気下又は不活性ガス雰囲気下、50〜800℃程度の範囲内で、10秒〜12時間程度行うことが好ましい。また、乾燥及び焼成は、単一の温度で1回又は温度を変化させて2回以上行ってもよい。 Drying and baking of the titanium oxide paste can be appropriately adjusted in temperature, time, atmosphere, and the like depending on the type of substrate to be coated. For example, it is preferable to carry out for about 10 seconds to 12 hours in the range of about 50 to 800 ° C. in the air or in an inert gas atmosphere. The drying and firing may be performed once at a single temperature or twice or more by changing the temperature.

本発明で得られる多孔質酸化チタン構造体を用いて光触媒を作製することができる。このようにして得られた光触媒は、大気浄化、脱臭、防汚、抗菌等の優れた光触媒機能を実現することができる。
また、本発明で得られる多孔質酸化チタン構造体は、酸化チタンが極めて微細に分散していことから、広い表面積、高い平滑性、緻密性等を有し、高い電極効率、触媒効率、透明性等を得ることができる。
A photocatalyst can be produced using the porous titanium oxide structure obtained in the present invention. The photocatalyst thus obtained can realize excellent photocatalytic functions such as air purification, deodorization, antifouling and antibacterial.
Further, the porous titanium oxide structure obtained in the present invention has a wide surface area, high smoothness, denseness, etc., because titanium oxide is very finely dispersed, and has high electrode efficiency, catalytic efficiency, and transparency. Etc. can be obtained.

本発明によれば、光触媒に用いた場合、大気浄化、脱臭、防汚、抗菌等の優れた光触媒機能を実現することが可能な多孔質酸化チタン構造体を作製できる多孔質酸化チタン構造体の製造方法を提供できる。 According to the present invention, when used in a photocatalyst, a porous titanium oxide structure capable of producing a porous titanium oxide structure capable of realizing an excellent photocatalytic function such as air purification, deodorization, antifouling, antibacterial, etc. A manufacturing method can be provided.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
(多孔質有機樹脂粒子の製造)
ジビニルベンゼン100重量部、ノルマルヘプタン30重量部、過酸化ベンゾイル1重量部を溶解させて油系溶液とし、イオン交換水900重量部、ポリビニルアルコール5重量部を溶解させた水系溶液に添加し、超音波ホモジナイザーにより10分間乳化させた後、セパラブルフラスコに乳化液を投入し、75℃で12時間反応させ、多孔質有機樹脂粒子スラリーを得た。吸引濾過により水系溶液を概略除去し、さらにイオン交換水を加え、吸引濾過を繰り返し、イオン交換水で洗浄されたウエットケーキ状の多孔質有機樹脂粒子を得た。得られたウエットケーキを70℃の熱風オーブンにて24時間乾燥させ、多孔質有機樹脂粒子を作製した。
Example 1
(Manufacture of porous organic resin particles)
100 parts by weight of divinylbenzene, 30 parts by weight of normal heptane, and 1 part by weight of benzoyl peroxide are dissolved to obtain an oil-based solution, which is added to an aqueous solution in which 900 parts by weight of ion-exchanged water and 5 parts by weight of polyvinyl alcohol are dissolved. After emulsification with a sonic homogenizer for 10 minutes, the emulsion was put into a separable flask and reacted at 75 ° C. for 12 hours to obtain porous organic resin particle slurry. The aqueous solution was roughly removed by suction filtration, ion-exchanged water was further added, and suction filtration was repeated to obtain wet cake-like porous organic resin particles washed with ion-exchanged water. The obtained wet cake was dried in a hot air oven at 70 ° C. for 24 hours to produce porous organic resin particles.

得られた多孔質有機樹脂粒子について、光散乱回折型粒径分布計(LA920、HORIBA社製)により測定した体積平均粒子径は、3μmであった。また、JIS K 7365に準拠して算出したかさ比重は、0.25であった。また、BET式比表面積計(Sysmex社製)により測定した比表面積は、250m/gであり、平均細孔径は、4nmであった。 About the obtained porous organic resin particle, the volume average particle diameter measured by the light scattering diffraction type particle size distribution analyzer (LA920, the product made by HORIBA) was 3 micrometers. Moreover, the bulk specific gravity calculated based on JISK7365 was 0.25. Further, the specific surface area measured by a BET specific surface area meter (manufactured by Sysmex) was 250 m 2 / g, and the average pore diameter was 4 nm.

(酸化チタン複合有機樹脂粒子の製造)
得られた多孔質有機樹脂粒子の乾燥粉体30重量部と、別途作製したチタンテトライソプロポキシドの80重量%エタノール溶液120重量部と混合して、分散液を調製した。この分散液に対して、アンモニアを添加することにより加水分解を行い、酸化チタンが多孔質有機樹脂粒子の細孔内に析出した酸化チタン複合有機樹脂粒子を作製した。
(Production of titanium oxide composite organic resin particles)
A dispersion was prepared by mixing 30 parts by weight of the obtained dry powder of porous organic resin particles and 120 parts by weight of an 80 wt% ethanol solution of titanium tetraisopropoxide separately prepared. The dispersion was hydrolyzed by adding ammonia to produce titanium oxide composite organic resin particles in which titanium oxide was precipitated in the pores of the porous organic resin particles.

(酸化チタンペーストの作製)
二酸化チタン粉末(平均粒子径15nm)の20重量%エタノール分散液25重量部、エチルセルロース(関東化学社製、EC−10)の10重量%テルピネオール分散液25重量部、テルピネオール25重量部及び得られた酸化チタン複合有機樹脂粒子0.25重量部を添加した後、3本ロールで均一に混合することにより酸化チタンペーストを調製した。
(Production of titanium oxide paste)
25 wt parts of 20 wt% ethanol dispersion of titanium dioxide powder (average particle size 15 nm), 25 wt parts of 10 wt% terpineol dispersion of ethyl cellulose (manufactured by Kanto Chemical Co., EC-10), 25 wt parts of terpineol were obtained. After adding 0.25 part by weight of titanium oxide composite organic resin particles, a titanium oxide paste was prepared by uniformly mixing with three rolls.

その後、ガラス基板に、得られた酸化チタンペーストを、スクリーン版を用いてスクリーン印刷法によって塗工した。
次いで、150℃で30分間乾燥した後、500℃で30分間焼成することで多孔質酸化チタン構造体を作製した(膜厚:12μm)。
Thereafter, the obtained titanium oxide paste was applied to a glass substrate by a screen printing method using a screen plate.
Subsequently, after drying at 150 degreeC for 30 minutes, the porous titanium oxide structure was produced by baking at 500 degreeC for 30 minutes (film thickness: 12 micrometers).

(実施例2)
(多孔質有機樹脂粒子の製造)
トリメチロールプロパントリメタクリレート70重量部、メタクリル酸メチル30重量部、シクロヘキサン30重量部、過酸化ベンゾイル1重量部を溶解させて油系溶液とし、イオン交換水400重量部、ポリビニルアルコール1重量部を溶解させた水系溶液に添加し、ホモジナイザーにより5000回転3分間乳化させたのち、セパラブルフラスコに乳化液を投入し、75℃で8時間反応させ、多孔質有機樹脂粒子スラリーを得た。吸引濾過により、水系溶液を概略除去し、さらにイオン交換水を加え、吸引濾過を繰り返し、イオン交換水で洗浄されたウエットケーキ状の多孔質有機樹脂粒子を得た。得られたウエットケーキを70℃の熱風オーブンにて24時間乾燥させ、多孔質有機樹脂粒子を作製した。
(Example 2)
(Manufacture of porous organic resin particles)
70 parts by weight of trimethylolpropane trimethacrylate, 30 parts by weight of methyl methacrylate, 30 parts by weight of cyclohexane and 1 part by weight of benzoyl peroxide are dissolved to form an oil-based solution, and 400 parts by weight of ion-exchanged water and 1 part by weight of polyvinyl alcohol are dissolved. The resultant was added to the aqueous solution and emulsified with a homogenizer at 5000 rpm for 3 minutes, and then the emulsified liquid was put into a separable flask and reacted at 75 ° C. for 8 hours to obtain a porous organic resin particle slurry. The aqueous solution was roughly removed by suction filtration, ion exchange water was further added, and suction filtration was repeated to obtain wet cake-like porous organic resin particles washed with ion exchange water. The obtained wet cake was dried in a hot air oven at 70 ° C. for 24 hours to produce porous organic resin particles.

得られた多孔質有機樹脂粒子について、光散乱回折型粒径分布計(LA920、HORIBA社製)により測定した体積平均粒子径は、10.2μmであった。また、JIS K 7365に準拠して算出したかさ比重は、0.45であった。また、BET式比表面積計(Sysmex社製)により測定した比表面積は、128m/gであった。更に平均細孔径は、20nmであった。 About the obtained porous organic resin particle, the volume average particle diameter measured by the light scattering diffraction type particle size distribution analyzer (LA920, product made by HORIBA) was 10.2 μm. The bulk specific gravity calculated according to JIS K 7365 was 0.45. The specific surface area measured by a BET specific surface area meter (manufactured by Sysmex) was 128 m 2 / g. Furthermore, the average pore diameter was 20 nm.

(酸化チタン複合有機樹脂粒子の製造)
得られた多孔質有機樹脂粒子の乾燥粉体30重量部と、別途作製したチタンテトライソプロポキシドの80重量%エタノール溶液120重量部と混合して、分散液を調製した。この分散液に対して、アンモニアを添加することにより加水分解を行い、酸化チタンが多孔質有機樹脂粒子の細孔内に析出した酸化チタン複合有機樹脂粒子を作製した。
(Production of titanium oxide composite organic resin particles)
A dispersion was prepared by mixing 30 parts by weight of the obtained dry powder of porous organic resin particles and 120 parts by weight of an 80 wt% ethanol solution of titanium tetraisopropoxide separately prepared. The dispersion was hydrolyzed by adding ammonia to produce titanium oxide composite organic resin particles in which titanium oxide was precipitated in the pores of the porous organic resin particles.

(酸化チタンペーストの作製)
二酸化チタン粉末(平均粒子径40nm)の20重量%エタノール分散液25重量部、エチルセルロース(関東化学社製、EC−10)の10重量%テルピネオール分散液25重量部、テルピネオール25重量部及び得られた造孔樹脂粒子0.8重量部を添加した後、3本ロールで均一に混合することにより酸化チタンペーストを調製した。
(Production of titanium oxide paste)
25 parts by weight of a 20% ethanol dispersion of titanium dioxide powder (average particle size 40 nm), 25 parts by weight of a 10% terpineol dispersion of ethyl cellulose (manufactured by Kanto Chemical Co., EC-10), 25 parts by weight of terpineol were obtained. After adding 0.8 parts by weight of the pore-forming resin particles, a titanium oxide paste was prepared by uniformly mixing with three rolls.

その後、ガラス基板に、得られた酸化チタンペーストを、スクリーン版を用いてスクリーン印刷法によって塗工した。
次いで、150℃で30分間乾燥した後、500℃で30分間焼成することで多孔質酸化チタン構造体を作製した(膜厚:20μm)。
Thereafter, the obtained titanium oxide paste was applied to a glass substrate by a screen printing method using a screen plate.
Subsequently, after drying at 150 degreeC for 30 minutes, the porous titanium oxide structure was produced by baking at 500 degreeC for 30 minutes (film thickness: 20 micrometers).

(実施例3)
(酸化チタン複合有機樹脂粒子の製造)
実施例1で得られた酸化チタン複合有機樹脂粒子30重量部をエタノール100重量部に分散させ、硫酸パラジウム50重量部と2−アミノピリジン水溶液を加えて12時間浸漬し、硫酸パラジウム溶液を細孔内に吸収した多孔質有機樹脂粒子を作製した。得られた分散液に、ジメチルアミンボランを添加することにより還元を行い、酸化チタンとパラジウムが多孔質有機樹脂粒子の細孔内に析出した酸化チタン/パラジウム複合粒子を作製した。
(Example 3)
(Production of titanium oxide composite organic resin particles)
30 parts by weight of the titanium oxide composite organic resin particles obtained in Example 1 were dispersed in 100 parts by weight of ethanol, and 50 parts by weight of palladium sulfate and an aqueous 2-aminopyridine solution were added and immersed for 12 hours. Porous organic resin particles absorbed inside were prepared. The resulting dispersion was reduced by adding dimethylamine borane to produce titanium oxide / palladium composite particles in which titanium oxide and palladium were precipitated in the pores of the porous organic resin particles.

(酸化チタンペーストの作製)
二酸化チタン粉末(平均粒子径15nm)の20重量%エタノール分散液25重量部、エチルセルロース(関東化学社製、EC−10)の10重量%テルピネオール分散液25重量部、テルピネオール25重量部及び得られた造孔樹脂粒子0.3重量部を添加した後、3本ロールで均一に混合することにより酸化チタンペーストを調製した。
(Production of titanium oxide paste)
25 wt parts of 20 wt% ethanol dispersion of titanium dioxide powder (average particle size 15 nm), 25 wt parts of 10 wt% terpineol dispersion of ethyl cellulose (manufactured by Kanto Chemical Co., EC-10), 25 wt parts of terpineol were obtained. After adding 0.3 part by weight of the pore-forming resin particles, a titanium oxide paste was prepared by uniformly mixing with three rolls.

その後、ガラス基板に、得られた酸化チタンペーストを、スクリーン版を用いてスクリーン印刷法によって塗工した。
次いで、150℃で30分間乾燥した後、500℃で30分間焼成することで多孔質酸化チタン構造体を作製した(膜厚:12μm)。
Thereafter, the obtained titanium oxide paste was applied to a glass substrate by a screen printing method using a screen plate.
Subsequently, after drying at 150 degreeC for 30 minutes, the porous titanium oxide structure was produced by baking at 500 degreeC for 30 minutes (film thickness: 12 micrometers).

(実施例4)
(多孔質有機樹脂粒子の製造)
トリメチロールプロパントリメタクリレート70重量部、メタクリル酸メチル30重量部、シクロヘキサン100重量部、過酸化ベンゾイル1重量部を溶解させて油系溶液とし、イオン交換水400重量部、ポリビニルアルコール1重量部を溶解させた水系溶液に添加し、ホモジナイザーにより5000回転3分間乳化させたのち、セパラブルフラスコに乳化液を投入し、75℃で8時間反応させ、多孔質有機樹脂粒子スラリーを得た。吸引濾過により、水系溶液を概略除去し、さらにイオン交換水を加え、吸引濾過を繰り返し、イオン交換水で洗浄されたウエットケーキ状の多孔質有機樹脂粒子を得た。得られたウエットケーキを70℃の熱風オーブンにて24時間乾燥させ、多孔質有機樹脂粒子を作製した。
Example 4
(Manufacture of porous organic resin particles)
70 parts by weight of trimethylolpropane trimethacrylate, 30 parts by weight of methyl methacrylate, 100 parts by weight of cyclohexane and 1 part by weight of benzoyl peroxide are dissolved to form an oil-based solution, and 400 parts by weight of ion-exchanged water and 1 part by weight of polyvinyl alcohol are dissolved. The resultant was added to the aqueous solution and emulsified with a homogenizer at 5000 rpm for 3 minutes, and then the emulsified liquid was put into a separable flask and reacted at 75 ° C. for 8 hours to obtain a porous organic resin particle slurry. The aqueous solution was roughly removed by suction filtration, ion exchange water was further added, and suction filtration was repeated to obtain wet cake-like porous organic resin particles washed with ion exchange water. The obtained wet cake was dried in a hot air oven at 70 ° C. for 24 hours to produce porous organic resin particles.

得られた多孔質有機樹脂粒子について、光散乱回折型粒径分布計(LA920、HORIBA社製)により測定した体積平均粒子径は、1.7μmであった。また、JIS K 7365に準拠して算出したかさ比重は、0.22であった。また、BET式比表面積計(Sysmex社製)により測定した比表面積は、80m/gであった。更に平均細孔径は、180nmであった。 The obtained porous organic resin particles had a volume average particle size of 1.7 μm as measured by a light scattering diffraction type particle size distribution analyzer (LA920, manufactured by HORIBA). Moreover, the bulk specific gravity calculated based on JISK7365 was 0.22. Further, the specific surface area measured by a BET specific surface area meter (manufactured by Sysmex) was 80 m 2 / g. Furthermore, the average pore diameter was 180 nm.

(酸化チタン複合有機樹脂粒子の製造)
得られた多孔質有機樹脂粒子の乾燥粉体30重量部と、別途作製したチタンテトライソプロポキシドの80重量%エタノール溶液120重量部と混合して、分散液を調製した。この分散液に対して、アンモニアを添加することにより加水分解を行い、酸化チタンが多孔質有機樹脂粒子の細孔内に析出した酸化チタン複合有機樹脂粒子を作製した。
(Production of titanium oxide composite organic resin particles)
A dispersion was prepared by mixing 30 parts by weight of the obtained dry powder of porous organic resin particles and 120 parts by weight of an 80 wt% ethanol solution of titanium tetraisopropoxide separately prepared. The dispersion was hydrolyzed by adding ammonia to produce titanium oxide composite organic resin particles in which titanium oxide was precipitated in the pores of the porous organic resin particles.

(酸化チタンペーストの作製)
二酸化チタン粉末(平均粒子径200nm)の20重量%エタノール分散液25重量部、エチルセルロース(関東化学社製、EC−10)の10重量%テルピネオール分散液25重量部、テルピネオール25重量部及び得られた造孔樹脂粒子0.8重量部を添加した後、3本ロールで均一に混合することにより酸化チタンペーストを調製した。
(Production of titanium oxide paste)
25 parts by weight of a 20% ethanol dispersion of titanium dioxide powder (average particle size 200 nm), 25 parts by weight of a 10% terpineol dispersion of ethyl cellulose (manufactured by Kanto Chemical Co., EC-10), 25 parts by weight of terpineol were obtained. After adding 0.8 parts by weight of the pore-forming resin particles, a titanium oxide paste was prepared by uniformly mixing with three rolls.

その後、ガラス基板に、得られた酸化チタンペーストを、スクリーン版を用いてスクリーン印刷法によって塗工した。
次いで、150℃で30分間乾燥した後、500℃で30分間焼成することで多孔質酸化チタン構造体を作製した(膜厚:18μm)。
Thereafter, the obtained titanium oxide paste was applied to a glass substrate by a screen printing method using a screen plate.
Subsequently, after drying at 150 degreeC for 30 minutes, the porous titanium oxide structure was produced by baking at 500 degreeC for 30 minutes (film thickness: 18 micrometers).

(比較例1)
(酸化チタンペーストの作製)
二酸化チタン粉末(平均粒子径15nm)の20重量%エタノール分散液25重量部、エチルセルロース(関東化学社製、EC−10)の10重量%テルピネオール分散液25重量部、テルピネオール25重量部を添加した後、3本ロールで均一に混合することにより酸化チタンペーストを調製した。
(Comparative Example 1)
(Production of titanium oxide paste)
After adding 25 parts by weight of a 20% ethanol dispersion of titanium dioxide powder (average particle size 15 nm), 25 parts by weight of a 10% terpineol dispersion of ethyl cellulose (manufactured by Kanto Chemical Co., EC-10), and 25 parts by weight of terpineol. A titanium oxide paste was prepared by uniformly mixing with three rolls.

その後、ガラス基板に、得られた酸化チタンペーストを、スクリーン版を用いてスクリーン印刷法によって塗工した。
次いで、150℃で30分間乾燥した後、500℃で30分間焼成することで多孔質酸化チタン構造体を作製した(膜厚:15μm)。
Thereafter, the obtained titanium oxide paste was applied to a glass substrate by a screen printing method using a screen plate.
Subsequently, after drying at 150 degreeC for 30 minutes, the porous titanium oxide structure was produced by baking at 500 degreeC for 30 minutes (film thickness: 15 micrometers).

(比較例2)
(多孔質有機樹脂粒子の製造)
トリメチロールプロパントリメタクリレート30重量部、アクリロニトリル70重量部、ノルマルヘプタン30重量部、過酸化ベンゾイル1重量部を溶解させて油系溶液とし、イオン交換水400重量部、ポリビニルアルコール1重量部を溶解させた水系溶液に添加し、ホモジナイザーにより5000回転3分間乳化させたのち、セパラブルフラスコに乳化液を投入し、75℃で12時間反応させ、多孔質有機樹脂粒子スラリーを得た。吸引濾過により、水系溶液を概略除去し、さらにイオン交換水を加え、吸引濾過を繰り返し、イオン交換水で洗浄されたウエットケーキ状の多孔質有機樹脂粒子を得た。得られたウエットケーキを70℃の熱風オーブンにて24時間乾燥させ、多孔質有機樹脂粒子を作製した。
(Comparative Example 2)
(Manufacture of porous organic resin particles)
30 parts by weight of trimethylolpropane trimethacrylate, 70 parts by weight of acrylonitrile, 30 parts by weight of normal heptane and 1 part by weight of benzoyl peroxide are dissolved to obtain an oil-based solution, and 400 parts by weight of ion-exchanged water and 1 part by weight of polyvinyl alcohol are dissolved. The resulting mixture was added to an aqueous solution and emulsified with a homogenizer at 5000 rpm for 3 minutes, and then the emulsion was put into a separable flask and reacted at 75 ° C. for 12 hours to obtain a porous organic resin particle slurry. The aqueous solution was roughly removed by suction filtration, ion exchange water was further added, and suction filtration was repeated to obtain wet cake-like porous organic resin particles washed with ion exchange water. The obtained wet cake was dried in a hot air oven at 70 ° C. for 24 hours to produce porous organic resin particles.

得られた多孔質有機樹脂粒子について、光散乱回折型粒径分布計(LA920、HORIBA社製)により測定した体積平均粒子径は、15μmであった。また、JIS K 7365に準拠して算出したかさ比重は、0.43であった。また、BET式比表面積計(Sysmex社製)により測定した比表面積は、0.8m/gであった。更に平均細孔径は、8500nmであった。 The obtained porous organic resin particles had a volume average particle size of 15 μm as measured by a light scattering diffraction type particle size distribution meter (LA920, manufactured by HORIBA). Moreover, the bulk specific gravity calculated based on JISK7365 was 0.43. The specific surface area measured by a BET specific surface area meter (manufactured by Sysmex) was 0.8 m 2 / g. Furthermore, the average pore diameter was 8500 nm.

(酸化チタン複合有機樹脂粒子の製造)
得られた多孔質有機樹脂粒子を用いたこと以外は実施例2と同様にして、酸化チタンが多孔質有機樹脂粒子の細孔内に析出した酸化チタン複合有機樹脂粒子を作製した。
(Production of titanium oxide composite organic resin particles)
Titanium oxide composite organic resin particles in which titanium oxide was precipitated in the pores of the porous organic resin particles were produced in the same manner as in Example 2 except that the obtained porous organic resin particles were used.

(酸化チタンペーストの作製)
二酸化チタン粉末(平均粒子径40nm)の20重量%エタノール分散液25重量部、エチルセルロース(関東化学社製、EC−10)の10重量%テルピネオール分散液25重量部、テルピネオール25重量部及び得られた造孔樹脂粒子0.75重量部を添加した後、3本ロールで均一に混合することにより酸化チタンペーストを調製した。
(Production of titanium oxide paste)
25 parts by weight of a 20% ethanol dispersion of titanium dioxide powder (average particle size 40 nm), 25 parts by weight of a 10% terpineol dispersion of ethyl cellulose (manufactured by Kanto Chemical Co., EC-10), 25 parts by weight of terpineol were obtained. After adding 0.75 part by weight of the pore-forming resin particles, a titanium oxide paste was prepared by uniformly mixing with three rolls.

その後、ガラス基板に、得られた酸化チタンペーストを、スクリーン版を用いてスクリーン印刷法によって塗工した。
次いで、150℃で30分間乾燥した後、500℃で30分間焼成することで多孔質酸化チタン構造体を作製した(膜厚:12μm)。
Thereafter, the obtained titanium oxide paste was applied to a glass substrate by a screen printing method using a screen plate.
Subsequently, after drying at 150 degreeC for 30 minutes, the porous titanium oxide structure was produced by baking at 500 degreeC for 30 minutes (film thickness: 12 micrometers).

(比較例3)
(多孔質有機樹脂粒子の製造)
トリメチロールプロパントリメタクリレート50重量部、メタクリル酸メチル50重量部、シクロヘキサン120重量部、過酸化ベンゾイル1重量部を溶解させて油系溶液とし、イオン交換水400重量部、ポリビニルアルコール1重量部を溶解させた水系溶液に添加し、ホモジナイザーにより5000回転3分間乳化させたのち、セパラブルフラスコに乳化液を投入し、75℃で8時間反応させ、多孔質有機樹脂粒子スラリーを得た。吸引濾過により、水系溶液を概略除去し、さらにイオン交換水を加え、吸引濾過を繰り返し、イオン交換水で洗浄されたウエットケーキ状の多孔質有機樹脂粒子を得た。得られたウエットケーキを70℃の熱風オーブンにて24時間乾燥させ、多孔質有機樹脂粒子を作製した。
(Comparative Example 3)
(Manufacture of porous organic resin particles)
50 parts by weight of trimethylolpropane trimethacrylate, 50 parts by weight of methyl methacrylate, 120 parts by weight of cyclohexane and 1 part by weight of benzoyl peroxide are dissolved to form an oil-based solution, and 400 parts by weight of ion-exchanged water and 1 part by weight of polyvinyl alcohol are dissolved. The resultant was added to the aqueous solution and emulsified with a homogenizer at 5000 rpm for 3 minutes, and then the emulsified liquid was put into a separable flask and reacted at 75 ° C. for 8 hours to obtain a porous organic resin particle slurry. The aqueous solution was roughly removed by suction filtration, ion exchange water was further added, and suction filtration was repeated to obtain wet cake-like porous organic resin particles washed with ion exchange water. The obtained wet cake was dried in a hot air oven at 70 ° C. for 24 hours to produce porous organic resin particles.

得られた多孔質有機樹脂粒子について、光散乱回折型粒径分布計(LA920、HORIBA社製)により測定した体積平均粒子径は、1.9μmであった。また、JIS K 7365に準拠して算出したかさ比重は、0.28であった。また、BET式比表面積計(Sysmex社製)により測定した比表面積は、43m/gであった。更に平均細孔径は、275nmであった。 The obtained porous organic resin particles had a volume average particle size of 1.9 μm as measured by a light scattering diffraction type particle size distribution meter (LA920, manufactured by HORIBA). Moreover, the bulk specific gravity calculated based on JISK7365 was 0.28. The specific surface area measured by a BET specific surface area meter (manufactured by Sysmex) was 43 m 2 / g. Furthermore, the average pore diameter was 275 nm.

(酸化チタン複合有機樹脂粒子の製造)
得られた多孔質有機樹脂粒子の乾燥粉体30重量部と、別途作製したチタンテトライソプロポキシドの80重量%エタノール溶液120重量部と混合して、分散液を調製した。この分散液に対して、アンモニアを添加することにより加水分解を行い、酸化チタンが多孔質有機樹脂粒子の細孔内に析出した酸化チタン複合有機樹脂粒子を作製した。
(Production of titanium oxide composite organic resin particles)
A dispersion was prepared by mixing 30 parts by weight of the obtained dry powder of porous organic resin particles and 120 parts by weight of an 80 wt% ethanol solution of titanium tetraisopropoxide separately prepared. The dispersion was hydrolyzed by adding ammonia to produce titanium oxide composite organic resin particles in which titanium oxide was precipitated in the pores of the porous organic resin particles.

(酸化チタンペーストの作製)
二酸化チタン粉末(平均粒子径200nm)の20重量%エタノール分散液25重量部、エチルセルロース(関東化学社製、EC−10)の10重量%テルピネオール分散液25重量部、テルピネオール25重量部及び得られた造孔樹脂粒子0.7重量部を添加した後、3本ロールで均一に混合することにより酸化チタンペーストを調製した。
(Production of titanium oxide paste)
25 parts by weight of a 20% ethanol dispersion of titanium dioxide powder (average particle size 200 nm), 25 parts by weight of a 10% terpineol dispersion of ethyl cellulose (manufactured by Kanto Chemical Co., EC-10), 25 parts by weight of terpineol were obtained. After adding 0.7 parts by weight of pore-forming resin particles, a titanium oxide paste was prepared by uniformly mixing with three rolls.

その後、ガラス基板に、得られた酸化チタンペーストを、スクリーン版を用いてスクリーン印刷法によって塗工した。
次いで、150℃で30分間乾燥した後、500℃で30分間焼成することで多孔質酸化チタン構造体を作製した(膜厚:20μm)。
Thereafter, the obtained titanium oxide paste was applied to a glass substrate by a screen printing method using a screen plate.
Subsequently, after drying at 150 degreeC for 30 minutes, the porous titanium oxide structure was produced by baking at 500 degreeC for 30 minutes (film thickness: 20 micrometers).

(比較例4)
(有機樹脂粒子の製造)
トリメチロールプロパントリメタクリレート25重量部、メタクリル酸メチル75重量部、過酸化ベンゾイル2重量部を溶解させて油系溶液とし、イオン交換水400重量部、ポリビニルアルコール1重量部を溶解させた水系溶液に添加し、ホモジナイザーにより5000回転3分間乳化させたのち、セパラブルフラスコに乳化液を投入し、75℃で8時間反応させ、有機樹脂粒子スラリーを得た。吸引濾過により、水系溶液を概略除去し、さらにイオン交換水を加え、吸引濾過を繰り返し、イオン交換水で洗浄されたウエットケーキ状の有機樹脂粒子を得た。得られたウエットケーキを70℃の熱風オーブンにて24時間乾燥させ、有機樹脂粒子を作製した。
(Comparative Example 4)
(Manufacture of organic resin particles)
To an aqueous solution in which 25 parts by weight of trimethylolpropane trimethacrylate, 75 parts by weight of methyl methacrylate and 2 parts by weight of benzoyl peroxide were dissolved to form an oil-based solution, 400 parts by weight of ion-exchanged water and 1 part by weight of polyvinyl alcohol were dissolved. The mixture was added and emulsified with a homogenizer at 5000 rpm for 3 minutes, and then the emulsion was put into a separable flask and reacted at 75 ° C. for 8 hours to obtain an organic resin particle slurry. The aqueous solution was roughly removed by suction filtration, ion exchange water was further added, and suction filtration was repeated to obtain wet cake-like organic resin particles washed with ion exchange water. The obtained wet cake was dried in a hot air oven at 70 ° C. for 24 hours to produce organic resin particles.

得られた有機樹脂粒子について、光散乱回折型粒径分布計(LA920、HORIBA社製)により測定した体積平均粒子径は、3μmであった。また、JIS K 7365に準拠して算出したかさ比重は、0.72であった。また、BET式比表面積計(Sysmex社製)により測定した比表面積は、10m/gであった。 About the obtained organic resin particle, the volume average particle diameter measured with the light scattering diffraction type particle size distribution analyzer (LA920, product made by HORIBA) was 3 micrometers. Moreover, the bulk specific gravity calculated based on JISK7365 was 0.72. The specific surface area measured by a BET specific surface area meter (manufactured by Sysmex) was 10 m 2 / g.

(酸化チタン複合有機樹脂粒子の製造)
得られた有機樹脂粒子の乾燥粉体30重量部と、別途作製したチタンテトライソプロポキシドの80重量%エタノール溶液120重量部と混合して、分散液を調製した。この分散液に対して、アンモニアを添加することにより加水分解を行い、酸化チタンが有機樹脂粒子の表面に析出した酸化チタン複合有機樹脂粒子を作製した。
(Production of titanium oxide composite organic resin particles)
30 parts by weight of the obtained dry powder of organic resin particles and 120 parts by weight of an 80 wt% ethanol solution of titanium tetraisopropoxide prepared separately were mixed to prepare a dispersion. The dispersion was hydrolyzed by adding ammonia to produce titanium oxide composite organic resin particles in which titanium oxide was deposited on the surface of the organic resin particles.

(酸化チタンペーストの作製)
二酸化チタン粉末(平均粒子径100nm)の20重量%エタノール分散液25重量部、エチルセルロース(関東化学社製、EC−10)の10重量%テルピネオール分散液25重量部、テルピネオール25重量部及び得られた造孔樹脂粒子0.3重量部を添加した後、3本ロールで均一に混合することにより酸化チタンペーストを調製した。
(Production of titanium oxide paste)
25 parts by weight of a 20% ethanol dispersion of titanium dioxide powder (average particle size 100 nm), 25 parts by weight of a 10% by weight terpineol dispersion of ethyl cellulose (manufactured by Kanto Chemical Co., EC-10), 25 parts by weight of terpineol were obtained. After adding 0.3 part by weight of the pore-forming resin particles, a titanium oxide paste was prepared by uniformly mixing with three rolls.

その後、ガラス基板に、得られた酸化チタンペーストを、スクリーン版を用いてスクリーン印刷法によって塗工した。
次いで、150℃で30分間乾燥した後、500℃で30分間焼成することで多孔質酸化チタン構造体を作製した(膜厚:13μm)。
Thereafter, the obtained titanium oxide paste was applied to a glass substrate by a screen printing method using a screen plate.
Subsequently, after drying at 150 degreeC for 30 minutes, the porous titanium oxide structure was produced by baking at 500 degreeC for 30 minutes (film thickness: 13 micrometers).

(評価)
実施例、比較例で得られた多孔質有機樹脂粒子、多孔質酸化チタン構造体について、以下の評価を行った。結果を表1に示す。
(Evaluation)
The following evaluation was performed about the porous organic resin particle and porous titanium oxide structure which were obtained by the Example and the comparative example. The results are shown in Table 1.

(1)酸化チタン及びその他の金属の粒子径
得られた酸化チタン複合有機樹脂粒子をエポキシ樹脂に包埋し、ウルトラミクロトームで断面切片を採取し、TEM/EDS装置にて元素マッピング画像を得た。得られた元素マッピング画像10点について酸化チタン及びその他の金属の個数平均粒子径を算出することにより、酸化チタン及びその他の金属の粒子径を評価した。
(1) Titanium oxide and other metal particle diameters The obtained titanium oxide composite organic resin particles were embedded in an epoxy resin, a cross-section was taken with an ultramicrotome, and an element mapping image was obtained with a TEM / EDS apparatus. . The particle size of titanium oxide and other metals was evaluated by calculating the number average particle size of titanium oxide and other metals for 10 obtained element mapping images.

(2)多孔質酸化チタン構造体の比表面積測定
得られた多孔質酸化チタン構造体の比表面積を、BET式比表面積計(Sysmex社製 AUTOSORBシリーズ)を用いて測定した。
(2) Measurement of specific surface area of porous titanium oxide structure The specific surface area of the obtained porous titanium oxide structure was measured using a BET specific surface area meter (AUTOSORB series manufactured by Sysmex).

(3)光触媒性能
得られた多孔質酸化チタン構造体について、光触媒性能評価試験法IIaガスバックA法(光触媒製品技術協議会)に準拠した方法によって光触媒性能を求めた。なお、この方法では、アセトアルデヒドの分解活性を指標とする。
(3) Photocatalytic performance About the obtained porous titanium oxide structure, photocatalytic performance was calculated | required by the method based on the photocatalyst performance evaluation test method IIa gas back A method (photocatalyst product technical meeting). In this method, the decomposition activity of acetaldehyde is used as an index.

Figure 2012066988
Figure 2012066988

本発明によれば、光触媒に用いた場合、大気浄化、脱臭、防汚、抗菌等の優れた光触媒機能を実現することが可能な多孔質酸化チタン構造体を作製できる多孔質酸化チタン構造体の製造方法を提供できる。 According to the present invention, when used in a photocatalyst, a porous titanium oxide structure capable of producing a porous titanium oxide structure capable of realizing an excellent photocatalytic function such as air purification, deodorization, antifouling, antibacterial, etc. A manufacturing method can be provided.

Claims (5)

酸化チタン粒子、酸化チタン複合有機樹脂粒子、及び、有機溶剤を含有する酸化チタンペーストを調製する工程、
前記酸化チタンペーストを塗工する工程、及び、
前記酸化チタンペーストを乾燥し、焼成することにより、多孔質酸化チタン構造体を形成する工程を有し、
前記酸化チタン複合有機樹脂粒子は、酸化チタンを多孔質有機樹脂粒子の細孔内に有し、前記多孔質有機樹脂粒子は、平均細孔径が200nm以下である
ことを特徴とする多孔質酸化チタン構造体の製造方法。
A step of preparing titanium oxide particles, titanium oxide composite organic resin particles, and a titanium oxide paste containing an organic solvent;
Applying the titanium oxide paste; and
Having a step of forming a porous titanium oxide structure by drying and firing the titanium oxide paste;
The titanium oxide composite organic resin particles have titanium oxide in the pores of the porous organic resin particles, and the porous organic resin particles have an average pore diameter of 200 nm or less. Manufacturing method of structure.
酸化チタン複合有機樹脂粒子における酸化チタンの含有量は、酸化チタン複合有機樹脂粒子全体の5〜90重量%であることを特徴とする請求項1記載の多孔質酸化チタン構造体の製造方法。 The method for producing a porous titanium oxide structure according to claim 1, wherein the content of titanium oxide in the titanium oxide composite organic resin particles is 5 to 90% by weight of the entire titanium oxide composite organic resin particles. 酸化チタン複合有機樹脂粒子は、更に、周期律表2a〜4b族のうちの少なくとも1種の金属、又は、該金属からなる金属酸化物若しくは金属塩を有することを特徴とする請求項1又は2記載の多孔質酸化チタン構造体の製造方法。 The titanium oxide composite organic resin particles further have at least one metal selected from groups 2a to 4b of the periodic table, or a metal oxide or metal salt composed of the metal. The manufacturing method of the porous titanium oxide structure of description. 多孔質有機樹脂粒子は、平均粒子径が0.5〜50μmであることを特徴とする請求項1、2又は3記載の多孔質酸化チタン構造体の製造方法。 The method for producing a porous titanium oxide structure according to claim 1, 2 or 3, wherein the porous organic resin particles have an average particle diameter of 0.5 to 50 µm. 多孔質有機樹脂粒子は、かさ比重が0.01〜0.60であり、かつ、比表面積が100m/g以上であることを特徴とする請求項1、2又は3記載の多孔質酸化チタン構造体の製造方法。 The porous organic resin particles have a bulk specific gravity of 0.01 to 0.60 and a specific surface area of 100 m 2 / g or more. Manufacturing method of structure.
JP2010215771A 2010-09-27 2010-09-27 Method for producing porous titanium oxide structure Pending JP2012066988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010215771A JP2012066988A (en) 2010-09-27 2010-09-27 Method for producing porous titanium oxide structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010215771A JP2012066988A (en) 2010-09-27 2010-09-27 Method for producing porous titanium oxide structure

Publications (1)

Publication Number Publication Date
JP2012066988A true JP2012066988A (en) 2012-04-05

Family

ID=46164715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010215771A Pending JP2012066988A (en) 2010-09-27 2010-09-27 Method for producing porous titanium oxide structure

Country Status (1)

Country Link
JP (1) JP2012066988A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103762A (en) * 1989-09-18 1991-04-30 Sekisui Plastics Co Ltd Moisture sensitive material and moisture sensitive element
JP2005089215A (en) * 2003-09-16 2005-04-07 Saga Prefecture Method of fixing titanium oxide to porous body, and composite porous body produced by the fixing method
JP2005203360A (en) * 2003-12-19 2005-07-28 Toyo Ink Mfg Co Ltd Manufacturing method of treatment metal semiconductor particle
JP2006290680A (en) * 2005-04-11 2006-10-26 National Institute Of Advanced Industrial & Technology Spherical nanoparticle porous body and method for synthesizing the same
WO2007069694A1 (en) * 2005-12-14 2007-06-21 Ube Industries, Ltd. Powder composed of inorganic compound-loaded polyamide porous particle
JP2010185028A (en) * 2009-02-13 2010-08-26 Ube Ind Ltd Resin particle, method of production thereof and cosmetic
JP2010205753A (en) * 2009-02-27 2010-09-16 Toyota Central R&D Labs Inc Pigment-sensitized solar cell, and method of manufacturing same
JP2011524920A (en) * 2008-06-03 2011-09-08 ビーエーエスエフ ソシエタス・ヨーロピア Titanium dioxide compositions containing titanium dioxide nanoparticles and their manufacture and use

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103762A (en) * 1989-09-18 1991-04-30 Sekisui Plastics Co Ltd Moisture sensitive material and moisture sensitive element
JP2005089215A (en) * 2003-09-16 2005-04-07 Saga Prefecture Method of fixing titanium oxide to porous body, and composite porous body produced by the fixing method
JP2005203360A (en) * 2003-12-19 2005-07-28 Toyo Ink Mfg Co Ltd Manufacturing method of treatment metal semiconductor particle
JP2006290680A (en) * 2005-04-11 2006-10-26 National Institute Of Advanced Industrial & Technology Spherical nanoparticle porous body and method for synthesizing the same
WO2007069694A1 (en) * 2005-12-14 2007-06-21 Ube Industries, Ltd. Powder composed of inorganic compound-loaded polyamide porous particle
JP2011524920A (en) * 2008-06-03 2011-09-08 ビーエーエスエフ ソシエタス・ヨーロピア Titanium dioxide compositions containing titanium dioxide nanoparticles and their manufacture and use
JP2010185028A (en) * 2009-02-13 2010-08-26 Ube Ind Ltd Resin particle, method of production thereof and cosmetic
JP2010205753A (en) * 2009-02-27 2010-09-16 Toyota Central R&D Labs Inc Pigment-sensitized solar cell, and method of manufacturing same

Similar Documents

Publication Publication Date Title
JP7055969B2 (en) The process of making an antireflection coating composition, and the porous coatings made from it.
CN109569739B (en) Double-layer hollow material based on titanium dioxide and application thereof in hydrogen sulfide photocatalytic treatment
CN105964283B (en) A kind of micro-nano structure photocatalysis coating and preparation method thereof
JP5192760B2 (en) Composite hollow mesoporous silica particles
CN107973592B (en) Gamma-Al with evenly distributed aperture2O3Ceramic microfiltration membrane and preparation method thereof
CN101323444A (en) Carbon or carbon composite hollow ball and preparation thereof
JP2008222911A (en) Organic-inorganic composite coating film, its manufacturing method and aqueous coating material composition
JP5490748B2 (en) Method for producing porous perovskite oxide
Zhao et al. Fabrication and photoactivity of a tunable-void SiO 2–TiO 2 core–shell structure on modified SiO 2 nanospheres by grafting an amphiphilic diblock copolymer using ARGET ATRP
CN108137315A (en) The preparation of core-shell material based on carbon nanotube
JP5635933B2 (en) Porous titanium oxide structure and method for producing porous titanium oxide structure
CN106750545B (en) A kind of zinc stearate/graphene oxide composite material and preparation method thereof
JP2011136993A (en) Platinum complex, and production method and application thereof
CN101041429B (en) Method for producing carbon nano-ball by using polyacrylonitile as precursor
JP2012066988A (en) Method for producing porous titanium oxide structure
JP5346261B2 (en) Metal composite organic resin particles and method for producing metal composite organic resin particles
JP2012120967A (en) Visible light-responsive photocatalyst, hydrophilic member including the same, and method for producing the same
Pakdel et al. One‐Pot Preparation of Core–Shell, Organic–Inorganic, Hybrid Latexes by In Situ Nanoparticle Precipitation in Pickering Emulsion Polymerization
JP5252876B2 (en) Photocatalytic hydrosol and aqueous photocatalytic coating agent
JP4532623B2 (en) Polymer fine powder and method for producing the same
WO2010109582A1 (en) Porous hollow polymer particle, method for producing porous hollow polymer particle, fragrance material-carrying polymer particle, and method for producing fragrance material-carrying polymer particle
JP2011057890A (en) Method for producing metal composite sheet
Gao et al. Growth from spherical to rod-like SiO2: Impact on microstructure and performance of nanocomposite
JP5202869B2 (en) Porous material
JP2003095621A (en) Method for producing foamed metal oxide and foamed metal oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141007