JP2012063017A - Driving shaft - Google Patents

Driving shaft Download PDF

Info

Publication number
JP2012063017A
JP2012063017A JP2011283404A JP2011283404A JP2012063017A JP 2012063017 A JP2012063017 A JP 2012063017A JP 2011283404 A JP2011283404 A JP 2011283404A JP 2011283404 A JP2011283404 A JP 2011283404A JP 2012063017 A JP2012063017 A JP 2012063017A
Authority
JP
Japan
Prior art keywords
shaft
male spline
key
spline shaft
male
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011283404A
Other languages
Japanese (ja)
Inventor
Kenji Sakamoto
賢志 坂本
Hiroyuki Chiba
博行 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2011283404A priority Critical patent/JP2012063017A/en
Publication of JP2012063017A publication Critical patent/JP2012063017A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a driving shaft capable of preventing outbreaks of looseness and seizure due to abrasion by maintaining superior sliding between abutment surfaces over more long time when grease is used up in comparison with a case of coating with a resin film.SOLUTION: In this driving shaft 1, a surface of a key 21 of a male spline part 22 of a male spline shaft 2 out of the male spline shaft 2 and a female spline shaft 3, including an abutment surface 21a as a power transmitting surface to the other, is coated with a continuous diamond-like carbon film (6) having a Vickers hardness Hv of 1000 or more, a friction coefficient μ of 0.25 or less, and a film thickness in the abutment surface of at least 1-5 μm.

Description

本発明は、鉄道車輌、鉄鋼圧延機、自動車等において動力伝達に用いる駆動軸に関するものである。   The present invention relates to a drive shaft used for power transmission in railway vehicles, steel rolling mills, automobiles, and the like.

例えば、鉄道車両において、エンジンからトルクコンバータを介して、車軸に動力を伝達するための駆動軸は、走行中の車輪の上下動や、曲線を通過する際の台車の首振り等に応じて軸方向に伸縮されながら動力を伝達する必要がある。そのため、駆動軸としては、軸方向に伸縮可能で、かつ軸を中心とする回転方向に動力伝達可能に連結される雄スプライン軸と雌スプライン軸とを備えたものが一般的に用いられる。また、上記雄スプライン軸と雌スプライン軸とを備えた駆動軸は、鉄鋼圧延機において、モータと圧延ロールとを連結する駆動軸や、自動車のプロペラシャフト、ステアリング軸、ハンドルジョイント等にも用いられる。   For example, in a railway vehicle, the drive shaft for transmitting power from the engine to the axle via a torque converter is a shaft that depends on the vertical movement of the running wheel, the swing of the carriage when passing a curve, etc. It is necessary to transmit power while expanding and contracting in the direction. For this reason, as the drive shaft, a shaft provided with a male spline shaft and a female spline shaft that can be expanded and contracted in the axial direction and is connected so as to be able to transmit power in the rotational direction around the shaft is generally used. The drive shaft provided with the male spline shaft and the female spline shaft is also used for a drive shaft for connecting a motor and a rolling roll, a propeller shaft of an automobile, a steering shaft, a handle joint, etc. in a steel rolling mill. .

また、雄スプライン軸と雌スプライン軸とを備えた駆動軸としては、雄スプライン軸の外周と雌スプライン軸の内周とにそれぞれ、両スプライン軸の軸方向への摺動を許容しつつ、回転方向に当接して動力を伝達する当接面(動力伝達面)を備えたスプライン部を形成し、それぞれのスプライン部を、駆動軸の回転時に当接面同士が当接するように噛み合わせたタイプの駆動軸がある。   The drive shaft with male spline shaft and female spline shaft can be rotated while allowing the outer periphery of the male spline shaft and the inner periphery of the female spline shaft to slide in the axial direction of both spline shafts. Formed with spline parts with contact surfaces (power transmission surfaces) that contact in the direction and transmit power, and engage each spline part so that the contact surfaces contact each other when the drive shaft rotates There are drive shafts.

前記駆動軸には、軸の回転時に互いに当接された当接面同士の、軸方向へのスムースな摺動を確保するためにグリースが封入される。ところが、グリースは、スプライン軸が軸方向への伸縮を繰り返すことによって徐々に外部に押し出されるため、やがてグリース切れを生じて、金属同士の摩耗によるガタの発生や、焼き付き等を生じるという問題がある。   The drive shaft is filled with grease in order to ensure smooth sliding in the axial direction between the contact surfaces that are in contact with each other when the shaft rotates. However, since the grease is pushed out to the outside gradually as the spline shaft repeatedly expands and contracts in the axial direction, the grease eventually runs out, and there is a problem of looseness due to metal wear and seizure. .

そこで、両スプライン軸の当接面のうち少なくとも一方を、両スプライン軸を構成するステンレス鋼等の金属よりも摩擦係数が小さく、良好な摺動性を有する樹脂の被膜で被覆しておき、グリース切れが生じた際には、上記樹脂の被膜によって応急的に摺動を維持して、直ちにガタや焼き付き等を生じないようにすることが提案されている。   Therefore, at least one of the contact surfaces of the two spline shafts is coated with a resin film having a smaller friction coefficient than that of a metal such as stainless steel constituting the two spline shafts, and having good sliding properties. When cutting occurs, it has been proposed to maintain sliding as soon as possible with the resin film so that no play or seizure occurs immediately.

例えば、特許文献1には、前記駆動軸である回転シャフトにおいて、両スプライン軸のスプライン部のうち少なくとも一方の、他方のスプライン部への当接面を、ポリフェニレンサルファイド、ポリブチレンテレフタレート等の樹脂の被膜で被覆すること、上記被膜中に、炭酸カルシウム等の充てん材と、固体潤滑剤とを含有させることが記載されている。   For example, in Patent Document 1, in the rotating shaft that is the drive shaft, at least one of the spline portions of both spline shafts, the contact surface to the other spline portion is made of a resin such as polyphenylene sulfide or polybutylene terephthalate. It describes that it is coated with a coating, and that the coating contains a filler such as calcium carbonate and a solid lubricant.

また、特許文献2には、スプライン部等の、他部材への嵌合部を有する結合部材において、上記嵌合部を、ポリフェニレンサルファイド系樹脂からなる第1の樹脂層と、この第1の樹脂層を覆う、ナイロン系等の樹脂からなる第2の樹脂層とで被覆することが記載されている。
さらに、特許文献3には、駆動軸としての車輌ステアリング用伸縮軸において、両スプライン軸のスプライン部の、他方のスプライン部への当接面を、それぞれポリテトラフルオロエチレン(PTFE)の被膜で被覆することが記載されている。
Further, in Patent Document 2, in a coupling member having a fitting portion to another member such as a spline portion, the fitting portion includes a first resin layer made of polyphenylene sulfide resin and the first resin. It describes that it coat | covers with the 2nd resin layer which consists of resin of nylon etc. which covers a layer.
Further, in Patent Document 3, in a telescopic shaft for vehicle steering as a drive shaft, the contact surface of the spline portion of both spline shafts to the other spline portion is coated with a polytetrafluoroethylene (PTFE) coating, respectively. It is described to do.

特開2001−336543号公報(請求項1〜3、第0005欄〜第0010欄)JP 2001-336543 A (claims 1 to 3, columns 0005 to 0010) 特開2003−11280号公報(請求項1〜2、第0005欄〜第0007欄)JP2003-11280A (Claims 1-2, columns 0005 to 0007) 特開2003−54421号公報(請求項1、第0006欄〜第0009欄)JP 2003-54421 A (Claim 1, columns 0006 to 0009)

ところが、樹脂の被膜では、グリース切れが生じた際に当接面の摺動を維持する効果が十分でない場合がある。特に、高速で回転しながら、なおかつ高速で軸方向に伸縮されることの多い鉄道車両用の駆動軸や、当接面に極めて高い荷重が加わる鉄鋼圧延機の駆動軸において、スプライン部の当接面を樹脂の被膜で被覆した場合、当該被膜は、グリース切れが生じるとごく短時間で摩耗されて消滅してしまう。そのため、グリース切れが生じた際に、樹脂の被膜によって当接面の摺動を維持する効果はごく短時間しか持続されず、その後、短時間で、金属同士の摩耗によるガタの発生や、焼き付き等を生じるという問題がある。   However, in the case of a resin coating, there is a case where the effect of maintaining the sliding of the contact surface is not sufficient when the grease runs out. In particular, the spline part abuts on a railway vehicle drive shaft that rotates at a high speed and often expands and contracts in the axial direction at a high speed, and a steel rolling mill drive shaft that applies a very high load to the abutment surface. When the surface is coated with a resin film, the film is worn and disappears in a very short time when the grease runs out. Therefore, the effect of maintaining the sliding of the abutting surface by the resin coating lasts only for a very short time when the grease breaks out, and then, in a short time, the occurrence of looseness due to metal wear and seizure There is a problem that causes.

本発明の目的は、樹脂の被膜で被覆した場合に比べて、グリース切れが生じた際に、より長時間に亘って、当接面同士の良好な摺動を維持して、摩耗によるガタの発生や、焼き付き等を防止することができる駆動軸を提供することにある。   The object of the present invention is to maintain good sliding between the contact surfaces over a longer period of time when grease breakage occurs as compared with the case of coating with a resin coating, An object of the present invention is to provide a drive shaft that can prevent generation, burn-in, and the like.

本発明の駆動軸は、雄スプライン軸(2)と雌スプライン軸(3)とを備え、
前記雄スプライン軸(2)は全体が金属によって一体に形成され、前記雄スプライン軸(2)の、雌スプライン軸(3)と連結される端部の外周面には、前記外周面から径方向外方に向けて多数のキー(21)が突設されて雄スプライン部(22)が構成され、
前記雌スプライン軸(3)は全体が金属によって一体に形成され、前記雌スプライン軸(3)の、雄スプライン軸(2)と連結される端部は、雄スプライン軸(2)側の端部に開口(30)が形成され、前記開口(30)を通して内部に雄スプライン部(22)が挿入される筒状に形成されていると共に、筒の内周面には、前記内周面から径方向外方に向けて、前記雄スプライン部(22)のキー(21)と噛み合わされる多数のキー溝(31)が凹入されて雌スプライン部(32)が構成され、
前記雄スプライン部(22)を構成する各キー(21)の両側面、および雌スプライン部(32)を構成する各キー溝(31)の両側面は、それぞれ動力伝達面としての当接面(21a)(31a)とされ、
前記雄スプライン軸(2)と雌スプライン軸(3)とが、前記キー(21)とキー溝(31)とを噛み合わせて互いの当接面(21a)(31a)を軸方向に摺動可能に当接させた状態で、軸方向に伸縮可能で、かつ軸を中心とする回転方向に動力伝達可能に連結される駆動軸(1)であって、
前記雄スプライン部(22)を構成する各キー(21)の両側面である当接面(21a)と、頂面(21b)と、雄スプライン軸(2)の外周面に相当する、隣り合うキー(21)間の底面(21c)とが、ビッカース硬さHvが1000以上、摩擦係数μが0.25以下で、かつ少なくとも当接面(21a)の膜厚が1〜5μmの、連続したダイヤモンドライクカーボン膜(6)によって被覆されていると共に、
前記雌スプライン部(32)を構成する各キー溝(31)の両側面である当接面(31a)と、キー溝(31)の底面(31b)と、隣り合うキー溝(31)間の凸条(36)の頂面(31c)とは、前記ダイヤモンドライクカーボン膜(6)によって被覆せずに金属の下地が露出されており、かつ
前記雄スプライン部(22)と雌スプライン部(32)との間にグリースが封入されていて、
前記雄スプライン部(22)と前記雌スプライン部(32)とは高速で回転しながら高速で軸方向に伸縮されることを特徴とするものである。
The drive shaft of the present invention comprises a male spline shaft (2) and a female spline shaft (3),
The male spline shaft (2) is integrally formed of metal as a whole, and the outer surface of the male spline shaft (2) connected to the female spline shaft (3) has a radial direction from the outer peripheral surface. A large number of keys (21) project outwardly to form a male spline part (22),
The female spline shaft (3) is integrally formed of metal as a whole, and the end of the female spline shaft (3) connected to the male spline shaft (2) is an end on the male spline shaft (2) side. An opening (30) is formed in the tube, and the male spline portion (22) is inserted into the inside through the opening (30). A large number of key grooves (31) meshed with the key (21) of the male spline part (22) are recessed toward the outside in the direction to form a female spline part (32),
Both side surfaces of each key (21) constituting the male spline portion (22) and both side surfaces of each key groove (31) constituting the female spline portion (32) are contact surfaces as power transmission surfaces ( 21a) (31a)
The male spline shaft (2) and the female spline shaft (3) are engaged with the key (21) and the key groove (31) and slide in the contact surfaces (21a) (31a) in the axial direction. A drive shaft (1) that can be expanded and contracted in the axial direction in a state in which it can be contacted, and is connected so as to be able to transmit power in a rotational direction around the shaft,
Adjacent to the contact surface (21a), the top surface (21b), and the outer peripheral surface of the male spline shaft (2), which are both side surfaces of each key (21) constituting the male spline portion (22). The bottom surface (21c) between the keys (21) is continuous with a Vickers hardness Hv of 1000 or more, a friction coefficient μ of 0.25 or less, and at least a thickness of the contact surface (21a) of 1 to 5 μm. Covered with a diamond-like carbon film (6),
The contact surfaces (31a) that are both side surfaces of each key groove (31) constituting the female spline portion (32), the bottom surface (31b) of the key groove (31), and the adjacent key grooves (31) The top surface (31c) of the ridge (36) is not covered with the diamond-like carbon film (6) and the metal base is exposed, and the male spline portion (22) and the female spline portion (32 ) Is filled with grease,
The male spline part (22) and the female spline part (32) are characterized by being expanded and contracted in the axial direction at high speed while rotating at high speed.

本発明によれば、雄スプライン部のキーの両側面である動力伝達面としての当接面と、前記キーの頂面と、隣り合うキー間の底面とを、ビッカース硬さHvが1000以上という高い硬度を有し、グリース切れが発生しても短時間で摩耗されて消滅してしまわない強固なダイヤモンドライクカーボン膜(DLC膜)によって被覆していると共に、当該DLC膜が、摩擦係数μが0.25以下という良好な摺動性を有している上、その少なくとも当接面の膜厚が1〜5μmであることから、たとえグリース切れが発生しても、樹脂の被膜に比べてより長期間に亘って、当接面(動力伝達面)同士の良好な摺動を維持して、金属同士の摩耗によるガタの発生や、焼き付き等を防止することが可能となる。
なおDLC膜にタングステンを含有させることによって、当該DLC膜の下地に対する密着性をさらに向上させると共に、摩擦係数μをより一層低下させることもできる。
According to the present invention, the Vickers hardness Hv is 1000 or more between the contact surface as a power transmission surface that is both sides of the key of the male spline part, the top surface of the key, and the bottom surface between adjacent keys. It is coated with a strong diamond-like carbon film (DLC film) that has high hardness and does not wear out and disappear in a short time even if grease breaks, and the DLC film has a friction coefficient μ In addition to having good slidability of 0.25 or less, the film thickness of at least the contact surface is 1 to 5 μm. It is possible to maintain good sliding between the contact surfaces (power transmission surfaces) over a long period of time, and to prevent play and seizure due to wear of metals.
By adding tungsten to the DLC film, the adhesion of the DLC film to the base can be further improved and the friction coefficient μ can be further reduced.

本発明の一実施形態にかかる駆動軸の全体を示す一部切り欠き正面図である。It is a partially cutaway front view showing the whole drive shaft concerning one embodiment of the present invention. 上記例の駆動軸の要部である、雄スプライン軸の雄スプライン部と、雌スプライン軸の雌スプライン部とを噛み合わせた部分を示す、図1のII−II線断面図である。FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1 showing a portion where the male spline portion of the male spline shaft and the female spline portion of the female spline shaft, which are the main parts of the drive shaft of the above example, are engaged. 上記雄スプライン部の一部を拡大した断面図である。It is sectional drawing to which some male spline parts were expanded. 雌スプライン部の一部を拡大した断面図である。It is sectional drawing to which a part of female spline part was expanded. 本発明の実施例において、DLC膜のすべり試験を行った装置の概略を説明する図である。In the Example of this invention, it is a figure explaining the outline of the apparatus which performed the slip test of the DLC film. 本発明の実施例において、DLC膜の転がり試験を行った装置の概略を説明する図である。In the Example of this invention, it is a figure explaining the outline of the apparatus which performed the rolling test of the DLC film. 転がり試験において求めた、SUJ2玉の接触面圧と、DLC膜が寿命に到るまでの回転回数との関係を示すグラフである。It is a graph which shows the relationship between the contact surface pressure of the SUJ2 ball | bowl calculated | required in the rolling test, and the frequency | count of rotation until a DLC film reaches the lifetime.

図1は、本発明の一実施形態にかかる駆動軸の全体を示す一部切り欠き正面図である。また、図2は、上記例の駆動軸の要部である、雄スプライン軸の雄スプライン部と、雌スプライン軸の雌スプライン部とを噛み合わせた部分を示す、図1のII−II線断面図である。さらに、図3は、上記雄スプライン部の一部を拡大した断面図、図4は、雌スプライン部の一部を拡大した断面図である。   FIG. 1 is a partially cutaway front view showing the entire drive shaft according to an embodiment of the present invention. 2 is a cross-sectional view taken along the line II-II in FIG. 1, showing a portion where the male spline portion of the male spline shaft and the female spline portion of the female spline shaft are meshed, which is a main part of the drive shaft of the above example. FIG. 3 is an enlarged cross-sectional view of a part of the male spline part, and FIG. 4 is an enlarged cross-sectional view of a part of the female spline part.

図1および図2を参照して、この例の駆動軸1は、いずれもステンレス鋼等の金属によって形成された雄スプライン軸2と雌スプライン軸3とを備えており、このうち雄スプライン軸2の、雌スプライン軸3と連結される端部の外周面には、当該外周面から径方向外方に向けて、多数のキー21が、雄スプライン軸2の軸方向と平行で、かつ周方向に等間隔に突設されて、雄スプライン部22が構成されている。また、雄スプライン軸2の、雄スプライン部22が形成された側と反対側の端部23には、駆動軸1を、図示しない駆動入力軸または駆動出力軸と連結するための十字軸継ぎ手4が接続されている。   Referring to FIGS. 1 and 2, the drive shaft 1 of this example includes a male spline shaft 2 and a female spline shaft 3 both of which are made of metal such as stainless steel. On the outer peripheral surface of the end portion connected to the female spline shaft 3, a large number of keys 21 are parallel to the axial direction of the male spline shaft 2 from the outer peripheral surface outward in the radial direction. The male spline portion 22 is configured to protrude at equal intervals. Further, a cross shaft joint 4 for connecting the drive shaft 1 to a drive input shaft or drive output shaft (not shown) at the end 23 of the male spline shaft 2 opposite to the side where the male spline portion 22 is formed. Is connected.

また、図1および図2を参照して、雌スプライン軸3は、雄スプライン軸2側の端部に開口30が形成され、この開口30を通して、内部に雄スプライン部22が挿入される筒状に形成されていると共に、筒の内周面には、当該内周面から径方向外方に向けて、上記雄スプライン部22のキー21と噛み合わされる多数のキー溝31が、雌スプライン軸3の軸方向と平行で、かつ周方向に等間隔に凹入されて、雌スプライン部32が構成されている。また、雌スプライン軸3の、開口30側と反対側の端部33には、駆動軸1を、図示しない駆動出力軸または駆動入力軸と連結するための十字軸継手5が接続されている。   1 and 2, the female spline shaft 3 has a cylindrical shape in which an opening 30 is formed at the end on the male spline shaft 2 side, and the male spline portion 22 is inserted into the inside through the opening 30. And a plurality of key grooves 31 meshed with the key 21 of the male spline portion 22 from the inner peripheral surface outward in the radial direction from the inner peripheral surface. A female spline portion 32 is formed in parallel with the axial direction of 3 and recessed at equal intervals in the circumferential direction. A cross shaft joint 5 for connecting the drive shaft 1 to a drive output shaft or drive input shaft (not shown) is connected to the end 33 of the female spline shaft 3 opposite to the opening 30 side.

また、雌スプライン軸3の、開口30側の端部には略筒状の固定部材34を介して、ゴムや樹脂等からなる環状のシール部材35が取り付けられており、このシール部材35を、筒内に挿入された雄スプライン軸2の外周面に当接させることによって、両スプライン軸2、3間がシールされている。そして、このシールによって、両スプライン軸2、3が軸方向への伸縮を繰り返した際に、当該両スプライン軸2、3のスプライン部22、32間に封入したグリースが外部に押出されるのが抑制されると共に、砂埃等の異物が両スプライン部22、32間に侵入するのが防止される。   An annular seal member 35 made of rubber, resin, or the like is attached to the end of the female spline shaft 3 on the opening 30 side via a substantially cylindrical fixing member 34. The space between both the spline shafts 2 and 3 is sealed by contacting the outer peripheral surface of the male spline shaft 2 inserted into the cylinder. And when both the spline shafts 2 and 3 are repeatedly expanded and contracted in the axial direction by this seal, the grease sealed between the spline portions 22 and 32 of the two spline shafts 2 and 3 is pushed out to the outside. In addition to being suppressed, foreign matters such as dust are prevented from entering between the spline portions 22 and 32.

図2を参照して、両スプライン部22、32の噛み合い部には、微小なクリアランスが設定されており、このクリアランスによって形成される両者の隙間に、グリースが封入される。
図2および図3を参照して、雄スプライン部22を構成する各キー21は、その両側面が、動力伝達面としての当接面21aとされている。また、図2および図4を参照して、雌スプライン部32を構成する各キー溝31は、キー21と噛み合わされた際に、上記当接面21aと対向する両側面が、動力伝達面としての当接面31aとされている。そして、駆動軸1の回転時には、各キー21の、いずれか一方の当接面21aと、各キー溝31の、上記当接面21aに対向する当接面31aとが互いに当接することによって、両スプライン軸2、3間で動力が伝達される。
Referring to FIG. 2, a minute clearance is set in the meshing portion of both spline portions 22 and 32, and grease is sealed in the gap formed by this clearance.
Referring to FIGS. 2 and 3, each key 21 constituting male spline portion 22 has both side surfaces as contact surfaces 21 a as power transmission surfaces. 2 and 4, each of the key grooves 31 constituting the female spline portion 32 has both side surfaces facing the contact surface 21 a as power transmission surfaces when meshed with the key 21. The contact surface 31a. When the drive shaft 1 rotates, any one contact surface 21a of each key 21 and each contact surface 31a of each key groove 31 opposite to the contact surface 21a contact each other. Power is transmitted between the spline shafts 2 and 3.

図3を参照して、上記雄スプライン部22を構成する各キー21の両側面である当接面21aと、頂面21bと、雄スプライン軸2の外周面に相当する、隣り合うキー21間の底面21cとは、ビッカース硬さHvが1000以上、摩擦係数μが0.25以下で、かつ少なくとも当接面の膜厚が1〜5μmの、連続したDLC膜6によって被覆されている。
これにより、グリース切れが発生した際には、当接面21a、31a間での摩耗や焼き付きを防止できるだけでなく、キー21とキー溝31とが、前記当接面21a、31a以外の面同士の間でも摩耗して、焼き付き等を生じることも防止できる。
また前記DLC膜6を、金属の下地にケイ素膜、クロム膜等を形成した上に積層すると、当該DLC膜6の密着性を向上させると共に、摩擦係数μを低下させることができる。
Referring to FIG. 3, a contact surface 21 a that is both side surfaces of each key 21 constituting the male spline portion 22, a top surface 21 b, and an interval between adjacent keys 21 corresponding to the outer peripheral surface of the male spline shaft 2. The bottom surface 21c is covered with a continuous DLC film 6 having a Vickers hardness Hv of 1000 or more, a friction coefficient μ of 0.25 or less, and at least a thickness of a contact surface of 1 to 5 μm.
As a result, when the grease runs out, it is possible not only to prevent wear and seizure between the contact surfaces 21a and 31a, but also the key 21 and the key groove 31 are formed between surfaces other than the contact surfaces 21a and 31a. It is also possible to prevent seizure or the like from being worn even during the period.
Further, when the DLC film 6 is laminated on a metal base having a silicon film, a chromium film or the like formed thereon, the adhesion of the DLC film 6 can be improved and the friction coefficient μ can be lowered.

一方、上記雄スプライン部22と噛み合わされる雌スプライン部32を構成する各キー溝31の両側面である当接面31a、底面31b、および隣り合うキー溝31間の凸条36の頂面31cは、DLC膜によって被覆せずに金属の下地を露出させておく。
雌スプライン部32の表面はDLC膜によって被覆せず、雄スプライン部22の表面のみをDLC膜6によって被覆するだけで、先に述べたDLC膜6の機能によって、樹脂の被膜に比べてより長期間に亘って、当接面21a、31aの良好な摺動を維持して、金属同士の摩耗によるガタの発生や、焼き付き等を防止することができる。
On the other hand, the contact surface 31a, the bottom surface 31b, and the top surface 31c of the ridge 36 between the adjacent key grooves 31 which are both side surfaces of each key groove 31 constituting the female spline part 32 engaged with the male spline part 22 are described. In this case, the metal base is exposed without being covered with the DLC film.
The surface of the female spline part 32 is not covered with the DLC film, and only the surface of the male spline part 22 is covered with the DLC film 6, and the function of the DLC film 6 is longer than that of the resin film. Over the period, it is possible to maintain good sliding of the contact surfaces 21a and 31a, and to prevent the occurrence of play due to wear between metals and seizure.

DLC膜は、例えばスパッタリング法等の、従来公知の種々の気相成長法によって成膜することができる。スパッタリング法によるDLC膜の成膜方法の例を挙げると、圧力が1.33×10−1〜1.33×10Paとなるようにアルゴンガス、炭化水素ガス等の導入ガスを導入したチャンバ内で、ターゲットとしての炭素に対して、電圧100〜200V、電流2〜10A程度の条件で放電処理を行うことにより、スプライン軸2、3の所定の面に炭素を蒸着させる。そうすると、上記所定の面に、グラファイト(SP2)構造とダイヤモンド(SP3)構造とが共存した非晶質構造からなるDLC膜が形成される。 The DLC film can be formed by various conventionally known vapor deposition methods such as sputtering. An example of a method for forming a DLC film by sputtering is a chamber into which an introduction gas such as argon gas or hydrocarbon gas is introduced so that the pressure is 1.33 × 10 −1 to 1.33 × 10 2 Pa. The carbon is vapor-deposited on the predetermined surfaces of the spline shafts 2 and 3 by performing a discharge process on the carbon as a target under conditions of a voltage of 100 to 200 V and a current of about 2 to 10 A. Then, a DLC film having an amorphous structure in which a graphite (SP2) structure and a diamond (SP3) structure coexist is formed on the predetermined surface.

また、他の成膜方法の例としては、ベンゼンを原料ガスとしたイオンビーム蒸着によるイオンプレーティング法等の物理蒸着(PVD)法や、成膜ガスとして炭化水素化合物を用いたプラズマCVD法等の化学蒸着(CVD)法等が挙げられる。また、プラズマジェットを利用したプラズマ溶射等の溶射法を採用することもできる。
また、DLC膜にタングステンを含有させることによって、当該DLC膜の下地に対する密着性を向上させると共に、摩擦係数μを低下させることができる。
Examples of other film forming methods include physical vapor deposition (PVD) methods such as ion plating using ion beam evaporation using benzene as a source gas, plasma CVD methods using hydrocarbon compounds as film forming gases, and the like. And the chemical vapor deposition (CVD) method. Also, a spraying method such as plasma spraying using a plasma jet can be employed.
In addition, by including tungsten in the DLC film, the adhesion of the DLC film to the base can be improved and the friction coefficient μ can be reduced.

以下に、実施例に基づいて本発明を説明する。
DLC膜の形成:
動力伝達面のモデルとしての、ステンレス鋼SUS440C製の基板の片面に、プラズマCVD法、またはスパッタリング法によって、表1に示す実施例1〜3のDLC膜を形成した。なお、表中、成膜方法の欄のP−CVDはプラズマCVD法、PVDはスパッタリング法を示す。
Hereinafter, the present invention will be described based on examples.
Formation of DLC film:
The DLC films of Examples 1 to 3 shown in Table 1 were formed on one surface of a stainless steel SUS440C substrate as a power transmission surface model by plasma CVD or sputtering. In the table, P-CVD in the column of the film formation method indicates a plasma CVD method, and PVD indicates a sputtering method.

Figure 2012063017
Figure 2012063017

すべり試験:
図5に示すように、上記各実施例の基板90を、DLC膜91を形成した面を上にして、回転軸Sの先端に固定し、次いで5/32”のSUJ2玉Bを、自転しないように固定した状態で、図中に白矢印で示すように1.0GPaの荷重をかけてDLC膜91の表面に圧接しながら、回転軸Sを摺動速度0.1m/sで回転させた。そして、DLC膜91とSUJ2玉Bとの摺動距離が360mに達するまで回転させて、試験最終時に、SUJ2玉Bに、基板90の回転方向に加わった応力から、摩擦係数μを求めた。また、試験終了後に、DLC膜91の表面に発生した摩耗痕跡の長さを測定した。上記の試験は、比較のため表面にDLC膜91を形成していない、ステンレス鋼SUS440C製の基板90に対しても行った。結果を表2に示す。なお、表中の従来例1は、DLC膜91を形成していないステンレス鋼製の基板を示す。
Slip test:
As shown in FIG. 5, the substrate 90 of each of the above embodiments is fixed to the tip of the rotating shaft S with the surface on which the DLC film 91 is formed facing up, and then the 5/32 ″ SUJ2 ball B does not rotate. In the fixed state, the rotary shaft S was rotated at a sliding speed of 0.1 m / s while applying pressure of 1.0 GPa and pressing the surface of the DLC film 91 as indicated by a white arrow in the figure. The DLC film 91 and the SUJ2 ball B were rotated until the sliding distance reached 360 m, and the friction coefficient μ was obtained from the stress applied to the SUJ2 ball B in the rotation direction of the substrate 90 at the end of the test. In addition, after the test, the length of wear traces generated on the surface of the DLC film 91 was measured, and the above test was performed on the substrate 90 made of stainless steel SUS440C in which the DLC film 91 was not formed on the surface for comparison. Table 2 shows the results. Shown. Here, the conventional example 1 in the table indicates a substrate made of stainless steel does not form a DLC film 91.

Figure 2012063017
Figure 2012063017

表より、ステンレス鋼製の基板の表面にDLC膜を形成することで、摩擦係数を大きく低減できること、摺動による摩耗を防止できることが確認された。また下地にケイ素膜、またはクロム膜を形成した上にDLC膜を積層することによって、当該DLC膜の密着性を向上させると共に、摩擦係数μを低下できること、DLC膜にタングステンを含有させることによって、前記密着性をさらに向上させると共に、摩擦係数μをより一層低下できることがわかった。   From the table, it was confirmed that by forming a DLC film on the surface of a stainless steel substrate, the friction coefficient can be greatly reduced and wear due to sliding can be prevented. Further, by laminating a DLC film on a silicon film or chromium film formed on the base, the adhesion of the DLC film can be improved and the friction coefficient μ can be reduced, and by adding tungsten to the DLC film, It was found that the adhesion can be further improved and the friction coefficient μ can be further reduced.

転がり試験:
図6に示すように、上記各実施例の基板90を、DLC膜91を形成した面を上にして、潤滑油としてスピンドル油(6.6mm2/s)Lを満たした容器C中に浸漬し、次いでDLC膜91の上に、スラスト玉軸受を構成する3/8”のSUJ2玉B(11個)と保持器Rと内輪IRとを組み立てると共に、内輪IRに回転軸Sを取り付けた。そして、図中に白矢印で示すように、SUJ2玉Bを、一定の接触面圧でDLC膜91の表面に圧接しながら、回転軸Sを毎分1200回の回転速度で最大108回転まで回転させて、DLC膜91が寿命に到るまでの回転回数を求める試験を、数段階の異なる接触面圧について繰り返し行った。結果を図7に示す。なお、実施例3のDLC膜は、108回転まで回転させても寿命に到らず、図7に結果を記載できなかったが、長寿命であることが確認された。また、実施例1、2を比較すると、下地にケイ素膜を形成した上にDLC膜を積層することによって、DLC膜の寿命を向上できることがわかった。
Rolling test:
As shown in FIG. 6, the substrate 90 of each of the above embodiments is immersed in a container C filled with spindle oil (6.6 mm 2 / s) L as a lubricating oil with the surface on which the DLC film 91 is formed facing up. Then, on the DLC film 91, 3/8 ″ SUJ2 balls B (11 pieces) constituting the thrust ball bearing, the cage R and the inner ring IR were assembled, and the rotating shaft S was attached to the inner ring IR. As shown by the white arrow in the figure, while rotating the SUJ2 ball B against the surface of the DLC film 91 with a constant contact surface pressure, the rotation axis S is rotated at a rotation speed of 1200 times per minute to a maximum of 108 rotations. The test for determining the number of rotations until the DLC film 91 reaches the end of its life was repeated for several different contact surface pressures, and the results are shown in Fig. 7. The DLC film of Example 3 has 108 rotations. Even if it is rotated to the end, it will not reach the end of its life. Although the results could not be described, it was confirmed that the lifetime was long, and when Examples 1 and 2 were compared, the lifetime of the DLC film was obtained by laminating the DLC film on the silicon film formed on the base. It was found that can be improved.

1…駆動軸、2…雄スプライン軸、3…雌スプライン軸、21a、31a…当接面(動力伝達面)、6…DLC膜 DESCRIPTION OF SYMBOLS 1 ... Drive shaft, 2 ... Male spline shaft, 3 ... Female spline shaft, 21a, 31a ... Contact surface (power transmission surface), 6 ... DLC film

Claims (2)

雄スプライン軸(2)と雌スプライン軸(3)とを備え、
前記雄スプライン軸(2)は全体が金属によって一体に形成され、前記雄スプライン軸(2)の、雌スプライン軸(3)と連結される端部の外周面には、前記外周面から径方向外方に向けて多数のキー(21)が突設されて雄スプライン部(22)が構成され、
前記雌スプライン軸(3)は全体が金属によって一体に形成され、前記雌スプライン軸(3)の、雄スプライン軸(2)と連結される端部は、雄スプライン軸(2)側の端部に開口(30)が形成され、前記開口(30)を通して内部に雄スプライン部(22)が挿入される筒状に形成されていると共に、筒の内周面には、前記内周面から径方向外方に向けて、前記雄スプライン部(22)のキー(21)と噛み合わされる多数のキー溝(31)が凹入されて雌スプライン部(32)が構成され、
前記雄スプライン部(22)を構成する各キー(21)の両側面、および雌スプライン部(32)を構成する各キー溝(31)の両側面は、それぞれ動力伝達面としての当接面(21a)(31a)とされ、
前記雄スプライン軸(2)と雌スプライン軸(3)とが、前記キー(21)とキー溝(31)とを噛み合わせて互いの当接面(21a)(31a)を軸方向に摺動可能に当接させた状態で、軸方向に伸縮可能で、かつ軸を中心とする回転方向に動力伝達可能に連結される駆動軸(1)であって、
前記雄スプライン部(22)を構成する各キー(21)の両側面である当接面(21a)と、頂面(21b)と、雄スプライン軸(2)の外周面に相当する、隣り合うキー(21)間の底面(21c)とが、ビッカース硬さHvが1000以上、摩擦係数μが0.25以下で、かつ少なくとも当接面の膜厚が1〜5μmの、連続したダイヤモンドライクカーボン膜(6)によって被覆されていると共に、
前記雌スプライン部(32)を構成する各キー溝(31)の両側面である当接面(31a)と、キー溝(31)の底面(31b)と、隣り合うキー溝(31)間の凸条(36)の頂面(31c)とは、前記ダイヤモンドライクカーボン膜(6)によって被覆せずに金属の下地が露出されており、かつ
前記雄スプライン部(22)と雌スプライン部(32)との間にグリースが封入されていて、
前記雄スプライン部(22)と前記雌スプライン部(32)とは高速で回転しながら高速で軸方向に伸縮されることを特徴とする駆動軸。
It has a male spline shaft (2) and a female spline shaft (3),
The male spline shaft (2) is integrally formed of metal as a whole, and the outer surface of the male spline shaft (2) connected to the female spline shaft (3) has a radial direction from the outer peripheral surface. A large number of keys (21) project outwardly to form a male spline part (22),
The female spline shaft (3) is integrally formed of metal as a whole, and the end of the female spline shaft (3) connected to the male spline shaft (2) is an end on the male spline shaft (2) side. An opening (30) is formed in the tube, and the male spline portion (22) is inserted into the inside through the opening (30). A large number of key grooves (31) meshed with the key (21) of the male spline part (22) are recessed toward the outside in the direction to form a female spline part (32),
Both side surfaces of each key (21) constituting the male spline portion (22) and both side surfaces of each key groove (31) constituting the female spline portion (32) are contact surfaces as power transmission surfaces ( 21a) (31a)
The male spline shaft (2) and the female spline shaft (3) are engaged with the key (21) and the key groove (31) and slide in the contact surfaces (21a) (31a) in the axial direction. A drive shaft (1) that can be expanded and contracted in the axial direction in a state in which it can be contacted, and is connected so as to be able to transmit power in a rotational direction around the shaft,
Adjacent to the contact surface (21a), the top surface (21b), and the outer peripheral surface of the male spline shaft (2), which are both side surfaces of each key (21) constituting the male spline portion (22). The bottom surface (21c) between the keys (21) is a continuous diamond-like carbon having a Vickers hardness Hv of 1000 or more, a friction coefficient μ of 0.25 or less, and at least a contact surface thickness of 1 to 5 μm. Covered with a membrane (6),
The contact surfaces (31a) that are both side surfaces of each key groove (31) constituting the female spline portion (32), the bottom surface (31b) of the key groove (31), and the adjacent key grooves (31) The top surface (31c) of the ridge (36) is not covered with the diamond-like carbon film (6) and the metal base is exposed, and the male spline portion (22) and the female spline portion (32 ) Is filled with grease,
The drive shaft characterized in that the male spline part (22) and the female spline part (32) are expanded and contracted in the axial direction at high speed while rotating at high speed.
前記ダイヤモンドライクカーボン膜(6)は、タングステンを含有している請求項1に記載の駆動軸。   The drive shaft according to claim 1, wherein the diamond-like carbon film (6) contains tungsten.
JP2011283404A 2011-12-26 2011-12-26 Driving shaft Pending JP2012063017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011283404A JP2012063017A (en) 2011-12-26 2011-12-26 Driving shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011283404A JP2012063017A (en) 2011-12-26 2011-12-26 Driving shaft

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010194428A Division JP2011002096A (en) 2010-08-31 2010-08-31 Driving shaft

Publications (1)

Publication Number Publication Date
JP2012063017A true JP2012063017A (en) 2012-03-29

Family

ID=46058914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011283404A Pending JP2012063017A (en) 2011-12-26 2011-12-26 Driving shaft

Country Status (1)

Country Link
JP (1) JP2012063017A (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114660Y2 (en) * 1980-11-19 1986-05-08
JPH0128342B2 (en) * 1980-02-05 1989-06-02 Toyo Roshi Kaisha
JP2001003946A (en) * 1999-06-22 2001-01-09 Koyo Seiko Co Ltd Cylinder shaft
JP2001317559A (en) * 2000-05-12 2001-11-16 Koyo Seiko Co Ltd Shaft coupling
JP2002235748A (en) * 2001-02-13 2002-08-23 Koyo Seiko Co Ltd Rolling sliding component
JP2003011280A (en) * 2001-07-04 2003-01-15 Koyo Seiko Co Ltd Connecting member having fitting part
JP2003054420A (en) * 2001-08-08 2003-02-26 Nsk Ltd Extension shaft for steering vehicle
JP2003120695A (en) * 1993-05-28 2003-04-23 Nsk Ltd Sliding member
JP2003245485A (en) * 2002-02-22 2003-09-02 Brother Ind Ltd Sewing machine
JP2003254340A (en) * 2002-03-06 2003-09-10 Koyo Seiko Co Ltd Bearing device
JP2004066970A (en) * 2002-08-06 2004-03-04 Yamada Seisakusho Co Ltd Steering shaft and manufacturing method therefor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0128342B2 (en) * 1980-02-05 1989-06-02 Toyo Roshi Kaisha
JPS6114660Y2 (en) * 1980-11-19 1986-05-08
JP2003120695A (en) * 1993-05-28 2003-04-23 Nsk Ltd Sliding member
JP2001003946A (en) * 1999-06-22 2001-01-09 Koyo Seiko Co Ltd Cylinder shaft
JP2001317559A (en) * 2000-05-12 2001-11-16 Koyo Seiko Co Ltd Shaft coupling
JP2002235748A (en) * 2001-02-13 2002-08-23 Koyo Seiko Co Ltd Rolling sliding component
JP2003011280A (en) * 2001-07-04 2003-01-15 Koyo Seiko Co Ltd Connecting member having fitting part
JP2003054420A (en) * 2001-08-08 2003-02-26 Nsk Ltd Extension shaft for steering vehicle
JP2003245485A (en) * 2002-02-22 2003-09-02 Brother Ind Ltd Sewing machine
JP2003254340A (en) * 2002-03-06 2003-09-10 Koyo Seiko Co Ltd Bearing device
JP2004066970A (en) * 2002-08-06 2004-03-04 Yamada Seisakusho Co Ltd Steering shaft and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP5935370B2 (en) Roller bearing
WO2012132968A1 (en) Roller bearing
US8518863B2 (en) Sliding member
JP5240497B2 (en) Spline shaft
WO2018047820A1 (en) Bearing with seal
US20040116242A1 (en) Roller bearing
JP2005145315A (en) Bearing device for driving wheel
JP2017009016A (en) Angular ball bearing
US20210317877A1 (en) Rolling bearing, wheel support device, and wind power generation rotor shaft support device
JP2006022882A (en) Driving shaft
JP5176378B2 (en) Rolling sliding member and rolling device using the same
JP2011002096A (en) Driving shaft
WO2019116971A1 (en) Sealing device
JP2012063017A (en) Driving shaft
WO2020031995A1 (en) Rolling bearing, wheel support device, and main shaft support device for wind power generation
JP2007002912A (en) Rolling bearing
JP2013091853A (en) Sliding member
JP2003254340A (en) Bearing device
JP2009222141A (en) Tapered roller bearing
JP2006177441A (en) Pinion shaft support device for vehicle
JP2006266314A (en) Rolling bearing for transmission of automobile
JP2006118696A (en) Thrust roller bearing
KR20150103469A (en) Outer race of a constant velocity joint for a driving shaft
JP2007100878A (en) Speed increasing gear inner roller bearing for rolling machine
JP2014234901A (en) Rolling bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140507

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140515

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150304