JP2012064026A - Vehicular object detection device and vehicular object detection method - Google Patents

Vehicular object detection device and vehicular object detection method Download PDF

Info

Publication number
JP2012064026A
JP2012064026A JP2010208317A JP2010208317A JP2012064026A JP 2012064026 A JP2012064026 A JP 2012064026A JP 2010208317 A JP2010208317 A JP 2010208317A JP 2010208317 A JP2010208317 A JP 2010208317A JP 2012064026 A JP2012064026 A JP 2012064026A
Authority
JP
Japan
Prior art keywords
image
image processing
information
vehicle
processing area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010208317A
Other languages
Japanese (ja)
Inventor
Setsuo Tokoro
節夫 所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010208317A priority Critical patent/JP2012064026A/en
Publication of JP2012064026A publication Critical patent/JP2012064026A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a vehicular object detection device and a vehicular object detection method capable of accurately acquiring detail information of an object even when a plurality of objects exist in the same direction viewed from the subject vehicle.SOLUTION: A vehicular object detection device includes: radar information acquisition means for acquiring radar information of an object; image pickup means for picking up an image; first image processing zone setup means for setting a first image processing zone that is an object acquiring image information from the pickup image picked up by the image pickup means; second image processing zone setup means for setting a second image processing zone different from the first image processing zone when radar information of a plurality of objects is acquired in the same direction viewed from the subject vehicle; image information acquisition means for acquiring image information within the second image processing zone; and detail information acquisition means for acquiring detail information of the object within the second image processing zone based on the radar information and image information.

Description

本発明は、車両に搭載され、自車両の周辺に存在する車両等の対象物を検出するための対象物検出装置、およびその方法の技術分野に関する。   The present invention relates to a technical field of an object detection device for detecting an object such as a vehicle mounted on a vehicle and present in the vicinity of the host vehicle, and a method thereof.

近年、車両走行時における安全性を向上させるべく、衝突軽減装置や車間距離制御装置などの運転支援装置が開発されている。このような運転支援装置では、自車両の周辺に存在する車両等の対象物の詳細な情報を正確に取得することが重要となる。そのため、例えば、特許文献1に記載の物体検出装置では、レーダセンサ等によって取得された情報(以下、レーダ情報と称する)と画像センサ等によって撮像された画像から取得された情報(以下、画像情報と称する)とに基いて対象物の詳細な情報を取得する処理(以下、フュージョン処理と称する)が行われている。   In recent years, driving support devices such as collision mitigation devices and inter-vehicle distance control devices have been developed in order to improve safety during vehicle travel. In such a driving support device, it is important to accurately acquire detailed information on a target object such as a vehicle existing around the host vehicle. Therefore, for example, in the object detection device described in Patent Document 1, information acquired from a radar sensor or the like (hereinafter referred to as radar information) and information acquired from an image captured by the image sensor or the like (hereinafter referred to as image information). (Hereinafter referred to as fusion processing) to acquire detailed information on the object.

ところが、自車両の前方に乗用車が存在し、自車両と当該乗用車との間に二輪車が存在する場合等であって、画像情報で示される画像上では当該乗用車と当該二輪車が重なっている場合は、画像センサ等は、実際は2つの対象物である当該乗用車と当該二輪車とを、1つの対象物として認識することがある。実際は2つの対象物を、1つの対象物として画像センサ等が認識した場合に、レーダ情報と画像情報をフュージョン処理すると、対象物の詳細な情報が正確に得られない問題がある。   However, when there is a passenger car in front of the host vehicle and a two-wheeled vehicle exists between the host vehicle and the passenger vehicle, and the passenger car and the two-wheeled vehicle overlap on the image indicated by the image information, An image sensor or the like may recognize the passenger car and the motorcycle, which are actually two objects, as one object. In reality, when two objects are recognized as one object by an image sensor or the like, if radar information and image information are fusion-processed, there is a problem that detailed information on the object cannot be obtained accurately.

この問題を解決するために、特許文献2に記載の車両用障害物検出装置では、画像情報で示される画像上で乗用車等と二輪車等が重なっている場合は、当該画像情報は有効なものではないとして、レーダ情報のみによって障害物の判定を行っている。   In order to solve this problem, in the vehicle obstacle detection device described in Patent Document 2, when a passenger car and a two-wheeled vehicle overlap on the image indicated by the image information, the image information is not effective. Assuming that there is no obstacle, the obstacle is determined only by the radar information.

特開2007−132748号公報JP 2007-132748 A 特開2008−276689号公報JP 2008-276689 A

しかし、特許文献2に記載の車両用障害物検出装置では、画像情報で示される画像上で当該乗用車等と当該二輪車等が重なっている場合、すなわち、自車両から見て同一方向に複数の対象物が存在する場合は、画像情報が有効なものではないとして当該画像情報を障害物の判定に用いないため、対象物の詳細な情報を正確に取得できない。   However, in the vehicle obstacle detection device described in Patent Document 2, when the passenger vehicle and the two-wheeled vehicle overlap on the image indicated by the image information, that is, a plurality of objects in the same direction as viewed from the own vehicle. If there is an object, the image information is not valid and the image information is not used for the determination of the obstacle, so that detailed information on the object cannot be obtained accurately.

本発明は、上記事実に鑑み、自車両から見て同一方向に複数の対象物が存在する場合でも、フュージョン処理によって対象物の詳細な情報を正確に取得することを可能とする、車両用対象物検出装置を提供することを目的とする。   In view of the above-described facts, the present invention provides a vehicle object that enables accurate acquisition of detailed information on an object by fusion processing even when a plurality of objects exist in the same direction as viewed from the host vehicle. An object is to provide an object detection device.

上記目的を達成するために、本発明は、以下に述べる特徴を有する。
第1の発明は、自車両周辺の対象物を検出する車両用対象物検出装置であって、自車両周辺の対象物のレーダ情報を取得するレーダ情報取得手段と、自車両周辺の画像を撮像する画像撮像手段と、上記画像撮像手段によって撮像された画像から画像情報を取得する対象となる第1の画像処理領域を設定する第1の画像処理領域設定手段と、上記レーダ情報取得手段によって上記自車両から見て同一方向に複数の対象物のレーダ情報が取得された場合、上記第1の画像処理領域とは異なる第2の画像処理領域を設定する第2の画像処理領域設定手段と、上記第2の画像処理領域設定手段によって設定された第2の画像処理領域内の画像情報を取得する画像情報取得手段と、上記レーダ情報取得手段によって取得されたレーダ情報と、上記画像情報取得手段によって取得された画像情報とに基いて、上記第2の画像処理領域内の対象物についての詳細な情報を取得する詳細情報取得手段とを備える。
In order to achieve the above object, the present invention has the following features.
A first aspect of the present invention is a vehicle object detection device for detecting an object around a host vehicle, the radar information acquisition means for acquiring radar information of the object around the host vehicle, and an image around the host vehicle. Image capturing means, first image processing area setting means for setting a first image processing area for acquiring image information from an image captured by the image capturing means, and the radar information acquiring means A second image processing area setting means for setting a second image processing area different from the first image processing area when radar information of a plurality of objects is acquired in the same direction as viewed from the host vehicle; Image information acquisition means for acquiring image information in the second image processing area set by the second image processing area setting means, radar information acquired by the radar information acquisition means, and image information On the basis of the acquired image information by the acquisition unit, and a detailed information obtaining unit configured to obtain detailed information about the object of the second image processing region.

第2の発明は、上記第1の発明に従属する発明であって、上記第2の画像処理領域設定手段は、上記複数の対象物のうち、上記自車両からの距離が最も短い対象物に対して上記第2の画像処理領域を設定することを特徴とする。   A second invention is an invention subordinate to the first invention, wherein the second image processing area setting means sets the object having the shortest distance from the host vehicle among the plurality of objects. On the other hand, the second image processing area is set.

第3の発明は、上記第2の発明に従属する発明であって、上記自車両からの距離が最も短い対象物が静止物であることを特徴とする。   A third invention is an invention dependent on the second invention, wherein the object having the shortest distance from the host vehicle is a stationary object.

第4の発明は、上記第3の発明に従属する発明であって、上記第2の画像処理領域設定手段は、上記静止物に対しては、上記静止物に対する第3の画像処理領域を、上記第2の画像処理領域として設定することを特徴とする。   A fourth invention is an invention subordinate to the third invention, wherein the second image processing area setting means sets a third image processing area for the stationary object for the stationary object, The second image processing area is set.

第5の発明は、上記第1〜第4の発明のいずれか1つに従属する発明であって、上記第2の画像処理領域設定手段は、上記第2の画像処理領域を上記第1の画像処理領域よりも狭く設定することを特徴とする。   A fifth invention is an invention subordinate to any one of the first to fourth inventions, wherein the second image processing region setting means sets the second image processing region to the first image. The setting is narrower than the image processing area.

第6の発明は、上記第1〜第5の発明のいずれか1つに従属する発明であって、上記自車両から見て同一方向に検出された複数の対象物間の距離が予め定めた第1のしきい値未満である場合に、第2の画像処理領域を設定することを特徴とする。   A sixth invention is an invention dependent on any one of the first to fifth inventions, wherein distances between a plurality of objects detected in the same direction as viewed from the host vehicle are predetermined. The second image processing area is set when the value is less than the first threshold value.

第7の発明は、上記第1〜第6の発明のいずれか1つに従属する発明であって、上記第2の画像処理領域設定手段は、上記自車両と、上記複数の対象物のうち上記自車両から最も近い対象物との距離が、予め定めた第2のしきい値未満である場合に、第2の画像処理領域を設定することを特徴とする。   A seventh invention is an invention subordinate to any one of the first to sixth inventions, wherein the second image processing region setting means includes the host vehicle and the plurality of objects. A second image processing area is set when the distance from the vehicle closest to the subject vehicle is less than a predetermined second threshold value.

第8の発明は、上記第1〜第7の発明のいずれか1つに従属する発明であって、上記画像情報取得手段は、上記第1の画像処理領域設定手段によって設定された第1の画像処理領域内の画像情報をさらに取得し、上記詳細情報取得手段は、上記レーダ情報取得手段により取得されたレーダ情報と、上記第1の画像処理領域内の画像情報とに基いて、第1の画像処理領域内の対象物についての詳細な情報を取得することを特徴とする。   An eighth invention is an invention subordinate to any one of the first to seventh inventions, wherein the image information acquisition means is a first set by the first image processing area setting means. Image information in the image processing area is further acquired, and the detailed information acquisition means performs first information based on the radar information acquired by the radar information acquisition means and the image information in the first image processing area. Detailed information about the object in the image processing area is acquired.

第9の発明は、上記第1〜第8の発明のいずれか1つに従属する発明であって、上記第2の画像処理領域設定手段は、上記レーダ情報取得手段によって取得されたレーダ情報に基いて上記自車両の周辺に複数の対象物が存在すると判定し、かつ、上記複数の対象物が上記第1の画像処理領域内に存在すると判定した場合に、上記第1の画像処理領域内に存在する上記複数の対象物は上記自車両から見て同一方向に存在すると判定することを特徴とする。   A ninth invention is an invention subordinate to any one of the first to eighth inventions, wherein the second image processing region setting means uses the radar information acquired by the radar information acquisition means. When it is determined that there are a plurality of objects in the vicinity of the host vehicle and the plurality of objects are present in the first image processing area, the inside of the first image processing area is determined. It is determined that the plurality of objects existing in the vehicle exist in the same direction as viewed from the host vehicle.

第10の発明は、上記第1〜第9の発明のいずれか1つに従属する発明であって、上記詳細情報取得手段は、上記レーダ情報取得手段によって取得されたレーダ情報で示される対象物の位置が、上記画像情報取得手段によって取得された画像情報で示される上記対象物の領域内にある場合に、上記レーダ情報と上記画像情報とに基いて上記対象物についての詳細な情報を取得することを特徴とする。   A tenth invention is an invention according to any one of the first to ninth inventions, wherein the detailed information acquisition means is an object indicated by radar information acquired by the radar information acquisition means. Is acquired within the region of the object indicated by the image information acquired by the image information acquisition means, and detailed information about the object is acquired based on the radar information and the image information. It is characterized by doing.

自車両周辺の対象物を検出する車両用対象物検出方法であって、自車両周辺の対象物のレーダ情報を取得するレーダ情報取得ステップと、自車両周辺の画像を撮像する画像撮像ステップと、上記画像撮像ステップによって撮像された画像から画像情報を取得する対象となる第1の画像処理領域を設定する第1の画像処理領域設定ステップと、上記レーダ情報取得ステップによって上記自車両から見て同一方向に複数の対象物のレーダ情報が取得された場合、上記第1の画像処理領域とは異なる第2の画像処理領域を設定する第2の画像処理領域設定ステップと、上記第2の画像処理領域設定ステップによって設定された第2の画像処理領域内の画像情報を取得する画像情報取得ステップと、上記レーダ情報取得ステップによって取得されたレーダ情報と、上記画像情報取得ステップによって取得された画像情報とに基いて、上記第2の画像処理領域内の対象物についての詳細な情報を取得する詳細情報取得ステップとを備える。   A vehicle object detection method for detecting an object around the host vehicle, the radar information acquiring step for acquiring radar information of the object around the host vehicle, and an image capturing step for capturing an image around the host vehicle; Same as the first image processing region setting step for setting the first image processing region for obtaining image information from the image captured in the image capturing step, as viewed from the own vehicle by the radar information acquisition step. A second image processing region setting step for setting a second image processing region different from the first image processing region when radar information of a plurality of objects is acquired in the direction; and the second image processing An image information acquisition step for acquiring image information in the second image processing region set by the region setting step, and a record acquired by the radar information acquisition step. Comprising a header information, based on the image information acquired by the image information acquisition step, and a detailed information obtaining step of obtaining detailed information about the object of the second image processing region.

本発明によれば、自車両から見て同一方向に複数の対象物が存在する場合でもフュージョン処理によって対象物の詳細な情報を正確に取得することを可能とする、車両用対象物検出装置、およびその方法を提供することができる。   According to the present invention, a vehicle object detection device that can accurately acquire detailed information of an object by fusion processing even when a plurality of objects exist in the same direction as viewed from the host vehicle, And a method thereof.

第1の実施形態に係る車両用対象物検出装置の概略構成を示すブロック図1 is a block diagram showing a schematic configuration of a vehicle object detection device according to a first embodiment. 画像取得部によって撮像した画像の一例を示した図The figure which showed an example of the image imaged by the image acquisition part 第1の画像処理領域を設定した画像の一例を示した図The figure which showed an example of the image which set the 1st image processing area 第2の画像処理領域を設定した画像の一例を示した図The figure which showed an example of the image which set the 2nd image processing area | region 各対象物間の距離が一定以上離れている場合の画像の一例を示した図The figure which showed an example of the image when the distance between each target object is apart from a fixed distance 第1の実施形態に係る処理部の処理の流れを示すフローチャートThe flowchart which shows the flow of a process of the process part which concerns on 1st Embodiment. 第2の実施形態に係る処理部の処理の流れを示すフローチャートThe flowchart which shows the flow of a process of the process part which concerns on 2nd Embodiment. レーダ検出部が先行車の先行車を検出する場面の一例を示した図The figure which showed an example of the scene where a radar detection part detects the preceding vehicle of a preceding vehicle 図5Aの状況を画像取得部によって撮像した画像の一例を示した図The figure which showed an example of the image which imaged the situation of FIG. 5A by the image acquisition part 図5Bの画像に第1の画像処理領域を設定した画像の一例を示した図The figure which showed an example of the image which set the 1st image process area | region to the image of FIG. 5B 第3の実施形態に係る処理部の処理の流れを示すフローチャートThe flowchart which shows the flow of a process of the process part which concerns on 3rd Embodiment. レーダ検出部が障害物ではない対象物を検出する場面の一例を示した図The figure which showed an example of the scene where a radar detection part detects an object which is not an obstacle 図7Aの状況を画像取得部によって撮像した画像の一例を示した図The figure which showed an example of the image which imaged the situation of FIG. 7A by the image acquisition part 図7Bの画像に第1の画像処理領域を設定した画像の一例を示した図The figure which showed an example of the image which set the 1st image process area | region to the image of FIG. 7B 図7Cの画像に第2の画像処理領域を設定した画像の一例を示した図The figure which showed an example of the image which set the 2nd image processing area | region to the image of FIG. 7C 先行車が自車両に近づいて来る場面の一例を示した図The figure which showed an example of the scene where the preceding vehicle approaches the own vehicle 図8Aの状況における先行車のオプティカルフローの一例を示した図The figure which showed an example of the optical flow of the preceding vehicle in the situation of Drawing 8A 画面上の特徴点とオプティカルフローとの関係を示すグラフA graph showing the relationship between feature points on the screen and optical flow 第4の実施形態に係る処理部の処理の流れを示すフローチャートThe flowchart which shows the flow of a process of the process part which concerns on 4th Embodiment. レーダ情報で示される対象物の横位置と画像情報で示される対象物の横幅との関係を示した図The figure which showed the relationship between the horizontal position of the target object shown by radar information and the horizontal width of the target object shown by image information

(第1の実施形態)
図1は、本発明の第1の実施形態に係る車両用対象物検出装置1の概略構成を示すブロック図である。本実施形態に係る車両用対象物検出装置1は、レーダ検出部11と、画像取得部12と、処理部13とを備えている。処理部13は、画像処理部131、および判定部132を含む。
(First embodiment)
FIG. 1 is a block diagram showing a schematic configuration of a vehicle object detection device 1 according to a first embodiment of the present invention. The vehicle object detection device 1 according to the present embodiment includes a radar detection unit 11, an image acquisition unit 12, and a processing unit 13. The processing unit 13 includes an image processing unit 131 and a determination unit 132.

レーダ検出部11は、判定部132に接続されている。レーダ検出部11としては、例えばレーザレーダ、マイクロ波レーダ、ミリ波レーダ、および超音波レーダ等を用いることができる。レーダ検出部11は、電磁波等を自車両の周辺に発信し、自車両の周辺に存在する物体に反射する反射波等を受信することにより、自車両周辺に存在する対象物との距離、相対速度、および当該対象物の存在する方向等を検出する。そして、レーダ検出部11は、自車両周辺に存在する対象物との距離、相対速度、および当該対象物の存在する方向等を検出した結果の情報であるレーダ情報を示す信号(以下、レーダ信号と称する)を判定部132に出力する。なお、本実施形態では、レーダ検出部11は自車両の前方の対象物のレーダ情報を検出するように設置されているものとして説明をするが、本発明の趣旨はこれに限られるものではなく、自車両の後方、側方等の他の方向についても適用可能である。   The radar detection unit 11 is connected to the determination unit 132. As the radar detection unit 11, for example, a laser radar, a microwave radar, a millimeter wave radar, an ultrasonic radar, or the like can be used. The radar detection unit 11 transmits electromagnetic waves or the like to the periphery of the host vehicle and receives a reflected wave or the like reflected by an object existing around the host vehicle. The speed and the direction in which the object exists are detected. Then, the radar detection unit 11 is a signal (hereinafter referred to as a radar signal) indicating radar information, which is information obtained as a result of detecting the distance, relative speed, the direction in which the target exists, and the like. Is output to the determination unit 132. In the present embodiment, the radar detection unit 11 is described as being installed so as to detect radar information of an object ahead of the host vehicle, but the gist of the present invention is not limited to this. The present invention can also be applied to other directions such as the rear and side of the host vehicle.

画像取得部12は、画像処理部131と接続されている。画像取得部12は、典型的には、CMOS(Complementary Metal Oxide Semiconductor)、或いはCCD(Charge Coupled Device)を用いて自車両の周囲の画像を撮像するカメラと、当該カメラで撮像された画像を処理する処理回路とで主に構成される。画像取得部12は、自車両の周囲の画像を上記カメラで撮像し、撮像した画像を示す信号(以下、画像信号と称する)を画像処理部131に出力する。なお、本実施形態では、画像取得部12は自車両の前方の画像を取得するように設置されているものとして説明をするが、本発明の趣旨はこれに限られるものではなく、自車両の後方、側方等の他の方向についても適用可能である。   The image acquisition unit 12 is connected to the image processing unit 131. The image acquisition unit 12 typically processes a camera that captures an image around the host vehicle using a complementary metal oxide semiconductor (CMOS) or a charge coupled device (CCD), and an image captured by the camera. And the processing circuit to be configured. The image acquisition unit 12 captures an image around the host vehicle with the camera, and outputs a signal indicating the captured image (hereinafter referred to as an image signal) to the image processing unit 131. In the present embodiment, the image acquisition unit 12 is described as being installed so as to acquire an image ahead of the host vehicle. However, the gist of the present invention is not limited to this, and The present invention can also be applied to other directions such as rearward and lateral directions.

画像処理部131は、画像取得部12および判定部132と接続されている。画像処理部131は、画像取得部12から出力される画像信号を受け取る。画像処理部131は、公知の手法を用いて、画像取得部12から受け取った画像信号によって示される画像に画像処理をするための領域(以下、第1の画像処理領域と称する)を設定する。なお、第1の画像処理領域を設定した画像を、以下、画像処理領域設定画像と称する。第1の画像処理領域を設定するための処理の手法の一例としては、画像にエッジ処理等の画像処理を行うことによって、第1の画像処理領域を設定する手法が挙げられる。   The image processing unit 131 is connected to the image acquisition unit 12 and the determination unit 132. The image processing unit 131 receives the image signal output from the image acquisition unit 12. The image processing unit 131 sets a region (hereinafter referred to as a first image processing region) for performing image processing on the image indicated by the image signal received from the image acquisition unit 12 using a known method. An image in which the first image processing area is set is hereinafter referred to as an image processing area setting image. As an example of a processing technique for setting the first image processing area, there is a technique for setting the first image processing area by performing image processing such as edge processing on the image.

画像処理部131は、画像処理領域設定画像における第1の画像処理領域内の対象物の横幅、縦幅、および自車両から見た対象物の横位置等を示す画像情報を取得する。また、例えば、パターンマッチング等により、画像から対象物の種類を特定し、特定した対象物の種類の情報を画像情報に含めても良い。画像処理部131は、画像情報を示す信号(以下、画像情報信号と称する)を判定部132に出力する。   The image processing unit 131 acquires image information indicating the horizontal width and vertical width of the object in the first image processing area in the image processing area setting image, the horizontal position of the object viewed from the host vehicle, and the like. Further, for example, the type of the object may be specified from the image by pattern matching or the like, and information on the specified type of the object may be included in the image information. The image processing unit 131 outputs a signal indicating image information (hereinafter referred to as an image information signal) to the determination unit 132.

判定部132は、典型的には、CPU(Central Processing Unit)、ROM(Read Only Memory)、およびRAM(Random Access Memory)などで主に構成されるECU(Electronic Control Unit)である。判定部132は、レーダ検出部11および画像処理部131と接続されている。判定部132は、レーダ検出部11から出力されるレーダ信号、ならびに画像処理部131から出力される画像情報信号をそれぞれ受け取る。   The determination unit 132 is typically an ECU (Electronic Control Unit) mainly composed of a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. The determination unit 132 is connected to the radar detection unit 11 and the image processing unit 131. The determination unit 132 receives the radar signal output from the radar detection unit 11 and the image information signal output from the image processing unit 131.

判定部132は、受け取ったレーダ信号で示されるレーダ情報と、同じく受け取った画像情報信号で示される画像情報とをフュージョン処理することにより、対象物の詳細な情報を取得する。   The determination unit 132 acquires detailed information of the target object by performing fusion processing on the radar information indicated by the received radar signal and the image information indicated by the received image information signal.

しかし、単にレーダ情報と第1の画像処理領域の画像情報とをフュージョン処理するだけでは対象物の詳細な情報を正確に取得できない場合がある。単にレーダ情報と第1の画像処理領域の画像情報とをフュージョン処理するだけでは対象物の詳細な情報を正確に取得できない場合について、図2Aおよび図2Bを参照しつつ説明する。   However, in some cases, it is not possible to accurately acquire detailed information on the target object simply by performing fusion processing on radar information and image information in the first image processing area. A case where the detailed information of the object cannot be accurately acquired simply by performing the fusion processing of the radar information and the image information of the first image processing area will be described with reference to FIGS. 2A and 2B.

図2Aは、自車両から見て同一方向に複数の対象物が存在している状況を、画像取得部12によって撮像した画像を簡略的に示した図である。図2Aの画像に係る状況は、自車両の前方に対象物22が存在し、さらに前方に対象物22より幅等の大きい対象物21が存在する状況である。図2Aの画像に係る状況において、対象物21より幅等の小さい対象物22は、典型的には二輪車であって、対象物22より幅等の大きい対象物21は、典型的には乗用車である。   FIG. 2A is a diagram schematically showing an image captured by the image acquisition unit 12 in a situation where a plurality of objects exist in the same direction as viewed from the host vehicle. The situation according to the image in FIG. 2A is a situation in which the object 22 is present in front of the host vehicle and the object 21 having a width or the like larger than that of the object 22 is present in front. In the situation relating to the image in FIG. 2A, the object 22 having a smaller width than the object 21 is typically a two-wheeled vehicle, and the object 21 having a larger width or the like than the object 22 is typically a passenger car. is there.

図2Aの画像に係る状況では、レーダ検出部11は、電磁波等を自車両の周辺に発信し、自車両の周辺に存在する物体に反射する反射波等を受信することにより、自車両周辺に存在する対象物22のレーダ情報、および自車両周辺に存在する対象物21のレーダ情報を取得する。そして、レーダ検出部11は、対象物22および対象物21それぞれについてのレーダ情報に係るレーダ信号を判定部132に出力する。   In the situation related to the image of FIG. 2A, the radar detection unit 11 transmits electromagnetic waves or the like to the periphery of the own vehicle and receives reflected waves or the like reflected by an object existing around the own vehicle. The radar information of the existing object 22 and the radar information of the object 21 existing around the host vehicle are acquired. Then, the radar detection unit 11 outputs a radar signal related to the radar information for each of the object 22 and the object 21 to the determination unit 132.

同じく図2Aの画像に係る状況では、画像取得部12は、自車両の周囲の画像を上記カメラで撮像し、撮像した画像(すなわち図2A)を示す画像信号を画像処理部131に出力する。画像処理部131は、画像取得部12から受け取った画像信号によって示される図2Aに示す画像に、第1の画像処理領域を設定する。このとき、画像上の対象物としては、対象物22および対象物21が存在しているので、本来であれば対象物22および対象物21それぞれについて第1の画像処理領域を設定する必要がある。しかし、対象物22および対象物21は図2Aに示す画像上では一体となっているため、画像処理部131は、当該画像上で一体となっている対象物22および対象物21を1つの対象物として認識してしまうことがある。画像処理部131は、当該画像上で一体となっている対象物22および対象物21を1つの対象物として認識した場合、当該画像上で一体となっている対象物22および対象物21に対して1つの第1の画像処理領域を設定してしまう。   Similarly, in the situation relating to the image in FIG. 2A, the image acquisition unit 12 captures an image around the host vehicle with the camera, and outputs an image signal indicating the captured image (that is, FIG. 2A) to the image processing unit 131. The image processing unit 131 sets a first image processing area in the image shown in FIG. 2A indicated by the image signal received from the image acquisition unit 12. At this time, since the object 22 and the object 21 exist as the objects on the image, it is necessary to set a first image processing region for each of the objects 22 and 21 if originally intended. . However, since the object 22 and the object 21 are integrated on the image shown in FIG. 2A, the image processing unit 131 applies the object 22 and the object 21 integrated on the image to one object. It may be recognized as a thing. When the image processing unit 131 recognizes the target object 22 and the target object 21 integrated on the image as one target object, the image processing unit 131 performs the processing on the target object 22 and the target object 21 integrated on the image. One first image processing area is set.

図2Bは、画像上では一体となっている対象物22および対象物21に対して1つの第1の画像処理領域23を設定した場合の画像処理領域設定画像を簡略的に示した図である。上述のように、画像処理部131は、画像処理領域設定画像における第1の画像処理領域23内の対象物の画像情報を取得する。しかし、取得した画像情報は、対象物22および対象物21を1つの対象物として認識した状態で取得した画像情報である。画像処理部131は、対象物22および対象物21を1つの対象物として認識した上で取得した画像情報に係る画像情報信号を判定部132に出力する。一方、画像処理部131が画像上で一体となっている対象物22および対象物21に対して1つの第1の画像処理領域23を設定した場合でも、レーダ検出部11は、上述したように、対象物22および対象物21それぞれについてレーダ情報を取得し、取得したレーダ情報に係るレーダ信号を判定部132に出力する。   FIG. 2B is a diagram schematically showing an image processing area setting image when one first image processing area 23 is set for the object 22 and the object 21 that are integrated on the image. . As described above, the image processing unit 131 acquires image information of the object in the first image processing area 23 in the image processing area setting image. However, the acquired image information is image information acquired in a state where the object 22 and the object 21 are recognized as one object. The image processing unit 131 outputs an image information signal related to the image information acquired after recognizing the object 22 and the object 21 as one object to the determination unit 132. On the other hand, even when the image processing unit 131 sets one first image processing region 23 for the target object 22 and the target object 21 integrated on the image, the radar detection unit 11 does not operate as described above. Radar information is acquired for each of the object 22 and the object 21, and a radar signal related to the acquired radar information is output to the determination unit 132.

判定部132は、レーダ検出部11から出力された対象物22および対象物21それぞれについてのレーダ信号、ならびに画像処理部131から出力される対象物22および対象物21を1つの対象物として認識した状態の画像情報信号をそれぞれ受け取る。   The determination unit 132 recognizes the radar signal for each of the target object 22 and the target object 21 output from the radar detection unit 11 and the target object 22 and the target object 21 output from the image processing unit 131 as one target object. Each of the state image information signals is received.

しかし、受け取った画像情報信号で示される画像情報が対象物22および対象物21を1つの対象物として認識した状態の画像情報であるため、判定部132が、当該画像情報と、受け取ったレーダ信号で示される対象物22および対象物21それぞれについてのレーダ情報とを単にフュージョン処理したとしても、対象物22および対象物21それぞれについての詳細な情報を正確に取得することができない。   However, since the image information indicated by the received image information signal is image information in a state where the object 22 and the object 21 are recognized as one object, the determination unit 132 receives the image information and the received radar signal. Even if the radar information about each of the object 22 and the object 21 shown in FIG. 6 is simply fusion-processed, detailed information about each of the object 22 and the object 21 cannot be obtained accurately.

そこで、本実施形態に係る判定部132は、レーダ情報に基いて、自車両から見て同一方向に複数の対象物が存在するか否かを判定し、自車両から見て同一方向に複数の対象物が存在すると判定した場合は、レーダ情報から算出される自車両との距離が最も短い対象物に対して新たな画像処理領域(以下、第2の画像処理領域と称する)を設定する。本実施形態に係る判定部132は、自車両から見て同一方向に複数の対象物が存在すると判定した場合に、レーダ情報から算出される自車両との距離が最も短い対象物に対して第2の画像処理領域を設定することによって、対象物毎の画像情報を取得することができる。そして、判定部132は、取得した対象物毎の画像情報と、対象物毎のレーダ情報をフュージョン処理することによって、対象物の詳細な情報を取得することができる。第2の画像処理領域を設定する処理の具体的な流れを図2Bおよび図2Cを用いて説明する。   Therefore, the determination unit 132 according to the present embodiment determines whether or not there are a plurality of objects in the same direction as viewed from the host vehicle based on the radar information, and a plurality of objects in the same direction as viewed from the host vehicle. If it is determined that there is an object, a new image processing area (hereinafter referred to as a second image processing area) is set for the object having the shortest distance from the host vehicle calculated from the radar information. When the determination unit 132 according to the present embodiment determines that there are a plurality of objects in the same direction as viewed from the host vehicle, the determination unit 132 determines the first object with the shortest distance from the host vehicle calculated from the radar information. By setting two image processing areas, image information for each object can be acquired. And the determination part 132 can acquire the detailed information of a target object by carrying out the fusion process of the acquired image information for every target object, and the radar information for every target object. A specific flow of processing for setting the second image processing area will be described with reference to FIGS. 2B and 2C.

判定部132は、受け取ったレーダ信号で示される対象物22および対象物21それぞれについてのレーダ情報に基いて、自車両から見て同一方向に複数の対象物が存在するか否かを判定する。自車両から見て同一方向に複数の対象物が存在するか否かを判定する手法の例としては、画像情報とレーダ情報とを参照して、第1の画像処理領域内に対象物が複数あるか否かを判定することによって判定する手法が挙げられる。すなわち、判定部132が、レーダ情報を参照して、第1の画像処理領域内に対象物が複数あると判定した場合、判定部132は、「自車両から見て同一方向に複数の対象物が存在する」と判定する。一方、判定部132が、レーダ情報を参照して、第1の画像処理領域内の対象物が複数ではないと判定した場合、判定部132は、「自車両から見て同一方向に複数の対象物は存在しない」と判定する。なお、対象物が複数あるかどうかを判定する方法の一例としては、レーダ情報で示される自車両と各対象物との相対速度がそれぞれ異なることに基いて判定する手法が挙げられる。   The determination unit 132 determines whether there are a plurality of objects in the same direction as viewed from the host vehicle, based on the radar information about each of the objects 22 and 21 indicated by the received radar signal. As an example of a method for determining whether or not there are a plurality of objects in the same direction as viewed from the host vehicle, a plurality of objects are referred to in the first image processing region with reference to image information and radar information. There is a method of determining by determining whether or not there is. That is, when the determination unit 132 refers to the radar information and determines that there are a plurality of objects in the first image processing region, the determination unit 132 determines that “a plurality of objects in the same direction as viewed from the host vehicle”. Is determined to exist. On the other hand, when the determination unit 132 refers to the radar information and determines that there are not a plurality of objects in the first image processing region, the determination unit 132 determines that “a plurality of objects in the same direction as viewed from the host vehicle”. It is determined that there is no object. An example of a method for determining whether or not there are a plurality of objects is a method of determining based on the relative speeds of the subject vehicle and each object indicated by the radar information being different.

判定部132は、自車両から見て同一方向に複数の対象物が存在すると判定した場合は、レーダ情報から算出される自車両との距離が最も短い対象物に対して第2の画像処理領域を設定する。第2の画像処理領域を設定する際の当該画像処理領域の大きさを決める手法の一例としては、以下のような手法が考えられる。対象物が画像上で占める大きさは、対象物自体の大きさ、自車両と対象物との距離、および各対象物間の距離等で決まる。そこで、まず、自車両から見て同一方向に対象物が複数あると判定部132によって判定される状況を予め想定する。すなわち、対象物が自車両から見て同一方向に複数あると処理部13によって判定される状況は、図2Aの画像に係る状況のような、自車両の前方に対象物22が存在し、そのさらに前方に対象物22より幅等の大きい対象物21が存在する状況であって、自車両との距離が最も短い対象物22に該当する車両は二輪車であると予め想定する。次に、対象物自体の大きさ、および自車両と対象物との距離等と、当該対象物が画像上で占める大きさの関係についての情報を、図示していない記憶装置に予め記憶させておく。そして、判定部132が、「自車両から見て同一方向に複数の対象物が存在する」と判定した場合、レーダ情報で示される自車両と対象物との距離や自車両から見た方向等を参照し、予め記憶させておいた、二輪車が画像上で占める大きさを第2の画像処理領域として設定する手法が考えられる。   When the determination unit 132 determines that there are a plurality of objects in the same direction as viewed from the own vehicle, the second image processing region is calculated for the object having the shortest distance from the own vehicle calculated from the radar information. Set. As an example of a technique for determining the size of the second image processing area when setting the second image processing area, the following technique can be considered. The size of the object on the image is determined by the size of the object itself, the distance between the vehicle and the object, the distance between the objects, and the like. Thus, first, a situation is assumed in which the determination unit 132 determines that there are a plurality of objects in the same direction as viewed from the host vehicle. That is, the situation in which the processing unit 13 determines that there are a plurality of objects in the same direction when viewed from the host vehicle is that the object 22 exists in front of the host vehicle, such as the situation according to the image in FIG. Further, it is assumed in advance that a vehicle corresponding to the target object 22 having the shortest distance from the host vehicle is a two-wheeled vehicle in a situation where the target object 21 having a width or the like larger than the target object 22 exists in front. Next, information on the relationship between the size of the object itself, the distance between the host vehicle and the object, and the size of the object on the image is stored in advance in a storage device (not shown). deep. When the determination unit 132 determines that “a plurality of objects exist in the same direction as viewed from the host vehicle”, the distance between the host vehicle and the object indicated by the radar information, the direction viewed from the host vehicle, and the like A method of setting the size that the two-wheeled vehicle occupies on the image as the second image processing area, which is stored in advance, can be considered.

図2Cは、判定部132は、自車両から見て同一方向に複数の対象物が存在すると判定した場合に、自車両との距離が最も短い対象物22に対して第2の画像処理領域24を設定した画像処理領域設定画像を簡略的に示した図である。判定部132は、第2の画像処理領域内の対象物22の画像情報を取得し、取得した対象物22の画像情報と、対象物22のレーダ情報とをフュージョン処理することにより対象物22の情報を正確に取得する。また、判定部132は、第1の画像処理領域内の対象物21の画像情報を取得し、取得した対象物21の画像情報と、対象物21のレーダ情報とをフュージョン処理することにより対象物21の情報を正確に取得するようにしても良い。   In FIG. 2C, when the determination unit 132 determines that there are a plurality of objects in the same direction as viewed from the host vehicle, the second image processing region 24 with respect to the object 22 having the shortest distance from the host vehicle. FIG. 6 is a diagram schematically illustrating an image processing area setting image in which is set. The determination unit 132 acquires image information of the target object 22 in the second image processing region, and performs fusion processing on the acquired image information of the target object 22 and radar information of the target object 22 to thereby detect the target object 22. Get information accurately. In addition, the determination unit 132 acquires image information of the target object 21 in the first image processing region, and performs fusion processing on the acquired image information of the target object 21 and radar information of the target object 21. 21 information may be obtained accurately.

一方、判定部132は、自車両から見て同一方向に複数の対象物が存在しないと判定した場合は、第2の画像処理領域を設定することなく、第1の画像処理領域内の対象物の画像情報と当該対象物のレーダ情報とをフュージョン処理することにより当該対象物の詳細な情報を取得する。   On the other hand, if the determination unit 132 determines that a plurality of objects do not exist in the same direction as viewed from the host vehicle, the object in the first image processing area is set without setting the second image processing area. The detailed information of the target object is acquired by performing fusion processing on the image information and the radar information of the target object.

以上が、第1の実施形態に係る車両用対象物検出装置1の概略構成についての説明である。   The above is the description of the schematic configuration of the vehicle object detection device 1 according to the first embodiment.

図3は、本実施形態に係る処理部13の処理の流れを示すフローチャートである。以下、図3に示すフローチャートを参照しながら、処理部13の処理の流れを説明する。   FIG. 3 is a flowchart showing a processing flow of the processing unit 13 according to the present embodiment. The processing flow of the processing unit 13 will be described below with reference to the flowchart shown in FIG.

画像処理部131は、画像取得部12から出力される画像信号によって示される画像に第1の画像処理領域を設定する(ステップS301)。判定部132は、レーダ検出部11から出力されるレーダ信号によって示されるレーダ情報を参照する(ステップS302)。判定部132は、自車両から見て同一方向に対象物が複数あるかどうかを判定する(ステップS303)。自車両から見て同一方向に対象物が複数あると判定した場合(ステップS303でYES)、判定部132は、自車両との距離が最も短い対象物に対して第2の画像処理領域を設定し(ステップS304)、第2の画像処理領域の画像情報と第2の画像処理領域内の対象物のレーダ情報とをフュージョン処理して第2の画像処理領域内の対象物の詳細な情報を取得し(ステップS305)、処理を終える。自車両から見て同一方向に対象物が複数存在しないと判定した場合(ステップS303でNO)、判定部132は、第1の画像処理領域の画像情報と第1の画像処理領域に係る対象物のレーダ情報とをフュージョン処理して対象物の詳細な情報を取得し(ステップS305)、処理を終える。   The image processing unit 131 sets a first image processing area in the image indicated by the image signal output from the image acquisition unit 12 (step S301). The determination unit 132 refers to the radar information indicated by the radar signal output from the radar detection unit 11 (step S302). The determination unit 132 determines whether there are a plurality of objects in the same direction as viewed from the host vehicle (step S303). When it is determined that there are a plurality of objects in the same direction as viewed from the host vehicle (YES in step S303), the determination unit 132 sets the second image processing area for the object having the shortest distance from the host vehicle. (Step S304), the image information of the second image processing area and the radar information of the object in the second image processing area are fusion-processed to obtain detailed information of the object in the second image processing area. Obtain (step S305) and finish the process. When it is determined that there are not a plurality of objects in the same direction as viewed from the host vehicle (NO in step S303), the determination unit 132 determines the image information of the first image processing area and the object related to the first image processing area. The radar information is fusion-processed to obtain detailed information on the object (step S305), and the process ends.

以上が本実施形態に係る車両用対象物検出装置1の説明である。第1の実施形態に係る車両用対象物検出装置1によれば、第2の画像処理領域を設定することにより、自車両から見て同一方向に対象物が複数存在する場合でも、対象物毎の画像情報を取得することができる。そして、第1の実施形態に係る車両用対象物検出装置1によれば、取得した対象物毎の画像情報と、対象物毎のレーダ情報をフュージョン処理することによって、対象物のそれぞれについての詳細な情報を取得することができる。   The above is the description of the vehicle object detection device 1 according to the present embodiment. According to the vehicle object detection device 1 according to the first embodiment, by setting the second image processing region, even when there are a plurality of objects in the same direction as viewed from the host vehicle, each object is detected. Image information can be acquired. Then, according to the vehicle object detection device 1 according to the first embodiment, the details of each object are obtained by performing fusion processing on the acquired image information for each object and radar information for each object. Information can be acquired.

なお、上記において、自車両から見て同一方向に複数の対象物が存在するか否かを判定する手法の例として、画像情報とレーダ情報とを参照して、第1の画像処理領域内に対象物が複数あるか否かを判定することによって判定する手法を挙げた。しかしながら、自車両から見て同一方向に複数の対象物が存在するか否かを判定する手法に他の手法を用いても良い。自車両から見て同一方向に複数の対象物が存在するか否かを判定する手法の他の例としては、レーダ情報に含まれる、対象物が存在する自車両から見た方向を示す情報に基いて判定する手法が挙げられる。すなわち、仮に、自車両の周辺に2つの対象物(以下、それぞれを対象物T1、対象物T2と称する。)が存在する場合、各対象物のレーダ情報を参照して、自車両から見た対象物T1が存在する方向と、自車両から見た対象物T2が存在する方向とがなす角度を検出し、検出結果である当該角度の絶対値が、予め定めた方向判定しきい値を超えない場合に、判定部132は、「自車両から見て同一方向に複数の対象物が存在する」と判定する。一方、上記検出結果である上記角度の絶対値が、予め定めた方向判定しきい値を超える場合は、判定部132は、「自車両から見て同一方向に複数の対象物は存在しない」と判定する。   In the above, as an example of a method for determining whether or not a plurality of objects exist in the same direction as viewed from the host vehicle, the image information and the radar information are referred to in the first image processing area. The method of determining by determining whether there are a plurality of objects is given. However, another method may be used as a method for determining whether or not there are a plurality of objects in the same direction as viewed from the host vehicle. Another example of a method for determining whether or not there are a plurality of objects in the same direction as viewed from the host vehicle is information included in radar information indicating the direction viewed from the host vehicle in which the target exists. A method of determining based on this is given. That is, if there are two objects (hereinafter referred to as the object T1 and the object T2 respectively) around the own vehicle, the object is viewed from the own vehicle with reference to the radar information of each object. The angle formed by the direction in which the target object T1 exists and the direction in which the target object T2 is viewed from the host vehicle is detected, and the absolute value of the detected angle exceeds a predetermined direction determination threshold value. If not, the determination unit 132 determines that “a plurality of objects exist in the same direction as viewed from the host vehicle”. On the other hand, when the absolute value of the angle that is the detection result exceeds a predetermined direction determination threshold value, the determination unit 132 states that “a plurality of objects do not exist in the same direction as viewed from the host vehicle”. judge.

また、対象物22と対象物21とが一定以上離れている場合の処理について説明する。図2Dは、対象物22と対象物21とが一定以上離れている状況を画像取得部12によって撮像した画像を簡略的に示した図である。図2Dの画像に係る状況は、自車両の前方に対象物22が存在し、さらに前方に対象物22より幅等の大きい対象物21が存在する状況であって、対象物22と対象物21とが一定以上離れている状況である。図2Dの画像で示されるように、対象物22と対象物21とが一定以上離れている場合、自車両から見ると、対象物21は対象物22に隠れる。したがって、画像処理部131は、対象物22に対して1つの第1の画像処理領域23を設定し、判定部132は対象物22の画像情報を取得する。一方、図2Dの画像で示されるように、対象物22と対象物21とが一定以上離れていることによって、図2Dの画像上では対象物21が対象物22に隠れていても、レーダ検出部11は、対象物22および対象物21それぞれについてのレーダ情報を取得し得る。この状況は判定部132が「自車両から見て同一方向に複数の対象物が存在する」と判定する状況であるため、第1の実施形態に係るステップS303からステップS304の処理をそのまま適用すれば、第2の画像処理領域を設定する処理(ステップS304)を行うことになる。しかしながら、上述した図2A〜図2Cに示す状況とは異なり、判定部132は、自車両からの距離が最も短い対象物22についての画像情報のみ取得することから、対象物22のレーダ情報と、対象物22の画像情報とをフュージョン処理することにより対象物22の情報を正確に取得することができる。したがって、対象物22と対象物21とが一定以上離れている場合は、ステップS304の処理は不要になる。そこで、対象物22と対象物21との距離が所定値以上である場合は、ステップS304の処理は行わず、対象物22と対象物21の距離が所定値未満の場合は、ステップS304の処理を行うようにしても良い。具体的には、レーダ情報で示される対象物22と対象物21との距離Lvに予めしきい値Lthを設け、レーダ情報で示される対象物22と対象物21との距離Lvがしきい値Lth未満である場合はステップS304の処理を行い、当該距離Lvがしきい値Lth以上である場合は、ステップS304の処理を行わないとすることが考えられる。なお、予めしきい値Lthを定めるにあたっては、各対象物間の距離だけでなく、自車両と各対象物との距離を考慮して定めても良い。また、対象物の大きさ等も考慮して定めても良い。   In addition, processing when the object 22 and the object 21 are separated from each other by a certain distance will be described. FIG. 2D is a diagram schematically showing an image captured by the image acquisition unit 12 when the object 22 and the object 21 are apart from each other by a certain distance. The situation according to the image in FIG. 2D is a situation in which the object 22 is present in front of the host vehicle, and the object 21 having a width or the like larger than the object 22 is present ahead. Is a situation where the distance is more than a certain distance. As shown in the image of FIG. 2D, when the object 22 and the object 21 are separated from each other by a certain distance, the object 21 is hidden by the object 22 when viewed from the own vehicle. Therefore, the image processing unit 131 sets one first image processing region 23 for the object 22, and the determination unit 132 acquires image information of the object 22. On the other hand, as shown in the image of FIG. 2D, since the object 22 and the object 21 are separated by a certain distance or more, even if the object 21 is hidden by the object 22 on the image of FIG. The unit 11 can acquire radar information for each of the object 22 and the object 21. This situation is a situation in which the determination unit 132 determines that “a plurality of objects are present in the same direction as viewed from the host vehicle”, and thus the processing from step S303 to step S304 according to the first embodiment is applied as it is. For example, the process of setting the second image processing area (step S304) is performed. However, unlike the situation shown in FIG. 2A to FIG. 2C described above, the determination unit 132 acquires only the image information about the object 22 with the shortest distance from the host vehicle. By subjecting the image information of the object 22 to fusion processing, the information of the object 22 can be accurately acquired. Therefore, when the target object 22 and the target object 21 are separated from each other by a certain distance, the process of step S304 is not necessary. Therefore, when the distance between the object 22 and the object 21 is equal to or greater than the predetermined value, the process of step S304 is not performed, and when the distance between the object 22 and the object 21 is less than the predetermined value, the process of step S304 is performed. May be performed. Specifically, a threshold value Lth is provided in advance for the distance Lv between the object 22 and the object 21 indicated by the radar information, and the distance Lv between the object 22 and the object 21 indicated by the radar information is the threshold value. If the distance Lv is less than Lth, the process of step S304 is performed. If the distance Lv is equal to or greater than the threshold value Lth, the process of step S304 may not be performed. Note that the threshold value Lth may be determined in advance in consideration of not only the distance between the objects but also the distance between the host vehicle and each object. Further, the size may be determined in consideration of the size of the object.

(第2の実施形態)
次に、判定部132が第2の画像処理領域を設定するか否かを判断するにあたって、自車両と、自車両の前方に存在する対象物との距離を考慮する実施態様について説明する。なお、本実施形態についての説明は、第1の実施形態の説明で付した符号を使用し、上述した実施形態と異なる部分についてのみ説明する。
(Second Embodiment)
Next, an embodiment in which the distance between the host vehicle and an object existing ahead of the host vehicle is considered when the determination unit 132 determines whether or not to set the second image processing region will be described. In addition, the description about this embodiment uses the code | symbol attached | subjected in description of 1st Embodiment, and demonstrates only a different part from embodiment mentioned above.

図4は、本実施形態に係る処理部13の処理の流れの一例を示すフローチャートである。本実施形態では、前述した図3に示す第1の実施形態における処理部13の処理の流れを示すフローチャートのステップS303とステップS304の間に、自車両と、自車両からの距離が最も短い対象物との距離Lmが、予め定めたしきい値Lo未満か否かを判定するステップS401を設けている。   FIG. 4 is a flowchart illustrating an example of a processing flow of the processing unit 13 according to the present embodiment. In the present embodiment, between the own vehicle and the shortest distance from the own vehicle between step S303 and step S304 in the flowchart showing the processing flow of the processing unit 13 in the first embodiment shown in FIG. 3 described above. Step S401 for determining whether or not the distance Lm to the object is less than a predetermined threshold value Lo is provided.

判定部132は、自車両から見て同一方向に複数の対象物が存在すると判定した場合(ステップS303でYES)、レーダ情報を参照し、自車両と、自車両からの距離が最も短い対象物22との距離Lmが、予め定めたしきい値Lo未満か否かを判定する(ステップS401)。   If the determination unit 132 determines that there are a plurality of objects in the same direction as viewed from the own vehicle (YES in step S303), the radar unit refers to the radar information and the object having the shortest distance from the own vehicle is determined. It is determined whether the distance Lm to 22 is less than a predetermined threshold Lo (step S401).

判定部132は、自車両と自車両からの距離が最も短い対象物との距離Lmが、予め定めたしきい値Lo未満である場合(ステップS401でYES)、自車両との距離が最も短い対象物に対して第2の画像処理領域を設定する(ステップS304)。判定部132は、自車両と自車両からの距離が最も短い対象物との距離Lmが、予め定めたしきい値Lo以上である場合(ステップS401でNO)、第2の画像処理領域を設定しない。   When the distance Lm between the host vehicle and the object having the shortest distance from the host vehicle is less than a predetermined threshold Lo (YES in step S401), the determination unit 132 has the shortest distance from the host vehicle. A second image processing area is set for the object (step S304). When the distance Lm between the host vehicle and the object having the shortest distance from the host vehicle is equal to or greater than a predetermined threshold Lo (NO in step S401), the determination unit 132 sets the second image processing region. do not do.

上記のような処理を行う理由を図5A〜図5Cを参照して説明する。図5Aは、自車両51の前方に対象物53(例えば乗用車等)が存在し、かつ、自車両51と対象物53の間に対象物52(例えば乗用車等)が存在する状況を簡略的に示した図である。図5Bは、図5Aで示される状況を画像取得部12によって撮像した画像を簡略的に示した図である。図5Bは、対象物53は対象物52に隠れてしまい、画像取得部12によって撮像した画像からは対象物52しか認識できないことを示している。画像処理部131は、図5Bに示す画像に対し、対象物52について第1の画像処理領域を設定し、対象物52の画像情報を取得する。図5Cは、画像処理部131が、図5Bに示す画像に対し、対象物52について第1の画像処理領域56を設定した画像処理領域設定画像を簡略的に示した図である。一方、判定部132は、図5Aに示すようにレーダ検出部11が発信した電磁波等の反射波等54を受信することにより、対象物52のレーダ情報を取得する。さらに、自車両51と対象物52との距離Lmが一定以上長い場合、レーダ検出部11は、対象物52の車体と路面の隙間等を通った反射波等55を受信することにより、対象物53のレーダ情報を取得し得る。すなわち、判定部132は、対象物52について画像情報を取得しており、かつ、対象物52と対象物53それぞれのレーダ情報を取得しているので、「自車両51から見て同一方向に対象物が複数存在している」と判定することになる。この場合において、第1の実施形態に係るステップS303からステップS304の処理をそのまま適用すると、自車両から見て対象物52の手前に第2の画像処理領域を設定すべき対象物は存在しないにもかかわらず、判定部132は、第2の画像処理領域を設定してしまうことになる。しかし、本実施形態に係る判定部132によれば、自車両51と対象物52との距離Lmが一定以上長い場合には第2の画像処理領域を設定する処理は行わないので、レーダ検出部11が反射波等55を検出して対象物53のレーダ情報を取得したとしても、不必要な第2の画像処理領域を設定することを防ぐことができる。   The reason why the above processing is performed will be described with reference to FIGS. 5A to 5C. FIG. 5A simply shows a situation in which an object 53 (for example, a passenger car) exists in front of the host vehicle 51 and an object 52 (for example, a passenger car) exists between the host vehicle 51 and the object 53. FIG. FIG. 5B is a diagram simply showing an image obtained by capturing the situation shown in FIG. 5A by the image acquisition unit 12. FIG. 5B shows that the object 53 is hidden behind the object 52, and only the object 52 can be recognized from the image captured by the image acquisition unit 12. The image processing unit 131 sets a first image processing area for the object 52 with respect to the image illustrated in FIG. 5B and acquires image information of the object 52. FIG. 5C is a diagram schematically showing an image processing area setting image in which the image processing unit 131 sets the first image processing area 56 for the object 52 with respect to the image shown in FIG. 5B. On the other hand, as shown in FIG. 5A, the determination unit 132 receives the reflected wave 54 such as an electromagnetic wave transmitted by the radar detection unit 11 to acquire the radar information of the object 52. Further, when the distance Lm between the host vehicle 51 and the target object 52 is longer than a certain distance, the radar detection unit 11 receives the reflected wave 55 passing through the gap between the vehicle body of the target object 52 and the road surface, etc. 53 radar information can be acquired. That is, the determination unit 132 acquires image information about the target object 52 and also acquires radar information of each of the target object 52 and the target object 53. It is determined that there are a plurality of objects. In this case, if the processing from step S303 to step S304 according to the first embodiment is applied as it is, there is no target for which the second image processing region should be set before the target 52 as viewed from the host vehicle. However, the determination unit 132 sets the second image processing area. However, according to the determination unit 132 according to the present embodiment, when the distance Lm between the host vehicle 51 and the object 52 is longer than a certain value, the process for setting the second image processing region is not performed, and thus the radar detection unit Even if 11 detects the reflected wave 55 or the like and acquires radar information of the object 53, it is possible to prevent the unnecessary second image processing area from being set.

以上が本実施形態に係る車両用対象物検出装置1の説明である。本実施形態に係る車両用対象物検出装置1によれば、レーダ検出部11が反射波等55を検出して対象物53のレーダ情報を取得したとしても、自車両51と対象物52との距離Lmが一定以上長い場合には第2の画像処理領域を設定する処理をすることなく、自車両からの距離が最も短い対象物の詳細な情報を正確に取得することができる。   The above is the description of the vehicle object detection device 1 according to the present embodiment. According to the vehicle object detection device 1 according to the present embodiment, even if the radar detection unit 11 detects the reflected wave 55 or the like and acquires the radar information of the object 53, the vehicle 51 and the object 52 are not detected. When the distance Lm is longer than a certain length, detailed information on the object having the shortest distance from the host vehicle can be accurately acquired without performing the process of setting the second image processing area.

(第3の実施形態)
次に、判定部132が、第2の画像処理領域を設定するか否かを判断するにあたって、対象物が静止物か否かを考慮する実施態様について説明する。なお、本実施形態についての説明は、上述した実施形態の説明で付した符号を使用し、上述した実施形態と異なる部分についてのみ説明する。
(Third embodiment)
Next, an embodiment in which the determination unit 132 considers whether or not the object is a stationary object when determining whether or not to set the second image processing area will be described. In addition, the description about this embodiment uses the code | symbol attached | subjected in description of embodiment mentioned above, and demonstrates only a different part from embodiment mentioned above.

図6は、本実施形態に係る処理部13の処理の流れの一例を示すフローチャートである。本実施形態に係るフローチャートでは、第1の実施形態における処理部13の処理の流れを示す図3のフローチャートのステップS303とステップS305の間に、対象物が路面に対して静止しているか否かを判定するステップS601、および路面に対して静止物である対象物(以下、静止物と称する)に対する新たな画像処理領域(以下、第3の画像処理領域と称する)を設定するステップS602を設けている。   FIG. 6 is a flowchart illustrating an example of a processing flow of the processing unit 13 according to the present embodiment. In the flowchart according to the present embodiment, whether or not the object is stationary with respect to the road surface between step S303 and step S305 in the flowchart of FIG. 3 showing the processing flow of the processing unit 13 in the first embodiment. And a step S602 for setting a new image processing area (hereinafter referred to as a third image processing area) for an object that is a stationary object (hereinafter referred to as a stationary object) on the road surface. ing.

判定部132は、自車両から見て同一方向に複数の対象物が存在すると判定した場合(ステップS303でYES)、対象物のレーダ情報の速度情報を参照して、対象物が静止物か否かを判定する(ステップS601)。判定部132は、対象物が静止物であると判定した場合(ステップS601でYES)、当該対象物に対して第3の画像処理領域を設定する(ステップS602)。判定部132が、対象物が静止物ではないと判定した場合(ステップS601でNO)、当該対象物に対して第3の画像処理領域を設定しない。判定部132は、当該静止物のレーダ情報とステップS602で設定した第3の画像処理領域の画像情報とをフュージョン処理することより、当該静止物の詳細な情報を取得する。また、判定部132は、第1の画像処理領域の対象物に対しては第1の画像処理領域の画像情報等をフュージョン処理することにより、当該対象物の詳細な情報を取得する。   If the determination unit 132 determines that there are a plurality of objects in the same direction as viewed from the host vehicle (YES in step S303), the determination unit 132 refers to the speed information of the radar information of the object to determine whether the object is a stationary object. Is determined (step S601). If the determination unit 132 determines that the object is a stationary object (YES in step S601), the determination unit 132 sets a third image processing region for the object (step S602). When the determination unit 132 determines that the object is not a stationary object (NO in step S601), the third image processing area is not set for the object. The determination unit 132 acquires detailed information of the stationary object by performing fusion processing on the radar information of the stationary object and the image information of the third image processing area set in step S602. Further, the determination unit 132 acquires detailed information of the target object by subjecting the target object of the first image processing area to fusion processing of the image information and the like of the first image processing area.

上記のような処理を行う理由を図7A〜図7Dを参照して説明する。図7Aは、自車両71の前方に対象物72(例えば乗用車)が存在し、かつ、自車両71と対象物72との間の路面等に、自車両71にとって障害物ではない対象物73(例えば路上の鉄板やマンホール等)が存在する状況を簡略的に示した図である。図7Bは、図7Aに係る状況を画像取得部12によって撮像した画像を簡略的に示した図である。図7Bは、自車両71と対象物72の位置関係によっては、対象物72および対象物73が画像上で一体となっていることを示している。対象物72および対象物73が画像上で一体となっている場合、画像処理部131は、画像上で一体となっている対象物72および対象物73を1つの対象物として第1の画像処理領域を設定する可能性がある。図7Cは、図7Bに係る画像に第1の画像処理領域74を設定した画像処理領域設定画像を簡略的に示した図である。図7Cは、画像処理部131が、画像上で一体となっている対象物72および対象物73に対して1つの第1の画像処理領域74を設定したことを示している。しかし、判定部132が、対象物72および対象物73を1つの対象物として認識した状態の画像情報と、対象物72および対象物73それぞれについてのレーダ情報とを単にフュージョン処理したとしても、対象物72および対象物73それぞれについての詳細な情報を正確に取得することができない。そこで、本実施形態に係る判定部132では、自車両からの距離が最も短い対象物73が静止物である場合は、当該対象物73に対して第3の画像処理領域を設定することとしている。図7Dは、図7Cに係る画像に第3の画像処理領域75を設定した画像処理領域設定画像を簡略的に示した図である。自車両からの距離が最も短い対象物73が静止物である場合に当該対象物73に対して第3の画像処理領域75を設定するのは、対象物73が静止物であれば、対象物73は自車両71にとって障害物ではないと考えられるためである。本実施形態に係る判定部132によれば、自車両からの距離が最も短い対象物73が静止物である場合は、対象物73に対して第3の画像処理領域75を設定するため、対象物73に対しては第3の画像処理領域75内の対象物73の画像情報等をフュージョン処理することにより、対象物73についての詳細な情報を正確に取得することができる。また、対象物72に対しては第1の画像処理領域74内の対象物72の画像情報等をフュージョン処理することにより、対象物72についての詳細な情報を正確に取得することができる。   The reason why the above processing is performed will be described with reference to FIGS. 7A to 7D. 7A shows an object 73 (for example, a passenger car) in front of the host vehicle 71 and an object 73 (not an obstacle for the host vehicle 71) on the road surface between the host vehicle 71 and the target object 72 or the like. For example, it is a diagram schematically showing a situation in which there is an iron plate or a manhole on a road. FIG. 7B is a diagram simply showing an image obtained by capturing the situation according to FIG. 7A by the image acquisition unit 12. FIG. 7B shows that the object 72 and the object 73 are integrated on the image depending on the positional relationship between the host vehicle 71 and the object 72. When the object 72 and the object 73 are integrated on the image, the image processing unit 131 performs first image processing using the object 72 and the object 73 integrated on the image as one object. There is a possibility to set the area. FIG. 7C is a diagram schematically showing an image processing area setting image in which the first image processing area 74 is set in the image according to FIG. 7B. FIG. 7C shows that the image processing unit 131 sets one first image processing area 74 for the object 72 and the object 73 that are integrated on the image. However, even if the determination unit 132 simply performs fusion processing on the image information in a state where the object 72 and the object 73 are recognized as one object and the radar information about each of the object 72 and the object 73, the object Detailed information about each of the object 72 and the object 73 cannot be obtained accurately. Therefore, in the determination unit 132 according to the present embodiment, when the object 73 with the shortest distance from the host vehicle is a stationary object, the third image processing area is set for the object 73. . FIG. 7D is a diagram schematically showing an image processing area setting image in which the third image processing area 75 is set in the image according to FIG. 7C. When the object 73 with the shortest distance from the host vehicle is a stationary object, the third image processing area 75 is set for the object 73 if the object 73 is a stationary object. This is because 73 is considered not to be an obstacle for the host vehicle 71. According to the determination unit 132 according to the present embodiment, when the object 73 with the shortest distance from the host vehicle is a stationary object, the third image processing area 75 is set for the object 73. By subjecting the object 73 to fusion processing of image information and the like of the object 73 in the third image processing region 75, detailed information about the object 73 can be accurately acquired. In addition, by subjecting the object 72 to fusion processing of the image information and the like of the object 72 in the first image processing area 74, detailed information about the object 72 can be accurately acquired.

なお、本実施形態では、対象物が自車両にとって障害物であるか否かを判定するにあたって、当該対象物が静止物であるか否かを判定することとした。しかしながら、路上に止まっている二輪車等を考慮し、対象物が静止物であるか否かの判定に加え、当該対象物が立体物か否かを判定することによって当該対象物が障害物か否かを判定するようにしても良い。すなわち、対象物が静止物、かつ、非立体物である場合に自車両にとって障害物ではないと判定し、対象物が静止物ではない場合もしくは対象物が立体物である場合に自車両にとって障害物であると判定するようにしても良い。   In the present embodiment, when determining whether or not the object is an obstacle for the host vehicle, it is determined whether or not the object is a stationary object. However, in consideration of a motorcycle or the like stopped on the road, whether or not the object is an obstacle is determined by determining whether or not the object is a three-dimensional object in addition to determining whether or not the object is a stationary object. You may make it determine. That is, when the target object is a stationary object and a non-three-dimensional object, it is determined that the target object is not an obstacle for the host vehicle, and when the target object is not a stationary object or when the target object is a three-dimensional object, the host vehicle has an obstacle. You may make it determine with it being a thing.

対象物が静止物であるか否かを判定する手法としては、自車両の車速測定手段(図示せず)により取得された自車両の車速Vsから自車両と対象物の相対速度Vrを減算した値の絶対値が、予め定めた定数ΔVよりも小さい場合は、当該対象物は静止物であると判定する手法が挙げられる。   As a method for determining whether or not the object is a stationary object, the relative speed Vr between the host vehicle and the object is subtracted from the vehicle speed Vs of the host vehicle acquired by a vehicle speed measuring unit (not shown) of the host vehicle. When the absolute value of the value is smaller than a predetermined constant ΔV, a method for determining that the object is a stationary object can be used.

対象物が非立体物か否かを判定する手法の一例としては、第3の画像処理領域内の画像を処理して第3の画像処理領域内の対象物のオプティカルフローを算出し、算出したオプティカルフローが立体物のオプティカルフローなのか非立体物のオプティカルフローなのかを判定することにより、対象物が非立体物か否かを判定する手法が挙げられる。オプティカルフローの算出手法の一例としては以下の手法が挙げられる。   As an example of a method for determining whether or not the object is a non-three-dimensional object, the optical flow of the object in the third image processing area is calculated by processing the image in the third image processing area, and the calculation is performed. There is a method for determining whether an object is a non-three-dimensional object by determining whether the optical flow is a three-dimensional optical flow or a non-three-dimensional optical flow. The following method is mentioned as an example of the optical flow calculation method.

図8Aは、先行車82が自車両81に近づく場面を表した図である。図8Aにおける先行車82’(点線で表す)は、自車両81に近づく前の状態を表し、図8Aにおける先行車82(実線で表す)は、自車両81に近づいた後の状態を表す。図8Aの(A)は、先行車82が自車両81に近づく場面を、車両の進行方向に対して横から垂直方向に見た場合を表した図である。図8Aの(B)は、先行車82’が自車両81に近づく場面を、上空から見た場合を表した図である。自車両81と先行車82’との距離はLで表し、先行車82’が自車両81に近づいた距離をΔLで表す。特徴点83は、先行車82の任意の特徴点の1つを表す。xは、自車両81の走行方向に伸ばした自車両81の中心線を基準とする特徴点83’の横位置を表す。Δxは、先行車82’が距離ΔLだけ自車両に近づいた場合の、特徴点83’の画像上の移動ベクトル、すなわちオプティカルフローを表す。図8Bは、先行車82’が自車両81に近づいた場合のオプティカルフローを表した図である。図8Bにおける先行車82’(点線で表す)は、先行車82’と自車両81との距離がLのときにおける画像上の見え方を表し、図8Bにおける先行車82(実線で表す)は、先行車82’が距離ΔLだけ自車両81に近づいた場合の画像上の見え方を表す。図8B中の各矢印は、先行車82’および先行車82の特徴点の移動ベクトルを示すオプティカルフローを表す。なお、LやΔLは、レーダ情報の距離情報や、相対速度情報から演算する。   FIG. 8A is a diagram illustrating a scene in which the preceding vehicle 82 approaches the host vehicle 81. A preceding vehicle 82 ′ (represented by a dotted line) in FIG. 8A represents a state before approaching the host vehicle 81, and a preceding vehicle 82 (represented by a solid line) in FIG. 8A represents a state after approaching the host vehicle 81. (A) of FIG. 8A is a diagram showing a case where the preceding vehicle 82 approaches the host vehicle 81 as viewed from the side to the vertical direction with respect to the traveling direction of the vehicle. FIG. 8A (B) is a diagram illustrating a case in which the preceding vehicle 82 ′ approaches the host vehicle 81 as viewed from above. The distance between the host vehicle 81 and the preceding vehicle 82 'is represented by L, and the distance that the preceding vehicle 82' has approached the host vehicle 81 is represented by ΔL. The feature point 83 represents one of arbitrary feature points of the preceding vehicle 82. x represents the lateral position of the feature point 83 ′ with reference to the center line of the host vehicle 81 extended in the traveling direction of the host vehicle 81. Δx represents a movement vector on the image of the feature point 83 ′, that is, an optical flow when the preceding vehicle 82 ′ approaches the host vehicle by the distance ΔL. FIG. 8B is a diagram illustrating an optical flow when the preceding vehicle 82 ′ approaches the host vehicle 81. A preceding vehicle 82 ′ (represented by a dotted line) in FIG. 8B represents the appearance on the image when the distance between the preceding vehicle 82 ′ and the host vehicle 81 is L, and a preceding vehicle 82 (represented by a solid line) in FIG. The appearance on the image when the preceding vehicle 82 'approaches the host vehicle 81 by a distance ΔL is shown. Each arrow in FIG. 8B represents an optical flow indicating the movement vectors of the feature points of the preceding vehicle 82 ′ and the preceding vehicle 82. Note that L and ΔL are calculated from distance information of the radar information and relative speed information.

ここで、オプティカルフローΔxは式(1)で表される。
Δx=(x/L)×ΔL…式(1)
Here, the optical flow Δx is expressed by Expression (1).
Δx = (x / L) × ΔL (1)

図8Cは、式(1)におけるΔxとxとの関係を表したグラフを示した図である。式(1)におけるΔxとxとの関係を、Δxを縦軸、xを横軸にとったグラフで表すと、図8Cに示すように、原点を通る右上がりの直線となる。   FIG. 8C is a graph showing a relationship between Δx and x in Equation (1). When the relationship between Δx and x in Equation (1) is represented by a graph in which Δx is the vertical axis and x is the horizontal axis, as shown in FIG.

仮に、オプティカルフローを求める画像上の領域を、対象物が存在する距離の所定の高さに設定している場合において、レーダ検出部11が検出した対象物がマンホールのような非立体物の場合、当該所定の高さに存在していない対象物のオプティカルフローを演算することになるため、図8Cのような直線関係とならない。したがって、オプティカルフローが図8Cに示す関係になっているか否かを判定することにより対象物が立体物か非立体物かを判定することができる。   If the area on the image for which the optical flow is to be calculated is set to a predetermined height of the distance where the object exists, the object detected by the radar detection unit 11 is a non-three-dimensional object such as a manhole. Since the optical flow of the object that does not exist at the predetermined height is calculated, the linear relationship as shown in FIG. 8C is not obtained. Therefore, it can be determined whether the object is a three-dimensional object or a non-three-dimensional object by determining whether the optical flow has the relationship shown in FIG. 8C.

以上、オプティカルフローの原理を利用して対象物が立体物か非立体物かを判定する手法の一例を説明したが、当該手法をより信頼度高く適用するには、図8Cのオプティカルフローのグラフを求める画像処理領域を適切に定める必要がある。自車両から見て同一方向に対象物が複数存在する場合は、この画像処理領域を、自車両からの距離が最も短い対象物に対して設定する第2の画像処理領域とすることで、当該手法の信頼度をより高くすることができる。なお、上記オプティカルフローによって対象物が立体物か否かを判定する手法は、第3の実施形態に限らず、他の実施形態に適用しても良い。   In the foregoing, an example of a method for determining whether a target object is a three-dimensional object or a non-three-dimensional object using the principle of optical flow has been described. To apply the method more reliably, the optical flow graph of FIG. 8C is used. It is necessary to appropriately determine an image processing area for obtaining the above. When there are a plurality of objects in the same direction as viewed from the host vehicle, the image processing area is set as a second image processing area set for the object having the shortest distance from the host vehicle. The reliability of the method can be further increased. The method for determining whether or not the object is a three-dimensional object by the optical flow is not limited to the third embodiment, and may be applied to other embodiments.

また、図6に示す本実施形態に係る判定部132の処理は、判定部132が、対象物が静止物ではないと判定した場合(ステップS601でNO)のフローに、当該対象物に対して二輪車を想定した第2の画像処理領域を設定するステップ(図3等のステップS304に相当)を設け、当該対象物のレーダ情報と、設定した第2の画像処理領域の画像情報とをフュージョン処理して、当該対象物の詳細な情報を取得するようにしても良い。   Moreover, the process of the determination part 132 which concerns on this embodiment shown in FIG. 6 is performed with respect to the said object in the flow when the determination part 132 determines with a target object not being a stationary object (it is NO at step S601). A step of setting a second image processing region assuming a two-wheeled vehicle (corresponding to step S304 in FIG. 3 and the like) is provided, and the radar information of the target object and the image information of the set second image processing region are fusion processed. And you may make it acquire the detailed information of the said target object.

以上が本実施形態に係る車両用対象物検出装置1の説明である。本実施形態に係る車両用対象物検出装置1によれば、自車両から見て同一方向に複数の対象物が存在する場合であって、自車両からの距離が最も短い対象物が静止物である場合は当該静止物に対して第3の画像処理領域を設定するため、第3の画像処理領域についての画像情報と第3の画像処理領域の対象物のレーダ情報とをフュージョン処理して、当該静止物の詳細な情報を正確に取得することができる。また、第1の画像処理領域の対象物に対しては第1の画像処理領域の画像情報等をフュージョン処理することにより、当該対象物の詳細な情報を正確に取得することができる。   The above is the description of the vehicle object detection device 1 according to the present embodiment. According to the vehicle object detection device 1 according to the present embodiment, a plurality of objects are present in the same direction as viewed from the own vehicle, and the object having the shortest distance from the own vehicle is a stationary object. In some cases, in order to set the third image processing area for the stationary object, the image information about the third image processing area and the radar information of the object in the third image processing area are fusion-processed, Detailed information on the stationary object can be obtained accurately. In addition, by subjecting the object in the first image processing area to the fusion processing of the image information in the first image processing area, detailed information on the object can be accurately acquired.

(第4の実施形態)
次に、判定部132がフュージョン処理をするかどうか判断するにあたって、レーダ情報で示される対象物の横位置情報と、画像情報で示される対象物の横幅情報を考慮する実施態様について説明する。なお、本実施形態についての説明は、上述した実施形態の説明で付した符号を使用し、上述した実施形態と異なる部分についてのみ説明する。
(Fourth embodiment)
Next, an embodiment will be described in which the determination unit 132 considers the lateral position information of the object indicated by the radar information and the lateral width information of the object indicated by the image information when determining whether or not to perform the fusion process. In addition, the description about this embodiment uses the code | symbol attached | subjected in description of embodiment mentioned above, and demonstrates only a different part from embodiment mentioned above.

図9は、本実施形態に係る処理部13の処理の流れの一例を示すフローチャートである。以下、図9に示すフローチャートを参照しながら、処理部13の処理の流れを説明する。   FIG. 9 is a flowchart illustrating an example of a processing flow of the processing unit 13 according to the present embodiment. The processing flow of the processing unit 13 will be described below with reference to the flowchart shown in FIG.

判定部132は、画像情報およびレーダ情報を参照する(ステップS901およびステップS302)。そして、参照したレーダ情報に基いて自車両から見て同一方向に対象物が複数あるかどうかを判定する(ステップS303)。判定部132は、自車両から見て同一方向に対象物が複数あると判定した場合(ステップS303でYES)、レーダ情報で示される、自車両からの距離が最も短い対象物の横位置が、当該対象物の画像情報で示される横幅内に収まっているか否かを判定する(ステップS902)。判定部132は、レーダ情報で示される、自車両からの距離が最も短い対象物の横位置が、画像情報で示される当該対象物の横幅内に収まっていないと判定した場合(ステップS902でNO)、フュージョン処理をしない。判定部132は、レーダ情報で示される、自車両からの距離が最も短い対象物の横位置が、画像情報で示される当該対象物の横幅内に収まっていると判定した場合(ステップS902でYES)、もしくは自車両から見て同一方向に対象物が複数ないと判定した場合(ステップS303でNO)、画像情報等をフュージョン処理する(ステップS305)。   The determination unit 132 refers to the image information and the radar information (Step S901 and Step S302). Then, it is determined whether or not there are a plurality of objects in the same direction as viewed from the own vehicle based on the referenced radar information (step S303). If the determination unit 132 determines that there are a plurality of objects in the same direction as viewed from the own vehicle (YES in step S303), the lateral position of the object having the shortest distance from the own vehicle indicated by the radar information is It is determined whether or not the object is within the horizontal width indicated by the image information of the object (step S902). If the determination unit 132 determines that the lateral position of the target object indicated by the radar information with the shortest distance from the host vehicle does not fall within the horizontal width of the target object indicated by the image information (NO in step S902). ) No fusion treatment. If the determination unit 132 determines that the lateral position of the target object indicated by the radar information with the shortest distance from the host vehicle is within the horizontal width of the target object indicated by the image information (YES in step S902). ), Or when it is determined that there are not a plurality of objects in the same direction when viewed from the host vehicle (NO in step S303), the image information and the like are subjected to fusion processing (step S305).

上記のような処理を行う理由を図10を参照しつつ説明する。図10は、レーダ情報で示される対象物の横位置と画像情報で示される対象物の横幅との関係を簡略的に示した図である。図10に示す状況は、自車両(図示せず)の前方に対象物101が存在する状況である。   The reason why the above processing is performed will be described with reference to FIG. FIG. 10 is a diagram simply showing the relationship between the horizontal position of the object indicated by the radar information and the horizontal width of the object indicated by the image information. The situation shown in FIG. 10 is a situation in which the object 101 exists in front of the host vehicle (not shown).

図10の(A)〜(C)における横位置102は、レーダ情報から算出される自車両から見た対象物101の横位置を示す。図10の(A)〜(C)にそれぞれにおける横幅103A〜Cは、(A)〜(C)それぞれにおける画像情報から算出される対象物101の横幅を示す。図10の(A)における横幅103Aは、対象物101の横幅が、画像情報によって適切に表されている状態を示す。しかし、車両の色や日光のあたり方等の影響により、画像情報が対象物の横幅を適切に表していない場合がある。図10の(B)における横幅103Bは、実際には1つである対象物101が、画像情報では分断されて2つの対象物であると認識されている状態を示す。図10の(C)における横幅103Cは、画像情報で示される対象物101の横幅が、実際の横幅(すなわち横幅103A)よりも狭く認識されている状態を示す。   The lateral position 102 in FIGS. 10A to 10C indicates the lateral position of the object 101 viewed from the host vehicle calculated from the radar information. The widths 103A to 103C in FIGS. 10A to 10C respectively indicate the widths of the object 101 calculated from the image information in FIGS. A horizontal width 103A in FIG. 10A indicates a state in which the horizontal width of the object 101 is appropriately represented by image information. However, there are cases where the image information does not properly represent the width of the object due to the influence of the color of the vehicle, the way of sunlight, and the like. A horizontal width 103B in FIG. 10B indicates a state where one object 101 is actually divided into two objects in the image information. A horizontal width 103C in FIG. 10C indicates a state in which the horizontal width of the object 101 indicated by the image information is recognized to be narrower than the actual horizontal width (that is, the horizontal width 103A).

対象物101の横幅は実際には横幅103Aであるにもかかわらず、横幅103Bもしくは横幅103Cのように実際の横幅とは異なる横幅として認識された場合、処理部13は、対象物の画像情報を正確に取得できていないため、当該画像情報等をフュージョン処理しても、当該対象物の詳細な情報を正確に取得することはできない。   When the width of the object 101 is actually the width 103A but is recognized as a width different from the actual width, such as the width 103B or the width 103C, the processing unit 13 displays the image information of the object. Since it has not been acquired correctly, even if the image information or the like is fusion-processed, detailed information on the object cannot be acquired accurately.

そこで、本実施形態に係る判定部132では、自車両から見て同一方向に複数の対象物が存在している場合には、画像情報で示される対象物の横幅情報が対象物の横幅を正確に表している場合にのみフュージョン処理を行うため、対象物101の詳細な情報を正確に取得することができる。   Therefore, in the determination unit 132 according to the present embodiment, when there are a plurality of objects in the same direction as viewed from the host vehicle, the width information of the object indicated by the image information accurately determines the width of the object. Since the fusion process is performed only in the case where the object 101 is represented, detailed information of the object 101 can be obtained accurately.

以上が本実施形態に係る車両用対象物検出装置1の説明である。本実施形態に係る車両用対象物検出装置1によれば、基となる画像情報が正確な情報である場合にのみフュージョン処理を行うので、対象物の詳細な情報を正確に取得することができる。   The above is the description of the vehicle object detection device 1 according to the present embodiment. According to the vehicle object detection device 1 according to the present embodiment, since the fusion process is performed only when the base image information is accurate information, it is possible to accurately acquire detailed information on the object. .

なお、第1〜第4の実施形態において、処理部13で行う画像処理等が演算遅れを伴う場合、取得した画像情報等が対象物のリアルタイムの状況を反映していないことがある。取得した画像情報等が対象物のリアルタイムの状況を反映していない場合は、フュージョン処理の基となる、画像情報が取得されたタイミングと、レーダ情報が取得されたタイミングが異なることになり、対象物の詳細な情報を正確に取得することができない。そこで、処理部13で行う画像処理等が演算遅れを伴う場合は、演算遅れを考慮してレーダ情報や画像情報等を補正することが考えられる。レーダ情報や画像情報等を補正する手法としては、例えば、対象物の補正後の横位置Xを、対象物の横方向速度Vxと演算遅れの時間を示す定数Δtを乗算した値に、レーダ情報で示される対象物の横位置xを加算して求める手法が挙げられる。なお、対象物の補正後の横位置Xは、自車両と対象物との距離や相対速度等との関係の情報をマップデータとして予め設定してき、当該マップデータに基いて定めても良い。   In the first to fourth embodiments, when the image processing or the like performed by the processing unit 13 involves a calculation delay, the acquired image information or the like may not reflect the real-time state of the target object. If the acquired image information does not reflect the real-time status of the target object, the timing at which the image information is acquired and the timing at which the radar information is acquired, which is the basis of the fusion process, will be different. Detailed information about the object cannot be obtained accurately. Thus, when image processing or the like performed by the processing unit 13 involves calculation delay, it is conceivable to correct radar information, image information, or the like in consideration of the calculation delay. As a technique for correcting radar information, image information, and the like, for example, radar information is multiplied by a value obtained by multiplying a lateral position X after correction of a target object by a lateral speed Vx of the target object and a constant Δt indicating a calculation delay time. A method of adding the lateral position x of the object indicated by Note that the corrected lateral position X of the object may be determined based on the map data by previously setting information on the relationship between the distance between the host vehicle and the object, the relative speed, and the like as map data.

また、第1〜4の実施形態の説明では、説明の便宜上、対象物が2つ存在する状況について説明した。しかしながら、本発明は、対象物が2つ存在する状況だけに適用されるわけではない。例えば、3つ以上の対象物が存在し、当該3つ以上の対象物が画像上で一体となっている場合でも、本発明は適用し得る。すなわち、判定部132は、当該3つ以上の対象物に対してそれぞれ第2の画像処理領域を設定することにより、当該3つ以上の対象物のそれぞれの詳細な情報を正確に取得することができる。   In the description of the first to fourth embodiments, for convenience of description, a situation where two objects exist is described. However, the present invention is not applied only to the situation where there are two objects. For example, the present invention can be applied even when three or more objects exist and the three or more objects are integrated on the image. That is, the determination unit 132 can accurately acquire detailed information of each of the three or more objects by setting the second image processing region for each of the three or more objects. it can.

以上、本発明の実施形態について説明したが、上述の説明はあらゆる点において本発明の一例にすぎず、その範囲を限定しようとするものではない。また、本発明の範囲を逸脱することなく上記各実施形態を適宜組み合わせることや種々の改良を行うことができることはいうまでもない。例えば、画像情報の有効性を判断するために第4の実施形態の処理を行った後に、第1〜3の実施形態の処理を行うようにしても良い。   As mentioned above, although embodiment of this invention was described, the above-mentioned description is only an example of this invention in all the points, and does not intend to limit the range. It goes without saying that the above embodiments can be appropriately combined and various improvements can be made without departing from the scope of the present invention. For example, the processing of the first to third embodiments may be performed after the processing of the fourth embodiment is performed in order to determine the validity of the image information.

本発明は、自車両から見て同一方向に複数の対象物が存在する場合でも対象物の詳細な情報を正確に取得することを可能とする、車両用対象物検出装置、およびその方法を提供でき、例えば、自動車などの移動体に搭載される運転支援装置などに利用できる。   The present invention provides an object detection device for a vehicle, and a method thereof, which makes it possible to accurately acquire detailed information of an object even when a plurality of objects exist in the same direction as viewed from the host vehicle. For example, it can be used for a driving support device mounted on a moving body such as an automobile.

1 車両用対象物検出装置
11 レーダ検出部
12 画像取得部
13 処理部
131 画像処理部
132 判定部
21、22、52、53、72、73、82、82’、101 対象物
23、24、56、74、75 画像処理領域
51、71、81 自車両
54、55 反射波等
83、83’ 対象物の特徴点
102 対象物の横位置
103A〜C対象物の幅情報
DESCRIPTION OF SYMBOLS 1 Vehicle target detection apparatus 11 Radar detection part 12 Image acquisition part 13 Processing part 131 Image processing part 132 Determination part 21, 22, 52, 53, 72, 73, 82, 82 ', 101 Target object 23, 24, 56 , 74, 75 Image processing area 51, 71, 81 Own vehicle 54, 55 Reflected wave, etc. 83, 83 ′ Feature point of target object 102 Horizontal position of target object 103A to C Width information of target object

Claims (11)

自車両周辺の対象物を検出する車両用対象物検出装置であって、
レーダによって自車両周辺の対象物のレーダ情報を取得するレーダ情報取得手段と、
自車両周辺の画像を撮像する画像撮像手段と、
前記画像撮像手段によって撮像された画像から画像情報を取得する対象となる第1の画像処理領域を設定する第1の画像処理領域設定手段と、
前記レーダ情報取得手段によって前記自車両から見て同一方向に複数の対象物のレーダ情報が取得された場合、前記第1の画像処理領域とは異なる第2の画像処理領域を設定する第2の画像処理領域設定手段と、
前記第2の画像処理領域設定手段によって設定された第2の画像処理領域内の画像情報を取得する画像情報取得手段と、
前記レーダ情報取得手段によって取得されたレーダ情報と、前記画像情報取得手段によって取得された画像情報とに基いて、前記第2の画像処理領域内の対象物についての詳細な情報を取得する詳細情報取得手段とを備える、車両用対象物検出装置。
A vehicle object detection device for detecting an object around a host vehicle,
Radar information acquisition means for acquiring radar information of an object around the vehicle by radar;
Image capturing means for capturing an image of the surroundings of the host vehicle;
First image processing area setting means for setting a first image processing area as a target for acquiring image information from an image captured by the image capturing means;
When radar information of a plurality of objects is acquired in the same direction as viewed from the host vehicle by the radar information acquisition means, a second image processing area that is different from the first image processing area is set. Image processing area setting means;
Image information acquisition means for acquiring image information in the second image processing area set by the second image processing area setting means;
Detailed information for acquiring detailed information about the object in the second image processing area based on the radar information acquired by the radar information acquisition unit and the image information acquired by the image information acquisition unit An object detection device for a vehicle, comprising an acquisition unit.
前記第2の画像処理領域設定手段は、前記複数の対象物のうち、前記自車両からの距離が最も短い対象物に対して前記第2の画像処理領域を設定することを特徴とする、請求項1に記載の車両用対象物検出装置。   The second image processing area setting means sets the second image processing area for an object having the shortest distance from the host vehicle among the plurality of objects. Item 2. The vehicle object detection device according to Item 1. 前記自車両からの距離が最も短い対象物が静止物であることを特徴とする、請求項2に記載の車両用対象物検出装置。   The vehicle object detection device according to claim 2, wherein the object having the shortest distance from the host vehicle is a stationary object. 前記第2の画像処理領域設定手段は、前記静止物に対しては、前記静止物に対する第3の画像処理領域を、前記第2の画像処理領域として設定することを特徴とする、請求項3に記載の車両用対象物検出装置。   4. The second image processing area setting means sets, for the stationary object, a third image processing area for the stationary object as the second image processing area. The vehicle object detection device according to claim 1. 前記第2の画像処理領域設定手段は、前記第2の画像処理領域を前記第1の画像処理領域よりも狭く設定することを特徴とする、請求項1〜4いずれか1つに記載の車両用対象物検出装置。   The vehicle according to any one of claims 1 to 4, wherein the second image processing region setting means sets the second image processing region to be narrower than the first image processing region. Object detection device. 前記第2の画像処理領域設定手段は、前記自車両から見て同一方向に検出された複数の対象物間の距離が予め定めた第1のしきい値未満である場合に、第2の画像処理領域を設定することを特徴とする、請求項1〜5いずれか1つに記載の車両用対象物検出装置。   The second image processing area setting means is configured to output a second image when a distance between a plurality of objects detected in the same direction as viewed from the own vehicle is less than a predetermined first threshold value. The vehicle object detection device according to claim 1, wherein a processing region is set. 前記第2の画像処理領域設定手段は、前記自車両と、前記複数の対象物のうち前記自車両から最も近い対象物との距離が、予め定めた第2のしきい値未満である場合に、第2の画像処理領域を設定することを特徴とする、請求項1〜6いずれか1つに記載の車両用対象物検出装置。   The second image processing area setting means is configured such that a distance between the own vehicle and an object closest to the own vehicle among the plurality of objects is less than a predetermined second threshold value. The vehicle object detection device according to any one of claims 1 to 6, wherein a second image processing region is set. 前記画像情報取得手段は、前記第1の画像処理領域設定手段によって設定された第1の画像処理領域内の画像情報をさらに取得し、前記詳細情報取得手段は、前記レーダ情報取得手段により取得されたレーダ情報と、前記第1の画像処理領域内の画像情報とに基いて、第1の画像処理領域内の対象物についての詳細な情報を取得することを特徴とする、請求項1〜7いずれか1つに記載の車両用対象物検出装置。   The image information acquisition unit further acquires image information in the first image processing region set by the first image processing region setting unit, and the detailed information acquisition unit is acquired by the radar information acquisition unit. The detailed information about the object in the first image processing area is acquired based on the radar information obtained and the image information in the first image processing area. The vehicle object detection device according to any one of the above. 前記第2の画像処理領域設定手段は、前記レーダ情報取得手段によって取得されたレーダ情報に基いて前記自車両の周辺に複数の対象物が存在すると判定し、かつ、前記複数の対象物が前記第1の画像処理領域内に存在すると判定した場合に、前記第1の画像処理領域内に存在する前記複数の対象物は前記自車両から見て同一方向に存在すると判定することを特徴とする、請求項1〜8いずれか1つに記載の車両用対象物検出装置。   The second image processing region setting means determines that there are a plurality of objects around the vehicle based on the radar information acquired by the radar information acquisition means, and the plurality of objects are the When it is determined that the object exists in the first image processing area, it is determined that the plurality of objects existing in the first image processing area exist in the same direction as viewed from the host vehicle. The vehicle object detection device according to any one of claims 1 to 8. 前記詳細情報取得手段は、前記レーダ情報取得手段によって取得されたレーダ情報で示される対象物の位置が、前記画像情報取得手段によって取得された画像情報で示される前記対象物の領域内にある場合に、前記レーダ情報と前記画像情報とに基いて前記対象物についての詳細な情報を取得することを特徴とする、請求項1〜9いずれか1つに記載の車両用対象物検出装置。   The detailed information acquisition unit is configured such that the position of the object indicated by the radar information acquired by the radar information acquisition unit is within the area of the object indicated by the image information acquired by the image information acquisition unit. The vehicle object detection device according to claim 1, wherein detailed information about the object is acquired based on the radar information and the image information. 自車両周辺の対象物を検出する車両用対象物検出方法であって、
自車両周辺の対象物のレーダ情報を取得するレーダ情報取得ステップと、
自車両周辺の画像を撮像する画像撮像ステップと、
前記画像撮像ステップによって撮像された画像から画像情報を取得する対象となる第1の画像処理領域を設定する第1の画像処理領域設定ステップと、
前記レーダ情報取得ステップによって前記自車両から見て同一方向に複数の対象物のレーダ情報が取得された場合、前記第1の画像処理領域とは異なる第2の画像処理領域を設定する第2の画像処理領域設定ステップと、
前記第2の画像処理領域設定ステップによって設定された第2の画像処理領域内の画像情報を取得する画像情報取得ステップと、
前記レーダ情報取得ステップによって取得されたレーダ情報と、前記画像情報取得ステップによって取得された画像情報とに基いて、前記第2の画像処理領域内の対象物についての詳細な情報を取得する詳細情報取得ステップとを備える、車両用対象物検出方法。
An object detection method for a vehicle for detecting an object around the own vehicle,
A radar information acquisition step of acquiring radar information of an object around the host vehicle;
An image capturing step for capturing an image around the host vehicle;
A first image processing region setting step for setting a first image processing region that is a target for acquiring image information from the image captured by the image capturing step;
When radar information of a plurality of objects is acquired in the same direction as viewed from the host vehicle in the radar information acquisition step, a second image processing area that is different from the first image processing area is set. An image processing area setting step;
An image information acquisition step of acquiring image information in the second image processing region set by the second image processing region setting step;
Detailed information for acquiring detailed information about the object in the second image processing area based on the radar information acquired by the radar information acquisition step and the image information acquired by the image information acquisition step. A vehicle object detection method comprising: an acquisition step.
JP2010208317A 2010-09-16 2010-09-16 Vehicular object detection device and vehicular object detection method Pending JP2012064026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010208317A JP2012064026A (en) 2010-09-16 2010-09-16 Vehicular object detection device and vehicular object detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010208317A JP2012064026A (en) 2010-09-16 2010-09-16 Vehicular object detection device and vehicular object detection method

Publications (1)

Publication Number Publication Date
JP2012064026A true JP2012064026A (en) 2012-03-29

Family

ID=46059663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010208317A Pending JP2012064026A (en) 2010-09-16 2010-09-16 Vehicular object detection device and vehicular object detection method

Country Status (1)

Country Link
JP (1) JP2012064026A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062877A (en) * 2012-09-24 2014-04-10 Honda Motor Co Ltd Object recognition device
JP2014142202A (en) * 2013-01-22 2014-08-07 Denso Corp Vehicle-mounted target detection device
JP2015210191A (en) * 2014-04-25 2015-11-24 本田技研工業株式会社 Object detection device
JP2015215201A (en) * 2014-05-09 2015-12-03 本田技研工業株式会社 Object recognition device
JP2016148880A (en) * 2015-02-10 2016-08-18 国立大学法人金沢大学 Moving entity recognition method, moving entity recognition system, and entity recognition equipment
WO2016208309A1 (en) * 2015-06-26 2016-12-29 株式会社デンソー Vehicle control device and vehicle control method
JPWO2019159344A1 (en) * 2018-02-19 2020-07-30 三菱電機株式会社 Driving support device and video display method
US20210055409A1 (en) * 2019-08-21 2021-02-25 Apical Limited Topological model generation

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062877A (en) * 2012-09-24 2014-04-10 Honda Motor Co Ltd Object recognition device
JP2014142202A (en) * 2013-01-22 2014-08-07 Denso Corp Vehicle-mounted target detection device
JP2015210191A (en) * 2014-04-25 2015-11-24 本田技研工業株式会社 Object detection device
US9921304B2 (en) 2014-04-25 2018-03-20 Honda Motor Co., Ltd. Object detection apparatus
JP2015215201A (en) * 2014-05-09 2015-12-03 本田技研工業株式会社 Object recognition device
JP2016148880A (en) * 2015-02-10 2016-08-18 国立大学法人金沢大学 Moving entity recognition method, moving entity recognition system, and entity recognition equipment
WO2016208309A1 (en) * 2015-06-26 2016-12-29 株式会社デンソー Vehicle control device and vehicle control method
JP2017010498A (en) * 2015-06-26 2017-01-12 株式会社デンソー Vehicle control device
JPWO2019159344A1 (en) * 2018-02-19 2020-07-30 三菱電機株式会社 Driving support device and video display method
JP7050827B2 (en) 2018-02-19 2022-04-08 三菱電機株式会社 Driving support device and video display method
US20210055409A1 (en) * 2019-08-21 2021-02-25 Apical Limited Topological model generation
US11709252B2 (en) * 2019-08-21 2023-07-25 Arm Limited Topological model generation

Similar Documents

Publication Publication Date Title
JP5862785B2 (en) Collision determination device and collision determination method
JP2012064026A (en) Vehicular object detection device and vehicular object detection method
US9053554B2 (en) Object detection device using an image captured with an imaging unit carried on a movable body
US11014566B2 (en) Object detection apparatus
JP4883246B2 (en) Object detection apparatus and object detection method
CN105128836B (en) Autonomous emergency braking system and the wherein method of identifying rows people
JP6369390B2 (en) Lane junction determination device
JP4558758B2 (en) Obstacle recognition device for vehicles
JP6787157B2 (en) Vehicle control device
WO2009157548A1 (en) Object detector
JP6380232B2 (en) Object detection apparatus and object detection method
JP4985306B2 (en) Obstacle determination device and method, and vehicle equipped with an obstacle determination device
JP2009251953A (en) Moving object trajectory estimating device
JP6011625B2 (en) Speed calculation device, speed calculation method, and collision determination device
JP6722051B2 (en) Object detection device and object detection method
CN104603856A (en) Collision determination device and collision determination method
JP2017213943A (en) Parking assisting device and parking assisting method
JP2011164989A (en) Apparatus for determining unstable state
WO2017043358A1 (en) Object detecting device and object detecting method
JP2011053139A (en) Object detection device
WO2011036807A1 (en) Object detection device and object detection method
JP6496619B2 (en) Parking assistance device for vehicles
JP2012103858A (en) Obstacle recognition device
JP4872517B2 (en) Obstacle recognition device
US11407390B2 (en) Vehicle control apparatus and vehicle control method