JP2012060150A - Printed wiring board and its manufacturing method - Google Patents

Printed wiring board and its manufacturing method Download PDF

Info

Publication number
JP2012060150A
JP2012060150A JP2011248928A JP2011248928A JP2012060150A JP 2012060150 A JP2012060150 A JP 2012060150A JP 2011248928 A JP2011248928 A JP 2011248928A JP 2011248928 A JP2011248928 A JP 2011248928A JP 2012060150 A JP2012060150 A JP 2012060150A
Authority
JP
Japan
Prior art keywords
base material
insulating resin
resin base
hole
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011248928A
Other languages
Japanese (ja)
Other versions
JP5432228B2 (en
Inventor
Daisuke Ikeda
大介 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2011248928A priority Critical patent/JP5432228B2/en
Publication of JP2012060150A publication Critical patent/JP2012060150A/en
Application granted granted Critical
Publication of JP5432228B2 publication Critical patent/JP5432228B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a printed wiring board having through-hole structure which can reduce a defect such as a void and occurrence of a crack, reduce connection failure of a circuit board, and improve mechanical strength of the circuit board.SOLUTION: A printed wiring board has a through-hole obtained by filling an open hole arranged in an insulating resin base material with plating. Positions of axes of center of gravity are shifted and arranged in the respective through-holes exposed from a surface and a rear face of the insulating resin base material.

Description

本発明は、絶縁性材料に形成した貫通孔内にめっき導体が形成されてなるプリント配線板に係り、更に詳しくは、めっき導体の導通不良を改善し、かつ基板強度を向上させたプリント配線板とその製造方法に関する。   The present invention relates to a printed wiring board in which a plated conductor is formed in a through-hole formed in an insulating material. More specifically, the printed wiring board has improved conduction failure of the plated conductor and improved board strength. And its manufacturing method.

従来のプリント配線板において、コアとなる絶縁性樹脂基材の表面および裏面にそれぞれ形成した導体回路を電気的に接続するためのめっきスルーホールとして、絶縁性樹脂基材に形成した貫通孔内に、めっきによって金属を充填してなるフィルドタイプのスルーホールがある。
例えば、特許文献1には、このようなスルーホールを形成する方法が、従来技術として記載されている。スルーホールを形成には、先ず、図9(a)に示す様に、絶縁性樹脂基材1に貫通孔2を形成した後、図9(b)に示す様に、貫通孔の内壁面を含む絶縁性樹脂基材2の表面に無電解めっきによって、金属から成るシード層3を形成する。
次いで、シード層3を給電層として電解めっきを施して、シード層3上に電解めっき層4を形成する。この電解めっき層4は、図9(c)に示す様に、貫通孔2の開口部の角部に形成された部分が、貫通孔2の内側部に形成された部分よりも厚くなる。
更に、電解めっき処理を施して、図9(d)に示す様に、貫通孔2を金属で充填してスルーホール6を形成すると共に、電解めっき層4を所望の厚さとすることができる。
その後、この電解めっき層4にパターニングを施すことによって、絶縁性樹脂基材1の表面および裏面に所望の配線パターンを形成し、このような配線パターンを電気的に接続するスルーホール6が形成された配線基板を得ることができる。
しかしながら、このような方法により形成されたスルーホール内には、図9(d)に示すように、内部にボイド8が形成され易いという問題があった。
そこで、ボイド等の欠陥のないスルーホールを形成し得る技術が提案されている(例えば、上記特許文献1参照)。この方法は、図10(a)〜(b)に示すように、絶縁性樹脂基材1に縦断面が鼓型をした貫通孔2を形成した後、貫通孔の内壁面に無電解めっきによって金属から成るシード層3を形成し、次いで、このシード層を給電層として電解めっき処理を施すことにより、鼓型の貫通孔内に金属4を充填し、ボイド等の欠陥が生じることが少ないスルーホール6を形成する方法である。
特開2004−311919号公報
In the conventional printed wiring board, in the through-hole formed in the insulating resin base material as a plated through hole for electrically connecting the conductor circuits formed on the front and back surfaces of the insulating resin base material as the core, respectively. There are filled-type through-holes that are filled with metal by plating.
For example, Patent Document 1 describes a method of forming such a through hole as a conventional technique. In forming the through hole, first, as shown in FIG. 9A, after the through hole 2 is formed in the insulating resin substrate 1, the inner wall surface of the through hole is formed as shown in FIG. 9B. A seed layer 3 made of metal is formed by electroless plating on the surface of the insulating resin substrate 2 to be included.
Next, electrolytic plating is performed using the seed layer 3 as a power feeding layer to form an electrolytic plating layer 4 on the seed layer 3. As shown in FIG. 9C, the electrolytic plating layer 4 is thicker at the portion formed at the corner of the opening of the through hole 2 than at the inner portion of the through hole 2.
Furthermore, by performing electrolytic plating treatment, as shown in FIG. 9 (d), the through hole 2 is filled with metal to form the through hole 6, and the electrolytic plating layer 4 can have a desired thickness.
Thereafter, by patterning the electrolytic plating layer 4, desired wiring patterns are formed on the front and back surfaces of the insulating resin substrate 1, and through holes 6 for electrically connecting such wiring patterns are formed. A wiring board can be obtained.
However, as shown in FIG. 9D, there is a problem that voids 8 are easily formed in the through holes formed by such a method.
Therefore, a technique capable of forming a through hole free from defects such as voids has been proposed (see, for example, Patent Document 1 above). In this method, as shown in FIGS. 10 (a) to 10 (b), after the through-hole 2 having a drum-shaped longitudinal section is formed in the insulating resin substrate 1, the inner wall surface of the through-hole is electrolessly plated. By forming a seed layer 3 made of metal, and then performing an electroplating process using the seed layer as a power supply layer, the drum 4 through-hole is filled with the metal 4 so that defects such as voids are less likely to occur. This is a method of forming the hole 6.
JP 2004-311919 A

ところが、上述したような縦断面が鼓型をしたスルーホールを有するプリント配線板では、めっき充填されてなるスルーホールが、表面開口から中央部に向かうにつれて縮径している、いわゆるネック部分を有すると共に、中心軸を挟んでほぼ対称な形状であるため、絶縁性樹脂基材に反りが発生した場合には、その応力がスルーホールのネック部分周辺に集中しやすくなる。その結果、ネック部分周辺にクラックが発生しやすくなるので、そのクラック発生により接続不良が生じたり、基板が折れやすくなって十分な機械的強度が得られないという問題がある。
そこで、本発明の目的は、ボイド等の欠陥を低減させるだけでなくクラックの発生をも低減させることによって、基板の接続不良を低減させ、かつ基板の機械的強度を向上させるようなスルーホール構造を有するプリント配線板を提供することにある。
However, in the printed wiring board having a through hole whose longitudinal section has a drum shape as described above, the plated through hole has a so-called neck portion whose diameter decreases from the surface opening toward the center. At the same time, since the shape is almost symmetrical across the central axis, when warping occurs in the insulating resin base material, the stress tends to concentrate around the neck portion of the through hole. As a result, cracks are likely to occur in the vicinity of the neck portion, so that there is a problem that connection failure occurs due to the occurrence of the cracks, and the substrate is easily broken and sufficient mechanical strength cannot be obtained.
Accordingly, an object of the present invention is to reduce the connection failure of the substrate and reduce the mechanical strength of the substrate by reducing not only the defects such as voids but also the occurrence of cracks. It is providing the printed wiring board which has this.

本発明者は前記課題を解決すべく検討を重ねた結果、めっき充填されてなる断面鼓型のスルーホール構造、例えば、基板の一方の面に露出する第1の開口部と、基板の他方の面に露出する第2の開口部とが、基板の中央部付近に向かうにつれて縮径され、その中央部付近にて一体化されてなる形態、即ち、断面鼓型の形態を有するスルーホール構造において、第1の開口部の重心軸と、第2の開口部の重心軸とが所定範囲内で互いにずれた構造である場合に、めっきの充填性がよいこと及びめっき充填されたスルーホールが受ける応力が効果的に緩和されるということを見出し、本発明に到達した。   As a result of repeated studies to solve the above problems, the inventor of the present invention has a through-hole structure having a cross-sectional drum shape filled with plating, for example, a first opening exposed on one surface of the substrate, and the other of the substrate. In the through hole structure having a shape in which the second opening exposed to the surface is reduced in diameter toward the vicinity of the central portion of the substrate and integrated in the vicinity of the central portion, that is, in a cross-sectional drum shape When the centroid axis of the first opening and the centroid axis of the second opening are deviated from each other within a predetermined range, the plating fillability is good and the plating-filled through-hole receives. The inventors have found that stress is effectively relieved and have reached the present invention.

すなわち、本発明は、
(1)絶縁性樹脂基材に設けた貫通孔内にめっき充填してなるスルーホールを有するプリント配線板において、
前記スルーホールはネック部を有する形状であり、
前記絶縁性樹脂基材の表面および裏面から露出する各スルーホールの重心軸の位置が互いにずれており、
前記スルーホールのネック部における接合断面の重心位置は、隣り合うスルーホールで前記絶縁性樹脂基材の断面方向においてずれていることを特徴とするプリント配線板である。
That is, the present invention
(1) In a printed wiring board having a through-hole formed by plating and filling a through-hole provided in an insulating resin base material,
The through hole is a shape having a neck portion,
The position of the center of gravity axis of each through hole exposed from the front and back surfaces of the insulating resin base material is shifted from each other,
In the printed wiring board, the position of the center of gravity of the bonding cross section at the neck portion of the through hole is shifted in the cross sectional direction of the insulating resin base material between adjacent through holes.

また、本発明は、
(2)絶縁性樹脂基材に設けた貫通孔内にめっき充填してなるスルーホールを有し、かつそのスルーホールによって電気的に接続される内層の導体回路を前記絶縁性樹脂基材の表面および裏面に有するコア基板と、そのコア基板上に樹脂絶縁層と外層の導体回路とを交互に形成してなる多層プリント配線板において、
前記スルーホールはネック部を有する形状であり、
前記絶縁性樹脂基材の表面および裏面から露出する各スルーホールの重心軸の位置が互いにずれており、
前記スルーホールのネック部における接合断面の重心位置は、隣り合うスルーホールで前記絶縁性樹脂基材の断面方向においてずれていることを特徴とする多層プリント配線板である。
The present invention also provides:
(2) The surface of the insulating resin base material having a through hole formed by plating and filling the through hole provided in the insulating resin base material and electrically connected by the through hole. In the multilayer printed wiring board formed by alternately forming the core substrate having the back surface and the resin insulating layer and the outer layer conductor circuit on the core substrate,
The through hole is a shape having a neck portion,
The position of the center of gravity axis of each through hole exposed from the front and back surfaces of the insulating resin base material is shifted from each other,
In the multilayer printed wiring board, the position of the center of gravity of the bonding cross section at the neck portion of the through hole is shifted in the cross sectional direction of the insulating resin base material between adjacent through holes.

上記(1)および(2)に記載された発明において、
(1)前記ネック部を結んだ線で囲まれる平面領域は、前記絶縁性樹脂基材の表面と平行にならないこと、
(2)前記貫通孔は、前記絶縁性樹脂基材の表面に開口する第1開口部と、前記絶縁性樹脂基材の裏面に開口する第2開口部とからなること
(3)前記ずれ量は、5〜30μmであること、
(4)前記第1開口部と前記第2開口部との径は略同一であること、
(5)前記絶縁性樹脂基材は、ガラス布エポキシ樹脂基材、ガラス布ビスマレイミドトリアジン樹脂基材、ガラス布ポリフェニレンエーテル樹脂基材、アラミド不織布−エポキシ樹脂基材、アラミド不織布−ポリイミド樹脂基材からなる群から選ばれること、
(6)前記絶縁性樹脂基材の厚さは、100〜500μmであること、
(7)隣接する前記スルーホール間のピッチは、100〜400μmであること、
とすることができる。
また、本発明において、前記スルーホールは、絶縁性樹脂基材の表面および裏面のそれぞれから内部に向かうにつれて縮径されてネック部が形成されてなる形状、即ち、内部にネック部を有するような鼓型に形成することができ、絶縁性樹脂基材の表面および裏面側にそれぞれ露出する開口の直径を75〜300μmとし、絶縁性樹脂基材内部のネック部の直径を50〜250μmとすることができる。
ここで、「重心軸」とは、コア基板の表面(裏面)のスルーホールの開口部の重心点を通り、コア基板の表面(裏面)と実質的に垂直な直線のことを指す。
In the inventions described in (1) and (2) above,
(1) The plane region surrounded by the line connecting the neck portions is not parallel to the surface of the insulating resin base material.
(2) The through hole includes a first opening opening on the surface of the insulating resin base material and a second opening opening on the back surface of the insulating resin base material. (3) The deviation amount Is 5 to 30 μm,
(4) The first opening and the second opening have substantially the same diameter.
(5) The insulating resin base material is a glass cloth epoxy resin base material, a glass cloth bismaleimide triazine resin base material, a glass cloth polyphenylene ether resin base material, an aramid nonwoven fabric-epoxy resin base material, an aramid nonwoven fabric-polyimide resin base material. Being selected from the group consisting of
(6) The insulating resin base material has a thickness of 100 to 500 μm.
(7) The pitch between the adjacent through holes is 100 to 400 μm,
It can be.
Further, in the present invention, the through hole has a shape in which a neck portion is formed by being reduced in diameter from the front surface and the back surface of the insulating resin base material, that is, having a neck portion inside. It can be formed into a drum shape, and the diameter of the opening exposed on the front and back sides of the insulating resin substrate is 75 to 300 μm, and the diameter of the neck portion inside the insulating resin substrate is 50 to 250 μm. Can do.
Here, the “center of gravity axis” refers to a straight line that passes through the center of gravity of the opening of the through hole on the front surface (back surface) of the core substrate and is substantially perpendicular to the front surface (back surface) of the core substrate.

さらに、本発明は、絶縁性樹脂基材を貫通する貫通孔にめっき充填されてなるスルーホールを有し、かつそのスルーホールによって電気的に接続される導体回路を前記絶縁性樹脂基材の表面および裏面に有するプリント配線板を製造するに当たって、
少なくとも以下の(1)〜(4)の工程、即ち、
(1) 絶縁性樹脂基材の両面に銅箔が貼付されてなる銅張積層板の一方の表面の所定位置にレーザ照射を行って、絶縁性樹脂基材の内部に向かうにつれて縮径されるような形状を有する第1の開口部を形成する工程、
(2) 前記絶縁性樹脂基材を挟んで前記所定位置と対面する前記銅張積層板の他方の表面の箇所から、前記第1の開口部の重心位置と重ならないような位置にレーザ照射を行って、前記絶縁性樹脂基材の内部に向かうにつれて縮径されるような形状を有し、かつ絶縁性樹脂基材の厚み方向中央部付近で前記第1の開口部と連通してネック部を形成し、前記ネック部を結んだ線で囲まれる平面領域が前記絶縁性樹脂基材の表面と平行にならないようにするような第2の開口部を形成し、前記第1の開口部と前記第2の開口部との接合断面の重心位置が、隣り合うスルーホールで前記絶縁性樹脂基材の断面方向においてずれているようにする工程、
(3) 前記基板に対して無電解めっきを施して、前記第1および第2の開口部の内壁に無電解めっき膜を形成する工程、
(4) 前記基板に電解めっきを施して、前記無電解めっき膜上に電解めっき膜を形成すると共に、前記第1および第2の開口部内部にめっき充填してスルーホールを形成する工程、
を含んでいることを特徴とするプリント配線板の製造方法である。
上記に記載された発明において、
(1)前記第1開口部は、前記絶縁性樹脂基材の厚み方向の中央部から裏面に近い部分に至るように設けられ、
前記第2開口部は、前記絶縁性樹脂基材の厚み方向の中央部から表面に近い部分に至るように設けられること、
(2)前記第1開口部を形成するレーザ加工条件と、前記第2開口部を形成するレーザ加工条件とは同一であること、
とすることができる。
なお、上記(2)の工程と(3)の工程との間に、前記第1および第2の開口部内に残留する樹脂残渣を除去する工程を含んでもよい。
Furthermore, the present invention provides a conductive circuit having a through hole formed by plating filling a through hole penetrating the insulating resin base material and electrically connected by the through hole. And in manufacturing printed wiring boards on the back,
At least the following steps (1) to (4):
(1) Laser irradiation is performed on a predetermined position on one surface of a copper clad laminate in which copper foil is adhered to both surfaces of an insulating resin substrate, and the diameter is reduced toward the inside of the insulating resin substrate. Forming a first opening having such a shape;
(2) Laser irradiation is performed from a location on the other surface of the copper-clad laminate facing the predetermined position across the insulating resin base material so as not to overlap with the center of gravity of the first opening. And having a shape that is reduced in diameter toward the inside of the insulating resin base material, and communicates with the first opening in the vicinity of the central portion in the thickness direction of the insulating resin base material. And forming a second opening so that a planar region surrounded by a line connecting the neck portions is not parallel to the surface of the insulating resin base material, and the first opening A step of causing the center of gravity position of the joint cross section with the second opening to be shifted in the cross-sectional direction of the insulating resin base material in the adjacent through hole;
(3) applying electroless plating to the substrate to form an electroless plating film on the inner walls of the first and second openings;
(4) performing electrolytic plating on the substrate to form an electrolytic plating film on the electroless plating film, and forming a through hole by filling the first and second openings with plating;
It is the manufacturing method of the printed wiring board characterized by including.
In the invention described above,
(1) The first opening is provided so as to reach a portion near the back surface from a central portion in the thickness direction of the insulating resin base material,
The second opening is provided so as to reach a portion close to the surface from a central portion in a thickness direction of the insulating resin substrate;
(2) The laser processing conditions for forming the first opening and the laser processing conditions for forming the second opening are the same.
It can be.
In addition, you may include the process of removing the resin residue which remains in the said 1st and 2nd opening part between the process of said (2), and the process of (3).

ボイド等の欠陥やクラックの発生を低減させることができるので、基板の接続不良を低減させ、かつ基板の機械的強度を向上させることができる。   Since the occurrence of defects such as voids and the occurrence of cracks can be reduced, poor connection of the substrate can be reduced and the mechanical strength of the substrate can be improved.

本発明にかかるプリント配線板は、絶縁性樹脂基材に設けた貫通孔内にめっき導体を有するプリント配線板、または、そのようなプリント配線板をコア基板とし、そのコア基板上に導体層と樹脂絶縁層とを交互に形成してなる多層プリント配線板において、
前記絶縁性樹脂基材の表面から露出するスルーホールの重心軸位置と、前記絶縁性樹脂基材の裏面から露出するスルーホールの重心軸位置とが互いにずれていることを特徴とするものである。
A printed wiring board according to the present invention is a printed wiring board having a plated conductor in a through-hole provided in an insulating resin base material, or such a printed wiring board as a core substrate, and a conductor layer on the core substrate. In multilayer printed wiring boards formed by alternately forming resin insulation layers,
The center of gravity axis position of the through hole exposed from the surface of the insulating resin base material and the center of gravity axis position of the through hole exposed from the back surface of the insulating resin base material are shifted from each other. .

このように、絶縁性樹脂基材の表面および裏面にそれぞれ露出するスルーホールの重心軸位置を互いにずれた状態に配置することによって、スルーホールのネック部、即ち、絶縁性樹脂基材の表面または裏面に平行な平面によって切断される部分の断面積が最小となるような箇所が、ずれた状態となるため、絶縁性樹脂基材に反りが発生しても、ネック部のずれた分だけその応力が加わる領域が広くなる、もしくは、コア基板の表面と各ネック部の重心をつないでできる面が互いに平行とならないので応力が緩和され、ネック部周辺にクラックが発生しにくくなる。その結果、クラックによる接続不良の発生が生じにくくなると共に、基板の機械的強度を向上させることができる。
また、隣接するスルーホールにおいて、ネック部の重心位置が異なるように形成してもよい。
In this way, by arranging the positions of the center of gravity of the through holes exposed on the front surface and the back surface of the insulating resin substrate so as to be shifted from each other, the neck portion of the through hole, that is, the surface of the insulating resin substrate or Since the portion where the cross-sectional area of the portion cut by the plane parallel to the back surface is minimized is shifted, even if the insulating resin base material is warped, the amount of displacement of the neck portion The area to which stress is applied becomes wider, or the surface that connects the surface of the core substrate and the center of gravity of each neck portion is not parallel to each other, so that the stress is relieved and cracks are less likely to occur around the neck portion. As a result, connection failure due to cracks is less likely to occur, and the mechanical strength of the substrate can be improved.
Moreover, you may form so that the gravity center position of a neck part may differ in an adjacent through hole.

また、スルーホールのネック部周辺の断面積が大きくなるので、導通抵抗が低下し、基板の電気特性を向上させることができる。   In addition, since the cross-sectional area around the neck portion of the through hole is increased, the conduction resistance is reduced, and the electrical characteristics of the substrate can be improved.

さらに、本発明にかかる多層プリント配線板において、最も外側の導体層の一部を、所定のピッチでバンプ接続用パッドに形成し、前記絶縁性樹脂基材の表面および裏面から露出する各スルーホールの表面の重心位置を、互いにずれた状態に保持すると共に、隣接するスルーホール間のピッチを、前記バンプ接続用パッドのピッチと同一に形成することが望ましい。   Furthermore, in the multilayer printed wiring board according to the present invention, a part of the outermost conductor layer is formed on the bump connection pad at a predetermined pitch, and each through hole exposed from the front and back surfaces of the insulating resin base material It is desirable to keep the positions of the center of gravity of the surfaces of the two surfaces in a state shifted from each other and to form the pitch between adjacent through holes to be the same as the pitch of the bump connecting pads.

本発明において用いられる絶縁性樹脂基材としては、ガラス布エポキシ樹脂基材、ガラス布ビスマレイミドトリアジン樹脂基材、ガラス布ポリフェニレンエーテル樹脂基材、アラミド不織布−エポキシ樹脂基材、アラミド不織布−ポリイミド樹脂基材から選ばれる硬質基材が用いることが好ましく、ガラス布エポキシ樹脂基材がより好ましい。
前記絶縁性樹脂基材の厚さは、100〜500μm程度とすることが望ましい。その理由は、100μm未満の厚さでは、剛性が不十分であり、500μmを超えると、スルーホール内にめっきを充填しにくくなり、めっきボイドが生じることがあるからである。
As the insulating resin base material used in the present invention, a glass cloth epoxy resin base material, a glass cloth bismaleimide triazine resin base material, a glass cloth polyphenylene ether resin base material, an aramid nonwoven fabric-epoxy resin base material, an aramid nonwoven fabric-polyimide resin It is preferable to use a hard base material selected from base materials, and a glass cloth epoxy resin base material is more preferable.
The thickness of the insulating resin substrate is preferably about 100 to 500 μm. The reason is that if the thickness is less than 100 μm, the rigidity is insufficient, and if it exceeds 500 μm, it is difficult to fill the through hole with plating, and plating voids may occur.

かかる絶縁性樹脂基材の両面に形成される導体回路は、後述するように、スルーホールへのめっき充填の後に、絶縁性樹脂基材の両面に貼付された金属箔およびその上に形成されためっき層をエッチング処理することによって形成さることが望ましい。   As will be described later, the conductor circuit formed on both surfaces of the insulating resin base material was formed on the metal foil stuck on both surfaces of the insulating resin base material and after the plating filling of the through holes, as described later. It is desirable to form the plating layer by etching.

前記絶縁性樹脂基材および金属箔にて構成される基板は、特に、エポキシ樹脂をガラスクロスに含浸させてBステージとしたプリプレグと、銅箔とを積層して加熱プレスすることにより得られる両面銅張積層板を用いることができる。このような基板は、銅箔がエッチングされた後の取扱中に、配線パターンやビア位置がずれることがなく、位置精度に優れている。   The substrate composed of the insulating resin base material and the metal foil is, in particular, a double-sided surface obtained by laminating a prepreg in which a glass cloth is impregnated with an epoxy resin to form a B-stage and a copper foil, followed by hot pressing. A copper-clad laminate can be used. Such a substrate is excellent in positional accuracy because the wiring pattern and via positions are not shifted during handling after the copper foil is etched.

本発明の第1の実施形態によるスルーホールは、例えば、図1に示すように、絶縁性樹脂基材の一方の面から内部に向かうにつれて縮径されるような形状を有する第1の開口部と、絶縁性樹脂基材の他方の面から内部に向かうにつれて縮径されるような形状を有し、かつ前記絶縁性樹脂基材の厚み方向中央部付近で前記第1の開口部に連通している第2の開口部とからなり、第1の開口部と第2の開口部との交わる箇所にネック部が形成された形態である。即ち、全体として鼓型の貫通孔が所定の距離だけ基板表面方向にずれた形態の貫通孔に、めっき充填されてなるものであり、前記絶縁性樹脂基材の一方の面および他方の面にそれぞれ露出する第1の開口部および第2の開口部の重心軸(第1の開口部、第2の開口部の重心点を通り、基板表面(裏面)と実質的に垂直な直線)は、互いにずれた位置に配置されている。   The through hole according to the first embodiment of the present invention is, for example, as shown in FIG. 1, a first opening having a shape whose diameter is reduced from one surface of the insulating resin base toward the inside. And having a shape that is reduced in diameter from the other surface of the insulating resin substrate toward the inside, and communicated with the first opening in the vicinity of the central portion in the thickness direction of the insulating resin substrate. The neck portion is formed at a location where the first opening portion and the second opening portion intersect with each other. That is, the drum-shaped through-hole is plated and filled into a through-hole having a shape shifted in the substrate surface direction by a predetermined distance, and is formed on one surface and the other surface of the insulating resin base material. The center-of-gravity axes of the first opening and the second opening that are exposed (straight lines that pass through the center of gravity of the first opening and the second opening and are substantially perpendicular to the substrate surface (back surface)) are: They are arranged at positions shifted from each other.

上記スルーホールは、第1の開口部および第2の開口部からなる貫通孔をレーザ加工によって形成した後、それらの貫通孔に金属めっきを充填することによって形成されることが望ましい。
なお、レーザ加工における照射レーザ光の吸収効率を高めるために、予め絶縁性樹脂基板上の金属箔に公知の黒化処理を施しておくことが望ましい。
The through hole is preferably formed by forming through holes made of the first opening and the second opening by laser processing and then filling the through holes with metal plating.
In addition, in order to improve the absorption efficiency of the irradiation laser beam in laser processing, it is desirable to perform a known blackening process on the metal foil on the insulating resin substrate in advance.

レーザ加工によってスルーホール形成用の貫通孔を形成するには、まず、絶縁性樹脂基材の一方の表面に向けて、所定位置からレーザ照射を行って、絶縁性樹脂基材の一方の表面から内部に向かうにつれて縮径され、かつ絶縁性樹脂基材の一方の表面からその中央部付近まで延長された形態の第1の開口部を形成する。その後、前記所定位置に対向する絶縁性樹脂基材の他方の表面位置から所定の距離だけずれた位置から、その絶縁性樹脂基材の他方の表面に向けてレーザ照射を行って、絶縁性樹脂基材の他方の表面から内部に向かうにつれて縮径され、絶縁性樹脂基材の他方の表面からその中央部付近まで延長された形態の第2の開口部を形成すると共に、絶縁性樹脂基材の中央部付近で第1の開口部と第2の開口部とが連通してスルーホール形成用の貫通孔が形成されることが望ましい。   In order to form a through hole for forming a through hole by laser processing, first, laser irradiation is performed from a predetermined position toward one surface of the insulating resin base material, and then from one surface of the insulating resin base material. A first opening having a shape that is reduced in diameter toward the inside and extended from one surface of the insulating resin base material to the vicinity of the center thereof is formed. Thereafter, laser irradiation is performed toward the other surface of the insulating resin base material from a position shifted by a predetermined distance from the other surface position of the insulating resin base material facing the predetermined position, so that the insulating resin The diameter of the base material is reduced from the other surface of the base material toward the inside, and the second opening portion is formed so as to extend from the other surface of the insulating resin base material to the vicinity of the central portion thereof. It is desirable that a through hole for forming a through hole is formed by communicating the first opening and the second opening in the vicinity of the center of the first hole.

前記絶縁性樹脂基材にレーザを用いてスルーホール形成用貫通孔を形成させるには、レーザ照射により金属箔と絶縁性樹脂基材を同時に穿孔するダイレクトレーザ法と、金属箔の貫通孔に該当する金属箔部分をエッチングにより除去した後、レーザ照射により絶縁性樹脂基材に穿孔するコンフォーマル法があるが、本発明ではそのどちらを用いてもよい。   In order to form through holes for through-hole formation using a laser in the insulating resin base material, a direct laser method in which a metal foil and an insulating resin base material are simultaneously drilled by laser irradiation, and it corresponds to a through hole in the metal foil. There is a conformal method in which the insulating metal substrate is perforated by laser irradiation after removing the metal foil portion to be etched, either of which may be used in the present invention.

上記レーザ加工は、パルス発振型炭酸ガスレーザ加工装置によって行われることが望ましく、その加工条件は、絶縁性樹脂基材の表面から内部に向かうにつれて縮径されるようなスルーホール形成用貫通孔(第1の開口部および第2の開口部)の形状、即ち、絶縁性樹脂基材の表面と貫通孔の側壁とがなす角度(以下、「テーパ角」という)および貫通孔の深さによって決められる。
たとえば、パルス幅が10〜20μs、ショット数が1〜5の範囲内とすることによって、スルーホール形成用貫通孔のテーパ角および深さを調整することができる。
そして、前記加工条件のもとで形成され得るスルーホール形成用貫通孔は、絶縁性樹脂基材内部のネック部の直径(図1において符号Xで示す)が、50〜250μmであることが望ましい。直径が50μm未満では、細すぎるため、めっき充填されたスルーホールの接続信頼性が悪いためであり、直径が250μmを超えると、めっき充填されたスルーホール内にボイドが発生しやすくなるからである。したがって、上記範囲内であれば、ボイド発生が少なく接続信頼性に優れたスルーホールを形成することができる。
The laser processing is preferably performed by a pulse oscillation type carbon dioxide laser processing apparatus, and the processing conditions are through-hole forming through holes (first through holes) whose diameter is reduced from the surface of the insulating resin base toward the inside. 1 opening portion and second opening portion), that is, the angle formed by the surface of the insulating resin substrate and the side wall of the through hole (hereinafter referred to as “taper angle”) and the depth of the through hole. .
For example, the taper angle and depth of the through hole for forming the through hole can be adjusted by setting the pulse width to 10 to 20 μs and the number of shots to 1 to 5.
And as for the through-hole formation through-hole which can be formed on the said process conditions, it is desirable that the diameter (it shows with the code | symbol X in FIG. 1) of the neck part inside an insulating resin base material is 50-250 micrometers. . This is because if the diameter is less than 50 μm, the connection reliability of the plated-filled through hole is poor because it is too thin, and if the diameter exceeds 250 μm, voids are likely to occur in the plated-filled through hole. . Therefore, if it is within the above range, a through hole with less void generation and excellent connection reliability can be formed.

また、上記スルーホールを形成する貫通孔の重心位置のずれ量は、5〜30μmの範囲であることが望ましい。その理由は、ずれ量が5μm未満では、応力緩和の効果が小さいからであり、一方、ずれ量が30μmを超えると、貫通孔の形状が、図7(a)〜(b)に示すような奇形状になりやすいからである。   Further, it is desirable that the deviation amount of the center of gravity position of the through hole forming the through hole is in the range of 5 to 30 μm. The reason is that when the deviation amount is less than 5 μm, the effect of stress relaxation is small. On the other hand, when the deviation amount exceeds 30 μm, the shape of the through hole is as shown in FIGS. This is because the shape tends to be odd.

また、隣接するスルーホール間のピッチは、100〜400μmであることが望ましい。その理由は、ピッチが100μm未満では、絶縁信頼性が低いからであり、ピッチが400μmを超えると、ファイン化に適さないからである。   Further, the pitch between adjacent through holes is preferably 100 to 400 μm. The reason is that if the pitch is less than 100 μm, the insulation reliability is low, and if the pitch exceeds 400 μm, it is not suitable for refinement.

なお、レーザ照射によって形成された貫通孔の側面に残留する樹脂残滓を除去するために、デスミア処理を行うことが好ましい。このデスミア処理は、酸あるいは酸化剤(例えば、クロム酸、過マンガン酸)の薬液処理等の湿式処理や、酸素プラズマ放電処理、コロナ放電処理、紫外線レーザ処理またはエキシマレーザ処理等の乾式処理によって行う。
これらのデスミア処理方法からいずれの方法を選択するかは、絶縁基材の種類、厚み、バイアホールの開口径、レーザ照射条件などに応じて、残留が予想されるスミア量を考慮して選ばれる。
In addition, it is preferable to perform a desmear process in order to remove the resin residue which remains on the side surface of the through-hole formed by laser irradiation. This desmear treatment is performed by wet treatment such as chemical treatment of an acid or an oxidizing agent (for example, chromic acid, permanganic acid), or dry treatment such as oxygen plasma discharge treatment, corona discharge treatment, ultraviolet laser treatment, or excimer laser treatment. .
Which method to select from these desmear treatment methods is selected in consideration of the amount of smear that is expected to remain depending on the type, thickness, via hole opening diameter, laser irradiation conditions, etc. of the insulating substrate. .

本発明において、前記貫通孔にめっき充填してスルーホールを形成するには、まず、貫通孔内壁に通常の無電解めっき処理によって無電解めっき膜を形成した後、めっき液を噴流にして基板にぶつけるスパージャめっき方法等の電解めっき方法によって、貫通孔内をめっき充填することが望ましい。
上記無電解めっきまたは電解めっきとしては、たとえば、銅、すず、銀、各種はんだ、銅/すず、銅/銀等の金属めっきが好ましく、とくに、無電解銅めっきまたは電解銅めっきが好適である。
In the present invention, in order to form a through hole by filling the through hole with plating, an electroless plating film is first formed on the inner wall of the through hole by a normal electroless plating process, and then a plating solution is jetted onto the substrate. It is desirable to fill and fill the inside of the through hole by an electrolytic plating method such as a sparger plating method.
As the electroless plating or electrolytic plating, for example, metal plating such as copper, tin, silver, various solders, copper / tin, and copper / silver is preferable, and electroless copper plating or electrolytic copper plating is particularly preferable.

本発明において、絶縁性樹脂基材の両面に形成される導体回路は、めっき充填スルーホールの形成と同時に形成された導体層をエッチング処理することによって形成されることが望ましい。
この導体回路形成工程は、先ず、前記導体層の表面に感光性ドライフィルムレジストを貼付した後、所定の回路パターンに沿って露光、現像処理してエッチングレジストを形成し、エッチングレジスト非形成部分の導体層をエッチングして、電極パッドを含んだ導体回路パターンとする。
前記処理工程において、エッチング液としては、硫酸一過酸化水素、過硫酸塩、塩化第二銅、塩化第二鉄の水溶液から選ばれる少なくとも1種の水溶液を用いることができる。
また前記導体層をエッチングして導体回路を形成する前処理として、ファインパターンを形成しやすくするため、あらかじめ、導体層の表面全面をエッチングして厚さを1〜10μm、より好ましくは2〜8μm程度まで薄くすることができる。
In the present invention, the conductor circuit formed on both surfaces of the insulating resin base material is preferably formed by etching the conductor layer formed simultaneously with the formation of the plating filled through hole.
In this conductor circuit forming step, a photosensitive dry film resist is first applied to the surface of the conductor layer, and then an etching resist is formed by exposing and developing along a predetermined circuit pattern. The conductor layer is etched to form a conductor circuit pattern including electrode pads.
In the treatment step, as the etching solution, at least one aqueous solution selected from an aqueous solution of sulfuric acid monohydrogen peroxide, persulfate, cupric chloride, and ferric chloride can be used.
Further, as a pretreatment for etching the conductor layer to form a conductor circuit, the entire surface of the conductor layer is etched in advance to have a thickness of 1 to 10 μm, more preferably 2 to 8 μm, in order to facilitate the formation of a fine pattern. It can be made as thin as possible.

このようなプリント配線板をコア基板とし、そのコア基板上に、常法によって導体層と樹脂絶縁層とを交互に形成してなるビルドアップ配線層を形成してなる多層プリント配線板を形成することができる。、
このような多層プリント配線板においては、その最も外側の導体層の一部を、所定のピッチでバンプ接続用パッドに形成し、コア基板に形成した隣接するめっき充填スルーホール間のピッチを、前記バンプ接続用パッドのピッチと同一に形成することが望ましい。このような構成によれば、PKGに実装されるチップを介した配線抵抗を下げることができるので、電源供給確保の点で有利である。
Such a printed wiring board is used as a core substrate, and a multilayer printed wiring board is formed on the core substrate by forming a build-up wiring layer in which conductor layers and resin insulating layers are alternately formed by a conventional method. be able to. ,
In such a multilayer printed wiring board, a part of the outermost conductor layer is formed on the bump connection pad at a predetermined pitch, and the pitch between adjacent plated filling through holes formed on the core substrate is set to It is desirable to form the same pitch as the bump connection pads. According to such a configuration, the wiring resistance through the chip mounted on the PKG can be lowered, which is advantageous in securing power supply.

以下、本発明にかかるプリント配線板を製造する方法の一例について、具体的に説明する。
(1)本発明にかかるプリント配線板を製造するに当たって、絶縁性樹脂基材の両面に銅箔が貼付されたものを出発材料として用いることができる。
この絶縁性樹脂基材は、たとえば、ガラス布エポキシ樹脂基材、ガラス布ビスマレイミドトリアジン樹脂基材、ガラス布ポリフェニレンエーテル樹脂基材、アラミド不織布−エポキシ樹脂基材、アラミド不織布−ポリイミド樹脂基材から選ばれる硬質な積層基材が使用され、特に、ガラス布エポキシ樹脂基材が最も好ましい。
Hereinafter, an example of a method for producing a printed wiring board according to the present invention will be specifically described.
(1) In manufacturing the printed wiring board according to the present invention, a material in which a copper foil is stuck on both surfaces of an insulating resin base material can be used as a starting material.
The insulating resin base material is, for example, a glass cloth epoxy resin base material, a glass cloth bismaleimide triazine resin base material, a glass cloth polyphenylene ether resin base material, an aramid non-woven fabric-epoxy resin base material, an aramid non-woven fabric-polyimide resin base material. A hard laminated substrate selected is used, and a glass cloth epoxy resin substrate is most preferable.

前記絶縁性樹脂基材の厚さは、100〜500μm程度の範囲であることが望ましい。その理由は、厚さが100μm未満では、剛性が不十分なためであり、厚さが500μmを越えると、貫通孔内にめっき充填することが難しく、ボイドが発生することがあるからである。   The insulating resin base material preferably has a thickness in the range of about 100 to 500 μm. The reason is that if the thickness is less than 100 μm, the rigidity is insufficient, and if the thickness exceeds 500 μm, it is difficult to fill and fill the through holes, and voids may be generated.

前記絶縁性樹脂基材にレーザを用いてスルーホール形成用貫通孔を形成させるには、レーザ照射により銅箔と絶縁基材を同時に穿孔するダイレクトレーザ法と、銅箔の貫通孔に該当する部分をエッチングにより除去した後、レーザ照射により絶縁基材に穿孔するコンフォーマル法があるが、本発明ではそのどちらを用いてもよい。
この銅箔は、ハーフエッチングによってその厚みを調整してもよい。
In order to form a through-hole forming through-hole using a laser in the insulating resin base material, a direct laser method of simultaneously drilling a copper foil and an insulating base material by laser irradiation, and a portion corresponding to the through-hole of the copper foil There is a conformal method in which an insulating base material is perforated by laser irradiation after etching is removed by etching, either of which may be used in the present invention.
The thickness of this copper foil may be adjusted by half etching.

前記絶縁性樹脂基材および銅箔としては、特に、エポキシ樹脂をガラスクロスに含潰させてBステージとしたプリプレグと、銅箔とを積層して加熱プレスすることにより得られる両面銅張積層板を用いることが好ましい。   As the insulating resin substrate and the copper foil, in particular, a double-sided copper-clad laminate obtained by laminating a prepreg in which a glass cloth is impregnated into a glass cloth and making a B-stage, and copper foil is laminated and heated. Is preferably used.

その理由は、銅箔がエッチングされた後の製造工程中で、配線パターンの位置がずれることがなく、位置精度に優れるからである。   This is because the position of the wiring pattern does not shift during the manufacturing process after the copper foil is etched, and the position accuracy is excellent.

(2) 次に、レーザ加工によって絶縁性樹脂基材にスルーホール形成用貫通孔を設ける。
回路基板の形成に両面銅張積層板を用いる場合には、まず、絶縁性樹脂基材の一方の表面に貼付した金属箔に向けて、所定位置からレーザ照射を行って、金属箔を貫通すると共に、絶縁性樹脂基材の一方の表面から内部に向かうにつれて縮径され、かつ絶縁性樹脂基材の一方の表面からその中央部付近まで延長された形態の第1の開口部を形成する、あるいは、絶縁性樹脂基材に貼付された一方の銅箔表面の所定位置に、スルーホールの表面における径とほぼ同等な径の孔を予めエッチングにより形成(レーザ用マスク)した後、その孔を照射マークとして炭酸ガスレーザ照射を行って、絶縁性樹脂基材の内部に向かうにつれて縮径され、かつ絶縁性樹脂基材の一方の表面からその中央部付近まで延長された形態の第1の開口部を形成する。
(2) Next, through holes for forming through holes are provided in the insulating resin base material by laser processing.
When a double-sided copper-clad laminate is used to form a circuit board, first, laser irradiation is performed from a predetermined position toward the metal foil affixed to one surface of the insulating resin base material, and penetrates the metal foil. In addition, the first opening is formed in a form that is reduced in diameter from one surface of the insulating resin base material toward the inside and extended from one surface of the insulating resin base material to the vicinity of the central portion thereof, Alternatively, a hole having a diameter approximately equal to the diameter of the surface of the through hole is formed in advance at a predetermined position on one copper foil surface affixed to the insulating resin substrate by etching (laser mask), and then the hole is formed. A first opening in a form in which carbon dioxide laser irradiation is performed as an irradiation mark, the diameter is reduced toward the inside of the insulating resin base material, and extended from one surface of the insulating resin base material to the vicinity of the central portion thereof. Form.

次に、前記所定位置に対向する絶縁性樹脂基材の他方の表面位置から所定の距離だけずれた位置から、その絶縁性樹脂基材の他方の表面に貼付した金属箔に向けてレーザ照射を行って、絶縁性樹脂基材の他方の表面から内部に向かうにつれて縮径され、絶縁性樹脂基材の他方の表面からその中央部付近まで延長された形態の第2の開口部を形成する、あるいは、絶縁性樹脂基材に貼付された他方の銅箔表面の所定位置に、スルーホールの表面における径とほぼ同等な径の孔を予めエッチングにより形成(レーザ用マスク)した後、その孔を照射マークとして炭酸ガスレーザ照射を行って、絶縁性樹脂基材の内部に向かうにつれて縮径され、かつ絶縁性樹脂基材の他方の表面からその中央部付近まで延長された形態の第2の開口部を形成する。   Next, laser irradiation is performed from a position shifted by a predetermined distance from the other surface position of the insulating resin base material facing the predetermined position toward the metal foil attached to the other surface of the insulating resin base material. And forming a second opening in a form that is reduced in diameter from the other surface of the insulating resin base material toward the inside and extended from the other surface of the insulating resin base material to the vicinity of the central portion thereof, Alternatively, a hole having a diameter substantially equal to the diameter of the surface of the through hole is formed in advance at a predetermined position on the surface of the other copper foil attached to the insulating resin substrate by etching (laser mask), and then the hole is formed. A second opening in a form in which carbon dioxide laser irradiation is performed as an irradiation mark, the diameter is reduced toward the inside of the insulating resin base material, and extended from the other surface of the insulating resin base material to the vicinity of the central portion thereof. Form.

この第2の開口部を形成する際に、絶縁性樹脂基材の中央部付近で第1の開口部と第2の開口部とが連通してスルーホール形成用の貫通孔が形成され、かつ、ネック部を結んだ線で囲まれる平面領域が基板表面と平行にならないように(図2参照)、第1の開口部と第2の開口部の重心間距離(ずれ量)をレーザ照射位置に応じて調整する。   When forming the second opening, the first opening and the second opening communicate with each other in the vicinity of the central portion of the insulating resin base material to form a through hole for forming a through hole, and The distance between the center of gravity (shift amount) between the first opening and the second opening is set so that the plane area surrounded by the line connecting the necks is not parallel to the substrate surface (see FIG. 2). Adjust according to.

上記レーザ加工は、パルス発振型炭酸ガスレーザ加工装置によって行われ、その加工条件は、絶縁性樹脂基材の表面から内部に向かうにつれて縮径されるようなスルーホール形成用貫通孔の形状によって決められ、たとえば、パルス幅が10〜20μs、ショット数が1〜5とする。   The laser processing is performed by a pulse oscillation type carbon dioxide laser processing apparatus, and the processing conditions are determined by the shape of the through-hole forming through-hole that is reduced in diameter from the surface of the insulating resin substrate toward the inside. For example, the pulse width is 10 to 20 μs and the number of shots is 1 to 5.

このようなレーザ加工条件にて、スルーホール形成用貫通孔の開口径(第1の開口部および第2の開口部の開口径)を75〜300μmとし、ネック部の最短径を50〜250μmとし、スルーホールを形成する貫通孔の重心位置のずれ量を5〜30μmの範囲とすることができる。   Under such laser processing conditions, the opening diameter of the through hole for forming the through hole (the opening diameter of the first opening and the second opening) is set to 75 to 300 μm, and the shortest diameter of the neck portion is set to 50 to 250 μm. The deviation amount of the center of gravity of the through hole forming the through hole can be set in the range of 5 to 30 μm.

(3) 前記(2)の工程で形成された貫通孔の側壁に残留する樹脂残滓を除去するためのデスミア処理を行う。
このデスミア処理は、酸あるいは酸化剤(例えば、クロム酸、過マンガン酸)の薬液処理等の湿式処理や酸素プラズマ放電処理、コロナ放電処理、紫外線レーザ処理またはエキシマレーザ処理等の乾式処理によって行われる。
(3) The desmear process for removing the resin residue which remains on the side wall of the through hole formed in the step (2) is performed.
This desmear treatment is performed by wet treatment such as chemical treatment of an acid or an oxidizing agent (for example, chromic acid or permanganic acid), or dry treatment such as oxygen plasma discharge treatment, corona discharge treatment, ultraviolet laser treatment, or excimer laser treatment. .

(4) 次いで、無電解めっき処理を施して、スルーホール用貫通孔の内壁および銅箔上に、無電解めっき膜を形成する。この場合、無電解めっき膜は、銅、ニッケル、銀等の金属を用いてもよい。 (4) Next, an electroless plating treatment is performed to form an electroless plating film on the inner wall of the through hole for the through hole and the copper foil. In this case, the electroless plating film may use a metal such as copper, nickel, or silver.

(5) さらに、上記(4)で形成した無電解めっき膜をリードとして、電解めっき処理を施して、基板の銅箔を被覆している無電解めっき膜上に電解めっき膜を形成すると共に、貫通孔内壁面に付着形成されるめっき層を次第に厚くして、貫通孔内に電解めっき膜を充填することによって鼓型のスルーホールを形成する。 (5) Furthermore, with the electroless plating film formed in the above (4) as a lead, an electrolytic plating process is performed to form an electrolytic plating film on the electroless plating film covering the copper foil of the substrate, The plating layer deposited on the inner wall surface of the through hole is gradually thickened, and an electroplating film is filled in the through hole to form a drum-shaped through hole.

(6)次いで、上記(5)において、基板上に形成された電解銅めっき膜上に、エッチングレジスト層を形成する。エッチングレジスト層は、レジスト液を塗布する方法あるいは予めフィルム状にしたものを貼付する方法のいずれの方法でもよい。このレジスト層上に予め回路が描画されたマスクを載置して、露光、現像処理することによってエッチングレジスト層を形成し、エッチングレジスト非形成部分の金属層をエッチングして、スルーホールランドを含んだ導体回路パターンを形成する。 (6) Next, in the above (5), an etching resist layer is formed on the electrolytic copper plating film formed on the substrate. The etching resist layer may be either a method of applying a resist solution or a method of applying a film-like one in advance. A mask on which a circuit is drawn in advance is placed on the resist layer, and an etching resist layer is formed by exposure and development, and a metal layer in a portion where no etching resist is formed is etched to include a through-hole land. A conductor circuit pattern is formed.

このエッチング液としては、硫酸−過酸化水素、過硫酸塩、塩化第二銅、塩化第二鉄の水溶液から選ばれる少なくとも1種の水溶液が望ましい。   The etching solution is preferably at least one aqueous solution selected from sulfuric acid-hydrogen peroxide, persulfate, cupric chloride, and ferric chloride.

前記エッチング処理によって導体回路を形成する前処理として、ファインパターンを形成しやすくするため、あらかじめ、電解銅めっき膜の表面全面をエッチングすることによって厚さを調整してもよい。   As a pretreatment for forming the conductor circuit by the etching treatment, the thickness may be adjusted in advance by etching the entire surface of the electrolytic copper plating film in order to facilitate the formation of a fine pattern.

前記(1)〜(6)の工程にしたがって作製された本発明にかかるプリント配線板をコアとして、そのコア基板の片面または両面に、絶縁性樹脂層と導体回路層とを交互に積層させてなるビルドアップ配線層を形成することによって、多層プリント配線板を形成することができる。
この多層プリント配線板においては、ビルドアップ配線層の最外層、即ち、最も外側の導体回路が形成された絶縁樹脂層の表面にソルダーレジスト層をそれぞれ形成する。この場合、基板の最外層表面全体にソルダーレジスト組成物を塗布し、その塗膜を乾燥した後、この塗膜に、接続パッドの開口部を描画したフォトマスクフィルムを載置して露光、現像処理することにより、接続パッド部分を露出させる。この場合、ソルダーレジスト層をドライフィルム化したものを貼り付けて、露光・現像もしくはレーザにより開口を形成させてもよい。
With the printed wiring board according to the present invention produced according to the steps (1) to (6) as a core, an insulating resin layer and a conductor circuit layer are alternately laminated on one side or both sides of the core substrate. A multilayer printed wiring board can be formed by forming the build-up wiring layer.
In this multilayer printed wiring board, a solder resist layer is formed on the outermost layer of the build-up wiring layer, that is, on the surface of the insulating resin layer on which the outermost conductor circuit is formed. In this case, the solder resist composition is applied to the entire surface of the outermost layer of the substrate, and the coating film is dried. Then, a photomask film on which the opening of the connection pad is drawn is placed on the coating film, and exposure and development are performed. By processing, the connection pad portion is exposed. In this case, a solder resist layer formed in a dry film may be attached to form an opening by exposure / development or laser.

ソルダーレジスト層から露出した接続パッド上に、ニッケル−金などの耐食層を形成する。このとき、ニッケル層の厚みは、1〜7μmが望ましく、金層の厚みは0.01〜0.1μmが望ましい。これらの金属以外にも、ニッケル−パラジウム−金、金(単層)、銀(単層)等を形成してもよい。   A corrosion resistant layer such as nickel-gold is formed on the connection pad exposed from the solder resist layer. At this time, the thickness of the nickel layer is desirably 1 to 7 μm, and the thickness of the gold layer is desirably 0.01 to 0.1 μm. In addition to these metals, nickel-palladium-gold, gold (single layer), silver (single layer), or the like may be formed.

その後、接続パッド上に、半田体を供給し、この半田体の溶融・固化によって半田バンプを形成して、多層回路基板が形成される。   Thereafter, a solder body is supplied onto the connection pad, and solder bumps are formed by melting and solidifying the solder body, thereby forming a multilayer circuit board.

上述したような工程により形成した多層プリント配線板においては、その最も外側の導体層の一部が所定のピッチで接続パッドとして形成され、この接続パッドのピッチをコア基板に形成した隣接するめっき充填スルーホール間のピッチと同一に形成することが、PKGに実装されるチップを介した配線抵抗を下げることができるので、電源供給確保という観点から有利である。   In the multilayer printed wiring board formed by the process as described above, a part of the outermost conductor layer is formed as a connection pad at a predetermined pitch, and the pitch of the connection pad formed on the core substrate is filled with adjacent plating. Forming the same pitch between the through holes is advantageous from the viewpoint of securing power supply because the wiring resistance through the chip mounted on the PKG can be lowered.

(実施例1−1)
(1) まず、多層プリント配線板を構成する一つの単位としての回路基板(コア)を製作する。この回路基板は積層されるべき複数の絶縁層のうち積層中心となるべき基板であり、エポキシ樹脂をガラスクロスに含浸させてBステージとしたプリプレグと銅箔とを積層して加熱プレスすることにより得られる両面銅張積層板10を出発材料として用いる(図4(a)参照)。
(Example 1-1)
(1) First, a circuit board (core) as one unit constituting a multilayer printed wiring board is manufactured. This circuit board is a board to be a lamination center among a plurality of insulating layers to be laminated. By laminating a prepreg and a copper foil made by impregnating a glass cloth with an epoxy resin and hot pressing, The obtained double-sided copper-clad laminate 10 is used as a starting material (see FIG. 4A).

前記絶縁性樹脂基材12の厚さは300μm、銅箔14の厚さは3μmである。この積層板の銅箔を3μmよりも厚いものを用いて、エッチング処理により、銅箔の厚みを3μmに調整してもよい。   The insulating resin substrate 12 has a thickness of 300 μm, and the copper foil 14 has a thickness of 3 μm. You may adjust the thickness of copper foil to 3 micrometers by an etching process using the copper foil of this laminated board thicker than 3 micrometers.

(2) 両面回路基板10の一方の表面の所定位置に対して炭酸ガスレーザ照射を行って、一方の銅箔14を貫通し、かつ絶縁性樹脂基材12の厚み方向の中央部から他方の表面に近い部分に至る第1の開口部16を形成する(図4(b)参照)と共に、両面回路基板10の他方の表面の前記所定位置に対応する位置から15μmずれた位置に炭酸ガスレーザ照射を行って、他方の銅箔14を貫通し、かつ絶縁性樹脂基材12の厚み方向の中央部から一方の表面に近い部分に至って、前記第1の開口部16に連通するような第2の開口部18を形成する。結果として、第1および第2の開口部16、18が連通することによってスルーホール形成用の貫通孔20を形成する。 (2) Carbon dioxide laser irradiation is performed on a predetermined position on one surface of the double-sided circuit board 10 to penetrate one copper foil 14 and the other surface from the central portion in the thickness direction of the insulating resin substrate 12 The first opening 16 is formed so as to reach a portion close to (see FIG. 4B), and carbon dioxide laser irradiation is performed at a position shifted by 15 μm from the position corresponding to the predetermined position on the other surface of the double-sided circuit board 10. Second, such that the second copper foil 14 penetrates the other copper foil 14 and communicates with the first opening 16 from the central portion in the thickness direction of the insulating resin base material 12 to the portion close to the one surface. Opening 18 is formed. As a result, the first and second openings 16 and 18 communicate with each other to form a through hole 20 for forming a through hole.

なお、この実施例においては、スルーホール形成用の貫通孔20の形成には、例えば、日立ビア社製の高ピーク短パルス発振型炭酸ガスレーザ加工機を使用し、パルス幅:10〜20μs、ショット数:1〜5のレーザ加工条件にて行う。第1の開口部16および第2の開口部18の開口径がほぼ150μmであると共に、基板の厚み方向のほぼ中央部付近でのネック部の口径、即ち、最も縮径された部分の最短距離(図1中、Xで示される)がほぼ87μmであり、第1および第2の開口部16,18の重心軸のずれ量が15μmであるような貫通孔20を、ピッチ150μmで形成する。   In this embodiment, the through hole 20 for forming the through hole is formed by using, for example, a high peak short pulse oscillation type carbon dioxide gas laser processing machine manufactured by Hitachi Via, with a pulse width of 10 to 20 μs and a shot. Number: Performed under 1 to 5 laser processing conditions. The opening diameters of the first opening 16 and the second opening 18 are approximately 150 μm, and the diameter of the neck near the center of the substrate in the thickness direction, that is, the shortest distance of the most contracted portion The through holes 20 (indicated by X in FIG. 1) are approximately 87 μm, and the displacement of the center of gravity of the first and second openings 16 and 18 is 15 μm, with a pitch of 150 μm.

このような条件で形成された貫通孔20は、中心軸が互いにずれて配置された第1および第2の開口部16,18が、その内壁が絶縁性樹脂基材12の表面に対してテーパ(内角)をなすような円錐台形の一部から形成され、基材の厚み方向の中央部付近で、共通の接合断面で接合された形態に形成されている。   The through hole 20 formed under such conditions has first and second openings 16 and 18 arranged with their center axes shifted from each other, and the inner wall thereof is tapered with respect to the surface of the insulating resin substrate 12. It is formed from a part of a truncated cone that forms an (inner angle), and is formed in a form joined at a common joining cross section in the vicinity of the center in the thickness direction of the base material.

この接合断面(図2参照)は、絶縁性樹脂基材の表面と平行ではない。また、隣り合う接合断面の重心位置は、絶縁性樹脂基材の断面方向においてずれていることが好ましい(図3参照)。   This joining cross section (see FIG. 2) is not parallel to the surface of the insulating resin substrate. Moreover, it is preferable that the center-of-gravity position of adjacent joint cross sections is shifted in the cross-sectional direction of the insulating resin base material (see FIG. 3).

(3) その後、レーザ加工により形成した貫通孔20内を、Oプラズマや、CFプラズマ等の物理的方法によって、内壁に残存する樹脂や粒子の残渣を除去するデスミア処理を施す。さらに、デスミア処理を終えた基板を水洗、酸性脱脂した後、ソフトエッチング処理を施してもよい。 (3) Thereafter, a desmear treatment is performed in the through-hole 20 formed by laser processing by a physical method such as O 2 plasma or CF 4 plasma to remove a resin or particle residue remaining on the inner wall. Further, the substrate after the desmear treatment may be washed with water and acid degreased, and then subjected to a soft etching treatment.

(4) 次に、デスミア処理を施した基板を、以下のような組成の無電解銅めっき水溶液中に浸漬して、基板の両面に貼付した銅箔14の表面全体および貫通孔20の内壁に、厚さ0.6μmの無電解銅めっき膜22を形成した。(図4(d))。
(無電解銅めっき液)
硫酸銅: 0.03mol/l
EDTA: 0.200mol/l
HCHO: 0.18g/l
NaOH: 0.100mol/L
α、α'−ビピリジル: 100mg/l
ポリエチレングリコール: 0.10g/l
(めっき条件)
液温:30〜50℃
時間:40〜60分
(4) Next, the substrate subjected to the desmear treatment is immersed in an electroless copper plating aqueous solution having the following composition, and is applied to the entire surface of the copper foil 14 and the inner walls of the through holes 20 attached to both surfaces of the substrate. An electroless copper plating film 22 having a thickness of 0.6 μm was formed. (FIG. 4 (d)).
(Electroless copper plating solution)
Copper sulfate: 0.03 mol / l
EDTA: 0.200 mol / l
HCHO: 0.18 g / l
NaOH: 0.100 mol / L
α, α′-bipyridyl: 100 mg / l
Polyethylene glycol: 0.10 g / l
(Plating conditions)
Liquid temperature: 30-50 degreeC
Time: 40-60 minutes

(5) 次いで、基板を50℃の水で洗浄して脱脂し、25℃の水で水洗後、さらに硫酸で洗浄してから、以下の条件で電解めっきを施し、電解めっき膜24を形成した(図5(a)参照)。
〔電解銅めっき液〕
硫酸 2.24mol/l
硫酸銅 0.26mol/l
添加剤 19.5ml/l
レベリング剤 50mg/l
光沢剤 50mg/l
〔電解めっき条件〕
電流密度 1.0A/dm2
時間 30〜90分
温度 22±2 ℃
(5) Next, the substrate was washed with water at 50 ° C., degreased, washed with water at 25 ° C. and further washed with sulfuric acid, and then subjected to electrolytic plating under the following conditions to form an electrolytic plating film 24. (See FIG. 5 (a)).
[Electrolytic copper plating solution]
Sulfuric acid 2.24 mol / l
Copper sulfate 0.26 mol / l
Additive 19.5ml / l
Leveling agent 50mg / l
Brightener 50mg / l
[Electrolytic plating conditions]
Current density 1.0A / dm 2
Time 30-90 minutes Temperature 22 ± 2 ℃

(6) なお、図5においては、無電解めっき膜22の表示を簡単化のために省略した。前記電解銅めっき膜を形成した基板に、フィルム状レジスト膜を貼り付け、このレジスト膜上に予め回路が描画されたマスクを載置して、露光、現像処理することによってエッチングレジスト層28を形成した(図5(b)参照)。その後、エッチングレジスト非形成部分の金属層をエッチングして、絶縁性樹脂基材の表面および裏面に厚さが20〜30μmの内層の導体回路30を形成すると共に、スルーホール26の真上に位置してスルーホールランド32を形成することによって、コア基板を作製した(図5(c)参照)。
なお、導体回路30や、スルーホールランド32を介してスルーホールが100個連結した配線を形成してある。
次いで、コア基板上に層間樹脂絶縁層と導体層とを交互に積層してビルドアップ配線層を形成することによって多層化されたプリント配線板を形成する。
(6) In FIG. 5, the display of the electroless plating film 22 is omitted for simplification. An etching resist layer 28 is formed by attaching a film resist film on the substrate on which the electrolytic copper plating film is formed, placing a mask on which a circuit is drawn in advance, and exposing and developing the resist film. (See FIG. 5B). Thereafter, the metal layer in the portion where the etching resist is not formed is etched to form an inner conductor circuit 30 having a thickness of 20 to 30 μm on the front and back surfaces of the insulating resin base material, and is positioned immediately above the through hole 26. By forming through-hole lands 32, a core substrate was manufactured (see FIG. 5C).
Note that a wiring in which 100 through holes are connected via the conductor circuit 30 and the through hole land 32 is formed.
Next, an interlayer resin insulating layer and a conductor layer are alternately laminated on the core substrate to form a build-up wiring layer, thereby forming a multilayered printed wiring board.

(7) 上記基板を水洗、酸性脱脂した後、ソフトエッチングし、次いで、エッチング液を基板の両面にスプレイで吹きつけて、内層導体回路30(スルーホールランド32を含む)の表面をエッチングすることにより、内層導体回路30(スルーホールランド32を含む)の全表面に粗化面(図示を省略)を形成した。
エッチング液としては、イミダゾール銅(II)錯体10重量部、グリコール酸7重量部、塩化カリウム5重量部からなるエッチング液(メック社製、メックエッチボンド)を使用した。
(7) After washing the substrate with water and acid degreasing, soft etching is performed, and then an etching solution is sprayed on both sides of the substrate to spray the surface of the inner layer conductor circuit 30 (including the through-hole land 32). Thus, a roughened surface (not shown) was formed on the entire surface of the inner layer conductor circuit 30 (including the through-hole land 32).
As an etchant, an etchant (MEC Etch Bond, manufactured by MEC Co.) consisting of 10 parts by weight of imidazole copper (II) complex, 7 parts by weight of glycolic acid, and 5 parts by weight of potassium chloride was used.

(8) 基板の両面に、基板より少し大きめの層間樹脂絶縁層用樹脂フィルム(例えば、味の素社製のABF)を基板上に載置し、圧力0.4MPa、温度80℃、圧着時間10秒の条件で仮圧着して裁断した後、さらに、以下の方法により真空ラミネーター装置を用いて貼り付けることにより層間樹脂絶縁層36を形成した。
すなわち、層間樹脂絶縁層用樹脂フィルムを基板上に、真空度67Pa、圧力0.4MPa、温度80℃、圧着時間60秒の条件で本圧着し、その後、170℃で30分間熱硬化させた。
(8) A resin film for an interlayer resin insulation layer (for example, ABF manufactured by Ajinomoto Co., Inc.) slightly larger than the substrate is placed on both sides of the substrate, and the pressure is 0.4 MPa, the temperature is 80 ° C., and the bonding time is 10 seconds. After the temporary pressure bonding under the above conditions and cutting, the interlayer resin insulation layer 36 was further formed by pasting using a vacuum laminator apparatus by the following method.
That is, a resin film for an interlayer resin insulation layer was subjected to main pressure bonding on a substrate under conditions of a degree of vacuum of 67 Pa, a pressure of 0.4 MPa, a temperature of 80 ° C., and a pressure bonding time of 60 seconds, and then thermally cured at 170 ° C. for 30 minutes.

(9) 次に、層間樹脂絶縁層36に、厚さ1.2mmの貫通孔が形成されたマスクを介して、波長10.4μmのCO2 ガスレーザにて、ビーム径4.0mm、トップハットモード、パルス幅8.0μ秒、マスクの貫通孔の径1.0mm、1〜3ショットの条件で層間樹脂絶縁層に、直径60μmのバイアホール用開口38を形成した(図5(d)参照)。 (9) Next, with a CO 2 gas laser having a wavelength of 10.4 μm through a mask in which a through hole having a thickness of 1.2 mm is formed in the interlayer resin insulation layer 36, a beam diameter of 4.0 mm, top hat mode A via hole opening 38 having a diameter of 60 μm was formed in the interlayer resin insulation layer under the conditions of a pulse width of 8.0 μsec, a mask through-hole diameter of 1.0 mm, and 1 to 3 shots (see FIG. 5D). .

(10) バイアホール用開口38を形成した基板を、60g/lの過マンガン酸を含む80℃の溶液に10分間浸漬し、層間樹脂絶縁層36の表面に存在する粒子を除去することにより、バイアホール用開口38の内壁を含む層間樹脂絶縁層36の表面を粗化面(図示を省略)とした。 (10) The substrate on which the via hole opening 38 is formed is immersed in an 80 ° C. solution containing 60 g / l permanganic acid for 10 minutes to remove particles present on the surface of the interlayer resin insulating layer 36. The surface of the interlayer resin insulation layer 36 including the inner wall of the via hole opening 38 was a roughened surface (not shown).

(11) 次に、上記処理を終えた基板を、中和溶液(シプレイ社製)に浸漬してから水洗いした。
さらに、粗面化処理(粗化深さ3μm)した該基板の表面に、パラジウム触媒を付与することにより、層間樹脂絶縁層36の表面およびバイアホール用開口38の内壁面に触媒核を付着させた(図示せず)。すなわち、上記基板を塩化パラジウム(PdCl2 )と塩化第一スズ(SnCl2 )とを含む触媒液中に浸漬し、パラジウム金属を析出させることにより触媒を付与した。
(11) Next, the substrate after the above treatment was immersed in a neutralization solution (manufactured by Shipley Co., Ltd.) and washed with water.
Further, by applying a palladium catalyst to the surface of the roughened substrate (roughening depth 3 μm), catalyst nuclei are attached to the surface of the interlayer resin insulation layer 36 and the inner wall surface of the via hole opening 38. (Not shown). That is, the substrate was immersed in a catalyst solution containing palladium chloride (PdCl 2 ) and stannous chloride (SnCl 2 ), and the catalyst was applied by depositing palladium metal.

(12) 次に、以下の組成の無電解銅めっき水溶液中に、触媒を付与した基板を浸漬して、粗面全体に厚さ0.6〜3.0μmの無電解銅めっき膜を形成し、バイアホール用開口38の内壁を含む層間樹脂絶縁層36の表面に無電解銅めっき膜(図示を省略)が形成された基板を得た。
〔無電解銅めっき水溶液〕
硫酸銅: 0.03mol/l
EDTA: 0.200mol/l
HCHO: 0.18g/l
NaOH: 0.100mol/L
α、α'−ビピリジル: 100mg/l
ポリエチレングリコール: 0.10g/l
(めっき条件)
液温:30〜50℃
時間:40〜60分
(12) Next, a substrate provided with a catalyst is immersed in an electroless copper plating aqueous solution having the following composition to form an electroless copper plating film having a thickness of 0.6 to 3.0 μm on the entire rough surface. A substrate having an electroless copper plating film (not shown) formed on the surface of the interlayer resin insulation layer 36 including the inner wall of the via hole opening 38 was obtained.
[Electroless copper plating aqueous solution]
Copper sulfate: 0.03 mol / l
EDTA: 0.200 mol / l
HCHO: 0.18 g / l
NaOH: 0.100 mol / L
α, α′-bipyridyl: 100 mg / l
Polyethylene glycol: 0.10 g / l
(Plating conditions)
Liquid temperature: 30-50 degreeC
Time: 40-60 minutes

(13) 無電解銅めっき膜が形成された基板に市販の感光性ドライフィルムを張り付け、マスクを載置して、100mJ/cm2 で露光し、0.8%炭酸ナトリウム水溶液で現像処理することにより、厚さ20μmのめっきレジスト(図示を省略)を設けた。 (13) A commercially available photosensitive dry film is pasted on the substrate on which the electroless copper plating film is formed, a mask is placed, exposed at 100 mJ / cm 2 , and developed with a 0.8% aqueous sodium carbonate solution. Thus, a plating resist (not shown) having a thickness of 20 μm was provided.

(14) 次いで、基板を50℃の水で洗浄して脱脂し、25℃の水で水洗後、さらに硫酸で洗浄してから、以下の条件で電解めっきを施し電解めっき膜を形成した。
〔電解めっき液〕
硫酸 2.24 mol/l
硫酸銅 0.26 mol/l
添加剤 19.5 ml/l
レベリング剤 50 mg/l
光沢剤 50 mg/l
〔電解めっき条件〕
電流密度 1 A/dm2
時間 65 分
温度 22±2 ℃
(14) Next, the substrate was washed with 50 ° C. water for degreasing, washed with 25 ° C. water, and further washed with sulfuric acid, and then subjected to electrolytic plating under the following conditions to form an electrolytic plated film.
[Electrolytic plating solution]
Sulfuric acid 2.24 mol / l
Copper sulfate 0.26 mol / l
Additive 19.5 ml / l
Leveling agent 50 mg / l
Brightener 50 mg / l
[Electrolytic plating conditions]
Current density 1 A / dm 2
Time 65 minutes Temperature 22 ± 2 ℃

このめっき処理においては、めっきレジスト非形成部に、厚さ20μmの電解銅めっき膜を形成すると共に、バイアホール用開口38に電解めっき膜を充填した。   In this plating treatment, an electrolytic copper plating film having a thickness of 20 μm was formed in the plating resist non-forming portion, and the via hole opening 38 was filled with the electrolytic plating film.

(15) さらに、めっきレジストを5%KOHで剥離除去した後、そのめっきレジスト下の無電解めっき膜を硫酸と過酸化水素との混合液でエッチング処理して溶解除去し、ビアランドを含んだフィルドビア40および独立の外層の導体回路44を形成した(図6(a)参照)。 (15) Further, after removing and removing the plating resist with 5% KOH, the electroless plating film under the plating resist is dissolved and removed by etching with a mixed solution of sulfuric acid and hydrogen peroxide. 40 and independent outer layer conductor circuit 44 were formed (see FIG. 6A).

(16) 次いで、上記(8)と同様の処理を行い、外層の導体回路44の表面、フィルドビア40の表面に粗化面(図示を省略)を形成した。 (16) Next, the same process as in (8) above was performed to form a roughened surface (not shown) on the surface of the outer conductor circuit 44 and the surface of the filled via 40.

(17) 上記(8)〜(15)の工程を繰り返すことにより、さらに外層の層間絶縁層46、外層の導体回路48、フィルドビア50を形成し、多層配線板を得た(図6(b)参照)。 (17) By repeating the steps (8) to (15) above, an outer interlayer insulating layer 46, an outer conductor circuit 48, and a filled via 50 were formed to obtain a multilayer wiring board (FIG. 6B). reference).

(18) 次に、多層配線基板の両面に、市販のソルダーレジスト組成物を20μmの厚さで塗布し、70℃で20分間、70℃で30分間の条件で乾燥処理を行った後、ソルダーレジスト開口部のパターンが描画された厚さ5mmのフォトマスクをソルダーレジスト層に密着させて1000mJ/cm2 の紫外線で露光した後、現像処理して、60μmの直径の開口54を形成した(図6(c)参照)。 (18) Next, a commercially available solder resist composition is applied to both sides of the multilayer wiring board at a thickness of 20 μm, and after drying at 70 ° C. for 20 minutes and 70 ° C. for 30 minutes, the solder is applied. A photomask having a thickness of 5 mm on which a pattern of the resist opening was drawn was brought into close contact with the solder resist layer, exposed to 1000 mJ / cm 2 of ultraviolet light, and then developed to form an opening 54 having a diameter of 60 μm (see FIG. 6 (c)).

そして、さらに、80℃で1時間、100℃で1時間、120℃で1時間、150℃で3時間の条件でそれぞれ加熱処理を行ってソルダーレジスト層を硬化させ、開口を有し、その厚さが20μmのソルダーレジストパターン層52を形成した。   Further, the solder resist layer is cured by heating at 80 ° C. for 1 hour, 100 ° C. for 1 hour, 120 ° C. for 1 hour, and 150 ° C. for 3 hours. A solder resist pattern layer 52 having a thickness of 20 μm was formed.

(19)次に、ソルダーレジスト層52を形成した基板を、塩化ニッケル(2.3×10-1mol/l)、次亜リン酸ナトリウム(2.8×10-1mol/l)、クエン酸ナトリウム(1.6×10-1mol/l)を含むpH=4.5の無電解ニッケルめっき液に20分間浸漬して、開口部54に厚さ5μmのニッケルめっき層(図示を省略)を形成した。さらに、その基板をシアン化金カリウム(7.6×10-3mol/l)、塩化アンモニウム(1.9×10-1mol/l)、クエン酸ナトリウム(1.2×10-1mol/l)、次亜リン酸ナトリウム(1.7×10-1mol/l)を含む無電解金めっき液に80℃の条件で7.5分間浸漬して、ニッケルめっき層上に、厚さ0.03μmの金めっき層(図示を省略)を形成した。 (19) Next, the substrate on which the solder resist layer 52 is formed is made of nickel chloride (2.3 × 10 −1 mol / l), sodium hypophosphite (2.8 × 10 −1 mol / l), A nickel plating layer (not shown) having a thickness of 5 μm is formed in the opening 54 by immersing in an electroless nickel plating solution containing sodium acid (1.6 × 10 −1 mol / l) at pH = 4.5 for 20 minutes. Formed. Furthermore, the substrate gold potassium cyanide (7.6 × 10 -3 mol / l ), ammonium chloride (1.9 × 10 -1 mol / l ), sodium citrate (1.2 × 10 -1 mol / l) Immerse in an electroless gold plating solution containing sodium hypophosphite (1.7 × 10 −1 mol / l) at 80 ° C. for 7.5 minutes to form a thickness of 0 on the nickel plating layer. A 0.03 μm gold plating layer (not shown) was formed.

(20)さらに、基板のICチップを載置する面のソルダーレジスト層52の開口54に、スズ−鉛を含有するはんだペーストを印刷し、さらに他方の面のソルダーレジスト層52の開口54にスズ−アンチモンを含有するはんだペーストを印刷した後、230℃でリフローすることによりはんだバンプ56を形成して、多層プリント配線板とした(図6(d)参照)。 (20) Furthermore, a solder paste containing tin-lead is printed on the opening 54 of the solder resist layer 52 on the surface on which the IC chip of the substrate is placed, and tin is further formed on the opening 54 of the solder resist layer 52 on the other surface. -After printing the solder paste containing antimony, the solder bump 56 was formed by reflowing at 230 degreeC, and it was set as the multilayer printed wiring board (refer FIG.6 (d)).

(実施例1−2)
第1の開口部16および第2の開口部18の重心軸のずれ量が5μm、ネック部の口径が76μmであるような貫通孔20をレーザビーム照射によって形成した以外は、実施例1−1と同様にして多層プリント配線板を製造した。
(Example 1-2)
Example 1-1 except that the through-hole 20 having a displacement amount of the center of gravity of the first opening 16 and the second opening 18 of 5 μm and a neck portion having a diameter of 76 μm was formed by laser beam irradiation. A multilayer printed wiring board was produced in the same manner as described above.

(実施例1−3)
第1の開口部16および第2の開口部18の重心軸のずれ量が10μm、ネック部の口径が80μmであるような貫通孔20をレーザビーム照射によって形成した以外は、実施例1−1と同様にして多層プリント配線板を製造した。
(Example 1-3)
Example 1-1, except that the through hole 20 having a displacement of the center of gravity of the first opening 16 and the second opening 18 of 10 μm and the neck diameter of 80 μm was formed by laser beam irradiation. A multilayer printed wiring board was produced in the same manner as described above.

(実施例1−4)
第1の開口部16および第2の開口部18の重心軸のずれ量が20μm、ネック部の口径が91μmであるような貫通孔20をレーザビーム照射によって形成した以外は、実施例1−1と同様にして多層プリント配線板を製造した。
(Example 1-4)
Example 1-1 except that the through-hole 20 having a displacement amount of the center of gravity of the first opening 16 and the second opening 18 of 20 μm and a neck diameter of 91 μm was formed by laser beam irradiation. A multilayer printed wiring board was produced in the same manner as described above.

(実施例1−5)
第1の開口部16および第2の開口部18の重心軸のずれ量が25μm、ネック部の口径が97μmであるような貫通孔20をレーザビーム照射によって形成した以外は、実施例1−1と同様にして多層プリント配線板を製造した。
(Example 1-5)
Example 1-1, except that a through hole 20 having a displacement of the center of gravity of the first opening 16 and the second opening 18 of 25 μm and a neck diameter of 97 μm was formed by laser beam irradiation. A multilayer printed wiring board was produced in the same manner as described above.

(実施例1−6)
第1の開口部16および第2の開口部18の重心軸のずれ量が30μm、ネック部の口径が110μmであるような貫通孔20をレーザビーム照射によって形成した以外は、実施例1−1と同様にして多層プリント配線板を製造した。
(Example 1-6)
Example 1-1 except that the through-hole 20 having a displacement amount of the center of gravity of the first opening 16 and the second opening 18 of 30 μm and a neck diameter of 110 μm was formed by laser beam irradiation. A multilayer printed wiring board was produced in the same manner as described above.

(参考例1−1)
第1の開口部16および第2の開口部18の重心軸のずれ量が3μm、ネック部の口径が74μmであるような貫通孔20をレーザビーム照射によって形成した以外は、実施例1−1と同様にして多層プリント配線板を製造した。
(Reference Example 1-1)
Example 1-1, except that the through-hole 20 having a displacement amount of the center of gravity of the first opening 16 and the second opening 18 of 3 μm and a neck diameter of 74 μm was formed by laser beam irradiation. A multilayer printed wiring board was produced in the same manner as described above.

(参考例1−2)
第1の開口部16および第2の開口部18の重心軸のずれ量が35μm、ネック部の口径が95μmであるような貫通孔20をレーザビーム照射によって形成した以外は、実施例1−1と同様にして多層プリント配線板を製造した。
(Reference Example 1-2)
Example 1-1, except that the through hole 20 having a displacement of 35 μm in the center of gravity of the first opening 16 and the second opening 18 and having a neck diameter of 95 μm was formed by laser beam irradiation. A multilayer printed wiring board was produced in the same manner as described above.

実施例1−1〜1−6および参考例1−1〜1−2において、絶縁性樹脂基材の厚さが100μmであるような両面銅張積層板を用い、レーザ用マスクの開口径、炭酸ガスレーザ照射条件を変えて、第1の開口部16および第2の開口部18の直径を75μmとする以外は、同様にして多層プリント配線板を製造し、これらを実施例2−1〜2−6および参考例2−1〜2−2とする。
このときの重心軸のずれ量とネック部の口径を表1、表2に記載する。
In Examples 1-1 to 1-6 and Reference Examples 1-1 to 1-2, a double-sided copper-clad laminate in which the thickness of the insulating resin substrate is 100 μm is used. A multilayer printed wiring board was produced in the same manner except that the carbon dioxide laser irradiation conditions were changed and the diameters of the first opening 16 and the second opening 18 were set to 75 μm. −6 and Reference Examples 2-1 to 2-2.
Tables 1 and 2 show the displacement amount of the center of gravity axis and the diameter of the neck portion at this time.

同様に、実施例1−1〜1−6および参考例1−1〜1−2において、絶縁性樹脂基材の厚さが500μmであるような両面銅張積層板を用い、レーザ用マスクの開口径、炭酸ガスレーザ照射条件を変えて第1の開口部16および第2の開口部18の直径を300μmとする以外は、同様にして多層プリント配線板を製造し、これらを実施例3−1〜3−6および参考例3−1〜3−2とする。
このときの重心軸のずれ量とネック部の口径を表2に記載する。
Similarly, in Examples 1-1 to 1-6 and Reference Examples 1-1 to 1-2, a double-sided copper-clad laminate in which the thickness of the insulating resin base material is 500 μm is used. A multilayer printed wiring board was manufactured in the same manner except that the diameters of the first opening 16 and the second opening 18 were changed to 300 μm by changing the opening diameter and the carbon dioxide laser irradiation condition, and these were used in Example 3-1. To 3-6 and Reference Examples 3-1 to 3-2.
Table 2 shows the deviation amount of the center of gravity axis and the diameter of the neck portion at this time.

上記実施例1−1〜3−6および参考例1−1〜3−2にしたがって製造された多層プリント配線板について、以下のAのような評価試験を行った。それらの評価試験の結果を、表1および表2に示す。   The multilayer printed wiring boards manufactured according to Examples 1-1 to 3-6 and Reference Examples 1-1 to 3-2 were subjected to evaluation tests such as A below. The results of these evaluation tests are shown in Table 1 and Table 2.

A.ヒートサイクル試験
多層プリント配線板のコア基板の表裏の導体回路で、スルーホールを100個連結した配線の接続抵抗を測定し(初期値)、その後、−55℃×5分⇔125℃×5分を1サイクルとするヒートサイクル条件下で、1000回のサイクル試験を繰り返して行ない、再度、接続抵抗を測定する。
ここで、接続抵抗の変化量(100×(ヒートサイクル後の接続抵抗値−初期値の接続抵抗値)/初期値の接続抵抗値)が10%以内ならば、合格(○で示す)とし、10%を越えたものを不良(×で示す)とする。
測定結果は、各実施例では全て合格であり、各参考例では全て不合格である。
A. Heat cycle test Measure the connection resistance of the wiring with 100 through-holes connected by the conductor circuit on the front and back of the core substrate of the multilayer printed wiring board (initial value), and then -55 ° C x 5 minutes ⇔ 125 ° C x 5 minutes The cycle test is repeated 1000 times under the heat cycle condition of 1 cycle, and the connection resistance is measured again.
Here, if the amount of change in connection resistance (100 × (connection resistance value after heat cycle−connection resistance value of initial value) / connection resistance value of initial value) is within 10%, then pass (indicated by ○) A product exceeding 10% is regarded as defective (indicated by x).
The measurement results are all acceptable in each example, and all are unacceptable in each reference example.

各参考例の多層プリント配線板のコア基板について、貫通孔に充填されためっき(スルーホール)内にボイドが存在するかどうかを、X線テレビシステム(島津製作所製、商品名「SMX−100」)を用いて観察した。スルーホールはランダムに100個選んで観察した。
各参考例のコア基板では、ボイドの存在が多数確認された。ずれ量が少ないと、ボイドが発生するのは、コア基板の表裏からスルーホール内に入ってくるめっき液が、正面衝突するからではないかと推察している。一方、ずれ量が30μmを超えると、ずれ量が大きすぎるため、貫通孔が図7(a)〜(b)に示すような奇形状となり易いからではないかと推察している。
Regarding the core substrate of the multilayer printed wiring board of each reference example, an X-ray television system (manufactured by Shimadzu Corporation, trade name “SMX-100”) is used to determine whether voids are present in the plating (through holes) filled in the through holes. ). 100 through-holes were randomly selected and observed.
The presence of many voids was confirmed in the core substrate of each reference example. It is presumed that when the amount of deviation is small, voids are generated because the plating solution entering the through-holes from the front and back of the core substrate collides front. On the other hand, when the amount of deviation exceeds 30 μm, the amount of deviation is too large, and it is assumed that the through hole is likely to have an odd shape as shown in FIGS.

Figure 2012060150
Figure 2012060150

Figure 2012060150
Figure 2012060150

上記評価試験Aの結果から、各実施例にしたがって製造されたプリント配線板では、めっき充填スルーホールの縮径された中央部周辺でのクラック発生が阻止され、良好な電気的接続性や機械的強度が得られることが確認された。   From the results of the evaluation test A described above, in the printed wiring board manufactured according to each example, the occurrence of cracks around the central portion where the diameter of the plating-filled through hole was reduced was prevented, and good electrical connectivity and mechanical properties were achieved. It was confirmed that strength was obtained.

上記各実施例では、絶縁性樹脂基材(コア基板)に設けた貫通孔内にめっき充填しているが、貫通孔の内壁にスルーホール導体を形成し、さらにスルーホール導体で囲まれた空隙に充填材を充填してなるスルーホール(図8参照)としても、ずれ量に対するヒートサイクル試験結果は同様である。   In each of the above embodiments, the through hole provided in the insulating resin base material (core substrate) is filled with plating, but a through-hole conductor is formed on the inner wall of the through-hole, and the void surrounded by the through-hole conductor The heat cycle test result with respect to the amount of deviation is the same for the through hole (see FIG. 8) formed by filling the filler with the filler.

以上説明したように、本発明は、ボイド等の欠陥やクラックの発生を低減させて、基板の接続不良を低減させ、かつ基板の機械的強度の向上に有利なプリント配線板を提供する。   As described above, the present invention provides a printed wiring board that reduces the occurrence of defects such as voids and cracks, reduces board connection failures, and is advantageous in improving the mechanical strength of the board.

本発明のプリント配線板におけるスルーホールの形状を説明するための概略図である。It is the schematic for demonstrating the shape of the through hole in the printed wiring board of this invention. スルーホールのネック部の接合断面を示す概略図である。It is the schematic which shows the junction cross section of the neck part of a through hole. 隣接するスルーホールの重心位置が異なる例を示す概略図である。It is the schematic which shows the example from which the gravity center position of an adjacent through hole differs. (a)〜(d)は、本発明の一実施例にかかるプリント配線板を製造する工程の一部を示す図である。(A)-(d) is a figure which shows a part of process of manufacturing the printed wiring board concerning one Example of this invention. (a)〜(d)は、本発明の一実施例にかかるプリント配線板を製造する工程の一部を示す図である。(A)-(d) is a figure which shows a part of process of manufacturing the printed wiring board concerning one Example of this invention. (a)〜(d)は、本発明の一実施例にかかるプリント配線板を製造する工程の一部を示す図である。(A)-(d) is a figure which shows a part of process of manufacturing the printed wiring board concerning one Example of this invention. (a)〜(b)は、スルーホールの重心位置のずれ量が大きい場合の奇形状を示す概略図である。(A)-(b) is the schematic which shows the odd shape when the deviation | shift amount of the gravity center position of a through hole is large. 貫通孔の内壁にスルーホール導体を形成し、さらにスルーホール導体で囲まれた空隙に充填材を充填してなるスルーホールを示す概略図である。It is the schematic which shows the through hole formed by forming a through-hole conductor in the inner wall of a through-hole, and also filling the space | gap enclosed with the through-hole conductor with the filler. (a)〜(d)は、従来技術にかかるプリント配線板の製造工程を示す図である。(A)-(d) is a figure which shows the manufacturing process of the printed wiring board concerning a prior art. (a)〜(b)は、従来技術にかかる他のプリント配線板のスルーホール形状を説明するための図である。(A)-(b) is a figure for demonstrating the through-hole shape of the other printed wiring board concerning a prior art.

10 両面銅張積層板
12 絶縁性樹脂基材
14 銅箔
16 第1の開口部
18 第2の開口部
20 貫通孔
22 無電解めっき膜
24 電解めっき膜
26 めっき充填スルーホール
30 内層の導体回路
32 スルーホールランド
36 層間樹脂絶縁層
40 ビアホール
44 外層の導体回路
46 層間樹脂絶縁層
50 ビアホール
52 ソルダーレジスト層
56 バンプ
DESCRIPTION OF SYMBOLS 10 Double-sided copper clad laminated board 12 Insulating resin base material 14 Copper foil 16 1st opening part 18 2nd opening part 20 Through-hole 22 Electroless plating film 24 Electrolytic plating film 26 Plating filling through hole 30 Inner-layer conductor circuit 32 Through-hole land 36 Interlayer resin insulation layer 40 Via hole 44 External conductor circuit 46 Interlayer resin insulation layer 50 Via hole 52 Solder resist layer 56 Bump

Claims (12)

絶縁性樹脂基材に設けた貫通孔内にめっき充填してなるスルーホールを有するプリント配線板において、
前記スルーホールはネック部を有する形状であり、
前記絶縁性樹脂基材の表面および裏面から露出する各スルーホールの重心軸の位置が互いにずれており、
前記スルーホールのネック部における接合断面の重心位置は、隣り合うスルーホールで前記絶縁性樹脂基材の断面方向においてずれていることを特徴とするプリント配線板。
In a printed wiring board having a through-hole formed by plating and filling in a through-hole provided in an insulating resin base material,
The through hole is a shape having a neck portion,
The position of the center of gravity axis of each through hole exposed from the front and back surfaces of the insulating resin base material is shifted from each other,
The printed wiring board according to claim 1, wherein the center of gravity position of the bonding cross section at the neck portion of the through hole is shifted in the cross sectional direction of the insulating resin base material between adjacent through holes.
絶縁性樹脂基材に設けた貫通孔内にめっき充填してなるスルーホールを有し、かつそのスルーホールによって電気的に接続される内層の導体回路を前記絶縁性樹脂基材の表面および裏面に有するコア基板と、そのコア基板上に樹脂絶縁層と外層の導体回路とを交互に形成してなる多層プリント配線板において、
前記スルーホールはネック部を有する形状であり、
前記絶縁性樹脂基材の表面および裏面から露出する各スルーホールの重心軸の位置が互いにずれており、
前記スルーホールのネック部における接合断面の重心位置は、隣り合うスルーホールで前記絶縁性樹脂基材の断面方向においてずれていることを特徴とする多層プリント配線板。
On the front and back surfaces of the insulating resin substrate, there are through-holes formed by plating and filling the through-holes provided in the insulating resin substrate, and the inner layer conductor circuit electrically connected by the through-holes. In a multilayer printed wiring board formed by alternately forming a core substrate having a resin insulating layer and an outer layer conductor circuit on the core substrate,
The through hole is a shape having a neck portion,
The position of the center of gravity axis of each through hole exposed from the front and back surfaces of the insulating resin base material is shifted from each other,
The multilayer printed wiring board characterized in that the center of gravity position of the bonding cross section at the neck portion of the through hole is shifted in the cross sectional direction of the insulating resin base material between adjacent through holes.
前記ネック部を結んだ線で囲まれる平面領域は、前記絶縁性樹脂基材の表面と平行にならないことを特徴とする請求項1または2に記載のプリント配線板。 3. The printed wiring board according to claim 1, wherein a planar region surrounded by a line connecting the neck portions is not parallel to a surface of the insulating resin base material. 前記貫通孔は、前記絶縁性樹脂基材の表面に開口する第1開口部と、前記絶縁性樹脂基材の裏面に開口する第2開口部とからなることを特徴とする請求項1または2に記載のプリント配線板。 The said through-hole consists of the 1st opening part opened to the surface of the said insulating resin base material, and the 2nd opening part opened to the back surface of the said insulating resin base material, The Claim 1 or 2 characterized by the above-mentioned. Printed wiring board as described in 1. 前記ずれ量は、5〜30μmであることを特徴とする請求項1または2に記載のプリント配線板。 The printed wiring board according to claim 1, wherein the shift amount is 5 to 30 μm. 前記第1開口部と前記第2開口部との径は略同一であることを特徴とする請求項4に記載のプリント配線板。 The printed wiring board according to claim 4, wherein the first opening and the second opening have substantially the same diameter. 前記絶縁性樹脂基材は、ガラス布エポキシ樹脂基材、ガラス布ビスマレイミドトリアジン樹脂基材、ガラス布ポリフェニレンエーテル樹脂基材、アラミド不織布−エポキシ樹脂基材、アラミド不織布−ポリイミド樹脂基材からなる群から選ばれることを特徴とする請求項1または2に記載のプリント配線板。 The insulating resin base material is a group consisting of a glass cloth epoxy resin base material, a glass cloth bismaleimide triazine resin base material, a glass cloth polyphenylene ether resin base material, an aramid nonwoven fabric-epoxy resin base material, an aramid nonwoven fabric-polyimide resin base material. The printed wiring board according to claim 1, wherein the printed wiring board is selected from the following. 前記絶縁性樹脂基材の厚さは、100〜500μmであることを特徴とする請求項1または2に記載のプリント配線板。 The printed wiring board according to claim 1, wherein the insulating resin base material has a thickness of 100 to 500 μm. 隣接する前記スルーホール間のピッチは、100〜400μmであることを特徴とする請求項1または2に記載のプリント配線板。   The printed wiring board according to claim 1, wherein a pitch between adjacent through holes is 100 to 400 μm. 絶縁性樹脂基材を貫通する貫通孔にめっき充填されてなるスルーホールを有し、かつそのスルーホールによって電気的に接続される導体回路を前記絶縁性樹脂基材の表面および裏面に有するプリント配線板を製造するに当たって、
少なくとも以下の(1)〜(4)の工程、即ち、
(1) 絶縁性樹脂基材の両面に銅箔が貼付されてなる銅張積層板の一方の表面の所定位置にレーザ照射を行って、絶縁性樹脂基材の内部に向かうにつれて縮径されるような形状を有する第1の開口部を形成する工程、
(2) 前記絶縁性樹脂基材を挟んで前記所定位置と対面する前記銅張積層板の他方の表面の箇所から、前記第1の開口部の重心位置と重ならないような位置にレーザ照射を行って、前記絶縁性樹脂基材の内部に向かうにつれて縮径されるような形状を有し、かつ絶縁性樹脂基材の厚み方向中央部付近で前記第1の開口部と連通してネック部を形成し、前記ネック部を結んだ線で囲まれる平面領域が前記絶縁性樹脂基材の表面と平行にならないようにするような第2の開口部を形成し、前記第1の開口部と前記第2の開口部との接合断面の重心位置が、隣り合うスルーホールで前記絶縁性樹脂基材の断面方向においてずれているようにする工程、
(3) 前記基板に対して無電解めっきを施して、前記第1および第2の開口部の内壁に無電解めっき膜を形成する工程、
(4) 前記基板に電解めっきを施して、前記無電解めっき膜上に電解めっき膜を形成すると共に、前記第1および第2の開口部内部にめっき充填してスルーホールを形成する工程、
を含んでいることを特徴とするプリント配線板の製造方法。
Printed wiring having through-holes that are plated and filled in through-holes that penetrate the insulating resin base material, and conductor circuits that are electrically connected by the through-holes on the front and back surfaces of the insulating resin base material In manufacturing the board,
At least the following steps (1) to (4):
(1) Laser irradiation is performed on a predetermined position on one surface of a copper clad laminate in which copper foil is adhered to both surfaces of an insulating resin substrate, and the diameter is reduced toward the inside of the insulating resin substrate. Forming a first opening having such a shape;
(2) Laser irradiation is performed from a location on the other surface of the copper-clad laminate facing the predetermined position across the insulating resin base material so as not to overlap with the position of the center of gravity of the first opening. And having a shape that is reduced in diameter toward the inside of the insulating resin base material, and communicates with the first opening in the vicinity of the central portion in the thickness direction of the insulating resin base material. And forming a second opening so that a planar region surrounded by a line connecting the neck portions is not parallel to the surface of the insulating resin base material, and the first opening A step of causing the center of gravity position of the joint cross section with the second opening to be shifted in the cross-sectional direction of the insulating resin base material in the adjacent through hole;
(3) applying electroless plating to the substrate to form an electroless plating film on the inner walls of the first and second openings;
(4) performing electrolytic plating on the substrate to form an electrolytic plating film on the electroless plating film, and forming a through hole by filling the first and second openings with plating;
The printed wiring board manufacturing method characterized by including this.
前記第1開口部は、前記絶縁性樹脂基材の厚み方向の中央部から裏面に近い部分に至るように設けられ、
前記第2開口部は、前記絶縁性樹脂基材の厚み方向の中央部から表面に近い部分に至るように設けられることを特徴とする、請求項10記載のプリント配線板の製造方法。
The first opening is provided so as to reach a portion near the back surface from the central portion in the thickness direction of the insulating resin base material,
The method for manufacturing a printed wiring board according to claim 10, wherein the second opening is provided so as to extend from a central portion in a thickness direction of the insulating resin base material to a portion close to the surface.
前記第1開口部を形成するレーザ加工条件と、前記第2開口部を形成するレーザ加工条件とは同一であることを特徴とする、請求項10または11記載のプリント配線板の製造方法。 The method for manufacturing a printed wiring board according to claim 10 or 11, wherein a laser processing condition for forming the first opening and a laser processing condition for forming the second opening are the same.
JP2011248928A 2011-11-14 2011-11-14 Printed wiring board and manufacturing method thereof Active JP5432228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011248928A JP5432228B2 (en) 2011-11-14 2011-11-14 Printed wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011248928A JP5432228B2 (en) 2011-11-14 2011-11-14 Printed wiring board and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006044968A Division JP5021216B2 (en) 2006-02-22 2006-02-22 Printed wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012060150A true JP2012060150A (en) 2012-03-22
JP5432228B2 JP5432228B2 (en) 2014-03-05

Family

ID=46056788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011248928A Active JP5432228B2 (en) 2011-11-14 2011-11-14 Printed wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5432228B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016054245A (en) * 2014-09-04 2016-04-14 凸版印刷株式会社 Multilayer printed wiring board and method for manufacturing the same
JP2020199748A (en) * 2019-06-13 2020-12-17 セイコーエプソン株式会社 Wiring board, manufacturing method of wiring board, inkjet head, mems device, and oscillator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002523891A (en) * 1998-08-12 2002-07-30 ミネソタ マイニング アンド マニュファクチャリング カンパニー Flexible circuit with conductive vias and method of making the same
JP2007227512A (en) * 2006-02-22 2007-09-06 Ibiden Co Ltd Printed wiring board and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002523891A (en) * 1998-08-12 2002-07-30 ミネソタ マイニング アンド マニュファクチャリング カンパニー Flexible circuit with conductive vias and method of making the same
JP2007227512A (en) * 2006-02-22 2007-09-06 Ibiden Co Ltd Printed wiring board and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016054245A (en) * 2014-09-04 2016-04-14 凸版印刷株式会社 Multilayer printed wiring board and method for manufacturing the same
JP2020199748A (en) * 2019-06-13 2020-12-17 セイコーエプソン株式会社 Wiring board, manufacturing method of wiring board, inkjet head, mems device, and oscillator
JP7302318B2 (en) 2019-06-13 2023-07-04 セイコーエプソン株式会社 Wiring board, wiring board manufacturing method, inkjet head, MEMS device, and oscillator

Also Published As

Publication number Publication date
JP5432228B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
JP5021216B2 (en) Printed wiring board and manufacturing method thereof
US8966750B2 (en) Method of manufacturing a multilayered printed wiring board
TWI387424B (en) Multilayer printed wiring board
US20040025333A1 (en) Multilayered printed circuit board and manufacturing method therefor
JP5432228B2 (en) Printed wiring board and manufacturing method thereof
WO2014024754A1 (en) Circuit board for semiconductor package and method for producing same
JP2003168860A (en) Printed circuit board and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131205

R150 Certificate of patent or registration of utility model

Ref document number: 5432228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250