JP2012066546A - Method of producing fusion material of thermoplastic liquid crystal polymer film - Google Patents

Method of producing fusion material of thermoplastic liquid crystal polymer film Download PDF

Info

Publication number
JP2012066546A
JP2012066546A JP2010215272A JP2010215272A JP2012066546A JP 2012066546 A JP2012066546 A JP 2012066546A JP 2010215272 A JP2010215272 A JP 2010215272A JP 2010215272 A JP2010215272 A JP 2010215272A JP 2012066546 A JP2012066546 A JP 2012066546A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal polymer
polymer film
thermoplastic liquid
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010215272A
Other languages
Japanese (ja)
Other versions
JP5613512B2 (en
Inventor
Tatsuya Sunamoto
辰也 砂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2010215272A priority Critical patent/JP5613512B2/en
Publication of JP2012066546A publication Critical patent/JP2012066546A/en
Application granted granted Critical
Publication of JP5613512B2 publication Critical patent/JP5613512B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81411General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat
    • B29C66/81421General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being convex or concave
    • B29C66/81422General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being convex or concave being convex
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8145General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/81457General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps comprising a block or layer of deformable material, e.g. sponge, foam, rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/836Moving relative to and tangentially to the parts to be joined, e.g. transversely to the displacement of the parts to be joined, e.g. using a X-Y table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7422Aluminium or alloys of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7428Transition metals or their alloys
    • B29C66/74281Copper or alloys of copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7428Transition metals or their alloys
    • B29C66/74285Noble metals, e.g. silver, gold, platinum or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/929Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/94Measuring or controlling the joining process by measuring or controlling the time
    • B29C66/949Measuring or controlling the joining process by measuring or controlling the time characterised by specific time values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/951Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools
    • B29C66/9513Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools characterised by specific vibration frequency values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0079Liquid crystals

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a fusion material of a thermoplastic liquid crystal polymer film fused by using ultrasonic waves.SOLUTION: The method includes: a step of laminating a thermoplastic liquid polymer film and an adherend with the thermoplastic liquid crystal polymer up and with the adherend down; and a step of obtaining the fusion material of the thermoplastic liquid crystal polymer film by fusing the thermoplastic liquid crystal polymer film and the adherend by using the ultrasonic waves while bringing the ultrasonic horn of an ultrasonic wave fusion apparatus into direct contact with the upper side of the thermoplastic liquid crystal polymer film.

Description

本発明は、光学的に異方性の溶融相を形成し得る熱可塑性ポリマーからなるフィルム(以下、これを熱可塑性液晶ポリマーフィルムと称する)を、超音波を用いて融着させ、熱可塑性液晶ポリマーフィルムの融着物を製造する方法に関する。   The present invention relates to a thermoplastic liquid crystal obtained by fusing a film made of a thermoplastic polymer capable of forming an optically anisotropic melt phase (hereinafter referred to as a thermoplastic liquid crystal polymer film) using ultrasonic waves. The present invention relates to a method for producing a polymer film fusion product.

近年、マイクロエレクトロニクス分野の技術の進歩は目ざましいものがあり、移動体通信を始め、携帯用電子機器の小型・軽量化の要求が強くなり、高密度実装に対する期待が一段と強まっている。そして、高密度実装に好適な材料として、ポリイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリフェニレンエーテル、ポリフェニレンオキサイドといった耐熱性樹脂が注目されている。   In recent years, there has been remarkable progress in technology in the field of microelectronics, and the demand for miniaturization and weight reduction of portable electronic devices such as mobile communication has become stronger, and the expectation for high-density mounting has further increased. As materials suitable for high-density mounting, heat-resistant resins such as polyimide, polyether ether ketone, polyether sulfone, polyphenylene ether, and polyphenylene oxide have attracted attention.

このような耐熱性樹脂よりなるフィルムは、銅箔などの金属箔と積層されて、プリント配線基板に利用されている。このような耐熱性樹脂では熱加工が困難であるため、耐熱性樹脂よりなるフィルム相互の接着は、通常、エポキシ系接着剤などの接着剤が適宜選択して使われる。しかしながら、エポキシ系接着剤などの異物を用いてフィルム同士を接着させた場合、異物の存在により、フィルム本来の能力が発揮できない虞がある。   A film made of such a heat-resistant resin is laminated with a metal foil such as a copper foil and used for a printed wiring board. Since heat processing is difficult with such a heat-resistant resin, an adhesive such as an epoxy-based adhesive is usually selected and used for adhesion between films made of the heat-resistant resin. However, when films are bonded together using a foreign material such as an epoxy adhesive, the original ability of the film may not be exhibited due to the presence of the foreign material.

そこで、近年、この分野において、熱接着が可能な熱可塑性液晶ポリマーフィルムが注目されている。熱可塑性液晶ポリマーフィルムは、接着剤を使用しなくともフィルム同士での熱接着が可能であるため、熱可塑性液晶ポリマーフィルム本来の能力である優れた低吸湿性、低ガス透過性、高周波特性および耐薬品性を損なうことなく積層物あるいは融着フィルム物を提供することができる。   Therefore, in recent years, thermoplastic liquid crystal polymer films capable of thermal bonding have attracted attention in this field. Thermoplastic liquid crystal polymer films can be bonded to each other without using an adhesive. Therefore, the original capabilities of thermoplastic liquid crystal polymer films are excellent low moisture absorption, low gas permeability, high frequency characteristics and A laminate or a fused film can be provided without impairing chemical resistance.

例えば、特許文献1(特開2001−88219号公報)には、熱可塑性液晶ポリマーフィルムとその被着体とを重ね合わせ、次いで両者を非粘着性被着体に挟んだ状態でロール間で熱処理しながら圧着させ、得られた積層体を非粘着性被着体と分離することを特徴とする該積層体の製造方法が開示されている。   For example, in Patent Document 1 (Japanese Patent Laid-Open No. 2001-88219), a thermoplastic liquid crystal polymer film and an adherend are overlapped, and then heat treatment is performed between rolls in a state where both are sandwiched between non-adhesive adherends. A method for producing the laminate is disclosed, wherein the laminate is separated from the non-adhesive adherend while being crimped.

より詳細には、この文献には、熱可塑性液晶ポリマーフィルムを非粘着性被着体に挟んだ状態とし、その上下にロールを配設した後、上側加圧ロールとしてロール形状の超音波ホーンを用い、下側加圧ロールとして加熱ロールを用いることが記載されている。   More specifically, this document describes a state in which a thermoplastic liquid crystal polymer film is sandwiched between non-adhesive adherends, rolls are disposed above and below, and a roll-shaped ultrasonic horn is used as an upper pressure roll. It is described that a heating roll is used as the lower pressure roll.

特開2001−88219号公報JP 2001-88219 A

しかしながら、特許文献1に記載された製造方法では、加圧ロールを用いて、ロール間で熱処理しながらフィルム同士をラミネートするため、任意の位置で局部的な融着をするのが困難である。また、融着速度に関しても、ロールの巻き取り速度に左右されるため、融着速度を制御することが難しい。   However, in the manufacturing method described in Patent Document 1, since films are laminated using a pressure roll while heat-treating between the rolls, it is difficult to perform local fusion at an arbitrary position. Moreover, since the fusing speed is also affected by the winding speed of the roll, it is difficult to control the fusing speed.

また、超音波融着が一般的に行なわれている塩化ビニル、ポリプロピレン等熱可塑性フィルムと比較して、熱可塑性液晶ポリマーは耐熱性が高いため、液晶ポリマーフィルムを超音波融着した場合、従来の一般的な超音波融着方法では、融着強度が低いといった問題があった。   In addition, thermoplastic liquid crystal polymers have higher heat resistance compared to thermoplastic films such as vinyl chloride and polypropylene, which are commonly used for ultrasonic fusion, so when liquid crystal polymer films are ultrasonically fused, However, the conventional ultrasonic fusion method has a problem that the fusion strength is low.

従って、本発明の目的は、任意の位置で局部的な融着をすることができるとともに、融着速度を制御することが容易である、熱可塑性液晶ポリマーフィルム融着物の製造方法を提供することにある。
本発明の別の目的は、接着強度を向上できるだけでなく、融着物の外観に優れる熱可塑性液晶ポリマーフィルム融着物の製造方法を提供することにある。
Accordingly, an object of the present invention is to provide a method for producing a thermoplastic liquid crystal polymer film fusion product, which can perform local fusion at an arbitrary position and can easily control the fusion rate. It is in.
Another object of the present invention is to provide a method for producing a thermoplastic liquid crystal polymer film fusion product that not only improves the adhesive strength but also has an excellent appearance of the fusion product.

本発明のさらに別の目的は、手動で利用できるだけでなく、機械を利用した自動化も容易に対応することができる、熱可塑性液晶ポリマーフィルム融着物の製造方法を提供することにある。
本発明の他の目的は、サイクル性が高いだけでなく、低いコストで製造することが可能な、熱可塑性液晶ポリマーフィルム融着物の製造方法を提供することにある。
Still another object of the present invention is to provide a method for producing a thermoplastic liquid crystal polymer film fusion product that can be used not only manually but also easily using a machine.
Another object of the present invention is to provide a method for producing a thermoplastic liquid crystal polymer film fusion product that is not only highly cycleable but also can be produced at low cost.

本発明の発明者らは、上記目的を達成するために鋭意検討した結果、(1)液晶ポリマーを構成する分子においては、分子間での絡みがなく振動吸収性に優れているため、液晶ポリマーの超音波融着が困難な原因は、超音波を適用してもその振動による摩擦熱が十分に発生しないことにある点を見出し、さらにこの知見に基づいて研究を進めた結果、(2)液晶ポリマーフィルムの超音波融着を達成するためには、超音波ホーンを直接液晶ポリマーフィルムに対して接触させることにより、超音波融着の際の振動を液晶ポリマーフィルムが効率よく吸収できることを見出した。   The inventors of the present invention have made extensive studies in order to achieve the above object. As a result, (1) the molecules constituting the liquid crystal polymer have no entanglement between molecules and are excellent in vibration absorption. As a result of finding out that the cause of the difficulty in ultrasonic fusion is that the frictional heat due to the vibration is not sufficiently generated even when ultrasonic waves are applied. In order to achieve ultrasonic fusion of the liquid crystal polymer film, it was found that the liquid crystal polymer film can efficiently absorb vibration during ultrasonic fusion by bringing the ultrasonic horn into direct contact with the liquid crystal polymer film. It was.

続いて、(3)効率よく吸収されたエネルギーにより熱可塑性液晶ポリマーが一気に溶融してしまうのを防ぐためには、フィルムの受け台として弾性マットを敷くことが重要であり、それにより、液晶ポリマーフィルムに対して適用された前記超音波の振動が制御でき、良好な概観および十分な接着強度を液晶ポリマーフィルムの溶融物に対して付与できること、を見出し、本発明を完成するに至った。   Subsequently, (3) in order to prevent the thermoplastic liquid crystal polymer from being melted at once due to the efficiently absorbed energy, it is important to lay an elastic mat as a film cradle, whereby the liquid crystal polymer film The inventors have found that the vibration of the ultrasonic wave applied to can be controlled, and that a good appearance and sufficient adhesive strength can be imparted to the melt of the liquid crystal polymer film, and the present invention has been completed.

すなわち、本発明は、光学的に異方性の溶融相を形成し得る熱可塑性ポリマーからなるフィルム(以下、これを熱可塑性液晶ポリマーフィルムと称する)の融着物を製造する方法であって、
熱可塑性液晶ポリマーフィルムとその被着体(例えば、熱可塑性液晶ポリマーフィルム)とを、弾性マットの上で熱可塑性液晶ポリマーフィルムを上に被着体を下にして重ねあわせる工程と、
前記熱可塑性液晶ポリマーフィルムの上に、超音波融着機の超音波ホーンを直接接触させ、熱可塑性液晶ポリマーフィルムと被着体とを超音波により融着させて、熱可塑性液晶ポリマーフィルムの融着物を得る工程と、を含んでいる。
That is, the present invention is a method for producing a fusion product of a film made of a thermoplastic polymer capable of forming an optically anisotropic melt phase (hereinafter referred to as a thermoplastic liquid crystal polymer film),
A step of superposing a thermoplastic liquid crystal polymer film and an adherend thereof (for example, a thermoplastic liquid crystal polymer film) on an elastic mat with the thermoplastic liquid crystal polymer film on an adherend and a laminate;
An ultrasonic horn of an ultrasonic fusing machine is brought into direct contact with the thermoplastic liquid crystal polymer film, and the thermoplastic liquid crystal polymer film and the adherend are fused ultrasonically to melt the thermoplastic liquid crystal polymer film. Obtaining a kimono.

例えば、熱可塑性液晶ポリマーフィルムに対する超音波ホーンの圧力は、40〜100kg/cm程度であってもよい。また、超音波ホーンの振動振幅は、40〜60μm程度であってもよい。また、超音波発振機の出力は、200〜450W程度であってもよい。このような超音波融着は、通常、超音波ホーンの点移動または線移動により行なわれる。 For example, the pressure of the ultrasonic horn against the thermoplastic liquid crystal polymer film may be about 40 to 100 kg / cm 2 . Further, the vibration amplitude of the ultrasonic horn may be about 40 to 60 μm. Further, the output of the ultrasonic oscillator may be about 200 to 450 W. Such ultrasonic fusion is usually performed by point movement or line movement of an ultrasonic horn.

前記弾性マットは、耐熱性弾性マットで構成されるのが好ましい。また、弾性マットの弾性率は、4〜40MPa程度であってもよく、且つその厚みが0.5〜10mm程度であってもよい。   The elastic mat is preferably composed of a heat-resistant elastic mat. Further, the elastic modulus of the elastic mat may be about 4 to 40 MPa, and the thickness thereof may be about 0.5 to 10 mm.

また、本発明は、前記製造方法により得られた熱可塑性液晶ポリマーフィルム融着物についても包含する。このような融着物は、例えば、MD方向の長さ1000m以上を有する熱可塑性液晶ポリマーフィルムであってもよい。   Moreover, this invention also includes the thermoplastic liquid crystal polymer film melt | fusion material obtained by the said manufacturing method. Such a fused product may be, for example, a thermoplastic liquid crystal polymer film having a length in the MD direction of 1000 m or more.

本発明の製造方法では、加圧ロール及び非粘着性被着体を用いずに超音波を利用することにより、熱可塑性液晶ポリマーフィルムの任意の位置で局部的な融着をすることができるとともに、融着速度を容易に制御することができる。   In the production method of the present invention, by using ultrasonic waves without using a pressure roll and a non-adhesive adherend, local fusion can be performed at an arbitrary position of the thermoplastic liquid crystal polymer film. The fusion speed can be easily controlled.

また、特定の圧力で超音波ホーンを適用することにより、熱可塑性液晶ポリマーフィルム融着物の接着強度を向上できる。特に、被着体が熱可塑性液晶ポリマーフィルムである場合、母材強度に近いレベルで溶着が可能である。   Moreover, the adhesive strength of the thermoplastic liquid crystal polymer film fusion product can be improved by applying an ultrasonic horn at a specific pressure. In particular, when the adherend is a thermoplastic liquid crystal polymer film, welding can be performed at a level close to the strength of the base material.

さらに、熱可塑性液晶ポリマーフィルム融着物表面の凹凸を小さくすることができるため、融着物の外観が向上する。   Furthermore, since the irregularities on the surface of the thermoplastic liquid crystal polymer film fusion product can be reduced, the appearance of the fusion product is improved.

さらに、超音波の振動振幅および/または出力を調整することにより、手動で融着できるだけでなく、機械を利用した自動化も容易に対応することが可能になる。
さらにまた、弾性マットが耐熱性を有している場合、被着体側が加熱により高温となっても弾性マットによる融着物への汚染を防ぐことができる。また、弾性マットが特定の弾性率および/または厚みを有していると、熱可塑性液晶ポリマーフィルムへの超音波振動を効率よく制御することが可能となる。
Furthermore, by adjusting the vibration amplitude and / or output of the ultrasonic wave, not only can manual fusion be performed, but also automation using a machine can be easily accommodated.
Furthermore, when the elastic mat has heat resistance, contamination of the fusion-bonded material by the elastic mat can be prevented even if the adherend side is heated to a high temperature. Further, when the elastic mat has a specific elastic modulus and / or thickness, it is possible to efficiently control the ultrasonic vibration to the thermoplastic liquid crystal polymer film.

さらにまた、本発明の製造方法は、融着物を製造するためのサイクル性が高いだけでなく、加圧ロールを用いなくともいいため、製造設備を安くすることが可能である。   Furthermore, the production method of the present invention not only has high cycleability for producing a fused product, but also does not require the use of a pressure roll, so that the production equipment can be made inexpensive.

さらに、本発明の製造方法は、接着剤などの異物を必要としないため、低いコストで熱可塑性液晶ポリマーフィルム融着物を製造することができるだけでなく、熱可塑性液晶ポリマーフィルム本来の特性を発揮させることができる。   Furthermore, since the production method of the present invention does not require a foreign substance such as an adhesive, it can not only produce a thermoplastic liquid crystal polymer film fusion product at a low cost, but also exhibits the original properties of the thermoplastic liquid crystal polymer film. be able to.

本発明の一実施形態に係る熱可塑性液晶ポリマーフィルムの超音波融着物の製造方法を説明するための概略図である。It is the schematic for demonstrating the manufacturing method of the ultrasonic fusion material of the thermoplastic liquid crystal polymer film which concerns on one Embodiment of this invention. (a)は本発明の一実施形態に係る製造方法で用いられる超音波ホーンの先端形状の一例を示す概略断面図であり、(b)はその概略側面図である。(A) is a schematic sectional drawing which shows an example of the front-end | tip shape of the ultrasonic horn used with the manufacturing method which concerns on one Embodiment of this invention, (b) is the schematic side view. 本発明の一実施形態に係る製造方法において、X−Yステージを用いた融着方法を説明するための概略図である。In the manufacturing method which concerns on one Embodiment of this invention, it is the schematic for demonstrating the fusion | melting method using an XY stage.

本発明の超音波融着物の製造方法は、熱可塑性液晶ポリマーフィルムを超音波を用いて融着する方法である。以下、本発明の実施形態を図面にしたがって説明する。図1は、本発明の超音波融着物の製造方法の一形態を説明するための図である。   The method for producing an ultrasonic fusion product according to the present invention is a method in which a thermoplastic liquid crystal polymer film is fused using ultrasonic waves. Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram for explaining one embodiment of a method for producing an ultrasonic fused product of the present invention.

図1に示すように、熱可塑性液晶ポリマーフィルム2とその被着体2’とは、熱可塑性液晶ポリマーフィルムを上にして互いに重ねあわされた状態で、弾性マット7の上に配置される。そして、熱可塑性液晶ポリマーフィルム2とその被着体2’の所望の接着部位において、超音波ホーン3が、弾性マット7とは反対側に存在する熱可塑性液晶ポリマーフィルム2に直接接するよう配置される。   As shown in FIG. 1, the thermoplastic liquid crystal polymer film 2 and the adherend 2 ′ are disposed on the elastic mat 7 in a state where the thermoplastic liquid crystal polymer film is overlaid on each other. The ultrasonic horn 3 is disposed so as to be in direct contact with the thermoplastic liquid crystal polymer film 2 existing on the side opposite to the elastic mat 7 at a desired adhesion site between the thermoplastic liquid crystal polymer film 2 and the adherend 2 ′. The

一方、超音波融着機は、超音波発振機6と、この超音波発振機6に接続された振動素子4と、この振動素子4に取り付けられた超音波ホーン3とを少なくとも備えている。また、振動素子4は電動スライダー5に取り付けられており、振動素子4および超音波ホーン3は、電動スライダー5に従って、線移動する。   On the other hand, the ultrasonic fusion machine includes at least an ultrasonic oscillator 6, a vibration element 4 connected to the ultrasonic oscillator 6, and an ultrasonic horn 3 attached to the vibration element 4. Further, the vibration element 4 is attached to the electric slider 5, and the vibration element 4 and the ultrasonic horn 3 are linearly moved according to the electric slider 5.

超音波融着を行う際には、まず、超音波発振機6において電気信号が発振され、前記電気信号が振動素子4へと伝達される。次いで、この振動素子4において伝達された電気信号が機械的な超音波振動エネルギーに変換され、超音波振動エネルギーは超音波ホーン3へと伝達される。そして、この機械的な振動エネルギーは、超音波ホーン3において、所定の振動振幅を有する超音波振動となり、熱可塑性液晶ポリマーフィルム2とその被着体2’との接着部位へ与えられる。   When performing ultrasonic fusion, first, an electric signal is oscillated in the ultrasonic oscillator 6, and the electric signal is transmitted to the vibration element 4. Next, the electrical signal transmitted in the vibration element 4 is converted into mechanical ultrasonic vibration energy, and the ultrasonic vibration energy is transmitted to the ultrasonic horn 3. Then, this mechanical vibration energy becomes ultrasonic vibration having a predetermined vibration amplitude in the ultrasonic horn 3 and is given to an adhesion portion between the thermoplastic liquid crystal polymer film 2 and the adherend 2 '.

そして、超音波振動が与えられた前記接着部位には摩擦熱が発生し、前記接着部位では、その摩擦熱によって熱可塑性液晶ポリマーフィルム2とその被着体2’が溶融して接着する。図1の実施態様では、静止状態の熱可塑性液晶ポリマーフィルム2とその被着体2’に対して、電動スライダー5に取り付けられた振動素子4および超音波ホーン3が線移動し、熱可塑性液晶ポリマーフィルム2とその被着体2’とを融着している。   Then, frictional heat is generated at the bonding portion to which ultrasonic vibration is applied, and the thermoplastic liquid crystal polymer film 2 and the adherend 2 'are melted and bonded at the bonding portion by the frictional heat. In the embodiment of FIG. 1, the vibration element 4 and the ultrasonic horn 3 attached to the electric slider 5 are linearly moved with respect to the thermoplastic liquid crystal polymer film 2 and its adherend 2 ′ in a stationary state, and the thermoplastic liquid crystal. The polymer film 2 and its adherend 2 ′ are fused.

(熱可塑性液晶ポリマーフィルム)
熱可塑性液晶ポリマーフィルムは、溶融成形できる液晶性ポリマーから形成され、この熱可塑性液晶ポリマーは、溶融成形できる液晶性ポリマーであれば特にその化学的構成については特に限定されるものではないが、例えば、熱可塑性液晶ポリエステル、又はこれにアミド結合が導入された熱可塑性液晶ポリエステルアミドなどを挙げることができる。
(Thermoplastic liquid crystal polymer film)
The thermoplastic liquid crystal polymer film is formed from a liquid crystalline polymer that can be melt-molded. The thermoplastic liquid crystal polymer is not particularly limited as long as it has a chemical structure as long as it is a liquid crystalline polymer that can be melt-molded. , Thermoplastic liquid crystal polyester, or thermoplastic liquid crystal polyester amide having an amide bond introduced therein.

また熱可塑性液晶ポリマーは、芳香族ポリエステルまたは芳香族ポリエステルアミドに、更にイミド結合、カーボネート結合、カルボジイミド結合やイソシアヌレート結合などのイソシアネート由来の結合等が導入されたポリマーであってもよい。   The thermoplastic liquid crystal polymer may be a polymer in which an isocyanate-derived bond such as an imide bond, a carbonate bond, a carbodiimide bond, or an isocyanurate bond is further introduced into an aromatic polyester or an aromatic polyester amide.

本発明に用いられる熱可塑性液晶ポリマーの具体例としては、以下に例示する(1)から(4)に分類される化合物およびその誘導体から導かれる公知の熱可塑性液晶ポリエステルおよび熱可塑性液晶ポリエステルアミドを挙げることができる。ただし、光学的に異方性の溶融相を形成し得るポリマーを形成するためには、種々の原料化合物の組合せには適当な範囲があることは言うまでもない。   Specific examples of the thermoplastic liquid crystal polymer used in the present invention include known thermoplastic liquid crystal polyesters and thermoplastic liquid crystal polyester amides derived from the compounds (1) to (4) listed below and derivatives thereof. Can be mentioned. However, it goes without saying that there is an appropriate range of combinations of various raw material compounds in order to form a polymer capable of forming an optically anisotropic melt phase.

(1)芳香族または脂肪族ジヒドロキシ化合物(代表例は表1参照)

Figure 2012066546
(1) Aromatic or aliphatic dihydroxy compounds (see Table 1 for typical examples)
Figure 2012066546

(2)芳香族または脂肪族ジカルボン酸(代表例は表2参照)

Figure 2012066546
(2) Aromatic or aliphatic dicarboxylic acids (see Table 2 for typical examples)
Figure 2012066546

(3)芳香族ヒドロキシカルボン酸(代表例は表3参照)

Figure 2012066546
(3) Aromatic hydroxycarboxylic acids (see Table 3 for typical examples)
Figure 2012066546

(4)芳香族ジアミン、芳香族ヒドロキシアミンまたは芳香族アミノカルボン酸(代表例は表4参照)

Figure 2012066546
(4) Aromatic diamine, aromatic hydroxyamine or aromatic aminocarboxylic acid (see Table 4 for typical examples)
Figure 2012066546

これらの原料化合物から得られる液晶ポリマーの代表例として表5および6に示す構造単位を有する共重合体を挙げることができる。   Representative examples of the liquid crystal polymer obtained from these raw material compounds include copolymers having the structural units shown in Tables 5 and 6.

Figure 2012066546
Figure 2012066546

Figure 2012066546
Figure 2012066546

これらの共重合体のうち、p―ヒドロキシ安息香酸および/または6−ヒドロシキ−2−ナフトエ酸を少なくとも繰り返し単位として含む重合体が好ましく、特に、(i)p−ヒドロキシ安息香酸と6−ヒドロシキ−2−ナフトエ酸との繰り返し単位を含む重合体、(ii)p−ヒドロキシ安息香酸および6−ヒドロシキ−2−ナフトエ酸からなる群から選ばれる少なくとも一種の芳香族ヒドロキシカルボン酸と、4,4’−ジヒドロキシビフェニルおよびヒドロキノンからなる群から選ばれる少なくとも一種の芳香族ジオールと、テレフタル酸、イソフタル酸および2,6−ナフタレンジカルボン酸からなる群から選ばれる少なくとも一種の芳香族ジカルボン酸との繰り返し単位を含む重合体が好ましい。   Of these copolymers, a polymer containing at least p-hydroxybenzoic acid and / or 6-hydroxy-2-naphthoic acid as a repeating unit is preferable, and in particular, (i) p-hydroxybenzoic acid and 6-hydroxyoxy- A polymer containing a repeating unit with 2-naphthoic acid, (ii) at least one aromatic hydroxycarboxylic acid selected from the group consisting of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, and 4,4 ′ A repeating unit of at least one aromatic diol selected from the group consisting of dihydroxybiphenyl and hydroquinone and at least one aromatic dicarboxylic acid selected from the group consisting of terephthalic acid, isophthalic acid and 2,6-naphthalenedicarboxylic acid Polymers containing are preferred.

例えば、(i)の重合体では、熱可塑性液晶ポリマーが、少なくともp−ヒドロキシ安息香酸と6−ヒドロシキ−2−ナフトエ酸との繰り返し単位を含む場合、繰り返し単位(A)のp−ヒドロキシ安息香酸と、繰り返し単位(B)の6−ヒドロシキ−2−ナフトエ酸とのモル比(A)/(B)は、液晶ポリマー中、(A)/(B)=10/90〜90/10程度であるのが望ましく、より好ましくは、(A)/(B)=50/50〜85/15程度であってもよく、さらに好ましくは、(A)/(B)=60/40〜80/20程度であってもよい。   For example, in the polymer (i), when the thermoplastic liquid crystal polymer contains at least repeating units of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, the repeating unit (A) of p-hydroxybenzoic acid is used. And the molar ratio (A) / (B) of the repeating unit (B) to 6-hydroxy-2-naphthoic acid is (A) / (B) = about 10/90 to 90/10 in the liquid crystal polymer. Desirably, it is desirable that (A) / (B) = about 50/50 to 85/15, and more preferably (A) / (B) = 60/40 to 80/20. It may be a degree.

また、(ii)の重合体の場合、p−ヒドロキシ安息香酸および6−ヒドロシキ−2−ナフトエ酸からなる群から選ばれる少なくとも一種の芳香族ヒドロキシカルボン酸(C)と、4,4’−ジヒドロキシビフェニルおよびヒドロキノンからなる群から選ばれる少なくとも一種の芳香族ジオール(D)と、テレフタル酸、イソフタル酸および2,6−ナフタレンジカルボン酸からなる群から選ばれる少なくとも一種の芳香族ジカルボン酸(E)の、液晶ポリマーにおける各繰り返し単位のモル比は、芳香族ヒドロキシカルボン酸(C):前記芳香族ジオール(D):前記芳香族ジカルボン酸(E)=30〜80:35〜10:35〜10程度であってもよく、より好ましくは、(C):(D):(E)=35〜75:32.5〜12.5:32.5〜12.5程度であってもよく、さらに好ましくは、(C):(D):(E)=40〜70:30〜15:30〜15程度であってもよい。   In the case of the polymer (ii), at least one aromatic hydroxycarboxylic acid (C) selected from the group consisting of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, and 4,4′-dihydroxy At least one aromatic diol (D) selected from the group consisting of biphenyl and hydroquinone, and at least one aromatic dicarboxylic acid (E) selected from the group consisting of terephthalic acid, isophthalic acid and 2,6-naphthalenedicarboxylic acid. The molar ratio of each repeating unit in the liquid crystal polymer is about aromatic hydroxycarboxylic acid (C): aromatic diol (D): aromatic dicarboxylic acid (E) = about 30-80: 35-10: 35-10. More preferably, (C) :( D) :( E) = 35 to 75: 32.5 to 12.5: 3 May be about .5~12.5, more preferably, (C) :( D) :( E) = 40~70: it may be about 30 to 15: 30-15.

また、芳香族ジカルボン酸に由来する繰り返し構造単位と芳香族ジオールに由来する繰り返し構造単位とのモル比は、(D)/(E)=95/100〜100/95であることが好ましい。この範囲をはずれると、重合度が上がらず機械強度が低下する傾向がある。   Moreover, it is preferable that the molar ratio of the repeating structural unit derived from aromatic dicarboxylic acid and the repeating structural unit derived from aromatic diol is (D) / (E) = 95 / 100-100 / 95. Outside this range, the degree of polymerization does not increase and the mechanical strength tends to decrease.

なお、本発明にいう溶融時における光学的異方性とは、例えば試料をホットステージにのせ、窒素雰囲気下で昇温加熱し、試料の透過光を観察することにより認定できる。   The optical anisotropy at the time of melting referred to in the present invention can be recognized by, for example, placing a sample on a hot stage, heating and heating in a nitrogen atmosphere, and observing the transmitted light of the sample.

熱可塑性液晶ポリマーとしては、フィルムの所望の耐熱性および加工性を得る目的においては、例えば、融点(以下、Mpと称す)が約200〜約400℃の範囲内、とりわけ約250〜約350℃の範囲内に融点を有するものが好ましいが、フィルム製造の点からは、比較的低い融点(例えば、約200〜約300℃の範囲内)を有するものが好ましい。なお、Mpは示差走査熱量計((株)島津製作所DSC)により主吸熱ピークが現れる温度を測定することにより求められる。   As the thermoplastic liquid crystal polymer, for the purpose of obtaining the desired heat resistance and processability of the film, for example, the melting point (hereinafter referred to as Mp) is in the range of about 200 to about 400 ° C., particularly about 250 to about 350 ° C. However, from the viewpoint of film production, those having a relatively low melting point (for example, in the range of about 200 to about 300 ° C.) are preferable. Mp is determined by measuring the temperature at which the main endothermic peak appears with a differential scanning calorimeter (Shimadzu Corporation DSC).

なお、より高い耐熱性や融点が必要な場合には、一旦得られたフィルムを加熱処理することによって、所望の耐熱性や融点にまで高めることができる。加熱処理の条件の一例を説明すれば、一旦得られたフィルムの融点が283℃の場合でも、260℃で5時間加熱すれば、融点は320℃になる。   In addition, when higher heat resistance and melting | fusing point are required, it can raise even to desired heat resistance and melting | fusing point by heat-processing the film once obtained. If an example of the conditions of heat processing is demonstrated, even if the melting | fusing point of the film obtained once is 283 degreeC, if it heats at 260 degreeC for 5 hours, melting | fusing point will be 320 degreeC.

前記熱可塑性液晶ポリマーには、本発明の効果を損なわない範囲内で、ポリエチレンテレフタレート、変性ポリエチレンテレフタレート、ポリオレフィン、ポリカーボネート、ポリアリレート、ポリアミド、ポリフェニレンサルファイド、ポリエステルエーテルケトン、フッ素樹脂等の熱可塑性ポリマーを添加してもよい。   The thermoplastic liquid crystal polymer may include a thermoplastic polymer such as polyethylene terephthalate, modified polyethylene terephthalate, polyolefin, polycarbonate, polyarylate, polyamide, polyphenylene sulfide, polyester ether ketone, and fluororesin within a range not impairing the effects of the present invention. It may be added.

本発明に使用される熱可塑性液晶ポリマーフィルムは、熱可塑性液晶ポリマーを押出成形して得られる。熱可塑性液晶ポリマーの剛直な棒状分子の方向を制御できる限り、任意の押出成形法が適用できるが、周知のTダイ法、ラミネート体延伸法、インフレーション法などが工業的に有利である。特にインフレーション法やラミネート体延伸法では、フィルムの機械軸方向(以下、MD方向と略す)だけでなく、これと直交する方向(以下、TD方向と略す)にも応力が加えられ、MD方向とTD方向との間における機械的性質および熱的性質のバランスのとれたフィルムを得ることができるので、より好適に用いることができる。   The thermoplastic liquid crystal polymer film used in the present invention is obtained by extrusion molding of a thermoplastic liquid crystal polymer. Any extrusion molding method can be applied as long as the direction of the rigid rod-like molecules of the thermoplastic liquid crystal polymer can be controlled, but the known T-die method, laminate stretching method, inflation method and the like are industrially advantageous. In particular, in the inflation method and the laminate stretching method, stress is applied not only in the mechanical axis direction of the film (hereinafter abbreviated as MD direction) but also in the direction orthogonal to this (hereinafter abbreviated as TD direction). Since a film having a balance between mechanical properties and thermal properties in the TD direction can be obtained, it can be used more suitably.

押出成形では、配向を制御するために、延伸処理を伴うのが好ましく、例えば、Tダイ法による押出成形では、Tダイから押出した溶融体シートを、フィルムのMD方向だけでなく、TD方向の双方に対して同時に延伸してもよいし、またはTダイから押出した溶融体シートを一旦MD方向に延伸し、ついでTD方向に延伸してもよい。   In extrusion molding, it is preferable to involve a stretching process in order to control the orientation. For example, in extrusion molding by the T-die method, the melt sheet extruded from the T-die is not only in the MD direction of the film but also in the TD direction. You may extend | stretch simultaneously with respect to both, or you may extend | stretch the melt sheet extruded from T-die once in MD direction, and then extend in TD direction.

上記熱可塑性液晶ポリマーフィルムは、分子配向度SORを1.3以下とすることが好ましい。該液晶ポリマーフィルムは、上記のMD方向とTD方向との間における機械的性質および熱的性質のバランスが良好であるので、より実用性が高い。   The thermoplastic liquid crystal polymer film preferably has a molecular orientation SOR of 1.3 or less. Since the liquid crystal polymer film has a good balance of mechanical properties and thermal properties between the MD direction and the TD direction, it is more practical.

ここで、分子配向度SOR(Segment Orientation Ratio)とは、分子配向の度合いを与える指標をいい、従来のMOR(Molecular Orientation Ratio)とは異なり、物体の厚さを考慮した値である。この分子配向度SORは、以下のように算出される。   Here, the molecular orientation degree SOR (Segment Orientation Ratio) refers to an index that gives the degree of molecular orientation, and is a value that takes into account the thickness of an object, unlike the conventional MOR (Molecular Orientation Ratio). This molecular orientation degree SOR is calculated as follows.

まず、周知のマイクロ波分子配向度測定機において、熱可塑性液晶ポリマーフィルムを、マイクロ波の進行方向にフィルム面が垂直になるように、マイクロ波共振導波管中に挿入し、該フィルムを透過したマイクロ波の電場強度(マイクロ波透過強度)が測定される。そして、この測定値に基づいて、次式により、m値(屈折率と称する)が算出される。
m=(Zo/△z) X [1−νmax/νo]
ただし、Zoは装置定数、△zは物体の平均厚、νmaxはマイクロ波の振動数を変化させたとき、最大のマイクロ波透過強度を与える振動数、νoは平均厚ゼロのとき(すなわち物体がないとき)の最大マイクロ波透過強度を与える振動数である。
First, in a known microwave molecular orientation measuring instrument, a thermoplastic liquid crystal polymer film is inserted into a microwave resonant waveguide so that the film surface is perpendicular to the traveling direction of the microwave, and the film is transmitted. The electric field strength (microwave transmission strength) of the microwave is measured. And based on this measured value, m value (it calls a refractive index) is computed by following Formula.
m = (Zo / Δz) X [1-νmax / νo]
Where Zo is a device constant, Δz is the average thickness of the object, νmax is the frequency that gives the maximum microwave transmission intensity when the microwave frequency is changed, and νo is the average thickness of zero (that is, the object is Is the frequency that gives the maximum microwave transmission intensity.

次に、マイクロ波の振動方向に対する物体の回転角が0°のとき、つまり、マイクロ波の振動方向と、物体の分子が最もよく配向されている方向であって、最小マイクロ波透過強度を与える方向とが合致しているときのm値をm0、回転角が90°のときのm値をm90として、分子配向度SORがm0/ m90により算出される。 Next, when the rotation angle of the object with respect to the vibration direction of the microwave is 0 °, that is, the vibration direction of the microwave and the direction in which the molecules of the object are best oriented, the minimum microwave transmission intensity is given. m 0 to m value when the direction meets the rotation angle of the m value at 90 ° as m 90, orientation ratio SOR is calculated by m 0 / m 90.

本発明の熱可塑性液晶ポリマーフィルムの適用分野によって、必要とされる分子配向度SORは当然異なるが、SOR≧1.5の場合は液晶ポリマー分子の配向の偏りが著しいために配向方向に裂け易い。加熱時の反りがないなどの形態安定性が必要とされる用途分野の場合には、SOR≦1.3であることが望ましい。特に加熱時の反りをほとんど無くす必要がある用途分野の場合には、SOR≦1.03であることが望ましい。   The degree of molecular orientation SOR required is naturally different depending on the field of application of the thermoplastic liquid crystal polymer film of the present invention, but when SOR ≧ 1.5, the orientation of the liquid crystal polymer molecules is significantly biased, so that the orientation is easily split. . In the case of an application field that requires shape stability such as no warping during heating, it is desirable that SOR ≦ 1.3. In particular, it is desirable that SOR ≦ 1.03 in the field of application where it is necessary to almost eliminate warping during heating.

本発明において使用される熱可塑性液晶ポリマーフィルムは、任意の厚みであってもよく、例えば、5mm以下の板状またはシート状のものをも包含する。超音波振動を有効に利用する観点から、熱可塑性液晶ポリマーフィルムの厚みは、500μm以下が好ましく、10〜250μmの範囲内であることがより好ましい。   The thermoplastic liquid crystal polymer film used in the present invention may have any thickness, and includes, for example, a plate or sheet having a thickness of 5 mm or less. From the viewpoint of effectively using ultrasonic vibration, the thickness of the thermoplastic liquid crystal polymer film is preferably 500 μm or less, and more preferably in the range of 10 to 250 μm.

また、熱可塑性液晶ポリマーフィルムとしては、熱可塑性液晶ポリマーが主たる材料として含まれていればよく、上述した熱可塑性液晶ポリマーフィルム以外にも、熱可塑性液晶ポリマーと他の電気絶縁性材料(例えば、酸化アルミニウム、セラミックス粉体など)との複合フィルム、複数種類の熱可塑性液晶ポリマーブレンドフィルム、熱可塑性フィルム(例えば、ポリアリレート、ポリエーテルケトン、ポリアミド、ポリエーテルスルホン、ポリエーテルイミド、ポリイミド、ポリカーボネート、ポリテトラフルオロエチレン、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、ポリフッ化ビニル、ポリフッ化ビニリデン、ポリ三フッ化塩化エチレン等)との複合フィルムあるいはポリマーアロイフィルムを用いることもできる。
なお、原材料フィルムには、必要に応じて、滑剤、酸化防止剤などの添加剤が配合されていてもよい。
Further, as the thermoplastic liquid crystal polymer film, the thermoplastic liquid crystal polymer only needs to be included as a main material. Besides the above-described thermoplastic liquid crystal polymer film, the thermoplastic liquid crystal polymer and other electrically insulating materials (for example, Composite film with aluminum oxide, ceramic powder, etc., multiple types of thermoplastic liquid crystal polymer blend film, thermoplastic film (for example, polyarylate, polyetherketone, polyamide, polyethersulfone, polyetherimide, polyimide, polycarbonate, Polytetrafluoroethylene, tetrafluoroethylene / hexafluoropropylene copolymer, polyvinyl fluoride, polyvinylidene fluoride, polytrifluoroethylene chloride, etc.) or polymer alloy films can be used. That.
In addition, additives, such as a lubricant and an antioxidant, may be blended in the raw material film as necessary.

(被着体)
本発明において、上記の熱可塑性液晶ポリマーフィルムと積層し得る他の被着体としては、各種金属箔(銅、金、銀、ニッケル、アルミニウムなど);熱可塑性樹脂または熱硬化性樹脂フィルム(好ましくは、熱可塑性液晶ポリマーフィルム、ポリエチレンテレフタレートフィルム、エチレンー酢酸ビニル共重合体よりなるフィルム、エチレンービニルアルコール共重合体よりなるフィルム、ポリエチレンフィルムに代表されるポリオレフィン系フィルムなどの熱可塑性樹脂フィルム)が挙げられる。これらの被着体のうち、融着物の強度を向上することができる観点から、熱可塑性液晶ポリマーフィルムが好ましい。
(Adherent)
In the present invention, other adherends that can be laminated with the above-mentioned thermoplastic liquid crystal polymer film include various metal foils (copper, gold, silver, nickel, aluminum, etc.); thermoplastic resins or thermosetting resin films (preferably Thermoplastic liquid crystal polymer film, polyethylene terephthalate film, film made of ethylene-vinyl acetate copolymer, film made of ethylene-vinyl alcohol copolymer, thermoplastic film such as polyolefin film typified by polyethylene film) Can be mentioned. Of these adherends, a thermoplastic liquid crystal polymer film is preferred from the viewpoint of improving the strength of the fused product.

被着体の厚みは、被着体の種類や用途に応じて適宜設定することができ、例えば、1μm〜5mm程度の広い範囲から選択できるが、被着体の厚みは、例えば、5mm以下であってもよく、好ましくは1mm以下、より好ましくは500μm以下、10〜250μmの範囲内であることがより好ましい。   The thickness of the adherend can be appropriately set according to the type and application of the adherend, and can be selected from a wide range of about 1 μm to 5 mm, for example. The thickness of the adherend is, for example, 5 mm or less. It may be 1 mm or less, more preferably 500 μm or less, and more preferably in the range of 10 to 250 μm.

被着体が熱可塑性液晶ポリマーフィルムである場合は、熱可塑性液晶ポリマーフィルムと、被着体である熱可塑性液晶ポリマーフィルムとを2枚用いてそれぞれを重ね合わせて融着させてもよいし、または、1枚の熱可塑性液晶ポリマーフィルムにおいて、その一端と他端とを融着させてもよい。   When the adherend is a thermoplastic liquid crystal polymer film, the thermoplastic liquid crystal polymer film and the thermoplastic liquid crystal polymer film as the adherend may be overlapped and fused with each other, Alternatively, in one thermoplastic liquid crystal polymer film, one end and the other end may be fused.

(超音波融着機)
本発明において用いられる超音波融着機は、超音波振動を発生するための電気信号を供給する超音波発振機と、この超音波発振機から供給される電気信号を超音波振動エネルギーに変換する振動素子と、この振動素子から伝達される超音波振動エネルギーを超音波振動として接着部位に対して適用する超音波ホーンとを少なくとも備えている。
(Ultrasonic fusion machine)
The ultrasonic fusion machine used in the present invention converts an ultrasonic oscillator that supplies an electric signal for generating ultrasonic vibrations, and an electric signal supplied from the ultrasonic oscillator into ultrasonic vibration energy. A vibration element and at least an ultrasonic horn that applies ultrasonic vibration energy transmitted from the vibration element to the bonding site as ultrasonic vibration are provided.

超音波ホーン自体も振動振幅を増幅することが可能であるが、必要に応じて、振動素子と超音波ホーンとの間には、振動振幅を増幅することが可能なブースターを配設してもよい。超音波ホーンからの超音波振動が熱可塑性液晶ポリマーフィルムに伝えられることにより、熱可塑性液晶ポリマーフィルムと被着体は、その接着部位が融着する。   The ultrasonic horn itself can also amplify the vibration amplitude, but if necessary, a booster capable of amplifying the vibration amplitude may be provided between the vibration element and the ultrasonic horn. Good. When the ultrasonic vibration from the ultrasonic horn is transmitted to the thermoplastic liquid crystal polymer film, the adhesive portion of the thermoplastic liquid crystal polymer film and the adherend are fused.

融着を行う超音波ホーンの形状は、円柱ホーン、角柱ホーン、円錐ホーン、角錐ホーンなどの各種形状であってもよく、これらのうち、先端が小径化したホーンが好ましい。   The shape of the ultrasonic horn to be fused may be various shapes such as a cylindrical horn, a prismatic horn, a conical horn, and a pyramid horn, and among these, a horn with a small tip is preferable.

また、図2は、好ましい超音波ホーンの先端形状を説明するための概略図である。この超音波ホーンは、先端がカマボコ型に丸まっている角柱形状であり、その正面がカマボコの曲線部分に対応している。図2に示すように、超音波ホーンの正面は、横幅8および先端部分の曲率半径Rを有しており、超音波ホーンの側面は、奥行9を有している。   FIG. 2 is a schematic diagram for explaining a preferable tip shape of the ultrasonic horn. This ultrasonic horn has a prismatic shape whose tip is rounded into a scallop shape, and its front surface corresponds to the curved part of the scallop. As shown in FIG. 2, the front surface of the ultrasonic horn has a lateral width 8 and a radius of curvature R of the tip portion, and the side surface of the ultrasonic horn has a depth 9.

例えば、図2に示すような角柱形状では、超音波ホーンの横幅8は10mm〜100mm程度であってもよく、奥行9は、1〜100mm程度であってもよい。また、正面の横幅と側面の奥行が同程度である形状(例えば、円柱形状など)では、横幅8および奥行9は10mm〜100mm程度であってもよい。   For example, in the prismatic shape as shown in FIG. 2, the lateral width 8 of the ultrasonic horn may be about 10 mm to 100 mm, and the depth 9 may be about 1 to 100 mm. Moreover, in the shape (for example, cylindrical shape etc.) whose horizontal width of a front and the depth of a side surface are comparable, horizontal width 8 and depth 9 may be about 10 mm-100 mm.

超音波ホーンの先端部は、超音波ホーンと熱可塑性液晶ポリマーフィルムを接触させて、融着を行う観点から、曲面形状が好ましく、例えば曲率半径Rは、横幅8の90%〜180%程度、より好ましくは100%〜160%であるのが好ましい。   The tip of the ultrasonic horn preferably has a curved shape from the viewpoint of bringing the ultrasonic horn and the thermoplastic liquid crystal polymer film into contact with each other for fusion. For example, the curvature radius R is about 90% to 180% of the lateral width 8; More preferably, it is 100 to 160%.

なお、振動素子および超音波ホーンは、電動スライダーなどを用いて線移動させてもよいし、手動により点移動させてもよい。本発明の一実施形態に係る融着工程では、超音波振動を効率よく液晶ポリマーフィルムに伝達できることから、フィルムと被着体との接合部分のみが加熱融着され、液晶ポリマーフィルムと超音波ホーンとの密着部分には、熱が発生しないため、手動による融着作業の安全性を向上することができる。   Note that the vibration element and the ultrasonic horn may be moved linearly using an electric slider or the like, or may be moved manually by a point. In the fusion process according to an embodiment of the present invention, since ultrasonic vibration can be efficiently transmitted to the liquid crystal polymer film, only the joining portion between the film and the adherend is heated and fused, and the liquid crystal polymer film and the ultrasonic horn Since no heat is generated at the close contact portion, the safety of manual fusion work can be improved.

また、超音波振動子と超音波ホーンを電動スライダーで移動させることにより、連続的な融着も可能となる。また容易に速度調整ができるため、超音波融着後の形状が良好になるとともに、均一な接着強度が得られる。   Moreover, continuous fusion | bonding is also attained by moving an ultrasonic transducer | vibrator and an ultrasonic horn with an electric slider. Further, since the speed can be easily adjusted, the shape after ultrasonic fusion is improved and uniform adhesive strength is obtained.

超音波ホーンから直接熱可塑性液晶ポリマーフィルムに伝えられる超音波振動の振幅は、液晶ポリマーフィルムを溶融可能である限り特に限定されないが、速やかに接着できる観点から、例えば、超音波振動の振幅は20μm〜80μm程度であってもよく、好ましくは40μm〜60μm程度であってもよい。超音波振動振幅が低すぎると、接着力が不十分となる虞があり、超音波振動振幅が高すぎると、熱可塑性液晶ポリマーフィルムに穴が開く虞がある。   The amplitude of the ultrasonic vibration transmitted directly from the ultrasonic horn to the thermoplastic liquid crystal polymer film is not particularly limited as long as the liquid crystal polymer film can be melted. However, from the viewpoint of quick adhesion, for example, the amplitude of the ultrasonic vibration is 20 μm. It may be about ˜80 μm, and preferably about 40 μm to 60 μm. If the ultrasonic vibration amplitude is too low, the adhesive force may be insufficient, and if the ultrasonic vibration amplitude is too high, a hole may be formed in the thermoplastic liquid crystal polymer film.

また、超音波周波数は特に制限されるものではないが、通常15〜35KHzが好ましく、特に15〜30KHzが好ましい。
超音波振動による融着時間は、振幅などの他の条件に応じて適宜設定することができるが、例えば0.05秒〜2.0秒程度であってもよく、より好ましく0.1秒〜1.0秒程度であってもよい。
The ultrasonic frequency is not particularly limited, but is usually preferably 15 to 35 KHz, and particularly preferably 15 to 30 KHz.
The fusion time by ultrasonic vibration can be appropriately set according to other conditions such as amplitude, but may be, for example, about 0.05 seconds to 2.0 seconds, more preferably 0.1 seconds to It may be about 1.0 second.

超音波振動を効率よく液晶ポリマーフィルムに対して伝達できるため、超音波発振出力は、例えば、200〜450W程度であってもよく、好ましくは250〜400W程度であってもよい。
また、超音波ホーン先端にかかる圧力は、例えば、40〜100kg/cm程度であってもよく、好ましくは45〜90kg/cm程度であってもよい。
Since ultrasonic vibration can be efficiently transmitted to the liquid crystal polymer film, the ultrasonic oscillation output may be, for example, about 200 to 450 W, and preferably about 250 to 400 W.
Further, the pressure applied to the tip of the ultrasonic horn may be, for example, about 40 to 100 kg / cm 2 , and preferably about 45 to 90 kg / cm 2 .

また、図3は、X-Yステージを用いて超音波振動子と超音波ホーンの線移動を繰り返して面状接着を行なう様子を説明するための概略図である。熱可塑性液晶ポリマーフィルム2とその被着体2’とは重ねあわされ、熱可塑性液晶ポリマーフィルム2に対して超音波ホーン(図示しない)が接触している。この図では、超音波ホーンと熱可塑性液晶ポリマーフィルム2との接触している部分を3’として概念的に例示している。この図に示すように、超音波ホーンは、X-Yステージを用い矢印方向に連続的に線移動し、線移動による接着を繰り返すことにより広い面積を面状に融着している。   FIG. 3 is a schematic diagram for explaining a state in which planar bonding is performed by repeating the linear movement of the ultrasonic transducer and the ultrasonic horn using the XY stage. The thermoplastic liquid crystal polymer film 2 and its adherend 2 ′ are overlapped, and an ultrasonic horn (not shown) is in contact with the thermoplastic liquid crystal polymer film 2. In this figure, the contact portion between the ultrasonic horn and the thermoplastic liquid crystal polymer film 2 is conceptually illustrated as 3 '. As shown in this figure, the ultrasonic horn is linearly moved in the direction of the arrow using an XY stage, and a large area is fused in a planar shape by repeating adhesion by the line movement.

(弾性マット)
本発明では、超音波融着の際に熱可塑性液晶ポリマーフィルムに対して与えられる振動エネルギーを制御するため、熱可塑性液晶ポリマーとその被着物の下敷きとして、弾性マットが用いられる。本発明では、フィルムの接着面において主に熱を発生させることが可能であるため、多種多様の素材を弾性マットとして使用することができる。
(Elastic mat)
In the present invention, an elastic mat is used as an underlay for the thermoplastic liquid crystal polymer and its adherend in order to control vibration energy applied to the thermoplastic liquid crystal polymer film during ultrasonic fusion. In the present invention, heat can be generated mainly on the adhesive surface of the film, so that a wide variety of materials can be used as the elastic mat.

例えば、弾性マットの素材としては、ポリ塩化ビニル,ポリウレタン,天然ゴム、合成ゴム(IR,BR,SBR,CR,NBR,IIR,EPM,EPDM,フッ素ゴム,シリコーンゴムなど)、熱可塑性エラストマーなどが挙げられる。これらのうち、摩擦熱が外部へ伝導した際にも対応できる観点から、耐熱性を有する弾性マット(例えば、フッ素ゴム、シリコーンゴムなどから形成されるマット)が好ましく用いられる。   For example, as materials of the elastic mat, polyvinyl chloride, polyurethane, natural rubber, synthetic rubber (IR, BR, SBR, CR, NBR, IIR, EPM, EPDM, fluorine rubber, silicone rubber, etc.), thermoplastic elastomer, etc. Can be mentioned. Among these, an elastic mat having heat resistance (for example, a mat formed of fluorine rubber, silicone rubber, or the like) is preferably used from the viewpoint of being able to cope with frictional heat conducted to the outside.

弾性マットの引張弾性率としては、例えば、4〜40MPa程度であってもよく、好ましくは6〜30MPa程度であってもよい。なお、前記弾性率は、JIS K 7181に基づいて測定される値である。   The tensile modulus of elasticity of the elastic mat may be, for example, about 4 to 40 MPa, and preferably about 6 to 30 MPa. The elastic modulus is a value measured based on JIS K 7181.

また、弾性マットの弾性率に応じて、弾性マットの厚みは適宜設定することができるが、融着時の温度を適度に逃す観点から、弾性マットの厚みは、例えば、0.5mm〜10mm程度であってもよく、1mm〜5mmが好ましい。厚くなりすぎると、振動吸収量が大きくなり超音波融着ができなくなる場合があり、逆に薄くなると振動吸収が不十分で熱可塑性ポリマーフィルムが溶融する虞がある。   Further, the thickness of the elastic mat can be appropriately set according to the elastic modulus of the elastic mat, but the thickness of the elastic mat is, for example, about 0.5 mm to 10 mm from the viewpoint of appropriately releasing the temperature at the time of fusion. It may be 1 mm to 5 mm. If it is too thick, the amount of vibration absorption becomes large and ultrasonic fusion may not be possible. Conversely, if it is thin, vibration absorption is insufficient and the thermoplastic polymer film may be melted.

(融着物)
本発明では、熱可塑性液晶ポリマーフィルムとその被着物とを融着させた融着物を得ることができる。その形状としては、接着部位などに応じて、袋状、シート状など適宜選択することが可能であり、特に、被着物が同種の熱可塑性液晶ポリマーフィルムである場合、熱可塑性液晶ポリマーフィルムの巻物の端部を融着させ、熱可塑性液晶ポリマーフィルムを長尺化(例えば、MD方向の長さ:1000m以上)することが可能である。例えば、このような長尺化した液晶ポリマーフィルムでは、フィルムの接合部位の外観が良好であるだけでなく、フィルムの接合部位における強度を母材強度に近いレベルとすることが可能となる。
(Fused material)
In the present invention, a fused product obtained by fusing a thermoplastic liquid crystal polymer film and an adherend thereof can be obtained. The shape can be appropriately selected according to the bonding site, such as a bag shape or a sheet shape. Particularly, when the adherend is a thermoplastic liquid crystal polymer film of the same kind, a roll of the thermoplastic liquid crystal polymer film. The thermoplastic liquid crystal polymer film can be elongated (for example, the length in the MD direction: 1000 m or more). For example, in such a long liquid crystal polymer film, not only the appearance of the joint portion of the film is good, but also the strength at the joint portion of the film can be made a level close to the strength of the base material.

以下、実施例により本発明をより詳細に説明するが、本発明は本実施例により何ら限定されるものではない。なお、以下の実施例及び比較例においては、下記の方法により各種物性を測定した。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited at all by this Example. In the following examples and comparative examples, various physical properties were measured by the following methods.

[膜厚]
デジタル厚み計(株式会社ミツトヨ製)を用い、得られたフィルムをTD方向に1cm間隔で測定し、中心部および端部から任意に選んだ10点の平均値を膜厚とした。
[Thickness]
Using a digital thickness meter (manufactured by Mitutoyo Corporation), the obtained film was measured at 1 cm intervals in the TD direction, and an average value of 10 points arbitrarily selected from the center and the end was taken as the film thickness.

[融点]
示差走査熱量計を用いて、フィルムの熱挙動を観察して得た。つまり、供試フィルムを20℃/分の速度で昇温して完全に溶融させた後、溶融物を50℃/分の速度で50℃まで急冷し、再び20℃/分の速度で昇温した時に現れる吸熱ピークの位置を、フィルムの融点として記録した。
[Melting point]
The film was obtained by observing the thermal behavior of the film using a differential scanning calorimeter. In other words, the sample film was heated at a rate of 20 ° C./min to be completely melted, and then the melt was rapidly cooled to 50 ° C. at a rate of 50 ° C./min, and again raised at a rate of 20 ° C./min. The position of the endothermic peak that appeared when the film was recorded was recorded as the melting point of the film.

[分子配向度(SOR)]
マイクロ波分子配向度測定機において、液晶ポリマーフィルムを、マイクロ波の進行方向にフィルム面が垂直になるように、マイクロ波共振導波管中に挿入し、該フィルムを透過したマイクロ波の電場強度(マイクロ波透過強度)が測定される。
[Molecular orientation (SOR)]
In a microwave molecular orientation measuring machine, a liquid crystal polymer film is inserted into a microwave resonant waveguide so that the film surface is perpendicular to the traveling direction of the microwave, and the electric field strength of the microwave transmitted through the film (Microwave transmission intensity) is measured.

そして、この測定値に基づいて、次式により、m値(屈折率と称する)が算出される。
m=(Zo/△z) X [1−νmax/νo]
And based on this measured value, m value (it calls a refractive index) is computed by following Formula.
m = (Zo / Δz) X [1-νmax / νo]

ただし、Zoは装置定数、△z は物体の平均厚、νmaxはマイクロ波の振動数を変化させたとき、最大のマイクロ波透過強度を与える振動数、νoは平均厚ゼロのとき(すなわち物体がないとき)の最大マイクロ波透過強度を与える振動数である。   Where Zo is a device constant, Δz is the average thickness of the object, νmax is the frequency that gives the maximum microwave transmission intensity when the microwave frequency is changed, and νo is zero when the average thickness is zero (that is, the object is Is the frequency that gives the maximum microwave transmission intensity.

次に、マイクロ波の振動方向に対する物体の回転角が0°のとき、つまり、マイクロ波の振動方向と、物体の分子が最もよく配向されている方向であって、最小マイクロ波透過強度を与える方向とが合致しているときのm値をm0、回転角が90°のときのm値をm90として、分子配向度SORがm0/ m90により算出される。 Next, when the rotation angle of the object with respect to the vibration direction of the microwave is 0 °, that is, the vibration direction of the microwave and the direction in which the molecules of the object are best oriented, the minimum microwave transmission intensity is given. m 0 to m value when the direction meets the rotation angle of the m value at 90 ° as m 90, orientation ratio SOR is calculated by m 0 / m 90.

[接着強度]
熱可塑性液晶ポリマーフィルムと被着体との積層体から1.5cm幅の剥離試験片を作成し、そのフィルム層を両面接着テープで平板に固定し、JIS C 5016に準じ、180°法により、被着体を50mm/分の速度で剥離したときの強度を測定した。
[Adhesive strength]
A peel test piece having a width of 1.5 cm is prepared from a laminate of a thermoplastic liquid crystal polymer film and an adherend, and the film layer is fixed to a flat plate with a double-sided adhesive tape. According to JIS C 5016, by a 180 ° method, The strength was measured when the adherend was peeled off at a speed of 50 mm / min.

[引張強度]
ASTM D882に準じた測定を行い、長手方向(MD)各5点の平均値を測定値とした。
[Tensile strength]
Measurement according to ASTM D882 was performed, and the average value of 5 points in the longitudinal direction (MD) was taken as the measured value.

[外観検査]
融着面を光学顕微鏡(倍率5倍)を用い、表面の凹凸と穴開きの状態を確認し、穴の有無を確認した。
[Visual inspection]
Using an optical microscope (5 times magnification) on the fused surface, the surface irregularities and the state of hole opening were confirmed, and the presence or absence of holes was confirmed.

(参考例1)
p−ヒドロキシ安息香酸と6−ヒドロキシ−2−ナフトエ酸の共重合物(モル比:73/27)で、融点が283℃である熱可塑性液晶ポリマーを溶融押出し、インフレーション成形法により膜厚が25〜200μm、分子配向度SORが1.03の液晶ポリマーフィルム1を得た。液晶ポリマーフィルム1に熱処理炉を用いてTm1−10℃で2時間、融点Tm1+10℃で3時間で加熱処理を行い、融点Tm2(325℃)の液晶ポリマ−フィルム2を得た。
(Reference Example 1)
A thermoplastic liquid crystal polymer having a melting point of 283 ° C. is melt-extruded with a copolymer of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid (molar ratio: 73/27), and a film thickness of 25 is obtained by an inflation molding method. A liquid crystal polymer film 1 having a molecular orientation SOR of 1.03 was obtained. The liquid crystal polymer film 1 was subjected to heat treatment in a heat treatment furnace at Tm1-10 ° C. for 2 hours and at a melting point Tm1 + 10 ° C. for 3 hours to obtain a liquid crystal polymer film 2 having a melting point Tm2 (325 ° C.).

(実施例1〜4)
参考例1で得られた熱可塑性液晶ポリマーフィルム2(厚み:25μm、50μm、100μm、175μm)に対して、被着体としてそれぞれ同一の熱可塑性液晶ポリマーフィルム2を重ね合わせ、シリコーンラバー製マット(引張弾性率:10MPa、厚み:2mm)の上に配置した。ついで、超音波融着機((株)スズキマリン製、超音波発振機「SUW−150」、超音波ホーン:奥行4mm×横幅10mm、曲率半径R:10mm)を用い、発振源の発振周波数:28KHz、振幅:60μm、接着時間:0.1秒、圧力50kg/cmで、熱可塑性液晶ポリマーフィルム2の上から、直接超音波ホーン当てて、超音波融着処理を行った。得られた積層物の評価結果を表7に示す。
(Examples 1-4)
The thermoplastic liquid crystal polymer film 2 (thickness: 25 μm, 50 μm, 100 μm, 175 μm) obtained in Reference Example 1 is overlaid with the same thermoplastic liquid crystal polymer film 2 as an adherend, and a silicone rubber mat ( (Tensile elastic modulus: 10 MPa, thickness: 2 mm). Next, using an ultrasonic fusion machine (manufactured by Suzuki Marine Co., Ltd., ultrasonic oscillator “SUW-150”, ultrasonic horn: depth 4 mm × width 10 mm, curvature radius R: 10 mm), the oscillation frequency of the oscillation source: An ultrasonic fusion treatment was performed by directly applying an ultrasonic horn from above the thermoplastic liquid crystal polymer film 2 at 28 KHz, amplitude: 60 μm, adhesion time: 0.1 second, and pressure 50 kg / cm. Table 7 shows the evaluation results of the obtained laminate.

(比較例1)
参考例1で得られた熱可塑性液晶ポリマーフィルム2(厚さ:50μm)に対して、被着体として同一熱可塑性液晶ポリマーフィルム2を重ね合わせ、これらのフィルムを非粘着性被着体で挟んだ。ついで、非粘着性被着体の上から超音波ホーンを当てること以外は、実施例1と同様に超音波融着処理を行った。得られた積層物の評価結果を表7に示す。
(Comparative Example 1)
The thermoplastic liquid crystal polymer film 2 (thickness: 50 μm) obtained in Reference Example 1 is overlaid with the same thermoplastic liquid crystal polymer film 2 as an adherend, and these films are sandwiched between non-adhesive adherends. It is. Subsequently, ultrasonic fusion treatment was performed in the same manner as in Example 1 except that an ultrasonic horn was applied from above the non-adhesive adherend. Table 7 shows the evaluation results of the obtained laminate.

(比較例2)
参考例1で得られた熱可塑性液晶ポリマーフィルム2(厚さ:50μm)に対して、被着体として同一熱可塑性液晶ポリマーフィルム2を重ね合わせ、これらのフィルムを熱板プレスで加熱して熱接着(熱接着条件:300℃、圧力:40kg/cm)した。得られた積層物の評価結果を表7に示す。
(Comparative Example 2)
The thermoplastic liquid crystal polymer film 2 (thickness: 50 μm) obtained in Reference Example 1 is overlaid with the same thermoplastic liquid crystal polymer film 2 as an adherend, and these films are heated by a hot plate press. Bonding (thermal bonding conditions: 300 ° C., pressure: 40 kg / cm 2 ) was performed. Table 7 shows the evaluation results of the obtained laminate.

(比較例3)
参考例1で得られた熱可塑性液晶ポリマーフィルム2(厚さ:50μm)に対して、被着体として同一熱可塑性液晶ポリマーフィルム2を重ね合わせ、これらのフィルムを熱板プレスで加熱して熱接着(熱接着条件:330℃、圧力:40kg/cm)した。得られた積層物の評価結果を表7に示す。
(Comparative Example 3)
The thermoplastic liquid crystal polymer film 2 (thickness: 50 μm) obtained in Reference Example 1 is overlaid with the same thermoplastic liquid crystal polymer film 2 as an adherend, and these films are heated by a hot plate press. Bonding was performed (thermal bonding conditions: 330 ° C., pressure: 40 kg / cm 2 ). Table 7 shows the evaluation results of the obtained laminate.

Figure 2012066546
Figure 2012066546

表7に示すように、実施例1〜4の熱可塑性液晶ポリマーフィルムの融着物は、さまざまな厚みのものが、高い強度かつ良好な外観である。   As shown in Table 7, the melted thermoplastic liquid crystal polymer films of Examples 1 to 4 have various strengths and high strength and good appearance.

一方、比較例1は、従来行われているように、非粘着性被着体で液晶ポリマーフィルムを挟み、その非粘着性被着体に対して超音波を当てたため、液晶ポリマーフィルム同士を良好に融着することができない。   On the other hand, in Comparative Example 1, since the liquid crystal polymer film was sandwiched between the non-adhesive adherends and ultrasonic waves were applied to the non-adhesive adherends as conventionally performed, the liquid crystal polymer films were excellent. Can not be fused.

また、比較例2でも、熱可塑性液晶ポリマーフィルム同士の接着は良好でない。また、熱板プレスの温度を上げた比較例3では、融着部分の接着強度は高いものの、融着部分表面には凹凸が存在する。   Also in Comparative Example 2, the adhesion between the thermoplastic liquid crystal polymer films is not good. Further, in Comparative Example 3 in which the temperature of the hot plate press was increased, although the adhesive strength of the fused portion was high, there were irregularities on the surface of the fused portion.

本発明の熱可塑性液晶ポリマーフィルム融着物の製造方法では、例えば、電気・電子製品の伝送線路材料として利用することが可能な熱可塑性液晶ポリマーフィルム融着物を効率よく、簡便に製造することができる。また、この製造方法を用いると、長尺化した熱可塑性液晶ポリマーフィルムを得ることができる。   In the method for producing a thermoplastic liquid crystal polymer film fusion product of the present invention, for example, a thermoplastic liquid crystal polymer film fusion product that can be used as a transmission line material for electrical and electronic products can be produced efficiently and simply. . Moreover, if this manufacturing method is used, the elongated thermoplastic liquid crystal polymer film can be obtained.

以上のとおり、本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲で、種々の追加、変更または削除が可能であり、そのようなものも本発明の範囲内に含まれる。   As described above, the preferred embodiments of the present invention have been described. However, various additions, modifications, or deletions are possible without departing from the spirit of the present invention, and such modifications are also included in the scope of the present invention. It is.

2…熱可塑性液晶ポリマーフィルム
2’…被着体
3…超音波ホーン
3’…超音波ホーンの接触部分
4…振動素子
5…電動スライダー
6…超音波発振機
7…弾性マット
8…横幅
9…奥行
2 ... thermoplastic liquid crystal polymer film 2 '... adherend 3 ... ultrasonic horn 3' ... contact part 4 of ultrasonic horn ... vibration element 5 ... electric slider 6 ... ultrasonic oscillator 7 ... elastic mat 8 ... width 9 ... Depth

Claims (10)

光学的に異方性の溶融相を形成し得る熱可塑性ポリマーからなるフィルム(以下、これを熱可塑性液晶ポリマーフィルムと称する)の融着物を製造する方法であって、
熱可塑性液晶ポリマーフィルムとその被着体とを、弾性マットの上で熱可塑性液晶ポリマーフィルムを上に被着体を下にして重ねあわせる工程と、
前記熱可塑性液晶ポリマーフィルムの上に、超音波融着機の超音波ホーンを直接接触させ、熱可塑性液晶ポリマーフィルムと被着体とを超音波により融着させて、熱可塑性液晶ポリマーフィルムの融着物を得る工程と、
を含む熱可塑性液晶ポリマーフィルム融着物の製造方法。
A method for producing a fused product of a film made of a thermoplastic polymer capable of forming an optically anisotropic melt phase (hereinafter referred to as a thermoplastic liquid crystal polymer film),
A process of superposing the thermoplastic liquid crystal polymer film and the adherend on the elastic mat with the thermoplastic liquid crystal polymer film on the adherend and down;
An ultrasonic horn of an ultrasonic fusing machine is brought into direct contact with the thermoplastic liquid crystal polymer film, and the thermoplastic liquid crystal polymer film and the adherend are fused ultrasonically to melt the thermoplastic liquid crystal polymer film. Obtaining a kimono;
A method for producing a thermoplastic liquid crystal polymer film fusion product comprising:
請求項1において、熱可塑性液晶ポリマーフィルムに対する超音波ホーン先端の圧力が、40〜100kg/cmである製造方法。 The manufacturing method according to claim 1, wherein the pressure of the tip of the ultrasonic horn with respect to the thermoplastic liquid crystal polymer film is 40 to 100 kg / cm 2 . 請求項1または2において、超音波ホーンの振動振幅が、40μm〜60μmである製造方法。   3. The manufacturing method according to claim 1, wherein the vibration amplitude of the ultrasonic horn is 40 μm to 60 μm. 請求項1〜3のいずれか一項において、被着体が熱可塑性液晶ポリマーフィルムである製造方法。   The manufacturing method according to claim 1, wherein the adherend is a thermoplastic liquid crystal polymer film. 請求項1〜4のいずれか一項において、超音波発振機の出力が200〜450Wである製造方法。   The manufacturing method according to claim 1, wherein the output of the ultrasonic oscillator is 200 to 450 W. 請求項1〜5のいずれか一項において、弾性マットが耐熱性弾性マットで構成される製造方法。   The manufacturing method according to claim 1, wherein the elastic mat is a heat-resistant elastic mat. 請求項1〜6のいずれか一項において、弾性マットが、弾性率4〜40MPaおよび/または厚み0.5〜10mmを有している製造方法。   The method according to any one of claims 1 to 6, wherein the elastic mat has an elastic modulus of 4 to 40 MPa and / or a thickness of 0.5 to 10 mm. 請求項1〜7のいずれか一項において、超音波融着が、超音波ホーンの点移動または線移動により行われる製造方法。   The manufacturing method according to claim 1, wherein the ultrasonic fusion is performed by point movement or line movement of the ultrasonic horn. 請求項1〜8のいずれか一項に記載された製造方法により得られた熱可塑性液晶ポリマーフィルム融着物。   A thermoplastic liquid crystal polymer film fusion product obtained by the production method according to claim 1. 請求項9において、MD方向の長さ1000m以上を有する熱可塑性液晶ポリマーフィルム融着物。   The thermoplastic liquid crystal polymer film fusion product according to claim 9, having a length in the MD direction of 1000 m or more.
JP2010215272A 2010-09-27 2010-09-27 Method for producing thermoplastic liquid crystal polymer film fusion product Active JP5613512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010215272A JP5613512B2 (en) 2010-09-27 2010-09-27 Method for producing thermoplastic liquid crystal polymer film fusion product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010215272A JP5613512B2 (en) 2010-09-27 2010-09-27 Method for producing thermoplastic liquid crystal polymer film fusion product

Publications (2)

Publication Number Publication Date
JP2012066546A true JP2012066546A (en) 2012-04-05
JP5613512B2 JP5613512B2 (en) 2014-10-22

Family

ID=46164384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010215272A Active JP5613512B2 (en) 2010-09-27 2010-09-27 Method for producing thermoplastic liquid crystal polymer film fusion product

Country Status (1)

Country Link
JP (1) JP5613512B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105630A1 (en) * 2012-01-12 2013-07-18 日産自動車株式会社 Secondary battery fabrication method, secondary battery, and deposition device
WO2017104141A1 (en) * 2015-12-18 2017-06-22 富士フイルム株式会社 Ultrasonic welding method, and method for manufacturing resin container using ultrasonic welding method
CN112622281A (en) * 2019-09-24 2021-04-09 通用汽车环球科技运作有限责任公司 Apparatus for ultrasonic welding of polymers and polymer composites
WO2021262001A1 (en) 2020-06-24 2021-12-30 Technische Universiteit Delft Rounded sonotrode
CN114126847A (en) * 2019-07-17 2022-03-01 住友化学株式会社 Method for producing welded molded article, and pipe

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6295213A (en) * 1985-10-23 1987-05-01 Asahi Chem Ind Co Ltd Laminated film and manufacture thereof
JPH02117815A (en) * 1988-10-27 1990-05-02 Nippon Steel Corp Joining method of polymeric materials drawing-processed
JPH08267585A (en) * 1995-03-31 1996-10-15 Toray Ind Inc Fused resin molded product and production thereof
JPH08336897A (en) * 1995-06-09 1996-12-24 Tonen Chem Corp Method for connecting stretchable film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6295213A (en) * 1985-10-23 1987-05-01 Asahi Chem Ind Co Ltd Laminated film and manufacture thereof
JPH02117815A (en) * 1988-10-27 1990-05-02 Nippon Steel Corp Joining method of polymeric materials drawing-processed
JPH08267585A (en) * 1995-03-31 1996-10-15 Toray Ind Inc Fused resin molded product and production thereof
JPH08336897A (en) * 1995-06-09 1996-12-24 Tonen Chem Corp Method for connecting stretchable film

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105630A1 (en) * 2012-01-12 2013-07-18 日産自動車株式会社 Secondary battery fabrication method, secondary battery, and deposition device
JP2013143337A (en) * 2012-01-12 2013-07-22 Nissan Motor Co Ltd Manufacturing method of secondary battery, secondary battery, and welding device
US9620755B2 (en) 2012-01-12 2017-04-11 Nissan Motor Co., Ltd. Secondary battery manufacturing method, secondary battery, welding apparatus thereof
WO2017104141A1 (en) * 2015-12-18 2017-06-22 富士フイルム株式会社 Ultrasonic welding method, and method for manufacturing resin container using ultrasonic welding method
CN108367504A (en) * 2015-12-18 2018-08-03 富士胶片株式会社 The manufacturing method of the resin container of ultrasonic welding method and utilization ultrasonic welding method
JPWO2017104141A1 (en) * 2015-12-18 2018-10-04 富士フイルム株式会社 Method for producing immunochromatographic kit
US10384300B2 (en) 2015-12-18 2019-08-20 Fujifilm Corporation Method of manufacturing an immunochromatographic kit
CN114126847A (en) * 2019-07-17 2022-03-01 住友化学株式会社 Method for producing welded molded article, and pipe
CN112622281A (en) * 2019-09-24 2021-04-09 通用汽车环球科技运作有限责任公司 Apparatus for ultrasonic welding of polymers and polymer composites
CN112622281B (en) * 2019-09-24 2022-11-04 通用汽车环球科技运作有限责任公司 Apparatus for ultrasonic welding of polymers and polymer composites
WO2021262001A1 (en) 2020-06-24 2021-12-30 Technische Universiteit Delft Rounded sonotrode
NL2025908B1 (en) * 2020-06-24 2022-02-21 Univ Delft Tech Rounded sonotrode

Also Published As

Publication number Publication date
JP5613512B2 (en) 2014-10-22

Similar Documents

Publication Publication Date Title
JP5613512B2 (en) Method for producing thermoplastic liquid crystal polymer film fusion product
JP6133782B2 (en) Thermoplastic liquid crystal polymer film and laminate and circuit board using the same
JP2019178326A (en) Production method of thermoplastic liquid crystal polymer film, circuit board and method for manufacturing the same
JP6019012B2 (en) High frequency circuit board
JP6316178B2 (en) Single-sided metal-clad laminate and manufacturing method thereof
JP5970377B2 (en) Circuit board and manufacturing method thereof
JPH0890570A (en) Processing method of liquid crystal polymer film
WO2016174868A1 (en) Thermoplastic liquid-crystal polymer film, and circuit board
JP2000286537A (en) Circuit board and its manufacture
JPWO2011093427A1 (en) Method for producing single-sided metal-clad laminate
JP5308204B2 (en) Heat dissipation sheet
JPWO2013146174A1 (en) Thermoplastic liquid crystal polymer film and method for producing the same
JP4695421B2 (en) Manufacturing method of laminate
JP3878741B2 (en) Method for producing polymer film
WO2005063468A1 (en) Method for producing flexible laminate
JP2011216598A (en) High-frequency circuit board
JP3730314B2 (en) Manufacturing method of laminate
JPWO2011118449A1 (en) Light reflective film, light reflective laminate, and light reflective circuit board
JP6767602B2 (en) Manufacturing method of metal-clad laminate
JP4064018B2 (en) Method for producing film laminate
JP6202905B2 (en) Circuit board and manufacturing method thereof
JP6004841B2 (en) Method for producing liquid crystal polyester film
JP4184529B2 (en) Thermoplastic liquid crystal polymer film and method for modifying the same
WO2021193194A1 (en) Method for producing metal clad laminate
WO2021193195A1 (en) Method for manufacturing metal-clad laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140908

R150 Certificate of patent or registration of utility model

Ref document number: 5613512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150