JP2012062501A - METHOD OF MANUFACTURING HYPEREUTECTIC Al-Si ALLOY, AND HYPEREUTECTIC Al-Si ALLOY - Google Patents

METHOD OF MANUFACTURING HYPEREUTECTIC Al-Si ALLOY, AND HYPEREUTECTIC Al-Si ALLOY Download PDF

Info

Publication number
JP2012062501A
JP2012062501A JP2010205826A JP2010205826A JP2012062501A JP 2012062501 A JP2012062501 A JP 2012062501A JP 2010205826 A JP2010205826 A JP 2010205826A JP 2010205826 A JP2010205826 A JP 2010205826A JP 2012062501 A JP2012062501 A JP 2012062501A
Authority
JP
Japan
Prior art keywords
alloy
hypereutectic
particles
content
massppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010205826A
Other languages
Japanese (ja)
Inventor
Hideo Nakae
秀雄 中江
Kota Kadoi
浩太 門井
Tomoya Okai
智哉 大開
Izuru Iwasaki
出 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Original Assignee
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University filed Critical Waseda University
Priority to JP2010205826A priority Critical patent/JP2012062501A/en
Publication of JP2012062501A publication Critical patent/JP2012062501A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To miniaturize a primary crystal Si particle 2 by suppressing the reduction of P by making a hypereutectic Al-Si alloy molten metal contain Na at 00 to 1,000 massppm and by making the hypereutectic Al-Si alloy molten metal contain P at 1 to 50 massppm and Si at 15 to 30 mass% by using a metallic Na member or a metallic Na alloy member, to promote an effect of the miniaturization of the primary crystal Si particle 2 possessed by P, and to form the primary crystal Si particle 2 into a round shape.SOLUTION: The hypereutectic Al-Si alloy 1 has high rigidity, high elongation, high machinability, and heat resistance and shock resistance, which are higher than those of a conventional alloy, whereby a smooth processing face can be formed.

Description

本発明は、過共晶Al-Si合金の製造方法及び過共晶Al-Si合金に関し、例えば、鋳造法により過共晶Al-Si合金を製造する際に適用して好適なものである。   The present invention relates to a method for producing a hypereutectic Al—Si alloy and a hypereutectic Al—Si alloy, and is suitable for application in producing a hypereutectic Al—Si alloy by, for example, a casting method.

Al-Si 合金は軽量で強度に優れることから、自動車やオートバイ、産業機械などに多用されてきた。特に、その亜共晶合金はNaやSrによるSiの改良処理が発達し、共晶Siの形態を変化させることで機械的性質が大幅に改善され、その用途を拡大してきた。しかし、構造材の主流である鋼に比べて熱膨張係数が大きく、耐摩耗性に劣るなどの問題点があり、これらの特性を改善するため、近年、過共晶Al-Si合金が注目されている。   Al-Si alloys have been widely used in automobiles, motorcycles, and industrial machines because they are lightweight and have excellent strength. In particular, the hypoeutectic alloy has undergone improved Si treatment with Na and Sr. By changing the morphology of the eutectic Si, its mechanical properties have been greatly improved and its application has been expanded. However, there are problems such as a larger coefficient of thermal expansion and inferior wear resistance than steel, which is the mainstream of structural materials. In order to improve these properties, hypereutectic Al-Si alloys have recently attracted attention. ing.

過共晶Al-Si合金の製造方法としては、例えば、Al-23%Si合金を溶解させたAl-23%Si合金溶湯に所定の添加剤を添加して添加合金溶湯を作製し、この添加合金溶湯を冷却することにより過共晶Al-Si合金を製造する鋳造法が知られている。   As a method for producing a hypereutectic Al-Si alloy, for example, a predetermined additive is added to an Al-23% Si alloy melt in which an Al-23% Si alloy is dissolved to produce an additive alloy melt, and this addition A casting method for producing a hypereutectic Al—Si alloy by cooling the molten alloy is known.

図8(A)は、このような従来の鋳造法により製造された過共晶Al-Si合金10を示す。ここで、過共晶Al-Si合金10の内部には、複数の初晶Si粒子11が分散するようにして生成されており、この初晶Si粒子11は、大きさが200μm以上でなり、かつ複数の角部を有した板状の塊で形成されている。   FIG. 8A shows a hypereutectic Al—Si alloy 10 produced by such a conventional casting method. Here, inside the hypereutectic Al-Si alloy 10, a plurality of primary crystal Si particles 11 are generated so as to disperse, and the primary crystal Si particles 11 have a size of 200 μm or more, And it is formed with the plate-shaped lump which has a some corner | angular part.

しかしながら、このような過共晶Al-Si合金10では、初晶Si粒子11の平均粒径が大きいので、機械加工性が低くなるという問題が生じてしまうため、初晶Si粒子11の平均粒径を小さくすることが望まれている。また、この過共晶Al-Si合金10では、初晶Si粒子11が角部を有していることから、外力が印加された際に、当該初晶Si粒子11の角部が破壊の起点となり易く、その結果、引張り強度や、伸び易さ、機械加工性が劣化し、また平滑な加工面も形成し難いという問題が生じてしまう。   However, in such a hypereutectic Al-Si alloy 10, the average grain size of the primary crystal Si particles 11 is large, which causes a problem of low machinability. It is desired to reduce the diameter. Further, in this hypereutectic Al-Si alloy 10, since the primary Si particles 11 have corners, when the external force is applied, the corners of the primary Si particles 11 are the starting points of fracture. As a result, the tensile strength, easiness of elongation, and machinability deteriorate, and a problem arises that it is difficult to form a smooth processed surface.

因みに、このような従来の鋳造法では、冷却速度を速くすることにより初晶Si粒子11を微細化できることが知られているが、冷却速度を速くした場合であっても、図8(B)に示すように、初晶Si粒子11の平均粒径が100μmより大きくなるとともに、角部を有する板状の初晶Si粒子11が生成されてしまう。   Incidentally, in such a conventional casting method, it is known that the primary crystal Si particles 11 can be miniaturized by increasing the cooling rate. However, even when the cooling rate is increased, FIG. As shown in FIG. 4, the average particle diameter of the primary crystal Si particles 11 becomes larger than 100 μm, and plate-shaped primary crystal Si particles 11 having corners are generated.

そこで、このような問題点を解決するために、製造過程において、Al-Si合金溶湯に微量のPを添加して、初晶Si粒子11の平均粒径を従来よりも微細化する製造方法が用いられるようになった。このような従来の鋳造法にPを添加する工程を追加した製造方法については、非特許文献1に示されており、例えばAl-20%Si合金溶湯に所定量のPを添加することで、図9に示すように、過共晶Al-Si合金20内に20μm程度の初晶Si粒子21を生成できることが報告されている。   Therefore, in order to solve such problems, there is a manufacturing method in which a slight amount of P is added to the molten Al-Si alloy in the manufacturing process, and the average particle size of the primary Si particles 11 is made finer than before. It came to be used. About the manufacturing method which added the process which adds P to such a conventional casting method, it is shown by the nonpatent literature 1, For example, by adding predetermined amount P to Al-20% Si alloy molten metal, As shown in FIG. 9, it has been reported that primary crystal Si particles 21 of about 20 μm can be generated in the hypereutectic Al—Si alloy 20.

また、他の過共晶Al-Si合金の製造方法としては、PをAl-Si合金溶湯に添加した後に、Naを溶剤に溶解させて液相状態としたまま、Al-Si合金溶湯に添加する処理(フラックス処理)を行い、初晶Si粒子を微細化する製造方法も知られている(非特許文献2)。   Also, as another hypereutectic Al-Si alloy manufacturing method, after adding P to the Al-Si alloy melt, Na is dissolved in the solvent and added to the Al-Si alloy melt while in the liquid phase state. There is also known a manufacturing method for performing the process (flux process) to refine the primary crystal Si particles (Non-patent Document 2).

山縣 裕、「過共晶Al-20mass%Si合金を用いたダイカストエンジンブロックの開発」、軽金属 54(2004)298Hiroshi Yamazaki, “Development of Die Cast Engine Block Using Hypereutectic Al-20mass% Si Alloy”, Light Metal 54 (2004) 298 WU Shu-sen et.al, "Modification Mechanism of Hypereutectic Al-Si Alloy with P-Na Addition", Trans. Nonferrous Met. Soc. China, Vol. 13, pp.1285-1289, 2003.WU Shu-sen et.al, "Modification Mechanism of Hypereutectic Al-Si Alloy with P-Na Addition", Trans. Nonferrous Met. Soc. China, Vol. 13, pp.1285-1289, 2003.

しかしながら、非特許文献1のような製造方法では、初晶Si粒子21に複数の角部を有した外郭形状に形成されてしまうため、従来と同様に、外力が印加された際に、初晶Si粒子21が破壊の起点となり易く、その結果、引張り強度や、伸び易さ、機械加工性が劣化し、また平滑な加工面を形成し難いという問題があった。   However, in the manufacturing method as in Non-Patent Document 1, the primary crystal Si particles 21 are formed in an outer shape having a plurality of corners, so that when an external force is applied as in the conventional case, the primary crystal As a result, the Si particles 21 tend to be the starting point of fracture, and as a result, the tensile strength, easiness of elongation, and machinability are deteriorated, and it is difficult to form a smooth processed surface.

また、非特許文献2のような製造方法でも、初晶Si粒子に複数の角部を有した外郭形状に形成されてしまうことから、非特許文献1と同様に、外力が印加された際に、初晶Si粒子が破壊の起点となり易く、引張り強度や、伸び易さ、機械加工性が劣化し、また平滑な加工面を形成し難いという問題があった。   Further, even in the manufacturing method as described in Non-Patent Document 2, since the primary Si particles are formed in an outer shape having a plurality of corners, as in Non-Patent Document 1, when an external force is applied. The primary crystal Si particles tend to be the starting point of fracture, the tensile strength, the ease of elongation, and the machinability are deteriorated, and it is difficult to form a smooth processed surface.

そこで、本発明は以上の点を考慮してなされたもので、従来よりも、高機械加工性及び耐熱衝撃性を向上させるとともに、平滑な加工面を形成できる過共晶Al-Si合金の製造方法及び過共晶Al-Si合金を提供することを目的とする。   Therefore, the present invention has been made in consideration of the above points, and is capable of producing a hypereutectic Al-Si alloy that can improve high machinability and thermal shock resistance and can form a smooth machined surface as compared with the prior art. The object is to provide a method and a hypereutectic Al-Si alloy.

本発明の請求項1では、Al、Si及びPを所定の組成比で含有した過共晶Al-Si合金溶湯を作製し、該過共晶Al-Si合金溶湯を冷却させることにより、初晶Si粒子が分散した過共晶Al-Si合金を製造する製造方法において、前記過共晶Al-Si合金溶湯中のP含有量を1massppm以上、50massppm以下に調整するとともに、金属Na又は金属Naを含む金属Na合金部材を前記過共晶Al-Si合金溶湯に添加する添加ステップを備えることを特徴とするものである。   According to claim 1 of the present invention, a primary eutectic crystal is prepared by preparing a hypereutectic Al-Si alloy melt containing Al, Si and P in a predetermined composition ratio and cooling the hypereutectic Al-Si alloy melt. In the production method for producing a hypereutectic Al-Si alloy in which Si particles are dispersed, the P content in the molten hypereutectic Al-Si alloy is adjusted to 1 massppm or more and 50 massppm or less, and metallic Na or metallic Na is added. An addition step of adding the metal Na alloy member to the hypereutectic Al-Si alloy melt is provided.

また、請求項2では、前記過共晶Al-Si合金溶湯中のSi含有量を15mass%以上、30mass%以下に調整するSi含有量調整ステップを備えることを特徴とするものである。   Moreover, in Claim 2, the Si content adjustment step which adjusts Si content in the said hypereutectic Al-Si alloy molten metal to 15 mass% or more and 30 mass% or less is provided.

また、請求項3では、前記添加ステップは、前記過共晶Al-Si合金のNa含有量を200massppm以上、1000massppm以下にすることを想定して前記金属Na又は前記金属Na合金部材を、前記過共晶Al-Si合金溶湯に添加することを特徴とするものである。   According to a third aspect of the present invention, in the addition step, it is assumed that the Na content of the hypereutectic Al—Si alloy is 200 massppm or more and 1000 massppm or less. It is added to the eutectic Al-Si alloy melt.

また、請求項4では、初晶Si粒子がアルミニウムマトリクス中に分散している過共晶Al-Si合金において、前記初晶Si粒子は、平均粒径が100μm未満であり、丸みを帯びた外郭形状に形成されていることを特徴とするものである。   According to a fourth aspect of the present invention, in the hypereutectic Al-Si alloy in which the primary crystal Si particles are dispersed in the aluminum matrix, the primary crystal Si particles have an average particle size of less than 100 µm and have a round outline. It is formed in a shape.

また、請求項5では、Si含有量が15mass%以上、30mass%以下であることを特徴とするものである。   Further, in claim 5, the Si content is 15 mass% or more and 30 mass% or less.

また、請求項6では、前記初晶Si粒子が20μm以下であることを特徴とするものである。   According to a sixth aspect of the present invention, the primary crystal Si particles are 20 μm or less.

本発明の請求項1によれば、金属Na又は前記金属Naを含む合金を過共晶Al-Si合金材料の溶湯に添加するようにしたことにより、Pの減少を抑制して初晶Si粒子を微細化できるとともに、Pが有している初晶Si粒子の微細化効果を促進し、さらに初晶Si粒子を丸みを帯びた形状にできることから、従来よりも、高機械加工性及び耐熱衝撃性を向上させるとともに、平滑な加工面を有する過共晶Al-Si合金を製造できる。  According to the first aspect of the present invention, by adding metal Na or an alloy containing the metal Na to the melt of the hypereutectic Al—Si alloy material, it is possible to suppress the decrease in P and to reduce the primary crystal Si particles. Can be refined, promotes the refinement effect of the primary crystal Si particles possessed by P, and further makes the primary crystal Si particles rounder, resulting in higher machinability and thermal shock than before. As a result, a hypereutectic Al-Si alloy having a smooth machined surface can be produced.

本発明の請求項2によれば、Si濃度を高くしたことで、従来よりも、高強度、高伸びの過共晶Al-Si合金を製造できる。   According to claim 2 of the present invention, by increasing the Si concentration, a hypereutectic Al-Si alloy having higher strength and higher elongation than before can be produced.

本発明の請求項4によれば、初晶Si粒子を微細化し、かつ丸みを帯びた外郭形状に形状することで、従来よりも、高機械加工性及び耐熱衝撃性を向上させるとともに、平滑な加工面を有する過共晶Al-Si合金を提供することができる。   According to claim 4 of the present invention, the primary crystal Si particles are refined and formed into a rounded outer shape, thereby improving high machinability and thermal shock resistance as compared with the prior art, and smoothing. A hypereutectic Al-Si alloy having a machined surface can be provided.

本発明の請求項5によれば、Si濃度を高くしたことで、従来よりも、高強度、高伸びの過共晶Al-Si合金を提供できる。   According to claim 5 of the present invention, by increasing the Si concentration, it is possible to provide a hypereutectic Al-Si alloy having higher strength and higher elongation than before.

本発明の過共晶Al-Si合金の断面構成を示す拡大写真である。It is an enlarged photograph which shows the cross-sectional structure of the hypereutectic Al-Si alloy of this invention. Siの結晶構造とAlP(リン化アルミニウム)の結晶構造とを示す概略図である。It is the schematic which shows the crystal structure of Si, and the crystal structure of AlP (aluminum phosphide). 本発明による過共晶Al-Si合金の製造工程を示す概略図である。It is the schematic which shows the manufacturing process of the hypereutectic Al-Si alloy by this invention. 実施例1〜6の各試料の断面箇所を光学顕微鏡により観察したときの光学顕微鏡写真である。It is an optical microscope photograph when the cross-sectional location of each sample of Examples 1-6 is observed with an optical microscope. 実施例1〜3の各試料の断面箇所を電子顕微鏡により観察したときの電子顕微鏡写真である。It is an electron micrograph when the cross-sectional location of each sample of Examples 1-3 is observed with an electron microscope. 図5における実施例3の初晶Si粒子の拡大写真である。It is an enlarged photograph of the primary crystal Si particle of Example 3 in FIG. 実施例19、実施例20及び比較例8の試料の断面箇所を光学顕微鏡により観察したときの光学顕微鏡写真である。It is an optical microscope photograph when the cross-sectional location of the sample of Example 19, Example 20, and Comparative Example 8 is observed with an optical microscope. 従来の鋳造法を用いて製造された過共晶Al-Si合金の断面構成を示す電子顕微鏡写真である。It is an electron micrograph which shows the cross-sectional structure of the hypereutectic Al-Si alloy manufactured using the conventional casting method. Pを添加して製造された従来の過共晶Al-Si合金の初晶Si粒子の光学顕微鏡写真である。2 is an optical micrograph of primary Si particles of a conventional hypereutectic Al—Si alloy produced by adding P. FIG.

以下図面に基づいて本発明の実施の形態を詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(1)過共晶Al-Si合金の全体構成
図1において、1は本発明の製造方法により製造された過共晶Al-Si合金を示し、この過共晶Al-Si合金は、微細化された初晶Si粒子2がアルミニウムマトリクス3(図面内の暗部)内に疎に分散し、初晶Si粒子2よりも微細化された共晶Si粒子4(暗部内の白く小さな点状物)がアルミニウムマトリクス3内に密に分散した構成を有する。この初晶Si粒子2は、丸みを帯びた外郭形状を有しており、平均粒径が100μm未満、好ましくは20μm以下の微粒子状に形成され、さらに製造条件によっては10μm程度の微粒子状にも形成され得る。
(1) Overall structure of hypereutectic Al—Si alloy In FIG. 1, 1 shows a hypereutectic Al—Si alloy produced by the production method of the present invention. The eutectic Si particles 2 sparsely dispersed in the aluminum matrix 3 (dark part in the drawing), and the eutectic Si particles 4 finer than the primary crystal Si particles 2 (white small dots in the dark part) Has a structure in which the aluminum matrix 3 is densely dispersed. This primary crystal Si particle 2 has a rounded outer shape, and is formed into fine particles having an average particle diameter of less than 100 μm, preferably 20 μm or less. Can be formed.

なお、ここで平均粒径とは、顕微鏡組織写真から確認できた初晶Si粒子2の面積を計測して、各初晶Si粒子2の形状を円と仮定して粒径を算出し、これら初晶Si粒子2の粒径から平均径を算出したものである。   Here, the average particle diameter is obtained by measuring the area of the primary Si particles 2 confirmed from the micrograph, and calculating the particle diameter assuming that the shape of each primary Si particle 2 is a circle. The average diameter is calculated from the particle diameter of the primary crystal Si particles 2.

アルミニウムマトリクス3は、そのほとんどがAlで形成されており、少量の不純物が含有されている。また、共晶Si粒子4は、大きさが初晶Si粒子2よりも非常に小さく、棒状や針状の形状に形成されている。   Most of the aluminum matrix 3 is made of Al and contains a small amount of impurities. The eutectic Si particles 4 are much smaller in size than the primary crystal Si particles 2 and are formed in a rod-like or needle-like shape.

(2)過共晶Al-Si合金の製造方法
次に、上述した過共晶Al-Si合金1の製造方法について、以下説明する。先ず、粉末状又は塊状の金属Naと、Al及びSiが所定の組成比でなるAl-Si母合金とを準備する。次いで、このAl-Si母合金を坩堝内で加熱して溶解させAl-Si母合金溶湯を作製し、アルミ箔で包んだ金属NaをこのAl-Si母合金溶湯に浸漬する。次いで、浸漬後、Al-Si母合金溶湯と金属Naとが反応するため、反応が沈静化するまで放置し、その後、一定時間、坩堝を攪拌して、金属Naを多量に含有するAl-Si-Na母合金を作製する。
(2) Manufacturing method of hypereutectic Al-Si alloy Next, the manufacturing method of the hypereutectic Al-Si alloy 1 mentioned above is demonstrated below. First, powdered or massive metal Na and an Al—Si master alloy in which Al and Si have a predetermined composition ratio are prepared. Next, the Al—Si master alloy is heated and melted in a crucible to produce an Al—Si master alloy melt, and metal Na wrapped in aluminum foil is immersed in the Al—Si master alloy melt. Next, after immersion, the Al-Si mother alloy melt and metal Na react, so leave until the reaction subsides, and then stir the crucible for a certain period of time, Al-Si containing a large amount of metal Na -Na master alloy is produced.

また、これとは別に、Al及びSiが所定の組成比でなるAl-Si合金材料を、別の坩堝に入れて炉内で加熱し、当該Al-Si合金材料を溶解させることによりAl-Si合金溶湯を作製する。次いで、予め作製したAl-Si-Na母合金をこのAl-Si合金溶湯に添加した後攪拌し、Naを含有する過共晶Al-Si合金溶湯を作製する。本発明では、このようにして作成した過共晶Al-Si合金溶湯を冷却することにより製造される過共晶Al-Si合金の製造方法及び過共晶Al-Si合金に関する提案である。   Separately, an Al—Si alloy material having a predetermined composition ratio of Al and Si is placed in another crucible and heated in a furnace to dissolve the Al—Si alloy material. An alloy melt is prepared. Next, the Al-Si-Na master alloy prepared in advance is added to the molten Al-Si alloy and then stirred to prepare a hypereutectic Al-Si alloy molten metal containing Na. The present invention provides a method for producing a hypereutectic Al—Si alloy produced by cooling the hypereutectic Al—Si alloy melt thus prepared, and a proposal for a hypereutectic Al—Si alloy.

また、この際、過共晶Al-Si合金溶湯は、必要に応じてSi及びPも添加され、Si及びPの含有量がそれぞれ所定の値に調整されている。最後に、この過共晶Al-Si合金溶湯を、所定の鋳型に注湯して冷却させることで、平均粒径が100μm未満に微細化され、かつ丸みを帯びた外郭形状に形成された初晶Si粒子2が、アルミニウムマトリクス3に分散した過共晶Al-Si合金1を作製できる。   At this time, Si and P are added to the hypereutectic Al—Si alloy melt as necessary, and the contents of Si and P are adjusted to predetermined values, respectively. Finally, this hypereutectic Al-Si alloy melt is poured into a predetermined mold and cooled to reduce the average particle size to less than 100 μm and to form a rounded outer shape. A hypereutectic Al—Si alloy 1 in which crystalline Si particles 2 are dispersed in an aluminum matrix 3 can be produced.

なお、上述した実施の形態においては、金属Naを添加したAl-Si-Na母合金(金属Na合金部材)を、Al-Si合金溶湯に添加して、過共晶Al-Si合金溶湯中のNa含有量を調整する金属Na添加処理法について述べたが、本発明はこれに限らず、金属Na自体をAl-Si合金溶湯に直接添加して、過共晶Al-Si合金溶湯内のNa含有量を調整する金属Na添加処理法や、若しくは、粉末状又は塊状のAl-Si-Na母合金を溶解させたAl-Si-Na母合金溶湯(金属Na合金部材)を、Al-Si合金溶湯に添加して過共晶Al-Si合金溶湯中のNa含有量を調整する金属Na添加処理法を適用してもよい。   In the above-described embodiment, the Al—Si—Na master alloy (metal Na alloy member) to which metal Na is added is added to the Al—Si alloy molten metal, and in the hypereutectic Al—Si alloy molten metal. Although the metal Na addition treatment method for adjusting the Na content has been described, the present invention is not limited to this, and the metal Na itself is directly added to the Al-Si alloy molten metal, so that Na in the hypereutectic Al-Si alloy molten metal is added. Metal Na addition treatment method to adjust the content, or Al-Si-Na master alloy molten metal (metal Na alloy member) in which powder or lump Al-Si-Na master alloy is dissolved, Al-Si alloy A metal Na addition treatment method of adjusting the Na content in the hypereutectic Al—Si alloy melt by adding to the melt may be applied.

また、上述した実施の形態においては、純度の高いPをAl-Si合金溶湯に添加する場合について述べたが、本発明はこれに限らず、PだけでなくAlも含有しているAlP(リン化アルミニウム)をAl-Si合金溶湯に添加するようにしてもよい。   In the embodiment described above, the case where high purity P is added to the molten Al-Si alloy has been described. However, the present invention is not limited to this, and AlP (phosphorus) containing not only P but also Al. (Aluminum fluoride) may be added to the molten Al-Si alloy.

(3)過共晶Al-Si合金溶湯中におけるSi、P及びNaの含有量
過共晶Al-Si合金溶湯におけるSi、P及びNaの含有量について、以下説明する。Siは、過共晶Al-Si合金溶湯中に、15mass%〜30mass%含有させることが好ましい。Si含有量が15mass%より少ないと、初晶Si粒子2の晶出量が低下し、初晶Si粒子2の数が低減してしまい、過共晶Al-Si合金1の引張り強度や伸び易さ等の機械的性質の向上効果がみられないので好ましくない。また、Si含有量が30mass%より多くなると、Siを完全に溶解するのに高温を要し、かつ、固相の大量の晶出した溶湯は湯流れが悪く、実用に適さない。さらに、Si含有量が30mass%より多くなると、晶出する初晶Si粒子2が錨のような働きをする(アンカー効果)ため、切削性の低下や、切断面を研磨して平滑にすることが困難となり、過共晶Al-Si合金1の加工性が低下し好ましくない。
(3) Content of Si, P and Na in the hypereutectic Al-Si alloy molten metal The contents of Si, P and Na in the hypereutectic Al-Si alloy molten metal will be described below. Si is preferably contained in the hypereutectic Al-Si alloy melt in an amount of 15 mass% to 30 mass%. If the Si content is less than 15 mass%, the crystallization amount of the primary crystal Si particles 2 decreases, the number of primary crystal Si particles 2 decreases, and the tensile strength and easy elongation of the hypereutectic Al-Si alloy 1 are reduced. Since the improvement effect of mechanical properties, such as a thickness, is not seen, it is not preferable. On the other hand, if the Si content exceeds 30 mass%, a high temperature is required to completely dissolve Si, and a large amount of solid-phase crystallized metal has a poor hot water flow and is not suitable for practical use. Furthermore, when the Si content exceeds 30 mass%, the primary crystal Si particles 2 to be crystallized work like an anchor (anchor effect), so that the machinability is lowered and the cut surface is polished and smoothed. Is difficult, and the workability of the hypereutectic Al-Si alloy 1 is lowered, which is not preferable.

次いで、Pは、過共晶Al-Si合金溶湯中に、1massppm〜50massppm含有させることが好ましい。P含有量が1massppmより少ないと、初晶Si粒子2の核となるAlPの量が少なくなり、初晶Si粒子2の平均粒径が大きくなって(100μm以上)好ましくない。また、P含有量が50massppmより多いと、AlPの結晶粒の粒子サイズが大きくなり、それに伴って初晶Si粒子2の平均粒径も大きくなる(100μm以上)ことから好ましくない。   Next, P is preferably contained in the hypereutectic Al—Si alloy molten metal in an amount of 1 massppm to 50 massppm. When the P content is less than 1 massppm, the amount of AlP serving as the nucleus of the primary crystal Si particles 2 decreases, and the average particle size of the primary crystal Si particles 2 becomes large (100 μm or more), which is not preferable. On the other hand, when the P content is more than 50 massppm, the particle size of the AlP crystal grains is increased, and the average particle diameter of the primary crystal Si particles 2 is increased (100 μm or more).

因みに、このAlPは、図2(A)に示すように、閃亜鉛鉱型の結晶構造を有し、格子状数が5.462(Å)となっている。また、Siは、図2(B)に示すように、ダイヤモンド型の結晶構造を有し、格子状数が5.429(Å)となっている。これらAlPの閃亜鉛鉱型と、Siのダイヤモンド型とは、原子の配置位置が同じで、さらに格子状数も互いに近い数値となっていることから、過共晶Al-Si合金材料の溶湯を冷却する際に、AlPの周りにSiが結晶成長し易く、AlPを核とした初晶Si粒子が生成され得る。   Incidentally, this AlP has a zinc blende type crystal structure as shown in FIG. 2A, and the number of lattices is 5.462 (Å). Further, as shown in FIG. 2B, Si has a diamond-type crystal structure and the number of lattices is 5.429 (Å). These AlP zinc blende types and Si diamond types have the same atomic arrangement positions and the lattice numbers are close to each other. When cooling, Si easily grows around AlP, and primary crystal Si particles having AlP as a nucleus can be generated.

次いで、Naは、過共晶Al-Si合金中のNa含有量が200massppm〜1000massppmとなることを想定して、過共晶Al-Si合金溶湯にAl-Si-Na母合金が添加されることが好ましい。想定されるNa含有量が200massppmより少ないと、初晶Si粒子2の外郭形状が丸みを帯びた形状とならず、また平均粒径が大きくなる(100μm以上)ことから好ましくない。想定されるNa含有量が1000massppmより多いと、Naの取り扱いが困難となり、また炉材や注湯容器等が溶損し易くなることから好ましくない。また、想定されるNa含有量が多い程、初晶Si粒子2の平均粒径が小さくなり、Na含有量が600massppm〜1000massppmの場合は、初晶Siの平均粒径を20μm以下にできる。   Next, assuming that the Na content in the hypereutectic Al-Si alloy is 200 massppm to 1000 massppm, the Al-Si-Na master alloy is added to the hypereutectic Al-Si alloy melt Is preferred. If the assumed Na content is less than 200 massppm, the outer shape of the primary crystal Si particles 2 is not rounded and the average particle size becomes large (100 μm or more), which is not preferable. When the assumed Na content is more than 1000 massppm, it is not preferable because it becomes difficult to handle Na, and the furnace material, the pouring vessel, and the like are easily melted. Moreover, the average particle diameter of the primary crystal Si particles 2 decreases as the assumed Na content increases, and when the Na content is 600 massppm to 1000 massppm, the average particle diameter of the primary crystal Si can be 20 μm or less.

(4)実施例
(4−1)P含有量のNa添加方法依存性
本発明に先立って、P減少のNa添加方法依存性に関する実験をAl-13%Si合金を用いて検討した結果を表1に示す(表1中では、Al-13%Si合金を溶解したままの、何も添加していない試料を「無処理」と表記)ような、商用純度の過共晶Al-13%Si合金材料(以下、単に商用純度Al-Si合金材料と呼ぶ)と、高純度の過共晶Al-13%Si合金材料(以下、これを高純度Al-Si合金材料と呼ぶ)を用意し、商用純度Al-Si合金材料を溶融させた商用純度合金溶湯と、高純度Al-Si合金材料を溶融させた高純度合金溶湯を作製した。当該作成した商用純度合金溶湯及び高純度合金溶湯に、本願発明の金属Na添加処理法を用いたNa添加方法と、従来技術のフラックス処理法によるNa添加方法を行った。製造した過共晶Al-Si合金のGDマス分析による元素濃度解析結果についても表1に示す(表1中では、各々「Na(metal)」と「Na(flux)」と表記した)。
(4) Example (4-1) Dependence of P Content on Na Addition Method Prior to the present invention, the results of an examination on the dependence of P reduction on the Na addition method using Al-13% Si alloy are shown in FIG. As shown in Table 1 (in Table 1, a sample in which Al-13% Si alloy is dissolved and nothing is added is indicated as “no-treatment”). Prepare alloy material (hereinafter simply referred to as commercial purity Al-Si alloy material) and high purity hypereutectic Al-13% Si alloy material (hereinafter referred to as high purity Al-Si alloy material) A commercial purity alloy melt obtained by melting a commercial purity Al-Si alloy material and a high purity alloy melt obtained by melting a high purity Al-Si alloy material were prepared. A Na addition method using the metal Na addition treatment method of the present invention and a Na addition method using a flux treatment method of the prior art were performed on the produced commercial purity alloy melt and high purity alloy melt. The results of element concentration analysis by GD mass analysis of the produced hypereutectic Al—Si alloy are also shown in Table 1 (in Table 1, “Na (metal)” and “Na (flux)”, respectively).

表1より、本願発明の金属Na添加処理法を用いたNa添加方法を実施した場合、商用純度Al-Si合金材料及び高純度Al-Si合金材料を用いて形成した過共晶Al-Si合金は、いずれも、無処理のP濃度に比較してP濃度が減少していないことがわかる。これに対して、従来技術のフラックス処理法によるNa添加方法を実施した場合、商用純度Al-Si合金材料及び高純度Al-Si合金材料を用いて形成した過共晶Al-Si合金は、いずれも、無処理のP濃度に比較してP濃度が減少している。 From Table 1, when the Na addition method using the metallic Na addition treatment method of the present invention is carried out, a hypereutectic Al-Si alloy formed using a commercial purity Al-Si alloy material and a high purity Al-Si alloy material. It can be seen that P concentration does not decrease compared to untreated P concentration. On the other hand, when the Na addition method by the flux processing method of the prior art is performed, the hypereutectic Al-Si alloy formed using the commercial purity Al-Si alloy material and the high purity Al-Si alloy material, However, the P concentration is reduced compared to the untreated P concentration.

以上より、本願発明の金属Na添加処理法を用いたNa添加方法を実施した場合は、当該処理によるP濃度の減少がないこと、つまり、P添加量が、そのまま過共晶Al-Si合金のP含有量となることが確認できた。従って、以下の実験では、本願発明の金属Na添加処理法を用いたNa添加方法を実施した場合は、P添加量と過共晶Al-Si合金のP含有量は等しいとして説明する。   As described above, when the Na addition method using the metal Na addition treatment method of the present invention is carried out, there is no decrease in the P concentration due to the treatment, that is, the P addition amount is the same as that of the hypereutectic Al-Si alloy. It was confirmed that the P content was achieved. Therefore, in the following experiment, when the Na addition method using the metal Na addition treatment method of the present invention is performed, it is assumed that the P addition amount is equal to the P content of the hypereutectic Al—Si alloy.

(4−2)実証実験1
次に、上述した表1に示すような、商用純度Al-Si合金材料と、高純度Al-Si合金材料を用意し(表1中「無処理」と表記)、商用純度Al-Si合金材料を溶融させた商用純度合金溶湯と、高純度Al-Si合金材料を溶融させた高純度合金溶湯を作製した。
(4-2) Demonstration experiment 1
Next, commercial purity Al-Si alloy materials and high purity Al-Si alloy materials as shown in Table 1 above are prepared (indicated as "no treatment" in Table 1), and commercial purity Al-Si alloy materials are prepared. A commercial-purity alloy melt made by melting and a high-purity alloy melt obtained by melting a high-purity Al-Si alloy material were prepared.

次いで、上述した製造方法に従って、商用純度合金溶湯と、高純度合金溶湯におけるNaの添加量を調整し、複数の過共晶Al-Si合金を作製した。そして、これら複数の過共晶Al-Si合金について、内部の組成状態の様子を観察し、初晶Si粒子2の平均粒径や、外郭形状について検証した。   Subsequently, according to the manufacturing method mentioned above, the amount of Na added in the commercial purity alloy molten metal and the high purity alloy molten metal was adjusted to produce a plurality of hypereutectic Al—Si alloys. And about the several hypereutectic Al-Si alloy, the mode of an internal composition state was observed and the average particle diameter of the primary crystal Si particle 2 and the outline shape were verified.

ここでは、先ず、表1に示す商用純度Al-Si合金材料500gを用意し、これを図3に示すようなアルミナ坩堝5に入れ、約800℃で加熱して商用純度合金溶湯を複数作製した。ここで、金属Na合金部材として、Al-20%Si-1%Naの組成でなり金属Naを含有させたAl-20%Si-1%Na母合金を、予め作製して用意した。   Here, first, 500 g of commercial purity Al—Si alloy material shown in Table 1 was prepared, put in an alumina crucible 5 as shown in FIG. 3, and heated at about 800 ° C. to produce a plurality of molten commercial purity alloys. . Here, as a metal Na alloy member, an Al-20% Si-1% Na master alloy having a composition of Al-20% Si-1% Na and containing metal Na was prepared and prepared in advance.

次いで、商用純度Al-Si合金材料500gと、この商用純度Al-Si合金材料500gに添加するAl-20%Si-1%Na母合金との質量の合計に対して、Naの含有量が200massppmとなるAl-20%Si-1%Na母合金の添加量を特定し、この特定した添加量のAl-20%Si-1%Na母合金を、商用純度合金溶湯に添加して、第1の商用純度過共晶Al-Si合金溶湯を作製した。   Next, with respect to the total mass of the commercial purity Al-Si alloy material 500 g and the Al-20% Si-1% Na master alloy added to the commercial purity Al-Si alloy material 500 g, the Na content is 200 massppm. The amount of Al-20% Si-1% Na master alloy to be added is specified, and this specified amount of Al-20% Si-1% Na master alloy is added to the commercial purity alloy melt to obtain the first Commercial purity hypereutectic Al-Si alloy melt was prepared.

また、商用純度Al-Si合金材料500gと、この商用純度Al-Si合金材料500gに添加するAl-20%Si-1%Na母合金との質量の合計に対して、Naの含有量が500massppmとなるAl-20%Si-1%Na母合金の添加量を特定し、この特定した添加量のAl-20%Si-1%Na母合金を、商用純度合金溶湯に添加して、第2の商用純度過共晶Al-Si合金溶湯を作製した。   In addition, with respect to the total mass of the commercial purity Al-Si alloy material 500g and the Al-20% Si-1% Na master alloy added to the commercial purity Al-Si alloy material 500g, the Na content is 500 massppm. The amount of the Al-20% Si-1% Na master alloy to be added is specified, and the specified amount of Al-20% Si-1% Na master alloy is added to the commercial purity alloy melt to obtain the second Commercial purity hypereutectic Al-Si alloy melt was prepared.

さらに、商用純度Al-Si合金材料500gと、この商用純度Al-Si合金材料500gに添加するAl-20%Si-1%Na母合金との質量の合計に対して、Naの含有量が800massppmとなるAl-20%Si-1%Na母合金の添加量を特定し、この特定した添加量のAl-20%Si-1%Na母合金を、商用純度合金溶湯に添加して、第3の商用純度過共晶Al-Si合金溶湯を作製した。   Furthermore, the Na content is 800 massppm with respect to the total mass of the commercial purity Al-Si alloy material 500g and the Al-20% Si-1% Na master alloy added to the commercial purity Al-Si alloy material 500g. The amount of Al-20% Si-1% Na master alloy to be added is specified, and this specified amount of Al-20% Si-1% Na master alloy is added to the commercial purity alloy molten metal. Commercial purity hypereutectic Al-Si alloy melt was prepared.

次いで、水冷銅板6上に設置された有底円筒形状の断熱鋳型7を用意し、これら第1〜第3の商用純度過共晶Al-Si合金溶湯を別の断熱鋳型7にそれぞれ個別に注湯した。次いで、第1〜第3の商用純度過共晶Al-Si合金溶湯を断熱鋳型7によって冷却して凝固させた後、断熱鋳型7から取り出した。   Next, a bottomed cylindrical heat insulating mold 7 installed on the water-cooled copper plate 6 is prepared, and these first to third commercial purity hypereutectic Al—Si alloy melts are individually poured into different heat insulating molds 7. I made hot water. Next, the first to third commercial purity hypereutectic Al—Si alloy melts were cooled and solidified by the heat insulation mold 7, and then taken out from the heat insulation mold 7.

このようにして、Naの含有量を200massppm、500massppm、800massppmとさせるためにそれぞれ理論的に特定した添加量のAl-20%Si-1%Na母合金をそれぞれ添加した3つの商用純度過共晶Al-Si合金を、円柱状に形成した試料1aを作製した。   In this way, three commercial purity hypereutectics, each with the addition of an Al-20% Si-1% Na master alloy with theoretically specified addition amounts to bring the Na content to 200 massppm, 500 massppm, and 800 massppm, respectively. Sample 1a in which an Al—Si alloy was formed in a cylindrical shape was produced.

なお、断熱鋳型7は、下記の表2に示すように、水冷銅板6上から約10mmの部位(以下、これを単に10mm部という)で約200K/minの冷却速度で冷却でき、また水冷銅板6上から約100mmの部位(以下、これを単に100mm部という)で約20K/minの冷却速度で冷却できるものを用いた。   As shown in Table 2 below, the heat-insulating mold 7 can be cooled at a cooling rate of about 200 K / min at a portion of about 10 mm from the water-cooled copper plate 6 (hereinafter simply referred to as the 10 mm portion). 6 A thing that can be cooled at a cooling rate of about 20 K / min at a site of about 100 mm from the top (hereinafter referred to simply as 100 mm part) was used.

また、これとは別に、高純度Al-Si合金材料500gを用意し、これを別のアルミナ坩堝5に入れ、約800℃で加熱して高純度合金溶湯を複数作製した。次いで、Naの含有量を200massppm、500massppm、800massppmとさせるためにそれぞれ理論的に特定した添加量のAl-20%Si-1%Na母合金を、第1〜第3の高純度合金溶湯にそれぞれ添加して3つの高純度過共晶Al-Si合金溶湯とを作製した。 Separately from this, 500 g of a high-purity Al—Si alloy material was prepared, put in another alumina crucible 5 and heated at about 800 ° C. to produce a plurality of high-purity alloy melts. Next, the theoretically specified addition amounts of Al-20% Si-1% Na master alloy for setting the Na content to 200 massppm, 500 massppm, and 800 massppm are respectively added to the first to third high-purity alloy melts. Three high-purity hypereutectic Al-Si alloy melts were prepared by addition.

次いで、これら3つの高純度過共晶Al-Si合金溶湯を別の断熱鋳型7にそれぞれ個別に注湯し、これら高純度過共晶Al-Si合金溶湯を断熱鋳型7によって冷却して凝固させた後、断熱鋳型7から取り出した。このようにして、Naの含有量を200massppm、500massppm、800massppmとさせるためにそれぞれ理論的に特定した添加量のAl-20%Si-1%Na母合金をそれぞれ添加した3つの高純度過共晶Al-Si合金を、円柱状に形成した試料1aを作製した。   Next, these three high purity hypereutectic Al—Si alloy melts are poured into separate heat insulation molds 7 individually, and these high purity hypereutectic Al—Si alloy melts are cooled and solidified by the heat insulation mold 7. After that, it was taken out from the heat insulating mold 7. In this way, three high-purity hypereutectic crystals, each of which has been added with a theoretically specified amount of Al-20% Si-1% Na master alloy to make the Na content 200 massppm, 500 massppm, and 800 massppm, respectively. Sample 1a in which an Al—Si alloy was formed in a cylindrical shape was produced.

次いで、これら6種類の試料1aについて、水冷銅板6上から10mmの位置となる部位(10mm部)と、100mmの位置となる部位(100mm部)とをそれぞれ切断して、1つの試料1aから2つの試料片を採取した。採取された各試料片の切断面を研磨した後、光学顕微鏡を用いて切断面の状態を観察した。   Next, with respect to these six types of samples 1a, the part (10mm part) that is 10mm from the water-cooled copper plate 6 and the part (100mm part) that are 100mm are cut, respectively. Two sample pieces were taken. After the cut surface of each sample piece collected was polished, the state of the cut surface was observed using an optical microscope.

ここで、Na含有量を200massppmにすることを想定してAl-20%Si-1%Na母合金が添加された商用純度過共晶Al-Si合金において、冷却速度200K/minで冷却した10mm部を実施例1とし、冷却速度約20K/minで冷却した100mm部を実施例4とした。また、Na含有量を500massppmにすることを想定してAl-20%Si-1%Na母合金が添加された商用純度過共晶Al-Si合金において、10mm部を実施例2とし、100mm部を実施例5とした。さらに、Na含有量を800massppmにすることを想定してAl-20%Si-1%Na母合金が添加された商用純度過共晶Al-Si合金において、10mm部を実施例3とし、100mm部を実施例6とした。   Here, assuming that the Na content is 200 massppm, the commercial purity hypereutectic Al-Si alloy to which the Al-20% Si-1% Na master alloy has been added is 10 mm cooled at a cooling rate of 200 K / min. The part was designated as Example 1, and the 100 mm part cooled at a cooling rate of about 20 K / min was designated as Example 4. Further, assuming that the Na content is set to 500 massppm, in a commercial purity hypereutectic Al-Si alloy to which an Al-20% Si-1% Na master alloy is added, 10 mm part is taken as Example 2 and 100 mm part. Was taken as Example 5. Further, in a commercial purity hypereutectic Al-Si alloy to which an Al-20% Si-1% Na master alloy was added assuming that the Na content was 800 massppm, 10 mm part was taken as Example 3 and 100 mm part Was taken as Example 6.

また、Na含有量を200massppmにすることを想定してAl-20%Si-1%Na母合金が添加された高純度過共晶Al-Si合金において、冷却速度200K/minで冷却した10mm部を比較例7とし、冷却速度約20K/minで冷却した100mm部を比較例10とした。また、Na含有量を500massppmにすることを想定してAl-20%Si-1%Na母合金が添加された高純度過共晶Al-Si合金において、10mm部を比較例8とし、100mm部を比較例11とした。さらに、Na含有量を800massppmにすることを想定してAl-20%Si-1%Na母合金が添加された高純度過共晶Al-Si合金において、10mm部を比較例9とし、100mm部を比較例12とした。   In addition, 10 mm parts cooled at a cooling rate of 200 K / min in a high purity hypereutectic Al-Si alloy with an Al-20% Si-1% Na master alloy added assuming that the Na content is 200 massppm. Was set as Comparative Example 7, and a 100 mm portion cooled at a cooling rate of about 20 K / min was set as Comparative Example 10. In addition, in a high purity hypereutectic Al-Si alloy to which an Al-20% Si-1% Na master alloy is added assuming that the Na content is 500 massppm, 10 mm part is set as Comparative Example 8 and 100 mm part. Was referred to as Comparative Example 11. Further, in a high purity hypereutectic Al-Si alloy to which an Al-20% Si-1% Na master alloy is added assuming that the Na content is 800 massppm, 10 mm part is set as Comparative Example 9 and 100 mm part. Was referred to as Comparative Example 12.

このような実施例1〜6及び比較例7〜12について纏めると、下記の表3のようになる。   The following Table 3 summarizes Examples 1 to 6 and Comparative Examples 7 to 12.

実施例1及び4の試料切断面は、光学顕微鏡により観察したところ、図4(A)及び(D)に示すような状態となっており、実施例2及び5の試料切断面は、光学顕微鏡により観察したところ、図4(B)及び(E)に示すような状態となっており、実施例3及び6の試料切断面は、光学顕微鏡により観察したところ、図4(C)及び(F)に示すような状態となっていた。 When the sample cut surfaces of Examples 1 and 4 were observed with an optical microscope, the sample cut surfaces were as shown in FIGS. 4A and 4D. The sample cut surfaces of Examples 2 and 5 were optical microscopes. 4 (B) and (E), and the sample cut surfaces of Examples 3 and 6 were observed with an optical microscope. ).

また、これとは別に、実施例1〜3における各試料片の研磨された切断面に、苛性ソーダ水溶液をそれぞれ滴下し、切断面のアルミニウムマトリクス3を腐食させて、切断面の初晶Si粒子2や共晶Si粒子4を立体的に浮き上がらせ、この切断面の立体形状を電子顕微鏡にて観察し、その観察結果をまとめて図5(A)〜(F)に示した。   Separately, a caustic soda aqueous solution is dropped on the polished cut surfaces of the sample pieces in Examples 1 to 3 to corrode the aluminum matrix 3 on the cut surfaces, and the primary crystal Si particles 2 on the cut surfaces. The eutectic Si particles 4 are three-dimensionally lifted, the three-dimensional shape of the cut surface is observed with an electron microscope, and the observation results are collectively shown in FIGS. 5 (A) to (F).

実施例1の試料切断面は、電子顕微鏡により観察したところ、図5(A)に示すような状態となっており、さらに図5(A)の一部を拡大したところ、図5(D)に示すような状態となっていた。実施例2の試料切断面は、電子顕微鏡により観察したところ、図5(B)に示すような状態となっており、さらに図5(B)の一部を拡大したところ、図5(E)に示すような状態となっていた。実施例3の試料切断面は、電子顕微鏡により観察したところ、図5(C)に示すような状態となっており、さらに図5(C)の一部を拡大したところ、図5(F)に示すような状態となっていた。   When the sample cut surface of Example 1 was observed with an electron microscope, it was in a state as shown in FIG. 5 (A), and when a part of FIG. 5 (A) was further enlarged, FIG. It was in the state shown in. When the sample cut surface of Example 2 was observed with an electron microscope, it was in a state as shown in FIG. 5B, and when a part of FIG. 5B was further enlarged, FIG. It was in the state shown in. When the sample cut surface of Example 3 was observed with an electron microscope, it was in the state shown in FIG. 5C, and when a part of FIG. 5C was further enlarged, FIG. It was in the state shown in.

これら図4(A)〜(F)と図5(A)〜(F)の結果から、実施例1〜6については、いずれも従来に比べて初晶Si粒子2が微細化されており、かつ外郭形状が従来よりも角部が少なく丸みを帯びていることが確認できた。   From these results of FIGS. 4 (A) to (F) and FIGS. 5 (A) to (F), for Examples 1 to 6, the primary crystal Si particles 2 are both miniaturized as compared with the prior art, It was also confirmed that the outer shape was rounder with fewer corners than before.

また、商用純度過共晶Al-Si合金溶湯のNa含有量が多いほど、商用純度過共晶Al-Si合金中の初晶Si粒子2が一段と微細化され、かつ外郭形状についても更に丸みを帯びて球状に形成されることが確認できた。   In addition, as the Na content in the commercial purity hypereutectic Al-Si alloy melt increases, the primary crystal Si particles 2 in the commercial purity hypereutectic Al-Si alloy are further refined and the outer shape is further rounded. It was confirmed that it was formed into a spherical shape.

さらに、図4(A)〜(F)において、いずれの試料においても100mm部より冷却速度が速い10mm部のほうが、初晶Si粒子2の平均粒径が小さくなっていることが確認できた。なお、試料を5mm部で観察すると更に微細化された初晶Si粒子2及び共晶Si粒子4が観察できた。   Further, in FIGS. 4A to 4F, it was confirmed that the average particle size of the primary crystal Si particles 2 was smaller in the 10 mm portion where the cooling rate was faster than the 100 mm portion in any sample. When the sample was observed at 5 mm, further refined primary crystal Si particles 2 and eutectic Si particles 4 could be observed.

このとから、冷却速度を速くすることで、一段と平均粒径が小さく、かつ球状に形成された初晶Si粒子2を生成できることが確認できた。また、これら図4(A)〜(F)と図5(A)〜(F)から、初晶Si粒子2が細かくなると同時に、共晶Si粒子4も改良されており、冷却速度を速くすることで、初晶Si粒子2及び共晶Si粒子4ともに平均粒径を一段と小さくできることが確認できた。   From this, it was confirmed that by increasing the cooling rate, the primary Si particles 2 having a smaller average particle diameter and formed in a spherical shape can be generated. Further, from FIGS. 4A to 4F and FIGS. 5A to 5F, the primary crystal Si particles 2 become finer, and at the same time, the eutectic Si particles 4 are improved, and the cooling rate is increased. Thus, it was confirmed that both the primary Si particles 2 and the eutectic Si particles 4 can further reduce the average particle diameter.

ここで、図5(F)に示した部位を電子顕微鏡により拡大し、初晶Si粒子2及び共晶Si粒子4を観察したところ、図6に示すような結果が得られた。この結果からも、初晶Si粒子2は、平均粒径が小さく、かつ丸みを帯びて滑らかな外郭形状を有した球状でなることが確認できた。また、共晶Si粒子4についても、微細化されていることが確認でき、アルミニウムマトリクス3全体に密に拡散していることも確認できた。   Here, when the site shown in FIG. 5F was enlarged by an electron microscope and the primary Si particles 2 and the eutectic Si particles 4 were observed, results as shown in FIG. 6 were obtained. Also from this result, it was confirmed that the primary crystal Si particles 2 had a small average particle diameter and a round shape with a smooth outer shape. Further, it was confirmed that the eutectic Si particles 4 were also miniaturized, and that the eutectic Si particles 4 were densely diffused throughout the aluminum matrix 3.

ここで、比較例7〜12については、図示していないが、生成された初晶Si粒子について平均粒径や外郭形状について光学顕微鏡により観察したところ、初晶Si粒子が十分に微細化されていないことが確認できた。   Here, although not shown for Comparative Examples 7 to 12, when the average particle diameter and the outer shape of the generated primary crystal Si particles were observed with an optical microscope, the primary crystal Si particles were sufficiently refined. It was confirmed that there was no.

このように、商用純度Al-Si合金材料に比較して、例えばP含有量が少ない高純度Al-Si合金材料では、Na含有量を同じとしても、初晶Si粒子を微細化し得ないことが分かる。このことから、Al及びSi以外の他の元素の含有量が非常に少なく、特に後述するP含有量が少ないと、初晶Si粒子を微細化し得ないことが分かる。なお、このP含有量についての具体的な数値の限定に関しては、後述する検証試験にて説明する。   Thus, compared to commercial purity Al-Si alloy materials, for example, high-purity Al-Si alloy materials with low P content may not be able to refine primary Si particles even if the Na content is the same. I understand. From this, it can be seen that the content of other elements other than Al and Si is very small, and if the P content described later is particularly small, the primary Si particles cannot be refined. In addition, about the limitation of the specific numerical value about this P content, it demonstrates in the verification test mentioned later.

次に、これら図4(A)〜(C)及び図5(A)〜(F)を基に、上述した平均粒径の求め方に従って、10mm部における初晶Si粒子2の平均粒径を計測した。その結果、実施例1では、初晶Si粒子2の平均粒径が60μm、実施例2では、初晶Si粒子2の平均粒径が40μm、実施例3では、初晶Si粒子2の平均粒径が10μmとの計測結果が得られた。   Next, based on these FIG. 4 (A) to (C) and FIG. 5 (A) to (F), the average particle diameter of the primary crystal Si particles 2 in the 10 mm portion is determined according to the above-described method for determining the average particle diameter. Measured. As a result, in Example 1, the average particle diameter of primary Si particles 2 is 60 μm, in Example 2, the average particle diameter of primary Si particles 2 is 40 μm, and in Example 3, the average particle diameter of primary Si particles 2 is A measurement result with a diameter of 10 μm was obtained.

以上、図4(A)〜(F)及び図5(A)〜(F)の観察結果から、Naの添加量が増加するに従って初晶Si粒子2の平均粒径が微細化されるとともに、共晶Si粒子4も微細化されることが確認できた。また、Naの添加量が増加するに従って初晶Si粒子2の外郭形状が丸みを帯びて球状に形成されてゆくことが確認できた。   As described above, from the observation results of FIGS. 4A to 4F and FIGS. 5A to 5F, the average particle size of the primary Si particles 2 is refined as the amount of Na added increases, It was confirmed that the eutectic Si particles 4 were also refined. It was also confirmed that the outer shape of the primary crystal Si particles 2 was rounded and formed into a spherical shape as the amount of Na added increased.

ここで、これとは別に、Na含有量を200massppm未満にすることを想定してAl-20%Si-1%Na母合金が添加された商用純度過共晶Al-Si合金溶湯を作製し、これを断熱鋳型7により冷却して商用純度過共晶Al-Si合金を作製した。この商用純度過共晶Al-Si合金について、上述と同様に切断してその切断面を観察し、初晶Si粒子の平均粒径を計測したところ、初晶Si粒子2の平均粒径を従来よりも微細化できるものの、実施例1〜6に比べて、初晶Si粒子2の平均粒径が大きくなることが確認できた。   Here, apart from this, assuming that the Na content is less than 200 massppm, a commercial purity hypereutectic Al-Si alloy melt to which Al-20% Si-1% Na master alloy was added was prepared, This was cooled by a heat insulating mold 7 to produce a commercial purity hypereutectic Al-Si alloy. The commercial purity hypereutectic Al-Si alloy was cut in the same manner as described above, the cut surface was observed, and the average particle size of the primary crystal Si particles was measured. It was confirmed that the average particle size of the primary crystal Si particles 2 was larger than those in Examples 1 to 6, although the size could be further reduced.

ところで、このような、Naについては、Na含有量が1000massppmを超えると、炉材や注湯容器等の溶損とNa取扱いの困難性が高くなる。そこで、本発明では、Na含有量を1000massppm以下にすることを想定してAl-20%Si-1%Na母合金が添加された過共晶Al-Si合金が望ましく、かくして、Na含有量を200massppm以上1000massppm以下(200massppm〜1000massppm)にすることを想定してAl-20%Si-1%Na母合金が添加されると、初晶Si粒子の平均粒径を一段と小さくして微細化させることができる。   By the way, about such Na, when Na content exceeds 1000 massppm, the melting loss of a furnace material, a pouring container, etc. and the difficulty of Na handling will become high. Therefore, in the present invention, a hypereutectic Al-Si alloy to which an Al-20% Si-1% Na master alloy has been added is desirable assuming that the Na content is 1000 massppm or less, and thus the Na content is reduced. When Al-20% Si-1% Na master alloy is added assuming that it is 200massppm or more and 1000massppm or less (200massppm to 1000massppm), the average particle size of primary Si particles should be further reduced and refined Can do.

因みに、上述した実験で用いた試料1aとは別にフラックス処理法によりNaを添加した試料を作製した。ここでは、商用純度Al-Si合金材料500gのNa含有量が200massppm、500massppm、800massppmとなるようにフラックス内のNaの量を調整し、当該商用純度Al-Si合金材料500gに対しフラックス処理法によりNa添加を行った。   Incidentally, a sample to which Na was added by a flux treatment method was prepared separately from the sample 1a used in the above-described experiment. Here, the amount of Na in the flux is adjusted so that the Na content of 500 g of commercial purity Al-Si alloy material is 200 massppm, 500 massppm, and 800 massppm. Na addition was performed.

これらフラックス処理法によりNa添加を行った商用純度合金溶湯を、上述と同様に、断熱鋳型7により冷却してAl-Si合金からなる円柱状の試料1aを作製した。そして、フラックス処理法により200massppmのNa添加を行ったAl-Si合金について、上述と同様に、10mm部及び100mm部の切断面を作製し、表3に示すように、これを比較例13及び16とした。同様に、フラックス処理法により500massppmのNa添加を行ったAl-Si合金について10mm部及び100mm部の切断面を比較例14及び17とし、フラックス処理法により800massppmのNa添加を行ったAl-Si合金について10mm部及び100mm部の切断面を比較例15及び18として、これら比較例13〜18について光学顕微鏡により観察した。その結果、初晶Si粒子の平均粒径が100μm以上となり、金属Na合金部材を添加した実施例1〜6に比べて、初晶Si粒子2が十分微細化されていないことが確認できた。これにより、過共晶Al-Si合金材料へのNaの添加は、フラックス処理法では初晶Si粒子を微細化し得ず、本発明による金属Na添加処理法を用いることで十分な初晶Si粒子2の微細化が達成されることが確認できた。   In the same manner as described above, the commercial purity alloy melt to which Na was added by the flux treatment method was cooled by the heat insulating mold 7 to produce a columnar sample 1a made of an Al—Si alloy. And about the Al-Si alloy which added Na of 200 massppm by the flux processing method, the cut surface of 10 mm part and 100 mm part was produced similarly to the above, and as shown in Table 3, this is compared with Comparative Examples 13 and 16 It was. Similarly, the Al-Si alloy to which 500 massppm of Na was added by the flux treatment method was used as Comparative Examples 14 and 17 at 10 mm and 100 mm sections, and the Al-Si alloy to which 800 massppm of Na was added by the flux treatment method. The cut surfaces of 10 mm part and 100 mm part were taken as Comparative Examples 15 and 18, and Comparative Examples 13 to 18 were observed with an optical microscope. As a result, the average particle diameter of the primary crystal Si particles was 100 μm or more, and it was confirmed that the primary crystal Si particles 2 were not sufficiently refined as compared with Examples 1 to 6 to which the metal Na alloy member was added. As a result, the addition of Na to the hypereutectic Al-Si alloy material does not allow the primary Si particles to be refined by the flux treatment method, and sufficient primary Si particles can be obtained by using the metal Na addition treatment method according to the present invention. It was confirmed that the miniaturization of 2 was achieved.

(4−3)実証実験2
次に、Na含有量を500massppmにすることを想定してAl-20%Si-1%Na母合金が添加された高純度過共晶Al-Si合金溶湯を作製した後、表4に示すように、この高純度過共晶Al-Si合金溶湯に対してAlPによりPを30massppm添加して、P含有量を調整した高純度過共晶Al-Si合金溶湯を作製した。
(4-3) Demonstration experiment 2
Next, a high purity hypereutectic Al-Si alloy melt to which an Al-20% Si-1% Na master alloy was added was prepared assuming that the Na content was 500 massppm, as shown in Table 4. Further, 30 mass ppm of P was added by AlP to the high purity hypereutectic Al—Si alloy molten metal to prepare a high purity hypereutectic Al—Si alloy molten metal whose P content was adjusted.

次いで、この高純度過共晶Al-Si合金溶湯を断熱鋳型7にそれぞれ個別に注湯して、高純度過共晶Al-Si合金溶湯を断熱鋳型7によって冷却して凝固させた後、断熱鋳型7から取り出し、円柱状の試料1aを作製した。このようにしてP含有量を調整した高純度過共晶Al-Si合金からなる試料1aについて、10mm部及び100mm部で試料片を採取し、10mm部を実施例19とし、100mm部を実施例20とした。 Next, the high purity hypereutectic Al—Si alloy molten metal is individually poured into the heat insulating mold 7, and the high purity hypereutectic Al—Si alloy molten metal is cooled and solidified by the heat insulating mold 7. It was taken out from the mold 7 to prepare a cylindrical sample 1a. For the sample 1a composed of a high purity hypereutectic Al-Si alloy with the P content adjusted in this way, sample pieces were taken at 10 mm parts and 100 mm parts, with 10 mm parts as Example 19 and 100 mm parts as Examples. It was set to 20.

次いで、これら実施例19及び20についても、上述した「(4−1)実証実験1」と同様に、それらの切断面を研磨した後、研磨された切断面を光学顕微鏡により観察したところ、実施例19では図7(A)に示すような結果が得られ、実施例20では図7(B)に示すような結果が得られた。   Then, also in Examples 19 and 20, as in “(4-1) Demonstration Experiment 1” described above, after the cut surfaces were polished, the polished cut surfaces were observed with an optical microscope. In Example 19, the result as shown in FIG. 7A was obtained, and in Example 20, the result as shown in FIG. 7B was obtained.

なお、図7(C)は、上述した比較例8の切断面について光学顕微鏡により観察した結果を示す。また、図7(D)は、上述した比較例11の切断面について光学顕微鏡により観察した結果を示す。このように、比較例8及び比較例11では、初晶Si粒子2aの平均粒径が100μm以上であることが計測できた。   FIG. 7C shows the result of observation of the cut surface of Comparative Example 8 described above with an optical microscope. FIG. 7D shows the result of observing the cut surface of Comparative Example 11 described above with an optical microscope. Thus, in Comparative Example 8 and Comparative Example 11, it was possible to measure that the average particle diameter of the primary crystal Si particles 2a was 100 μm or more.

これに対して、図7(A)から、実施例19では初晶Si粒子2aの平均粒径が40μmであることが確認できた。これら図7(A)及び(B)から、高純度過共晶Al-Si合金溶湯でもP含有量を調整することで、初晶Si粒子2が微細化され、かつ丸みを帯びた外郭形状に形成できることが確認できた。   On the other hand, from FIG. 7A, it was confirmed in Example 19 that the average particle diameter of the primary Si particles 2a was 40 μm. From these FIGS. 7A and 7B, by adjusting the P content even in the high purity hypereutectic Al—Si alloy molten metal, the primary crystal Si particles 2 are refined and rounded in the outer shape. It was confirmed that it could be formed.

次に、高純度過共晶Al-Si合金に含有させるP含有量について検証を行った。ここでは、Na含有量を500massppmにすることを想定してAl-20%Si-1%Na母合金が添加された高純度過共晶Al-Si合金溶湯を作製した。次いで、表5に示すように、この高純度過共晶Al-Si合金溶湯に対しAlPによりPを0.3massppm〜100massppmまでの範囲で添加して、P含有量を調整した高純度過共晶Al-Si合金溶湯を作製した。   Next, the P content contained in the high purity hypereutectic Al—Si alloy was verified. Here, a high-purity hypereutectic Al—Si alloy melt to which an Al-20% Si-1% Na master alloy was added was prepared assuming that the Na content was 500 massppm. Next, as shown in Table 5, high purity hypereutectic Al whose P content was adjusted by adding P in the range from 0.3 massppm to 100 massppm with AlP to this high purity hypereutectic Al-Si alloy molten metal. -Si alloy melt was prepared.

次いで、この高純度過共晶Al-Si合金溶湯を断熱鋳型7にそれぞれ個別に注湯して、高純度過共晶Al-Si合金溶湯を断熱鋳型7によって冷却して凝固させた後、断熱鋳型7から取り出し、円筒状の試料1aを作製した。このようにしてP含有量を0.3massppm〜100massppmまでの範囲で調整した高純度過共晶Al-Si合金からなる複数種類の試料1aを作製した。次いで、各資料1aについて、10mm部で試料片を採取し、P含有量を0.3massppm〜100massppmまでの範囲で比較例21、実施例22〜26、比較例27及び28として(表5)、初晶Si粒子2の状態を検証した。その結果、高純度過共晶Al-Si合金でも、P含有量が1massppm〜50massppmとすることで、初晶Si粒子が微細化され、かつ外郭形状に丸みを帯びた形状に形成できることが確認できた。 Next, the high purity hypereutectic Al—Si alloy molten metal is individually poured into the heat insulating mold 7, and the high purity hypereutectic Al—Si alloy molten metal is cooled and solidified by the heat insulating mold 7. It was taken out from the mold 7 to prepare a cylindrical sample 1a. In this way, a plurality of types of samples 1a made of high-purity hypereutectic Al—Si alloy with the P content adjusted in the range of 0.3 massppm to 100 massppm were prepared. Subsequently, about each data 1a, sample piece was extract | collected in 10 mm part, and P content is the range from 0.3massppm to 100massppm as Comparative Example 21, Examples 22-26, Comparative Examples 27 and 28 (Table 5), and the first. The state of the crystal Si particles 2 was verified. As a result, even in high-purity hypereutectic Al-Si alloys, it can be confirmed that when the P content is 1 massppm to 50 massppm, the primary Si particles can be refined and the outer shape can be rounded. It was.

(4−4)実証実験3
次に、Na含有量を800massppmにすることを想定してAl-20%Si-1%Na母合金が添加された商用純度過共晶Al-Si合金溶湯を作製した後、下記の表6に示すように、この商用純度過共晶Al-Si合金溶湯に対してSiを13mass%〜30mass%の範囲で添加し、Si含有量を調整した商用純度過共晶Al-Si合金溶湯を作製した。
(4-4) Demonstration experiment 3
Next, after preparing a commercial purity hypereutectic Al-Si alloy melt to which an Al-20% Si-1% Na master alloy was added, assuming that the Na content is 800 massppm, As shown, Si was added to the commercial purity hypereutectic Al-Si alloy melt in the range of 13 mass% to 30 mass% to produce a commercial purity hypereutectic Al-Si alloy melt with adjusted Si content. .

次いで、この商用純度過共晶Al-Si合金溶湯を断熱鋳型7にそれぞれ個別に注湯して、商用純度過共晶Al-Si合金溶湯を断熱鋳型7によって冷却して凝固させた後、断熱鋳型7から取り出し、円筒状の試料1aを複数作製した。次いで、このようにしてSi含有量を13mass%〜30mass%の範囲とした商用純度過共晶Al-Si合金からなる各試料1aについて、それぞれ10mm部で試料片を採取し、各試料片を実施例29〜37とした。 Next, the commercial purity hypereutectic Al—Si alloy molten metal is individually poured into the heat insulating mold 7, and the commercial purity hypereutectic Al—Si alloy molten metal is cooled and solidified by the heat insulating mold 7. A plurality of cylindrical samples 1a were produced from the mold 7. Next, for each sample 1a made of a commercial purity hypereutectic Al-Si alloy having a Si content in the range of 13 mass% to 30 mass% in this way, a sample piece was taken at 10 mm each, and each sample piece was carried out It was set as Examples 29-37.

そして、これら実施例29〜37について、光学顕微鏡及び電子顕微鏡を用いて各切断面を観察したところ、Si含有量13mass%〜30mass%の全ての範囲において、初晶Si粒子2が微細化され、かつ外郭形状が丸みを帯びていることが確認できた。   And about these Examples 29-37, when each cut surface was observed using the optical microscope and the electron microscope, in the whole range of Si content 13mass%-30mass%, primary crystal Si particle 2 is refined | miniaturized, In addition, it was confirmed that the outer shape was rounded.

また、商用純度過共晶Al-Si合金では、Si含有量が15mass%以上になると、Si含有量が15mass%未満の場合に比べて、アルミニウムマトリクス3中における初晶Si粒子2の晶出量が多くなり、初晶Si粒子2の数が増えることが確認できた。このことから、商用純度過共晶Al-Si合金では、Si含有量が15mass%以上のとき、初晶Si粒子2の晶出量が多くなり、初晶Si粒子2の数が増えることから、その分だけ、Si含有量が15mass%未満の場合に比べて、引張り強さ及び伸びの機械的性質の改善が良くなることが確認できた。   Moreover, in the commercial purity hypereutectic Al-Si alloy, when the Si content is 15 mass% or more, the crystallization amount of the primary Si particles 2 in the aluminum matrix 3 is larger than when the Si content is less than 15 mass%. It was confirmed that the number of primary crystal Si particles 2 increased. From this, in the commercial purity hypereutectic Al-Si alloy, when the Si content is 15 mass% or more, the amount of primary Si particles 2 is increased and the number of primary Si particles 2 is increased. Accordingly, it was confirmed that the mechanical properties of tensile strength and elongation were improved as compared with the case where the Si content was less than 15 mass%.

(5)作用及び効果
以上の構成において、本発明による製造方法では、Al-Si-Na母合金をAl-Si合金溶湯に添加することにより過共晶Al-Si合金溶湯を作製し、当該過共晶Al-Si合金溶湯を冷却して凝固させることで過共晶Al-Si合金1を作製する。
(5) Action and effect In the above-described configuration, in the manufacturing method according to the present invention, a hypereutectic Al-Si alloy melt is prepared by adding an Al-Si-Na master alloy to the Al-Si alloy melt, The hypereutectic Al-Si alloy 1 is produced by cooling and solidifying the eutectic Al-Si alloy melt.

これにより、本発明による製造方法では、製造過程において、Al-Si-Na母合金に含まれるNaによって、過共晶Al-Si合金溶湯中におけるP含有量の減少を抑制することができ、初晶Si粒子2の微細化に必要なPを共晶Al-Si合金溶湯中に残すことができる。   Thus, in the manufacturing method according to the present invention, the decrease in the P content in the hypereutectic Al-Si alloy molten metal can be suppressed by Na contained in the Al-Si-Na master alloy during the manufacturing process. P necessary for refinement of the crystal Si particles 2 can be left in the molten eutectic Al-Si alloy.

また、本発明による製造方法では、1massppm〜50massppmの範囲でPを過共晶Al-Si合金溶湯中に含有させることにより、AlとPとが結合して、初晶Si粒子2の核になるAlPが生成され、初晶Si粒子2を微細化することができる。   Further, in the production method according to the present invention, Al and P are bonded to form the nucleus of the primary crystal Si particle 2 by containing P in the hypereutectic Al-Si alloy molten metal in the range of 1 massppm to 50 massppm. AlP is generated and the primary Si particles 2 can be refined.

また、本発明による製造方法では、200massppm〜1000massppmの範囲でNaを過共晶Al-Si合金溶湯中に含有させることにより、Pによる初晶Si粒子2の微細化効果を促進して初晶Si粒子2を微細化できるとともに、初晶Si粒子2の外郭形状を、角部を有した形状から丸みを帯びた粒子状に形成できる。   In the production method according to the present invention, Na is contained in the hypereutectic Al-Si alloy melt in the range of 200 massppm to 1000 massppm, thereby promoting the refinement effect of the primary Si particles 2 by P and the primary Si. The particles 2 can be refined and the outer shape of the primary crystal Si particles 2 can be formed from a shape having corners to a rounded particle shape.

本発明による製造方法により製造された過共晶Al-Si合金1では、初晶Si粒子2を微細化することができるので、初晶Si粒子2のアンカー効果を低減することができる。   In the hypereutectic Al—Si alloy 1 manufactured by the manufacturing method according to the present invention, the primary Si particles 2 can be made finer, so that the anchor effect of the primary Si particles 2 can be reduced.

また、本発明による製造方法において、さらに、15mass%〜30mass%の範囲でSiを過共晶Al-Si合金溶湯中に含有させることにより、微細化された初晶Si粒子2の晶出量が多くなり、初晶Si粒子2の微細化による機械的性質の向上ができるとともに、Si添加の特性である耐熱衝撃性を有することができる。   Further, in the production method according to the present invention, the crystallization amount of the refined primary Si particles 2 can be further increased by including Si in the hypereutectic Al-Si alloy molten metal in the range of 15 mass% to 30 mass%. The mechanical properties can be improved by miniaturizing the primary Si particles 2 and thermal shock resistance, which is a characteristic of Si addition, can be obtained.

なお、従来の製造方法では、商用純度合金材料にフラックス処理法でNaを添加して作製した過共晶Al-Si合金中、Pの含有量が著しく減少していることから、初晶Si粒子の核となるAlPの生成量不足により、初晶Si粒子が微細化しない。これに対して、本発明の製造方法では、金属Na添加処理法を用いることで、商用純度合金材料にNaを添加させることができ、その結果、Pの減少を抑制させることができる。   In the conventional manufacturing method, the content of P in the hypereutectic Al-Si alloy produced by adding Na to the commercial purity alloy material by the flux treatment method is significantly reduced. The primary Si particles will not be refined due to the insufficient amount of AlP produced as the core of the. On the other hand, in the manufacturing method of the present invention, Na can be added to the commercial purity alloy material by using the metal Na addition treatment method, and as a result, the decrease in P can be suppressed.

このように本発明の製造方法では、商用純度合金材料に金属Na添加処理法を用いてNaを添加することにより、平均粒径が小さく、丸みを帯びた外郭形状でなる初晶Si粒子2が作製できる。かくして、本発明による製造方法により作成された過共晶Al-Si合金1では、初晶Si粒子2が従来よりも角部を有していない分、外力が印加された際に、初晶Si粒子2が破壊の起点となり難くなり、機械加工性及び熱衝撃性が従来よりも向上し、また平滑な加工面を形成し得る。   As described above, in the manufacturing method of the present invention, by adding Na to the commercial purity alloy material using the metal Na addition method, the primary Si particles 2 having a small average particle diameter and a rounded outer shape are obtained. Can be made. Thus, in the hypereutectic Al—Si alloy 1 produced by the manufacturing method according to the present invention, the primary crystal Si particles 2 have no corners as compared with the prior art, and when an external force is applied, the primary crystal Si The particles 2 are unlikely to become the starting point of fracture, and the machinability and thermal shock property are improved as compared with the conventional one, and a smooth processed surface can be formed.

また、Si含有量を15mass%以上、30mass%以下としてSi濃度を高くしたことで、従来よりも、高強度、高伸びの過共晶Al-Si合金1を提供できる。   Further, by increasing the Si concentration by setting the Si content to 15 mass% or more and 30 mass% or less, it is possible to provide the hypereutectic Al-Si alloy 1 having higher strength and higher elongation than before.

1 過共晶Al-Si合金
2 初晶Si粒子
3 アルミニウムマトリクス
4 共晶Si粒子
1 Hypereutectic Al-Si alloy 2 Primary crystal Si particles 3 Aluminum matrix 4 Eutectic Si particles

Claims (6)

Al、Si及びPを所定の組成比で含有した過共晶Al-Si合金溶湯を作製し、該過共晶Al-Si合金溶湯を冷却させることにより、初晶Si粒子が分散した過共晶Al-Si合金を製造する製造方法において、
前記過共晶Al-Si合金溶湯中のP含有量を1massppm以上、50massppm以下に調整するとともに、金属Na又は金属Naを含む金属Na合金部材を前記過共晶Al-Si合金溶湯に添加する添加ステップを備える
ことを特徴とする過共晶Al-Si合金の製造方法。
A hypereutectic Al-Si alloy molten metal containing Al, Si and P in a predetermined composition ratio is prepared, and the hypereutectic Al-Si alloy molten metal is cooled, whereby the primary eutectic Si particles are dispersed. In a production method for producing an Al-Si alloy,
Addition of adjusting the P content in the hypereutectic Al-Si alloy melt to 1 massppm or more and 50 massppm or less, and adding metal Na or a metal Na alloy member containing metal Na to the hypereutectic Al-Si alloy melt A method for producing a hypereutectic Al-Si alloy, comprising a step.
前記過共晶Al-Si合金溶湯中のSi含有量を15mass%以上、30mass%以下に調整するSi含有量調整ステップを備える
ことを特徴とする請求項1に記載の過共晶Al-Si合金の製造方法。
The hypereutectic Al-Si alloy according to claim 1, further comprising a Si content adjusting step of adjusting the Si content in the molten hypereutectic Al-Si alloy to 15 mass% or more and 30 mass% or less. Manufacturing method.
前記添加ステップは、前記過共晶Al-Si合金のNa含有量を200massppm以上、1000massppm以下にすることを想定して前記金属Na又は前記金属Na合金部材を、前記過共晶Al-Si合金溶湯に添加する
ことを特徴とする請求項1又は2に記載の過共晶Al-Si合金の製造方法。
The adding step assumes that the Na content of the hypereutectic Al-Si alloy is 200 massppm or more and 1000 massppm or less, and the metal Na or the metal Na alloy member is replaced with the hypereutectic Al-Si alloy molten metal. The method for producing a hypereutectic Al—Si alloy according to claim 1, wherein the hypereutectic Al—Si alloy is added.
初晶Si粒子がアルミニウムマトリクス中に分散している過共晶Al-Si合金において、
前記初晶Si粒子は、平均粒径が100μm未満であり、丸みを帯びた外郭形状に形成されている
ことを特徴とする過共晶Al-Si合金。
In a hypereutectic Al-Si alloy in which primary Si particles are dispersed in an aluminum matrix,
The primary eutectic Si particles have an average particle size of less than 100 μm and are formed in a rounded outer shape.
Si含有量が15mass%以上、30mass%以下である
ことを特徴とする請求項4に記載の過共晶Al-Si合金。
The hypereutectic Al-Si alloy according to claim 4, wherein the Si content is 15 mass% or more and 30 mass% or less.
前記初晶Si粒子が20μm以下である
ことを特徴とする請求項4又は5に記載の過共晶Al-Si合金。
The hypereutectic Al-Si alloy according to claim 4 or 5, wherein the primary crystal Si particles are 20 µm or less.
JP2010205826A 2010-09-14 2010-09-14 METHOD OF MANUFACTURING HYPEREUTECTIC Al-Si ALLOY, AND HYPEREUTECTIC Al-Si ALLOY Withdrawn JP2012062501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010205826A JP2012062501A (en) 2010-09-14 2010-09-14 METHOD OF MANUFACTURING HYPEREUTECTIC Al-Si ALLOY, AND HYPEREUTECTIC Al-Si ALLOY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010205826A JP2012062501A (en) 2010-09-14 2010-09-14 METHOD OF MANUFACTURING HYPEREUTECTIC Al-Si ALLOY, AND HYPEREUTECTIC Al-Si ALLOY

Publications (1)

Publication Number Publication Date
JP2012062501A true JP2012062501A (en) 2012-03-29

Family

ID=46058522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010205826A Withdrawn JP2012062501A (en) 2010-09-14 2010-09-14 METHOD OF MANUFACTURING HYPEREUTECTIC Al-Si ALLOY, AND HYPEREUTECTIC Al-Si ALLOY

Country Status (1)

Country Link
JP (1) JP2012062501A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018178152A (en) * 2017-04-04 2018-11-15 東京印刷機材トレーディング株式会社 METHOD FOR MANUFACTURING HYPEREUTECTIC Al-Si ALLOY PARTICLE, AND HYPEREUTECTIC Al-Si ALLOY PARTICLE
CN111074113A (en) * 2020-01-02 2020-04-28 苏州先准电子科技有限公司 Production process for in-situ generation of zirconium boride particle reinforced aluminum-silicon-based composite material
JP2020152996A (en) * 2019-03-22 2020-09-24 日本軽金属株式会社 Method for making alp compounds finer and aluminum alloy casting
CN115992321A (en) * 2022-06-09 2023-04-21 河南科技大学 Hypereutectic aluminum-silicon alloy and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018178152A (en) * 2017-04-04 2018-11-15 東京印刷機材トレーディング株式会社 METHOD FOR MANUFACTURING HYPEREUTECTIC Al-Si ALLOY PARTICLE, AND HYPEREUTECTIC Al-Si ALLOY PARTICLE
JP2020152996A (en) * 2019-03-22 2020-09-24 日本軽金属株式会社 Method for making alp compounds finer and aluminum alloy casting
JP7167795B2 (en) 2019-03-22 2022-11-09 日本軽金属株式会社 AlP compound refinement method and aluminum alloy casting
CN111074113A (en) * 2020-01-02 2020-04-28 苏州先准电子科技有限公司 Production process for in-situ generation of zirconium boride particle reinforced aluminum-silicon-based composite material
CN111074113B (en) * 2020-01-02 2021-12-24 苏州先准电子科技有限公司 Production process for in-situ generation of zirconium boride particle reinforced aluminum-silicon-based composite material
CN115992321A (en) * 2022-06-09 2023-04-21 河南科技大学 Hypereutectic aluminum-silicon alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
Qin et al. Effect of phosphorus on microstructure and growth manner of primary Mg2Si crystal in Mg2Si/Al composite
CN103370429B (en) The method of fining metal alloy
Chen et al. Microstructures and mechanical properties of in-situ Al 3 Ti/2024 aluminum matrix composites fabricated by ultrasonic treatment and subsequent squeeze casting
Darvishi et al. The mutual effect of iron and manganese on microstructure and mechanical properties of aluminium-silicon alloy
CN103361524B (en) Composite modification method for hypereutectic aluminum-silicon alloy
JP2010018875A (en) High strength aluminum alloy, method for producing high strength aluminum alloy casting, and method for producing high strength aluminum alloy member
EP2885437A1 (en) Al-nb-b master alloy for grain refining
CN111020305A (en) Aluminum alloy composite material skin material flat ingot and manufacturing method thereof
CN109280829B (en) High-strength cast Mg-Zn-Cu-Zr alloy and preparation method thereof
Akbarifar et al. On the interfacial characteristics of compound cast Al/brass bimetals
JP2012062501A (en) METHOD OF MANUFACTURING HYPEREUTECTIC Al-Si ALLOY, AND HYPEREUTECTIC Al-Si ALLOY
Yun et al. Investigation on the modification behavior of A356 alloy inoculated with a Sr-Y composite modifier
CN106756305B (en) A kind of Aluminum alloy modification processing method
WO2014019400A1 (en) Method for refining primary silicon of hypereutectic al-si alloy
CN110656263A (en) High-performance Al-Si series welding wire alloy containing trace La element and preparation method thereof
Piątkowski Influence of overheating temperature on the shape of primary silicon crystals in hypereutectic Al-Si cast alloys
CN102719688A (en) Process method capable of improving thermal fatigue property of polynary zinc-aluminum alloy
Cais et al. Relation between porosity and mechanical properties of Al-Si alloys produced by low-pressure casting
CN110387478A (en) A kind of semi-continuous casting method of Al-Si alloy ingots
CN113718132B (en) Ni alloy for refining grains by solute interaction and preparation method thereof
CN106702227B (en) A kind of wear-resistant aluminum alloy and preparation method thereof
JP2011162883A (en) High-strength aluminum alloy, method of manufacturing high-strength aluminum alloy casting, and method of manufacturing high-strength aluminum alloy member
CN109280786B (en) Aluminum-tungsten intermediate alloy and production method thereof
Mao et al. Refinement of primary silicon grains in semi-solid Al-25% Si hypereutectic aluminum alloy slurry
JP2013018027A (en) Method for manufacturing magnesium alloy material, and magnesium alloy material manufactured thereby

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20131203