JP2012062682A - Construction method for preventing ground heaving - Google Patents

Construction method for preventing ground heaving Download PDF

Info

Publication number
JP2012062682A
JP2012062682A JP2010207172A JP2010207172A JP2012062682A JP 2012062682 A JP2012062682 A JP 2012062682A JP 2010207172 A JP2010207172 A JP 2010207172A JP 2010207172 A JP2010207172 A JP 2010207172A JP 2012062682 A JP2012062682 A JP 2012062682A
Authority
JP
Japan
Prior art keywords
ground
bag body
water layer
hole
pressurized water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010207172A
Other languages
Japanese (ja)
Other versions
JP5644303B2 (en
Inventor
Akira Yamamoto
山本  彰
Tadahisa Yamamoto
忠久 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2010207172A priority Critical patent/JP5644303B2/en
Publication of JP2012062682A publication Critical patent/JP2012062682A/en
Application granted granted Critical
Publication of JP5644303B2 publication Critical patent/JP5644303B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent ground heaving by simpler construction while securing safety from the ground heaving even during cutting down of bed to an excavation bottom surface.SOLUTION: A construction method for preventing ground heaving comprises: a step of drilling a plurality of holes 5 with a predetermined diameter, which are elongated to an artesian water layer 3, in object ground for earth retaining excavation; a step of inserting a reinforcement body 10, in which bag bodies 11 and 12 connected to piping 13 are coupled to each other by means of a tension member 14 with predetermined strength, into each hole formed by drilling; and a step of infilling a solidifying agent 30 into each of the bag bodies 11 and 12 of the reinforcing body 10, which is positioned in the artesian water layer 3 and the bottom ground 4 in the hole 5, through the piping 13, and of bringing each of the bag bodies 11 and 12 into pressure contact with the artesian water layer 3 and the bottom ground 4, which constitute a hole wall.

Description

本発明は、盤膨れ防止工法に関するものであり、具体的には、掘削底面までの盤下げ中にも、盤膨れに対する安全性を確保しながらも、より簡易な施工で実施できる盤膨れ防止技術に関する。   The present invention relates to a panel swelling prevention method, and specifically, a panel swelling prevention technique that can be carried out with simpler construction while ensuring safety against panel swelling even during panel lowering to the bottom of excavation. About.

例えば都市土木工事等の、施工領域が限定されるような現場においては、限られた施工領域を有効活用する意味からも、鋼矢板や横矢板等の土留壁を腹起し・切梁やアンカー等の支保工で支持して掘削を進行させる、土留掘削を伴う工事が多く施工されている。ただしこの土留掘削には、施工地盤や地下水の性状に応じて留意すべき現象の発生が従来より指摘されている。この現象とは、盤ぶくれ、ボイリング、およびヒービングといった底部地盤の変状現象である。   For example, in a site where the construction area is limited, such as urban civil engineering work, in order to effectively utilize the limited construction area, the retaining wall such as steel sheet piles and cross-sheet piles are erected, cut beams and anchors. There are many constructions involving earth retaining excavations that support excavation and support by supporting works such as. However, this soil excavation has been pointed out to generate phenomena that should be noted depending on the properties of the construction ground and groundwater. This phenomenon is a deformation phenomenon of the bottom ground such as bulging, boiling, and heaving.

このうち、例えば盤ぶくれに関して言えば、掘削底部の地盤に含まれる被圧帯水層(例:砂・礫層など)の水圧が、該被圧帯水層上部に存在する不透水層や難透水層を含む地盤を上方に押し上げる現象であり、この現象に対処する工法が従来より提案されてきた。例えば、土留めの根入れを深くしたり、掘削底面以下の一定深さを地盤改良によって固めてしまう等の対応策が存在する。また、これらよりも工費の安い手法として、杭を地盤に打設し、杭表面と地盤との摩擦力を介して底部地盤と被圧帯水層との間を連結する技術や、或いは、グラウンドアンカーを地盤に打設し、該アンカーの引っ張り材を介して、グラウンドアンカー表面と地盤との摩擦力を定着板(コンクリート板)に伝えることで、底部地盤と被圧帯水層との間を連結する技術(特許文献1、特許文献2等)も考えられている。   Of these, for example, in terms of padding, the water pressure of the pressured aquifer (eg sand / gravel layer) contained in the ground at the bottom of the excavation is the impermeable layer existing above the pressured aquifer. This is a phenomenon of pushing up the ground including the poorly permeable layer, and a method for coping with this phenomenon has been proposed. For example, there are countermeasures such as deepening the earth retaining or solidifying a certain depth below the bottom of excavation by ground improvement. In addition, as a method with a lower construction cost than these, a technique in which a pile is placed on the ground and the bottom surface and the pressurized aquifer are connected via a frictional force between the pile surface and the ground, or a ground An anchor is placed on the ground, and the friction force between the ground anchor surface and the ground is transmitted to the fixing plate (concrete plate) via the anchor pulling material, so that the space between the bottom ground and the aquifer is Techniques for coupling (Patent Document 1, Patent Document 2, etc.) are also considered.

特開2000−17676号公報JP 2000-17676 A 特開2001−182088号公報JP 2001-182088 A

しかしながら、杭を打設する上記技術の場合、杭が発揮する設計上の摩擦力を踏まえて打設を行うと、打設ピッチが大きくなりがちとなり、杭間での盤膨れすなわち中抜けを起こす懸念がある。一方、この懸念を解消すべく杭の打設ピッチを小さくすると、施工の手間およびコストが増大するという問題が生じる。また、盤ぶくれが問題となる大深度掘削の場合、掘削底面の深さまでヤットコを使用して杭を打設するのは困難であり、掘削が進行するに伴い、掘削底面から露出する杭上部(例:鋼材)の切除工程が発生してしまうといった問題もある。   However, in the case of the above-described technology for placing piles, if placement is performed based on the design frictional force exerted by the piles, the placement pitch tends to increase, causing board swelling between the piles, that is, hollowing out. There are concerns. On the other hand, if the pile placement pitch is reduced in order to eliminate this concern, there is a problem that the labor and cost of construction increase. In addition, in the case of deep excavation where padding is a problem, it is difficult to drive a pile using a Yatco to the depth of the bottom of the excavation, and as the excavation progresses, the upper part of the pile exposed from the excavation bottom There is also a problem that a cutting process of (example: steel material) occurs.

また、グラウンドアンカーを打設する上記技術の場合、定着盤を床付け底盤に構築する必要があり、しかも、この定着盤に引っ張り材を固定するのは掘削完了時であることから、掘削施工中に進行する盤膨れについては十分な対処が出来ないという問題がある。   In addition, in the case of the above-described technique for placing a ground anchor, it is necessary to construct a fixing board on the floor-mounted base board, and since it is at the time of excavation completion that the tensile material is fixed to this fixing board, However, there is a problem that it is not possible to cope with the swelling of the board.

そこで本発明は、掘削底面までの盤下げ中にも、盤膨れに対する安全性を確保しながらも、より簡易な施工で実施できる盤膨れ防止工法の提供を目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a panel swelling prevention method that can be implemented with simpler construction while ensuring safety against panel swelling even during panel lowering to the bottom of excavation.

上記課題を解決する本発明の盤膨れ防止工法は、土留掘削における底部地盤の盤膨れを防止する工法であって、土留掘削の対象地盤において、被圧水層まで伸びる所定径の孔を複数削孔する工程と、配管が接続された袋体同士を互いに所定強度の引張材で連結した補強体を、前記削孔により形成した各孔に挿入する工程と、前記孔において前記被圧水層および前記底部地盤に位置する前記補強体の各袋体に対し、前記配管を通じて固化剤を充填し、孔壁をなす前記被圧水層および前記底部地盤に各袋体を圧接させる工程と、を含むことを特徴とする。   The bulge prevention method of the present invention that solves the above-mentioned problem is a method of preventing bulge of the bottom ground during earth retaining excavation, and in the target ground of the earth excavation, a plurality of holes having a predetermined diameter extending to the pressurized water layer are cut. A step of inserting holes, a step of inserting a reinforcing body in which bags connected to each other with a tensile material having a predetermined strength are inserted into each hole formed by the drilling holes, and the pressurized water layer and Filling each of the bags of the reinforcing body located on the bottom ground with a solidifying agent through the pipe, and press-contacting the bags to the pressurized water layer forming a hole wall and the bottom ground. It is characterized by that.

このような技術によれば、被圧水層および底部地盤を貫く孔にて膨張した各袋体が、被圧水層および底部地盤をそれぞれ押圧して密着し、大きな摩擦抵抗力を発揮する。底部地盤が被圧水層の揚圧力を受けて盤膨れしようとしても、底部地盤に圧接している袋体が、少なくとも被圧水層で大きな摩擦抵抗力を発揮している袋体から引張材を介して反力を得て、底部地盤の上方への変形すなわち盤膨れを抑制する。被圧水層の層厚が薄い場合などは、被圧水層側の袋体を被圧水層だけでなく被圧水層周囲の地層に跨って配置する状況も想定できる。   According to such a technique, each bag body expanded by a hole penetrating the pressurized water layer and the bottom ground presses and contacts the pressurized water layer and the bottom ground, and exhibits a large frictional resistance. Even if the bottom ground is subjected to the lifting pressure of the pressurized water layer, the bag body that is in pressure contact with the bottom ground is at least a tensile material from the bag body that exhibits a large frictional resistance in the pressurized water layer. The reaction force is obtained through the above, and the upward deformation of the bottom ground, that is, the board swelling is suppressed. When the layer thickness of the pressurized water layer is thin, it can be assumed that the bag body on the pressurized water layer side is arranged not only in the pressurized water layer but also across the ground layer around the pressurized water layer.

また、1つ1つの袋体が発揮する周囲地盤との接触抵抗および、上下の袋体間に引張力を伝達する引張材の強度が杭に比較して過大でないゆえ、掘削領域に対する打設ピッチは細かな配置となり、合理的な設計においていわゆる中抜けが発生する懸念も解消できる。また、袋体を用いる本工法は、杭等を用いる手法より低廉なコストで盤膨れ防止を図ることができる。また、グラウンドアンカーを用いる従来手法のように定着板を構築する必要はなく、掘削中においても盤膨れ防止効果を確保することが可能である。従って本発明によれば、掘削底面までの盤下げ中にも、盤膨れに対する安全性を確保しながらも、より簡易な施工で盤膨れ防止を図ることが可能となる。   In addition, since the contact resistance with the surrounding ground exhibited by each bag body and the strength of the tensile material that transmits the tensile force between the upper and lower bag bodies are not excessive compared to the pile, the placement pitch for the excavation area The arrangement is fine, and the concern that so-called hollows occur in a rational design can be solved. Moreover, this construction method using a bag body can prevent the panel from swelling at a lower cost than the method using a pile or the like. Further, it is not necessary to construct a fixing plate as in the conventional method using a ground anchor, and it is possible to ensure the effect of preventing board swelling even during excavation. Therefore, according to the present invention, it is possible to prevent board swelling by simpler construction while ensuring safety against board swelling even while the board is lowered to the bottom of excavation.

また、本発明の盤膨れ防止工法は、土留掘削における底部地盤の盤膨れを防止する工法であって、土留掘削の対象地盤において、被圧水層まで伸びる所定径の孔を複数削孔する工程と、配管が接続され、前記被圧水層から前記底部地盤に至る長さで所定の引張強度を備えた袋体からなる補強体を、前記削孔により形成した各孔に挿入する工程と、前記孔に挿入された前記補強体における袋体に対し、前記配管を通じて固化剤を充填し、孔壁をなす前記被圧水層および前記底部地盤に袋体を圧接させる工程と、を含むことを特徴とする。   Further, the ground swelling prevention method of the present invention is a construction method for preventing bottom swelling of the bottom ground in the soil excavation, and a step of drilling a plurality of holes having a predetermined diameter extending to the pressurized water layer in the ground subject to the soil excavation. And a step of inserting a reinforcing body made of a bag body having a predetermined tensile strength with a length from the pressurized water layer to the bottom ground, into each hole formed by the drilling hole, to which a pipe is connected, and Filling the bag body in the reinforcing body inserted into the hole with a solidifying agent through the pipe, and pressing the bag body against the pressurized water layer forming the hole wall and the bottom ground. Features.

このような技術によれば、被圧水層および底部地盤を貫く孔にて膨張した一体の袋体が、被圧水層から底部地盤に至るまで地盤を押圧して密着し、大きな摩擦抵抗力を発揮する。また、袋体自体が適宜な引張強度を有しており、底部地盤が被圧水層の揚圧力を受けて盤膨れしようとしても、一体の袋体のうち底部地盤に圧接している部分が、少なくとも被圧水層で大きな摩擦抵抗力を発揮している部分から反力を得て、底部地盤の上方への変形すなわち盤膨れを抑制する。なお、被圧水層の層厚が薄い場合などは、被圧水層側の袋体を被圧水層だけでなく被圧水層周囲の地層に跨って配置する状況も想定できる。   According to such a technique, the integrated bag body expanded by the hole penetrating the pressurized water layer and the bottom ground presses and adheres to the ground from the pressurized water layer to the bottom ground, and has a large frictional resistance. Demonstrate. In addition, the bag body itself has an appropriate tensile strength, and even if the bottom ground receives the lifting pressure of the pressurized water layer and tries to swell, the portion of the integral bag that is in pressure contact with the bottom ground The reaction force is obtained at least from the portion exhibiting a large frictional resistance force in the pressurized water layer, and the upward deformation of the bottom ground, that is, the board swelling is suppressed. In addition, when the layer thickness of a pressurized water layer is thin, the situation which arrange | positions the bag body by the side of a pressurized water layer straddling not only a pressurized water layer but the ground layer around a pressurized water layer can also be assumed.

また、1つ1つの袋体が発揮する周囲地盤との接触抵抗と、引張力を伝達する袋体自体の強度は過大でないゆえ、掘削領域に対する打設ピッチは細かな配置となり、合理的な設計においていわゆる中抜けが発生しない。また、袋体を用いる本工法は、杭等を用いる手法より低廉なコストで盤膨れ防止を図ることができる。また、グラウンドアンカーを用いる従来手法のように定着板を構築する必要はなく、掘削中においても盤膨れに対する安全性が確保できる。従って本発明によれば、掘削底面までの盤下げ中にも、盤膨れに対する安全性を確保しながらも、より簡易な施工で盤膨れ防止を図ることが可能となる。   In addition, since the contact resistance with the surrounding ground that each bag body exerts and the strength of the bag body itself that transmits the tensile force are not excessive, the placement pitch for the excavation area is finely arranged, and the rational design No so-called hollow out occurs. Moreover, this construction method using a bag body can prevent the panel from swelling at a lower cost than the method using a pile or the like. Further, it is not necessary to construct a fixing plate as in the conventional method using a ground anchor, and it is possible to ensure safety against board swelling even during excavation. Therefore, according to the present invention, it is possible to prevent board swelling by simpler construction while ensuring safety against board swelling even while the board is lowered to the bottom of excavation.

なお、前記盤膨れ防止工法において、棒状のガイド材を前記補強体に対し脱着可能に取り付け、当該ガイド材を前記孔において下降させることで、前記孔への補強体の挿入を行い、前記袋体への固化剤の充填がなされ、前記被圧水層および前記底部地盤に袋体が圧接された後、前記ガイド材を前記補強体から取り外す工程を含むとしてもよい。   In the panel swelling prevention method, a rod-shaped guide member is detachably attached to the reinforcement body, and the guide body is lowered in the hole to insert the reinforcement body into the hole, and the bag body After the solidifying agent is filled in and the bag body is pressed against the pressurized water layer and the bottom ground, a step of removing the guide material from the reinforcing body may be included.

これによれば、可撓性を有する袋体を、限られた孔壁内空間において確実に被圧水層まで送り込むことが可能となり、施工精度を良好なものとすることができる。また、固化剤が充填され周囲の地盤に圧接された袋体に反力を得ることで、ガイド材の取り外しは容易であり、施工性が良好である。しかも、土留掘削の進行に伴って掘削底面からガイド材が露出することが無いため、掘削機械等による掘削動作に支障を生じることがない。   According to this, it becomes possible to reliably feed the flexible bag body to the pressurized water layer in the limited space in the hole wall, and the construction accuracy can be improved. Further, by obtaining a reaction force on the bag body filled with the solidifying agent and pressed against the surrounding ground, the guide material can be easily removed and the workability is good. In addition, since the guide material is not exposed from the bottom of the excavation as the earth retaining excavation proceeds, there is no problem in excavation operation by the excavating machine or the like.

また、前記盤膨れ防止工法において、前記ガイド材が、前記袋体の位置で吐出口を備える管体であり、固化剤充填用の前記配管を兼ねるものであるとしてもよい。
これによれば、被圧水層まで袋体を送り込む工程と、該袋体への固化剤の充填を行う工程とをガイド材を利用して行うことができ、施工の効率とコストをより良好なものとできる。
Moreover, in the said board swelling prevention construction method, the said guide material is a pipe body provided with a discharge outlet in the position of the said bag body, and it is good also as what also serves as the said piping for solidification agent filling.
According to this, the step of feeding the bag body to the pressurized water layer and the step of filling the bag body with the solidifying agent can be performed using the guide material, and the construction efficiency and cost are improved. You can do it.

なお、上述した本発明において、土留掘削の進行に伴って掘削底面から補強体が露出したとしても、繊維等で構成された袋体とそれに充填された固化剤(例:グラウト剤等)は、掘削機械による掘削動作に支障を与えないから、土留掘削全体の施工効率は良好なものとなる。   In the present invention described above, even if the reinforcing body is exposed from the bottom of the excavation as the soil excavation progresses, the bag body made of fibers and the solidifying agent (eg, grout agent) filled therein are: Since there is no hindrance to the excavation operation by the excavating machine, the construction efficiency of the entire soil excavation is good.

また、モルタルやグラウトなどの固化剤を充填する対象は、浸透による漏出等が懸念される地盤が露出した孔壁内空間ではなく袋体であり、該袋体への固化剤注入量の管理が確実に行える。つまり、袋体の適宜な膨張と、それによる周囲地盤へ圧接を確実なものとできる。当然ながら、袋体周囲の地盤に地下水流が存在したり、孔壁崩壊が生じたとしても、袋体に充填したグラウトの散逸はない。   In addition, the object to be filled with a solidifying agent such as mortar or grout is a bag body, not a space in the hole wall where the ground where leakage due to infiltration is a concern is exposed, and the amount of solidifying agent injected into the bag body can be controlled. It can be done reliably. That is, appropriate expansion of the bag body and press contact with the surrounding ground can be ensured. Naturally, even if there is a groundwater flow in the ground around the bag body or the hole wall collapses, there is no dissipation of the grout filled in the bag body.

なお、前記袋体は、可撓性を有する部材であって、柔軟性や耐摩耗性を有する麻や合成繊維等からなる織布または不織布に、アラミド繊維や炭素繊維等の引張強度の強い補強繊維を混入したもの等を用いることができる。また、袋体は、水分が滲み出にくいように、目合いの調整や水密加工が施されている。   The bag body is a flexible member, and is reinforced with high tensile strength such as aramid fiber or carbon fiber on a woven or non-woven fabric made of hemp or synthetic fiber having flexibility and wear resistance. What mixed the fiber etc. can be used. Further, the bag body is subjected to adjustment of the mesh and watertight processing so that moisture does not easily ooze out.

本発明によれば、良好な効率性やコスト性の下で土留掘削の施工中にも盤膨れ防止を図ることが可能となる。   According to the present invention, it is possible to prevent board swelling even during construction of earth retaining excavation under good efficiency and cost.

本実施形態における盤膨れ防止工法の適用例1を示す図である。It is a figure which shows the application example 1 of the board swelling prevention construction method in this embodiment. 本実施形態における袋体等の構造例を示す図である。It is a figure which shows the structural examples, such as a bag body in this embodiment. 本実施形態における盤膨れ防止工法の手順例1を示すフロー図である。It is a flowchart which shows the procedure example 1 of the board swelling prevention construction method in this embodiment. 本実施形態における盤膨れ防止工法の適用例2を示す図である。It is a figure which shows the example 2 of application of the board swelling prevention construction method in this embodiment. 本実施形態における盤膨れ防止工法の手順例2を示すフロー図である。It is a flowchart which shows the procedure example 2 of the board swelling prevention construction method in this embodiment. 本実施形態における盤膨れ防止工法の適用例3を示す図である。It is a figure which shows the example 3 of application of the board swelling prevention construction method in this embodiment.

−−−適用例1−−−
以下に本発明の実施形態について図面を用いて詳細に説明する。図1は、本実施形態における盤膨れ防止工法の適用例1を示す図、図2は本実施形態における袋体等の構造例を示す図、図3は本実施形態における盤膨れ防止工法の手順例1を示すフロー図である。盤膨れ防止工法を適用する土留掘削工事において、例えば、鋼矢板の打設や腹起し・切梁等による支保を実行し土留壁1を形成しているとする。この土留壁1で囲まれた地盤は、下層から順に、例えば被圧水層たる砂礫層3、軟弱な難透水層たる粘土層4、および砂質土層6により主として構成されており、砂礫層3の中には土留壁1の先端が達している。また、土留壁1で囲まれた地盤のうち、砂質土層6の一部(ないし全部)が土留掘削の対象地盤2となっている。
--- Application example 1 ---
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a diagram showing an application example 1 of a board swelling prevention method in the present embodiment, FIG. 2 is a diagram showing a structural example of a bag body and the like in the present embodiment, and FIG. 3 is a procedure of a board swelling prevention construction method in the present embodiment. 10 is a flowchart showing Example 1. FIG. In the earth excavation work to which the panel swelling prevention method is applied, for example, it is assumed that the earth retaining wall 1 is formed by carrying out support by placing steel sheet piles, raising uprights, and cutting beams. The ground surrounded by the retaining wall 1 is mainly composed of, for example, a gravel layer 3 as a pressurized water layer, a clay layer 4 as a soft hardly permeable layer, and a sandy soil layer 6 in order from the lower layer. 3, the tip of the retaining wall 1 has reached. In addition, among the ground surrounded by the retaining wall 1, a part (or all) of the sandy soil layer 6 is the target ground 2 for the soil excavation.

このままこの対象地盤2である砂質土層6を掘り進んで粘土層4より上の重量が減少すれば、砂礫層3における被圧水の揚圧力が粘土層4より上の部分の重量に勝る事態となり、粘土層4より上の部分を上方に押し上げる盤膨れ現象が生じると懸念されていたとする。   If the sandy soil layer 6 which is the target ground 2 is dug as it is and the weight above the clay layer 4 decreases, the pressure of the pressurized water in the gravel layer 3 will exceed the weight of the portion above the clay layer 4. It is assumed that there is a concern that a board swelling phenomenon occurs in which a portion above the clay layer 4 is pushed upward.

そこで本実施形態の盤膨れ防止工法を適用し、対象地盤2において、まずは被圧水層たる砂礫層中まで伸びる所定径の孔5を複数削孔する(s100)。孔5の径は、後に孔5に挿入される補強体10の袋体11、12が膨張時に示す径より小さいものである。よって、グラウト等の固化剤30の充填により孔5にて膨張しようとする袋体11、12は、周囲地盤と十分に圧接されて必要な摩擦抵抗力を発揮しうることになる。従来技術で用いられる杭は、例えば径600mm程度のものであったが、本実施形態における孔5の径は100〜140mm、袋体11,12の径は150〜300mm程度のものとできる。   Therefore, the board swelling prevention method of the present embodiment is applied, and in the target ground 2, first, a plurality of holes 5 having a predetermined diameter extending to the gravel layer as the pressurized water layer are drilled (s100). The diameter of the hole 5 is smaller than the diameter shown when the bags 11 and 12 of the reinforcing body 10 to be inserted into the hole 5 are expanded. Therefore, the bag bodies 11 and 12 which are going to expand | swell in the hole 5 by filling with solidifying agents 30, such as grout, can fully press-contact with the surrounding ground, and can exhibit a required frictional resistance. The pile used in the prior art has a diameter of about 600 mm, for example, but the diameter of the hole 5 in the present embodiment can be 100 to 140 mm, and the diameter of the bag bodies 11 and 12 can be about 150 to 300 mm.

また、袋体11が、少なくともその定着長分は砂礫層3に配置されるよう、孔5の削孔長も決定される。また、1つの補強体10が負担できる応力と、被圧水層から生じる盤膨れの揚力とに基づいて、掘削底面における単位面積あたりに必要な補強体10の設置に関する設計は、例えば次のように行われる。   Further, the drilling length of the hole 5 is also determined so that the bag 11 is arranged in the gravel layer 3 at least for the fixing length. Further, the design related to the installation of the reinforcing body 10 per unit area on the bottom of the excavation based on the stress that can be borne by one reinforcing body 10 and the lift of the panel swelling generated from the pressurized water layer is, for example, as follows: To be done.

被圧水層の上面で生じる揚力を“A”、被圧水層より上方にある土塊重量を“B”、被圧水層より上の補強体10の長さを“l”、該補強体10における単位長さ当たりの孔5との摩擦力を“c”、とする。この場合、“(A−B)/(c×l)”の値を算定すれば、盤膨れの応力を負担する為に必要な袋体のセット数、すなわち孔5の削孔数が得られる。また、被圧水層以下における孔5と補強体10の間の単位長さあたりの摩擦力を“d”とすれば、“(c×l)/d”の値を算定することで、被圧水層以下における袋体が孔5の壁面に対して確保すべき必要な接触長l、すなわち孔5の長さ(地盤における砂礫層3での孔5の長さ)が得られる。なお、砂礫層3は地盤最下層にあるから、上記のように砂礫層3での孔5の長さが決まれば、自ずと、粘土層4および砂質土層6を貫いて砂礫層3での孔5の底部に至るまでの長さが孔5の長さとなる。なお、袋体に充填される固化剤30と袋体内部の引張材14との付着力(摩擦力)および引張材14の強度は、当然ながら、上述の値“c×l”すなわち、1本の孔5の壁面と袋体との間に生じうる摩擦力以上である必要がある。また、これらの設計には、適宜な安全率が考慮されることは言うまでもない。 The lift generated on the upper surface of the pressurized water layer is “A”, the weight of the clot above the pressurized water layer is “B”, the length of the reinforcing body 10 above the pressurized water layer is “l 1 ”, and the reinforcement Let the frictional force with the hole 5 per unit length in the body 10 be “c”. In this case, if the value of “(A−B) / (c × l 1 )” is calculated, the number of sets of bags necessary to bear the stress of board swelling, that is, the number of drilled holes 5 is obtained. It is done. Further, when the frictional force per unit length between the hole 5 and the reinforcing body 10 below the pressurized water layer is “d”, the value of “(c × l 1 ) / d” is calculated. The necessary contact length l 2 that the bag body below the pressurized water layer should secure against the wall surface of the hole 5, that is, the length of the hole 5 (the length of the hole 5 in the gravel layer 3 in the ground) is obtained. In addition, since the gravel layer 3 is in the lowest layer of the ground, if the length of the hole 5 in the gravel layer 3 is determined as described above, the sand gravel layer 3 naturally penetrates the clay layer 4 and the sandy soil layer 6. The length up to the bottom of the hole 5 is the length of the hole 5. Of course, the adhesion force (friction force) between the solidifying agent 30 filled in the bag body and the tensile material 14 inside the bag body and the strength of the tensile material 14 are the above-mentioned value “c × l 1 ”, that is, 1 It must be greater than the frictional force that can occur between the wall surface of the book hole 5 and the bag. Moreover, it goes without saying that an appropriate safety factor is taken into consideration in these designs.

次に、削孔した孔5に補強体10を挿入し、袋体11を砂礫層3の中に配置し、袋体12を粘土層4の中に配置する(s101)。補強体10は、それぞれ配管13が接続された袋体11、12同士を互いに所定強度の引張材14で連結した構造となっている。袋体11は砂礫層3の中で膨張するものであり、袋体12は粘土層4の中で膨張するものである。また、引張材14は鋼棒や鋼製ワイヤーなど所定の引張強度を備えた部材で構成されており、例えば、砂礫層3に配置される袋体11の底部から、粘土層4に配置される袋体12の上部まで貫いている。この引張材14の備える引張強度は、粘土層4と圧接した袋体12が、砂礫層3に圧接した袋体11から反力を得て、粘土層4の盤膨れ応力に対抗する際の引っ張りに応じたものとなる。また、配管13は、例えば袋体11、12のそれぞれに接続されており、所定の固化剤供給装置40から送られてくるモルタルやグラウトなどの固化剤30を、袋体11、12らに提供する管路となる。この配管13としては塩ビパイプ等の適宜な樹脂製パイプを適用すれば、土留掘削時に床付け底盤から露出しても掘削重機等で容易に除去でき、掘削の支障とならず好適である。   Next, the reinforcing body 10 is inserted into the drilled hole 5, the bag body 11 is disposed in the gravel layer 3, and the bag body 12 is disposed in the clay layer 4 (s101). The reinforcing body 10 has a structure in which bag bodies 11 and 12 connected to a pipe 13 are connected to each other by a tensile material 14 having a predetermined strength. The bag body 11 expands in the gravel layer 3, and the bag body 12 expands in the clay layer 4. Moreover, the tension | tensile_strength material 14 is comprised by the member provided with predetermined | prescribed tensile strength, such as a steel bar and steel wire, for example, is arrange | positioned at the clay layer 4 from the bottom part of the bag 11 arrange | positioned at the gravel layer 3. FIG. It penetrates to the upper part of the bag body 12. The tensile strength of the tensile material 14 is such that the bag 12 in pressure contact with the clay layer 4 obtains a reaction force from the bag 11 in pressure contact with the gravel layer 3 and resists the bulging stress of the clay layer 4. Depending on. Moreover, the piping 13 is connected to each of the bag bodies 11 and 12, for example, and provides the bag bodies 11 and 12 with a solidifying agent 30 such as mortar or grout sent from a predetermined solidifying agent supply device 40. It becomes a pipeline to do. If an appropriate resin pipe such as a vinyl chloride pipe is applied as the pipe 13, even if it is exposed from the floor base plate during earth retaining excavation, it can be easily removed by a heavy excavator or the like, which is preferable without causing any trouble in excavation.

補強体10を孔5に挿入するにあたっては、棒状のガイド材50を、前記補強体10の例えば引張材14ないし袋体12に対し脱着可能に取り付け、当該ガイド材50を前記孔5において下降させることで、前記孔5への補強体10の挿入を行うとすれば好適である。ガイド材50を補強体10の引張材14や袋体12らに脱着自在に取り付ける手法としては、例えば次の手法が考えられる。図2に示すように、例えば、引張材14の上端のうち袋体上部に突出した部位に雄ねじ51が切られており、ガイド材50の下端には雌ねじ52が切られた袋ナット53が備わっており、孔5への補強体10の挿入時には、ガイド材下端の袋ナット53が引張材上端の雄ねじ51と螺合して一体となり、一方、ガイド材50を補強体10から取り外す際には、周囲地盤に圧接した袋体11,12等に反力を得てガイド材50を回転させ、その下端の袋ナット53を引張材体上部の雄ねじ51における螺合から解くといった手法である。或いは、ガイド材50の下端にアーム状の把持機構が備わっており、孔5への補強体10の挿入時には、ガイド材下端の把持機構が引張材14を把持して一体となり、一方、ガイド材50を補強体10から取り外す際には、ガイド材下端の把持機構が引張材14の把持を解除して分離するといった手法もある。   In inserting the reinforcing body 10 into the hole 5, the rod-shaped guide member 50 is detachably attached to, for example, the tension member 14 or the bag body 12 of the reinforcing body 10, and the guide member 50 is lowered in the hole 5. Thus, it is preferable to insert the reinforcing body 10 into the hole 5. As a technique for detachably attaching the guide member 50 to the tension member 14 and the bag body 12 of the reinforcing body 10, for example, the following technique can be considered. As shown in FIG. 2, for example, a male screw 51 is cut at a portion of the upper end of the tension member 14 protruding from the upper portion of the bag body, and a lower end of the guide member 50 is provided with a cap nut 53 with a female screw 52 cut. When the reinforcing body 10 is inserted into the hole 5, the cap nut 53 at the lower end of the guide member is screwed together with the male screw 51 at the upper end of the tensile member, while the guide member 50 is removed from the reinforcing member 10. The guide member 50 is rotated by obtaining a reaction force on the bag bodies 11, 12 and the like that are in pressure contact with the surrounding ground, and the cap nut 53 at the lower end thereof is unscrewed from the male screw 51 at the upper part of the tension member body. Alternatively, an arm-shaped gripping mechanism is provided at the lower end of the guide member 50, and when the reinforcing body 10 is inserted into the hole 5, the gripping mechanism at the lower end of the guide member grips the tension member 14 and is integrated. When removing 50 from the reinforcing body 10, there is also a method in which the gripping mechanism at the lower end of the guide material releases the gripping material 14 and separates it.

続いて、孔5において砂礫層3に位置する補強体10の袋体11に対し、配管13を通じてモルタルやグラウトなどの固化剤30を充填し(s102)、孔壁をなす砂礫層3に袋体11を圧接させる(s103)。同様に、孔5において粘土層4に位置する袋体12に対し、配管13を通じてモルタルやグラウトなどの固化剤30を充填し(s104)、孔壁をなす粘土層4に袋体12を圧接させる(s105)。こうした処理により、被圧水層たる砂礫層3および底部地盤たる粘土層4を貫く孔5にて膨張した各袋体11、12が、砂礫層3および粘土層4をそれぞれ押圧して密着し、大きな摩擦抵抗力を発揮することになる。   Subsequently, a solidifying agent 30 such as mortar or grout is filled into the bag 11 of the reinforcing body 10 located in the gravel layer 3 in the hole 5 through a pipe 13 (s102), and the gravel layer 3 forming the hole wall is filled with the bag. 11 is pressed (s103). Similarly, the bag 12 located in the clay layer 4 in the hole 5 is filled with a solidifying agent 30 such as mortar or grout through the pipe 13 (s104), and the bag 12 is pressed against the clay layer 4 forming the hole wall. (S105). By such treatment, the bags 11 and 12 expanded in the holes 5 penetrating the gravel layer 3 which is the pressurized water layer and the clay layer 4 which is the bottom ground press the sand gravel layer 3 and the clay layer 4, respectively. A large frictional resistance will be exhibited.

また、モルタルやグラウトなどの固化剤30を充填する対象は、浸透による漏出等が懸念される地盤が露出した孔壁内空間ではなく袋体11、12であるから、該袋体11、12への固化剤注入量の管理が確実に行える。つまり、袋体11,12の適宜な膨張と、それによる周囲地盤へ圧接を確実なものとできる。当然ながら、袋体周囲の地盤に地下水流が存在したり、孔壁崩壊が生じたとしても、袋体11,12らに充填した固化剤30の散逸はない。   In addition, the object to be filled with the solidifying agent 30 such as mortar or grout is not the space in the hole wall in which the ground where leakage due to permeation or the like is a concern is exposed but the bag body 11, 12. The amount of solidifying agent injected can be controlled reliably. That is, appropriate expansion of the bag bodies 11 and 12 and press contact with the surrounding ground can be ensured. Naturally, even if a groundwater flow exists in the ground around the bag body or the hole wall collapses, the solidifying agent 30 filled in the bag bodies 11 and 12 does not dissipate.

なお、図2に示すように、袋体内における配管13の接続部位には、配管13の先端開口を包含するボックス状の逆止弁機構15が備わっていて、該袋体へ充填された固化剤30が固化剤供給装置側へ逆流しないよう配慮されているとすれば好適である。逆止弁機構15は、例えば、上方に凸の円錐形状で頂部に適宜な開口16aが設けられたストッパー16と、該ストッパー16の開口を完全に塞ぐことが可能な表面形状、サイズを備えた可動体17、ストッパー16との間に可動体17の可動空間を確保しつつ固化剤30の通過を阻害しないメッシュ状板材18とからなる構成があげられる。配管13の開口から袋体内部の逆止弁機構15に流入した固化剤30は、ストッパー16の開口16aを通り(そこに可動体17があれば下方に押し下げつつ)、メッシュ状板材18のメッシュ開口を通過し、そのまま袋体内空に充填されることになる。一方、袋体内空を満たした固化剤30が、メッシュ状板材18を上方に通過して逆止弁機構15に流入してきた場合、この流入圧で上方に移動させられる可動体17が、円錐形状のストッパー16の表面を上方に移動しつつ頂部の開口16aに押し当てられ、開口16aは塞がれる。つまり、固化剤30の上昇はこの時点で止まり、固化剤供給措置側への逆流は抑止される。図2では袋体12に設置される逆止弁機構15について例示しているが、袋体11についても同様に逆止弁機構15が設置され、上記同様の機能を果たす。   As shown in FIG. 2, the connection portion of the pipe 13 in the bag body is provided with a box-shaped check valve mechanism 15 that includes the opening at the tip of the pipe 13, and the solidifying agent filled in the bag body. It is preferable if 30 is considered so as not to flow backward to the solidifying agent supply device side. The check valve mechanism 15 includes, for example, a stopper 16 having an upwardly convex conical shape and an appropriate opening 16a at the top, and a surface shape and size that can completely close the opening of the stopper 16. The structure which consists of the mesh-shaped board | plate material 18 which does not inhibit passage of the solidification agent 30, ensuring the movable space of the movable body 17 between the movable body 17 and the stopper 16 is mention | raise | lifted. The solidifying agent 30 that has flowed into the check valve mechanism 15 inside the bag body from the opening of the pipe 13 passes through the opening 16a of the stopper 16 (pressing downward if there is a movable body 17), and the mesh of the mesh plate 18 It passes through the opening and is filled into the bag body as it is. On the other hand, when the solidifying agent 30 filling the empty space in the bag passes through the mesh plate 18 and flows into the check valve mechanism 15, the movable body 17 that is moved upward by this inflow pressure has a conical shape. The stopper 16 is pressed against the top opening 16a while moving upward on the surface of the stopper 16, and the opening 16a is closed. That is, the rise of the solidifying agent 30 stops at this point, and the backflow to the solidifying agent supply measure side is suppressed. Although FIG. 2 illustrates the check valve mechanism 15 installed in the bag body 12, the check valve mechanism 15 is similarly installed in the bag body 11 and performs the same function as described above.

袋体11、12への固化剤30の充填がなされ、砂礫層3および粘土層4に袋体11,12が圧接された後、前記ガイド材50を補強体10から取り外す(s106)。固化剤30が充填され周囲地盤に圧接された袋体11、12に反力を得ることで、ガイド材50の取り外しは容易であり、施工性も良好である。しかも、土留掘削の進行に伴って掘削底面からガイド材50が露出することが無いため、掘削機械等による掘削動作に支障を生じることがない。   After the bags 11 and 12 are filled with the solidifying agent 30 and the bags 11 and 12 are pressed against the gravel layer 3 and the clay layer 4, the guide member 50 is removed from the reinforcing body 10 (s106). By obtaining a reaction force on the bags 11 and 12 filled with the solidifying agent 30 and pressed against the surrounding ground, the guide member 50 can be easily removed and the workability is also good. Moreover, since the guide material 50 is not exposed from the bottom of the excavation as the earth excavation proceeds, there is no problem in excavation operation by the excavating machine or the like.

上述のごとき本実施形態によれば、被圧水層たる砂礫層3および底部地盤たる粘土層4を貫く孔5にて膨張した各袋体11、12が、砂礫層3および粘土層4をそれぞれ押圧して密着し、大きな摩擦抵抗力を発揮する。底部地盤たる粘土層4の上部が被圧水層たる砂礫層3の揚圧力を受けて盤膨れしようとしても、粘土層4に圧接している袋体12が、砂礫層3で大きな摩擦抵抗力を発揮している袋体11から引張材14を介して反力を得て、粘土層4の上方への変形すなわち盤膨れを抑制する。   According to the present embodiment as described above, the bags 11 and 12 expanded in the holes 5 penetrating the gravel layer 3 that is the pressurized water layer and the clay layer 4 that is the bottom ground are respectively connected to the gravel layer 3 and the clay layer 4. Presses and adheres and exhibits great frictional resistance. Even if the upper part of the clay layer 4 that is the bottom ground is subjected to the lifting pressure of the gravel layer 3 that is the pressurized water layer, the bag 12 that is in pressure contact with the clay layer 4 has a large frictional resistance in the gravel layer 3. A reaction force is obtained from the bag body 11 exhibiting the above through the tension member 14, and the upward deformation of the clay layer 4, that is, the board swelling is suppressed.

また、1つ1つの袋体11、12らが発揮する周囲地盤との接触抵抗および引張材の強度は杭に比較して過大でないため、掘削領域に対する打設ピッチは細かな配置となり、合理的な設計においていわゆる中抜けが発生しない状態が実現できる。また、袋体11、12を用いる本工法は、杭等を用いる手法より低廉なコストで盤膨れ防止を図ることができる。また、グラウンドアンカーを用いる従来手法のように定着板を構築する必要はなく、掘削中における盤膨れ防止対策として機能させることが可能である。   Moreover, since the contact resistance with the surrounding ground which each bag body 11 and 12 etc. exhibit and the intensity | strength of a tension material are not excessive compared with a pile, the placement pitch with respect to an excavation area becomes a fine arrangement | positioning, and rational In a simple design, a state in which so-called hollows do not occur can be realized. Moreover, this construction method using the bag bodies 11 and 12 can aim at prevention of panel swelling at a lower cost than the method using a pile or the like. Further, it is not necessary to construct a fixing plate as in the conventional method using a ground anchor, and it is possible to function as a measure for preventing panel swelling during excavation.

なお、孔壁内における袋体11と袋体12との間の領域19に、ベントナイト、グラウト、砂等の間詰め材を充填し、孔壁崩壊等に備えるとしてもよい。   In addition, it is good also as filling in the area | region 19 between the bag body 11 and the bag body 12 in a hole wall with filling materials, such as bentonite, grout, and sand, and preparing for a hole wall collapse.

また、図1の右上に示すように、補強体10として袋体が上下で各々複数セットになっている構成を採用しても良い。或いは、例えば被圧水層に袋体11を1つ、難透水層とその上方の地層のそれぞれに袋体12を1つずつ配置し、計3つの袋体から補強体10を構成するなどとしてもよい。いずれにしても、袋体の配置や数については状況に応じて設定すればよい。   Moreover, as shown in the upper right of FIG. 1, you may employ | adopt the structure which has a plurality of sets of bag bodies as the reinforcing body 10 at the top and bottom. Or, for example, one bag body 11 is arranged in the pressurized water layer, one bag body 12 is arranged in each of the hardly water-permeable layer and the ground layer thereabove, and the reinforcing body 10 is composed of a total of three bag bodies. Also good. In any case, the arrangement and number of bags may be set according to the situation.

−−−適用例2−−−
続いて、補強体10における袋体が被圧水層および底部地盤の各層毎に分離している上記適用例1とは異なり、各層を跨って一体となっている例について説明する。図4は本実施形態における盤膨れ防止工法の適用例2を示す図であり、図5は本実施形態における盤膨れ防止工法の手順例2を示すフロー図である。この場合の袋体100は、固化剤30の充填用に配管13が接続され、被圧水層たる砂礫層3から底部地盤たる粘土層4に至る長さで所定の引張強度を備えているものとなる。袋体100が備える引張強度は、袋体100のうち粘土層4と圧接した部位101が、砂礫層3に圧接した部位102から反力を得て、粘土層4の盤膨れ応力に対抗する際の引っ張りに応じたものとなる。この適用例における袋体100は、上記適用例1と比較して、引張材14を用いる必要がないから、袋体100すなわち補強体10の構造がより簡略化され、補強体10の取り扱いが簡便なものとなる。
--- Application example 2 ---
Then, unlike the application example 1 in which the bag body in the reinforcing body 10 is separated for each layer of the pressurized water layer and the bottom ground, an example in which the layers are integrated across the layers will be described. FIG. 4 is a diagram showing an application example 2 of the board swelling prevention method in the present embodiment, and FIG. 5 is a flowchart showing a procedure example 2 of the board swelling prevention construction method in the present embodiment. In this case, the bag body 100 is connected to the pipe 13 for filling with the solidifying agent 30, and has a predetermined tensile strength with a length from the gravel layer 3 as the pressurized water layer to the clay layer 4 as the bottom ground. It becomes. The tensile strength of the bag body 100 is determined when the portion 101 of the bag body 100 that is in pressure contact with the clay layer 4 obtains a reaction force from the portion 102 that is in pressure contact with the gravel layer 3 and counters the bulging stress of the clay layer 4. It will be according to the pull of the. Since the bag body 100 in this application example does not need to use the tensile material 14 as compared with the application example 1, the structure of the bag body 100, that is, the reinforcement body 10, is further simplified, and the handling of the reinforcement body 10 is simple. It will be something.

袋体100は、少なくともその定着長分は砂礫層3に配置されるよう、孔5の削孔長も決定される。また、1つの袋体100が負担できる応力と、被圧水層から生じる盤膨れの揚力とに基づいて、掘削底面における単位面積あたりに必要な袋体100の設置に関する設計は、例えば次のように行われる。   The drilling length of the hole 5 is also determined so that the bag body 100 is arranged in the gravel layer 3 at least for the fixing length. Moreover, the design regarding the installation of the bag body 100 required per unit area in the bottom of excavation based on the stress that can be borne by one bag body 100 and the lift of the panel swelling generated from the pressurized water layer is, for example, as follows: To be done.

被圧水層の上面で生じる揚力を“A”、被圧水層より上方にある土塊重量を“B”、被圧水層より上の袋体100の長さを“l”、該袋体100における単位長さ当たりの孔5との摩擦力を“c”とする。この場合、“(A−B)/(c×l)”の値を算定すれば、盤膨れの応力を負担する為に必要な袋体100のセット数、すなわち孔5の削孔数が得られる。また、被圧水層以下における孔5と袋体100の間の単位長さあたりの摩擦力を“d”とすれば、“(c×l)/d”の値を算定することで、袋体100が孔5の壁面に対して確保すべき必要な接触長l、すなわち孔5の長さ(地盤における砂礫層3での孔5の長さ)が得られる。なお、砂礫層3は地盤最下層にあるから、上記のように砂礫層3での孔5の長さが決まれば、自ずと、粘土層4および砂質土層6を貫いて砂礫層3での孔5の底部に至るまでの長さが孔5の長さとなる。なお、これらの設計には、適宜な安全率が考慮されることは言うまでもない。 The lift generated on the upper surface of the pressurized water layer is “A”, the weight of the soil mass above the pressurized water layer is “B”, the length of the bag body 100 above the pressurized water layer is “l 1 ”, and the bag The frictional force with the hole 5 per unit length in the body 100 is defined as “c”. In this case, if the value of “(A−B) / (c × l 1 )” is calculated, the number of sets of bags 100 necessary to bear the swelling stress, that is, the number of drilled holes 5 is obtained. can get. Further, if the frictional force per unit length between the hole 5 and the bag body 100 below the pressurized water layer is “d”, the value of “(c × l 1 ) / d” is calculated. The required contact length l 2 that the bag body 100 should secure against the wall surface of the hole 5, that is, the length of the hole 5 (the length of the hole 5 in the gravel layer 3 in the ground) is obtained. In addition, since the gravel layer 3 is in the lowest layer of the ground, if the length of the hole 5 in the gravel layer 3 is determined as described above, the sand gravel layer 3 naturally penetrates the clay layer 4 and the sandy soil layer 6. The length up to the bottom of the hole 5 is the length of the hole 5. Needless to say, an appropriate safety factor is considered in these designs.

また、この例において、孔5の削孔(s200)と、孔5への補強体10の挿入(s201)の工程は上記適用例1と同様であり、説明は省略する。ここで、孔5に挿入された補強体10における袋体100に対し、配管13を通じて固化剤30を充填し(s202)、孔壁をなす砂礫層3および粘土層4に袋体100を圧接させる(s203)。   Further, in this example, the steps of drilling the hole 5 (s200) and inserting the reinforcing body 10 into the hole 5 (s201) are the same as in the first application example, and the description thereof is omitted. Here, the bag 100 in the reinforcing body 10 inserted into the hole 5 is filled with the solidifying agent 30 through the pipe 13 (s202), and the bag 100 is pressed against the gravel layer 3 and the clay layer 4 forming the hole wall. (S203).

このような適用例によれば、砂礫層3および粘土層4を貫く孔5にて膨張した一体の袋体100が、砂礫層3から粘土層4に至るまで地盤を押圧して密着し、大きな摩擦抵抗力を発揮する。また、袋体自体が適宜な引張強度を有しており、粘土層4が砂礫層3の揚圧力を受けて盤膨れしようとしても、一体の袋体100のうち粘土層4に圧接している部位101が、少なくとも砂礫層3で大きな摩擦抵抗力を発揮している部位102から反力を得て、粘土層4の上方への変形すなわち盤膨れを抑制する。   According to such an application example, the integral bag body 100 inflated in the hole 5 penetrating the gravel layer 3 and the clay layer 4 presses the ground from the gravel layer 3 to the clay layer 4, and is closely attached. Demonstrate friction resistance. Further, the bag body itself has an appropriate tensile strength, and even if the clay layer 4 is subjected to the lifting pressure of the gravel layer 3 and tries to swell, it is in pressure contact with the clay layer 4 in the integral bag body 100. The part 101 obtains a reaction force from the part 102 exhibiting a large frictional resistance force at least in the gravel layer 3 and suppresses upward deformation of the clay layer 4, that is, board swelling.

なお、ガイド材50が、図6(a)にて例示するように、その下端付近に吐出口55を備えて袋体底部まで延びる管体であり、固化剤充填用の前記配管13を兼ねるものであるとしてもよい。これによれば、被圧水層たる砂礫層3の深さまで補強体10を送り込む工程と、袋体100への固化剤30の充填を行う工程とを該ガイド材50を利用して行うことができ、より効率的に盤膨れ防止を図ることができる。このガイド材50として、塩ビパイプ等の適宜な樹脂製部材を適用すれば、そのまま袋体100と共に土中に残置し、土留掘削時に床付け底盤から露出しても掘削重機等で容易に除去でき、掘削の支障とならず好適である。   In addition, as illustrated in FIG. 6A, the guide member 50 is a pipe body that has a discharge port 55 near its lower end and extends to the bottom of the bag body, and also serves as the pipe 13 for filling the solidifying agent. It may be. According to this, the step of feeding the reinforcing body 10 to the depth of the gravel layer 3 as the pressurized water layer and the step of filling the bag body 100 with the solidifying agent 30 can be performed using the guide material 50. It is possible to prevent the panel from swelling more efficiently. If an appropriate resin member such as a vinyl chloride pipe is applied as the guide member 50, it is left in the soil as it is together with the bag body 100 and can be easily removed with a heavy excavator or the like even if it is exposed from the floor base plate during earth retaining excavation. It is suitable because it does not hinder excavation.

また、図6(b)に示すように、ガイド材50が袋体上部までの配管13を兼ねるとしてもよい。この場合、例えば、ガイド材下端の雌ねじ52と、袋体に取り付けらた接続用治具60の雌ねじ51とが螺合することで接続されている。固化剤供給装置40から供給された固化剤30は、配管13としてのガイド材50の内空を通過し、その下端から前記接続用治具60を介し袋体内部に流入していくことになるため、袋体内空における接続用治具周囲に逆止弁機構15(上述の適用例1と同様のもの)が備えられているのが望ましい。こうした逆止弁機構15が備わっていれば、袋体内空へ充填された固化剤30の、固化剤供給装置側への逆流を抑制できる。   Moreover, as shown in FIG.6 (b), you may make the guide material 50 serve as the piping 13 to the bag body upper part. In this case, for example, the female screw 52 at the lower end of the guide member and the female screw 51 of the connecting jig 60 attached to the bag body are connected by screwing. The solidifying agent 30 supplied from the solidifying agent supply device 40 passes through the inner space of the guide member 50 as the pipe 13 and flows into the bag body from the lower end via the connection jig 60. Therefore, it is desirable that a check valve mechanism 15 (similar to Application Example 1 described above) is provided around the connection jig in the bag body. If such a check valve mechanism 15 is provided, the backflow of the solidifying agent 30 filled into the bag body to the solidifying agent supply device side can be suppressed.

以上、本実施形態によれば、掘削底面までの盤下げ中にも、盤膨れに対する安全性を確保しながらも、より簡易な施工で盤膨れ防止を図ることが可能となる。また、本実施形態において、袋体の強度のみで揚圧力に抵抗する引張力を分担しきれない場合には、袋体内部に引張材を設置する形態も考えられる。   As described above, according to the present embodiment, it is possible to prevent board swelling by simpler construction while ensuring safety against board swelling even when the board is lowered to the bottom of excavation. Moreover, in this embodiment, when the tension | tensile_strength which resists lifting pressure cannot be shared only with the intensity | strength of a bag body, the form which installs a tension material inside a bag body is also considered.

以上、本発明の実施の形態について、その実施の形態に基づき具体的に説明したが、これに限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。   As mentioned above, although embodiment of this invention was described concretely based on the embodiment, it is not limited to this and can be variously changed in the range which does not deviate from the summary.

1 土留壁
2 対象地盤
3 被圧水層、砂礫層
4 底部地盤、粘土層
5 孔
10 補強体
11、12 袋体
13 配管
14 引張材
15 逆止弁機構
16 ストッパー
16a ストッパーの開口
17 可動体
18 メッシュ状板材
30 固化剤
40 固化剤供給装置
50 ガイド材
60 接続用治具
100 袋体
DESCRIPTION OF SYMBOLS 1 Earth retaining wall 2 Target ground 3 Pressurized water layer, gravel layer 4 Bottom ground, clay layer 5 Hole 10 Reinforcement body 11, 12 Bag body 13 Pipe 14 Tensile material 15 Check valve mechanism 16 Stopper 16a Stopper opening 17 Movable body 18 Mesh-like plate material 30 Solidifying agent 40 Solidifying agent supply device 50 Guide material 60 Jig 100 for connection Bag body

Claims (4)

土留掘削における底部地盤の盤膨れを防止する工法であって、
土留掘削の対象地盤において、被圧水層まで伸びる所定径の孔を複数削孔する工程と、
配管が接続された袋体同士を互いに所定強度の引張材で連結した補強体を、前記削孔により形成した各孔に挿入する工程と、
前記孔において前記被圧水層および前記底部地盤に位置する前記補強体の各袋体に対し、前記配管を通じて固化剤を充填し、孔壁をなす前記被圧水層および前記底部地盤に各袋体を圧接させる工程と、
を含むことを特徴とする盤膨れ防止工法。
It is a construction method that prevents the swelling of the bottom ground in earth retaining excavation,
A step of drilling a plurality of holes having a predetermined diameter extending to the pressurized water layer in the target ground for earth retaining excavation;
Inserting a reinforcing body in which bags connected to each other are connected to each other with a tensile material having a predetermined strength into each hole formed by the drilling holes;
In each of the holes, the reinforcing body located in the pressurized water layer and the bottom ground is filled with a solidifying agent through the pipe, and each bag is formed in the pressurized water layer and the bottom ground forming a hole wall. A step of pressing the body,
The board swelling prevention method characterized by including.
土留掘削における底部地盤の盤膨れを防止する工法であって、
土留掘削の対象地盤において、被圧水層まで伸びる所定径の孔を複数削孔する工程と、
配管が接続され、前記被圧水層から前記底部地盤に至る長さで所定の引張強度を備えた袋体からなる補強体を、前記削孔により形成した各孔に挿入する工程と、
前記孔に挿入された前記補強体における袋体に対し、前記配管を通じて固化剤を充填し、孔壁をなす前記被圧水層および前記底部地盤に袋体を圧接させる工程と、
を含むことを特徴とする盤膨れ防止工法。
It is a construction method that prevents the swelling of the bottom ground in earth retaining excavation,
A step of drilling a plurality of holes having a predetermined diameter extending to the pressurized water layer in the target ground for earth retaining excavation;
A step of inserting a reinforcing body made of a bag body having a predetermined tensile strength with a length from the pressurized water layer to the bottom ground, into each hole formed by the drilling holes, to which piping is connected;
Filling the bag body in the reinforcing body inserted into the hole with a solidifying agent through the pipe, and pressing the bag body against the pressurized water layer and the bottom ground forming a hole wall;
The board swelling prevention method characterized by including.
請求項1または2において、
棒状のガイド材を前記補強体に対し脱着可能に取り付け、当該ガイド材を前記孔において下降させることで、前記孔への補強体の挿入を行い、
前記袋体への固化剤の充填がなされ、前記被圧水層および前記底部地盤に袋体が圧接された後、前記ガイド材を前記補強体から取り外す工程を含むことを特徴とする盤膨れ防止工法。
In claim 1 or 2,
A rod-shaped guide material is detachably attached to the reinforcement body, and the guide body is lowered in the hole to insert the reinforcement body into the hole.
After the bag body is filled with a solidifying agent and the bag body is pressure-contacted to the pressurized water layer and the bottom ground, it includes a step of removing the guide material from the reinforcing body. Construction method.
請求項3において、
前記ガイド材が、前記袋体の位置で吐出口を備える管体であり、固化剤充填用の前記配管を兼ねるものとすることを特徴とする盤膨れ防止工法。
In claim 3,
The board swelling prevention method characterized in that the guide material is a pipe body having a discharge port at the position of the bag body, and also serves as the pipe for filling the solidifying agent.
JP2010207172A 2010-09-15 2010-09-15 Panel swelling prevention method Expired - Fee Related JP5644303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010207172A JP5644303B2 (en) 2010-09-15 2010-09-15 Panel swelling prevention method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010207172A JP5644303B2 (en) 2010-09-15 2010-09-15 Panel swelling prevention method

Publications (2)

Publication Number Publication Date
JP2012062682A true JP2012062682A (en) 2012-03-29
JP5644303B2 JP5644303B2 (en) 2014-12-24

Family

ID=46058665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010207172A Expired - Fee Related JP5644303B2 (en) 2010-09-15 2010-09-15 Panel swelling prevention method

Country Status (1)

Country Link
JP (1) JP5644303B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106836203A (en) * 2017-03-02 2017-06-13 福建省水利水电科学研究院 The co-ordinative construction and its construction method of mould bag pile body and mud hardening body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130910A (en) * 1983-10-20 1984-07-27 Japanese National Railways<Jnr> Strengthening work for ground of track
JPH01127714A (en) * 1987-11-11 1989-05-19 Maeda Corp Ground stabilization work
JPH04174134A (en) * 1990-11-06 1992-06-22 Toda Constr Co Ltd Method of swell preventive construction of earth anchor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130910A (en) * 1983-10-20 1984-07-27 Japanese National Railways<Jnr> Strengthening work for ground of track
JPH01127714A (en) * 1987-11-11 1989-05-19 Maeda Corp Ground stabilization work
JPH04174134A (en) * 1990-11-06 1992-06-22 Toda Constr Co Ltd Method of swell preventive construction of earth anchor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106836203A (en) * 2017-03-02 2017-06-13 福建省水利水电科学研究院 The co-ordinative construction and its construction method of mould bag pile body and mud hardening body
CN106836203B (en) * 2017-03-02 2023-10-20 福建省水利水电科学研究院 Combined structure of mould bag pile body and sludge hardening body and construction method thereof

Also Published As

Publication number Publication date
JP5644303B2 (en) 2014-12-24

Similar Documents

Publication Publication Date Title
KR100964796B1 (en) Method for constructing the steel pipe-concrete composite pile structurized of burying and unifying into the bedrock, and a pile construction
JP5199166B2 (en) Foundation pile structure by site construction and construction method of foundation pile
CN108678772A (en) A kind of multilevel hierarchy suspension device and its construction method for rich water sandy gravel stratum tunnel
JP2007191856A (en) Grouting method
CN111472346A (en) Construction method for reinforcing soil around pile body of cast-in-place pile
JP4499001B2 (en) Filling reinforcement method and filling
CN114457790B (en) Pile forming device and pile forming method for cast-in-place piles in karst areas
KR101236765B1 (en) Method for placing adhesive filling into the expanded drill hole to increase bearing capacity of piles and tention members and apparatus therefor
JP5644303B2 (en) Panel swelling prevention method
KR100910884B1 (en) Multistaged cone foundation
CN208502786U (en) Multilevel hierarchy suspension device for rich water sandy gravel stratum tunnel
PT788572E (en) PROCESS FOR THE CALCULATION OF BUILDINGS
KR100991248B1 (en) Foundation construction method of micro pile using pack and pile used in the same
KR100823980B1 (en) Drain combination paker type pressurization grouting equipment and the upward method using the same
JP6225458B2 (en) Retaining wall and its construction method
CN100545357C (en) A kind of cement-soil build-in piling wall and job practices thereof that is used for pattern foundation pit supporting structure
JP2008002199A (en) Ground reinforcing method of excavated batholith
JP2004190252A (en) Landslide prevention structure
CN205975593U (en) Silt region is dug bored concrete pile soon and is put with protecting wound packages
CN212335996U (en) Resistance to compression resistance to plucking variable diameter steel reinforcement cage club-footed pile
JP2014156716A (en) Construction method for pile with great bearing capacity
JP4911242B2 (en) Reinforcement structure of existing gravity quay
KR20090049132A (en) The ground reinforcement apparatus and ground reinforcement method
JP2007262811A (en) Pile structure and pile member driving method
CN111519603A (en) Device for comprehensively treating uneven settlement of underground buried pipe of soft soil foundation by combination of replacement and filling and grouting and construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141020

R150 Certificate of patent or registration of utility model

Ref document number: 5644303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees