JP2012060066A - SEMICONDUCTOR DEVICE HAVING AlGaN OXIDE FILM AND MANUFACTURING METHOD OF THE SAME - Google Patents

SEMICONDUCTOR DEVICE HAVING AlGaN OXIDE FILM AND MANUFACTURING METHOD OF THE SAME Download PDF

Info

Publication number
JP2012060066A
JP2012060066A JP2010204479A JP2010204479A JP2012060066A JP 2012060066 A JP2012060066 A JP 2012060066A JP 2010204479 A JP2010204479 A JP 2010204479A JP 2010204479 A JP2010204479 A JP 2010204479A JP 2012060066 A JP2012060066 A JP 2012060066A
Authority
JP
Japan
Prior art keywords
algan layer
algan
layer
oxide film
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010204479A
Other languages
Japanese (ja)
Inventor
Masahiro Sugimoto
雅裕 杉本
Tsutomu Uesugi
勉 上杉
Tamotsu Hashizume
保 橋詰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Hokkaido University NUC
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Hokkaido University NUC
Priority to JP2010204479A priority Critical patent/JP2012060066A/en
Publication of JP2012060066A publication Critical patent/JP2012060066A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Formation Of Insulating Films (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technology that can easily form an insulation film on an AlGaN layer.SOLUTION: The manufacturing method of the semiconductor device having an AlGaN layer and an AlGaN oxide film formed on a surface of the AlGaN layer comprises an oxidation step of directing ultraviolet light on the AlGaN layer while applying voltage between the AlGaN layer and a cathode 44 so as to make the AlGaN layer become positive with a substrate 40 having the AlGaN layer and the cathode 44 being soaked in an alkali solution 48.

Description

AlGaN層を有する半導体装置に関する。   The present invention relates to a semiconductor device having an AlGaN layer.

特許文献1には、AlGaN層と、AlGaN層上に形成されたSiOからなるゲート絶縁膜を有する半導体装置が開示されている。SiOの他にも、AlGaN層の表面に形成することができる絶縁膜として、Al、SiN等が知られている。 Patent Document 1 discloses a semiconductor device having an AlGaN layer and a gate insulating film made of SiO 2 formed on the AlGaN layer. In addition to SiO 2 , Al 2 O 3 , SiN, etc. are known as insulating films that can be formed on the surface of the AlGaN layer.

特開2010−050280号JP 2010-050280 A

上述した材質の絶縁膜は、CVD法によりAlGaN層上に形成される。CVD法では、チャンバ内を真空引きする等の処理に時間がかかるため、絶縁膜を形成するのに長時間を要する。また、CVD法を行うためには大掛かりな装置が必要となる。このように、従来の方法では、AlGaN層上に絶縁膜を形成するのが容易ではなかった。したがって、本明細書では、AlGaN層上に容易に絶縁膜を形成することができる技術を提供する。   The insulating film made of the above-described material is formed on the AlGaN layer by the CVD method. In the CVD method, processing such as evacuation of the chamber takes time, so that it takes a long time to form the insulating film. In addition, a large-scale apparatus is required to perform the CVD method. Thus, in the conventional method, it is not easy to form an insulating film on the AlGaN layer. Therefore, the present specification provides a technique capable of easily forming an insulating film on an AlGaN layer.

本明細書は、AlGaN層と、AlGaN層の表面に形成されたAlGaN酸化膜とを備えている半導体装置の製造方法を提供する。この製造方法は、アルカリ溶液中にAlGaN層を有する基板と陰極とを浸した状態で、AlGaN層と陰極との間にAlGaN層がプラスとなる電圧を印加するとともに、AlGaN層に紫外線を照射する酸化ステップを有している。   The present specification provides a method of manufacturing a semiconductor device including an AlGaN layer and an AlGaN oxide film formed on the surface of the AlGaN layer. In this manufacturing method, while a substrate having an AlGaN layer and a cathode are immersed in an alkaline solution, a positive voltage is applied between the AlGaN layer and the cathode, and the AlGaN layer is irradiated with ultraviolet rays. It has an oxidation step.

AlGaN層に紫外線を照射すると、AlGaN層中にホールが生成される。すると、ホールと、アルカリ溶液中のOH基と、AlGaN層とが反応して、AlGaN層が酸化する。これによって、絶縁膜であるAlGaN酸化膜が形成される。この方法によれば、常温、常圧、またはこれに比較的近い条件下でAlGaN層を酸化させることができる。AlGaN層を酸化させるのに、大掛かりな装置が不要であり、また、短時間でAlGaN層を形成することができる。したがって、AlGaN層上に簡単に絶縁膜を形成することができる。   When the AlGaN layer is irradiated with ultraviolet rays, holes are generated in the AlGaN layer. Then, the holes, the OH groups in the alkaline solution, and the AlGaN layer react to oxidize the AlGaN layer. Thereby, an AlGaN oxide film which is an insulating film is formed. According to this method, the AlGaN layer can be oxidized at room temperature, normal pressure, or a condition relatively close to this. A large apparatus is not required to oxidize the AlGaN layer, and the AlGaN layer can be formed in a short time. Therefore, an insulating film can be easily formed on the AlGaN layer.

上述した製造方法においては、酸化ステップ中に、陰極から基板に向かって流れる電流を積分することが好ましい。積分することにより得られる積分値は、AlGaN酸化膜の厚さと略比例する。したがって、積分値を算出することで、AlGaN酸化膜の厚さを容易に管理することができる。   In the manufacturing method described above, it is preferable to integrate the current flowing from the cathode toward the substrate during the oxidation step. The integrated value obtained by integrating is approximately proportional to the thickness of the AlGaN oxide film. Therefore, the thickness of the AlGaN oxide film can be easily managed by calculating the integral value.

また、本明細書は、AlGaN層と、AlGaN層の表面に形成されたAlGaN酸化膜とを備えている半導体装置を提供する。この半導体装置は、上述した方法により容易に製造することができる。   The present specification also provides a semiconductor device including an AlGaN layer and an AlGaN oxide film formed on the surface of the AlGaN layer. This semiconductor device can be easily manufactured by the method described above.

上述した半導体装置では、AlGaN酸化膜がゲート絶縁膜であってもよい。また、半導体装置がAlGaN層に接するGaN層をさらに有しており、GaN層とAlGaN層とAlGaN酸化膜が、HEMT(High Electron Mobility Transistor)の一部を構成していてもよい。   In the semiconductor device described above, the AlGaN oxide film may be a gate insulating film. The semiconductor device may further include a GaN layer in contact with the AlGaN layer, and the GaN layer, the AlGaN layer, and the AlGaN oxide film may constitute a part of a HEMT (High Electron Mobility Transistor).

HEMT10の断面図。Sectional drawing of HEMT10. PEC酸化処理前の半製品40の断面図。Sectional drawing of the semi-finished product 40 before PEC oxidation treatment. PEC酸化処理の説明図。Explanatory drawing of a PEC oxidation process. PEC酸化処理において、電源52の印加電圧に応じた電流Iの変化を示すグラフ。The graph which shows the change of the electric current IE according to the applied voltage of the power supply 52 in PEC oxidation processing. PEC酸化処理の時間を変更したときのドレイン電流−ドレイン電圧特性を示すグラフ。The graph which shows the drain current-drain voltage characteristic when changing the time of a PEC oxidation process.

図1に示すHEMT10は、半導体層12を備えている。半導体層12には、GaN層16と、AlGaN層18が形成されている。GaN層16は、i型のGaNにより構成されている。AlGaN層18は、GaN層16上に形成されている。AlGaN層18は、n型のAl0.25Ga0.75Nにより構成されている。AlGaN層18とGaN層16との境界には、ヘテロ接合部20が形成されている。ヘテロ接合部20の近傍のGaN層16内には、ヘテロ接合部20に沿って2次元電子ガスが形成されている。AlGaN層18上には、ソース電極22とドレイン電極24が形成されている。ソース電極22とドレイン電極24は、AlGaN層18と導通している。また、AlGaN層18上には、ゲート絶縁膜26が形成されている。ゲート絶縁膜26は、AlGaN酸化膜により形成されている。ゲート絶縁膜26は、ソース電極22とドレイン電極24の間の領域に形成されている。ゲート絶縁膜26上には、ゲート電極28が形成されている。 The HEMT 10 illustrated in FIG. 1 includes a semiconductor layer 12. A GaN layer 16 and an AlGaN layer 18 are formed on the semiconductor layer 12. The GaN layer 16 is made of i-type GaN. The AlGaN layer 18 is formed on the GaN layer 16. The AlGaN layer 18 is made of n-type Al 0.25 Ga 0.75 N. A heterojunction 20 is formed at the boundary between the AlGaN layer 18 and the GaN layer 16. A two-dimensional electron gas is formed along the heterojunction 20 in the GaN layer 16 near the heterojunction 20. A source electrode 22 and a drain electrode 24 are formed on the AlGaN layer 18. The source electrode 22 and the drain electrode 24 are electrically connected to the AlGaN layer 18. A gate insulating film 26 is formed on the AlGaN layer 18. The gate insulating film 26 is formed of an AlGaN oxide film. The gate insulating film 26 is formed in a region between the source electrode 22 and the drain electrode 24. A gate electrode 28 is formed on the gate insulating film 26.

ゲート電極28にゲート閾値電圧より高い電圧が印加されていると、ヘテロ接合部20の全体に2次元電子ガスが存在しており、ソース電極22とドレイン電極24の間に電流が流れる。すなわち、HEMT10はオン状態となっている。ゲート電極28にゲート閾値電圧より低い電圧が印加されていると、ゲート電極28の直下の2次元電子ガスが消失する。したがって、ソース電極22とドレイン電極24の間に電流が流れない。すなわち、HEMT10はオフ状態となる。   When a voltage higher than the gate threshold voltage is applied to the gate electrode 28, the two-dimensional electron gas exists in the entire heterojunction portion 20, and a current flows between the source electrode 22 and the drain electrode 24. That is, the HEMT 10 is in an on state. When a voltage lower than the gate threshold voltage is applied to the gate electrode 28, the two-dimensional electron gas immediately below the gate electrode 28 disappears. Therefore, no current flows between the source electrode 22 and the drain electrode 24. That is, the HEMT 10 is turned off.

次に、HEMT10の製造方法について説明する。まず、従来公知の方法によりGaN層16、AlGaN層18、ソース電極22及びドレイン電極24を形成することによって、図2に示す半製品40を製造する。なお、ゲート絶縁膜26を形成すべき範囲に開口部32が形成されるように、AlGaN層18、ソース電極22及びドレイン電極24上にフォトレジスト30を形成しておく。   Next, a method for manufacturing the HEMT 10 will be described. First, the semi-finished product 40 shown in FIG. 2 is manufactured by forming the GaN layer 16, the AlGaN layer 18, the source electrode 22 and the drain electrode 24 by a conventionally known method. Note that a photoresist 30 is formed on the AlGaN layer 18, the source electrode 22, and the drain electrode 24 so that the opening 32 is formed in a range where the gate insulating film 26 is to be formed.

次に、PEC(Photo Electro Chemical)酸化処理によって、ゲート絶縁膜26を形成する。PEC酸化処理では、図3に示すように、ガラス基板42上に半製品40が固定される。半製品40は、GaN層16がガラス基板42に接触するように固定される。このとき、GaN層16に配線が接続される。次に、電源52のプラス端子に、半製品40に接続した配線を接続する。また、Pt(プラチナ)からなる陰極44を、電源52のマイナス端子に接続する。次に、半製品40と陰極44を、容器内に貯められた溶液48中に浸す。溶液48は、3%酒石酸とプロピレングリコールとを約1:2の割合で混合した溶液である。次に、電源52によって、半製品40と陰極44の間に半製品40がプラスとなる電圧を印加する。さらに、UVランプ54によって、開口部32内の半導体層に紫外線を照射する。紫外線はAlGaN層18及びGaN層16のバンドギャップより大きいエネルギーを有するので、紫外線によって励起されることによってAlGaN層18中及びGaN層16中にホールが生成される。生成されたホールは、AlGaN層18と陰極44の間に印加されている電圧によって、AlGaN層18の表面側(開口部32側)に移動する。すると、AlGaN層18の表面で、以下の化1、化2に示す反応が生じる。
(化1)2GaN+6h→2Ga3++N
(化2)2AlN+6h→2Al3++N
すなわち、AlGaN層18中のGaNがホール(h)と反応することでGa3+イオンが生成され、AlGaN層18中のAlNがホール(h)と反応することでAl3+イオンが生成される。Ga3+イオンとAl3+イオンは、AlGaN層18中のAlとGaの比率と略等しい比率で生成される。生成されたAl3+イオンとGa3+イオンは、以下の化3、化4に示すように、溶液48中のOH基と反応する。
(化3)2Ga3++6OH→Ga+3H
(化4)2Al3++6OH→Al+3H
すなわち、Ga3+イオンがOH基と反応することでGaが生成され、Al3+イオンがOH基と反応することでAlが生成される。これによって、AlGaN層18の表面に、AlGaN層18が酸化したAlGaN酸化膜(すなわち、GaとAlにより構成される膜)が形成される。形成されたAlGaN酸化膜が、図1のゲート絶縁膜26となる。上述したように、Ga3+イオンとAl3+イオンはAlGaN層18中のAlとGaの比率と略等しい比率で生成されるので、ゲート絶縁膜26中におけるGaとAlの比率はAlGaN層18中のGaとAlの比率と略等しい。
Next, the gate insulating film 26 is formed by PEC (Photo Electro Chemical) oxidation. In the PEC oxidation process, the semi-finished product 40 is fixed on the glass substrate 42 as shown in FIG. The semi-finished product 40 is fixed so that the GaN layer 16 is in contact with the glass substrate 42. At this time, wiring is connected to the GaN layer 16. Next, the wiring connected to the semi-finished product 40 is connected to the plus terminal of the power source 52. Further, the cathode 44 made of Pt (platinum) is connected to the negative terminal of the power source 52. Next, the semi-finished product 40 and the cathode 44 are immersed in the solution 48 stored in the container. Solution 48 is a solution in which 3% tartaric acid and propylene glycol are mixed in a ratio of about 1: 2. Next, a voltage that makes the semi-finished product 40 positive is applied between the semi-finished product 40 and the cathode 44 by the power source 52. Furthermore, the UV lamp 54 irradiates the semiconductor layer in the opening 32 with ultraviolet rays. Since ultraviolet rays have energy larger than the band gap of the AlGaN layer 18 and the GaN layer 16, holes are generated in the AlGaN layer 18 and the GaN layer 16 by being excited by the ultraviolet rays. The generated holes move to the surface side (opening 32 side) of the AlGaN layer 18 by the voltage applied between the AlGaN layer 18 and the cathode 44. Then, reactions shown in the following chemical formulas 1 and 2 occur on the surface of the AlGaN layer 18.
(Chemical formula 1) 2GaN + 6h + → 2Ga 3+ + N 2
(Chemical Formula 2) 2AlN + 6h + → 2Al 3+ + N 2
That, GaN in the AlGaN layer 18 is generated Ga 3+ ions by reacting with holes (h +), AlN in the AlGaN layer 18 is Al 3+ ions are produced by reacting a hole (h +) . Ga 3+ ions and Al 3+ ions are generated at a ratio approximately equal to the ratio of Al to Ga in the AlGaN layer 18. The generated Al 3+ ions and Ga 3+ ions react with OH groups in the solution 48 as shown in the following chemical formulas 3 and 4.
(Chemical Formula 3) 2Ga 3+ + 6OH → Ga 2 O 3 + 3H 2 O
(Chemical formula 4) 2Al 3+ + 6OH → Al 2 O 3 + 3H 2 O
That is, Ga 2 O 3 is generated by reacting Ga 3+ ions with OH groups, and Al 2 O 3 is generated by reacting Al 3+ ions with OH groups. As a result, an AlGaN oxide film (that is, a film composed of Ga 2 O 3 and Al 2 O 3 ) obtained by oxidizing the AlGaN layer 18 is formed on the surface of the AlGaN layer 18. The formed AlGaN oxide film becomes the gate insulating film 26 of FIG. As described above, Ga 3+ ions and Al 3+ ions are generated at a ratio approximately equal to the ratio of Al to Ga in the AlGaN layer 18, so the ratio of Ga to Al in the gate insulating film 26 is the same as that in the AlGaN layer 18. It is approximately equal to the ratio of Ga and Al.

なお、図3に示すように、半製品40と電源52の間には電流計60が設置されている。電流計60により、半製品40から陰極44に向かって流れる電流が検出される。電流計60は、検出された電流値を積分して、陰極44から半製品40に供給された電荷量を算出する。この電荷量は、上述した化1及び化2に示す反応において使用されるホールの量と略等しい。すなわち、電流計60で算出される電荷量は、形成中のゲート絶縁膜26の膜厚と略比例する。したがって、電流計60で算出される電荷量を基準としてPEC酸化処理を終了させることで、ゲート絶縁膜26の膜厚を正確に制御することができる。   As shown in FIG. 3, an ammeter 60 is installed between the semi-finished product 40 and the power source 52. An ammeter 60 detects a current flowing from the semi-finished product 40 toward the cathode 44. The ammeter 60 integrates the detected current value and calculates the amount of charge supplied from the cathode 44 to the semi-finished product 40. This amount of charge is substantially equal to the amount of holes used in the reactions shown in Chemical Formulas 1 and 2 above. That is, the charge amount calculated by the ammeter 60 is substantially proportional to the thickness of the gate insulating film 26 being formed. Therefore, the film thickness of the gate insulating film 26 can be accurately controlled by terminating the PEC oxidation process based on the charge amount calculated by the ammeter 60.

また、図3に示すように、溶液48中には、参照電極46が浸されている。参照電極46は、電圧計58を介して電源52のプラス端子に接続されている。電圧計58によって、溶液48の電位が検出される。   Further, as shown in FIG. 3, the reference electrode 46 is immersed in the solution 48. The reference electrode 46 is connected to the plus terminal of the power source 52 via a voltmeter 58. The potential of the solution 48 is detected by the voltmeter 58.

ゲート絶縁膜26を形成したら、半製品40をガラス基板42から取り外す。次に、エッチングによりフォトレジスト30を除去する。これによって、図1に示すHEMT10が完成する。   After the gate insulating film 26 is formed, the semi-finished product 40 is removed from the glass substrate 42. Next, the photoresist 30 is removed by etching. Thereby, the HEMT 10 shown in FIG. 1 is completed.

図4は、PEC酸化処理において、電源52の印加電圧と、電流計60で検出される電流Iの関係を示している。図4の横軸はPEC酸化処理の開始時点からの経過時間を示しており、縦軸は電流Iを示している。図4の横軸の0〜240secの期間内において電源52の印加電圧は−1Vから5Vまで徐々に増加しており、240sec以降は電源52の印加電圧は5Vに維持されている。電流Iは、ゲート酸化膜26の成長速度と略一致する。図4に示すように、200secを過ぎたところ(電源52の印加電圧が4.3Vを超えたところ)で、電流Iが急激に増加する。これは、以下のような現象が生じるためだと考えられる。すなわち、水溶液48中の電位は、陰極44の電位と略等しい。したがって、電源52の印加電圧が低い場合には、水溶液48とGaN層16の間に電位差があまり生じない。このため、電源52の印加電圧が低いと、ヘテロ接合部20には2次元電子ガスが高濃度に存在していると考えられる。したがって、紫外線照射によりホールが生成されても、生成されたホールが即座に2次元電子ガスと再結合して消滅してしまい、AlGaN層18の表面までホールが到達し難いと考えられる。このため、AlGaN層18の表面で、上記化1〜化4の反応が生じ難く、ゲート絶縁膜26の成長速度が遅いと考えられる。印加電圧が4.3Vを超えると、水溶液48の電位がGaN層16の電位よりも十分に低くなる。これによって、開口部32に近い位置の2次元電子ガスが減少し、ホールがAlGaN層18の表面に到達するようになり、ゲート絶縁膜26の成長速度が急に速くなると考えられる。したがって、電源52の印加電圧は4.3V以上であることが好ましい。 FIG. 4 shows the relationship between the applied voltage of the power source 52 and the current IE detected by the ammeter 60 in the PEC oxidation process. The horizontal axis in FIG. 4 indicates the elapsed time from the start time of the PEC oxidation treatment, and the vertical axis indicates the current IE . The applied voltage of the power source 52 gradually increases from −1 V to 5 V within the period of 0 to 240 sec on the horizontal axis in FIG. 4, and the applied voltage of the power source 52 is maintained at 5 V after 240 sec. The current IE substantially matches the growth rate of the gate oxide film 26. As shown in FIG. 4, when 200 sec has passed (where the applied voltage of the power source 52 exceeds 4.3 V), the current IE increases rapidly. This is thought to be due to the following phenomenon. That is, the potential in the aqueous solution 48 is substantially equal to the potential of the cathode 44. Therefore, when the applied voltage of the power source 52 is low, there is not much potential difference between the aqueous solution 48 and the GaN layer 16. For this reason, when the applied voltage of the power supply 52 is low, it is considered that the two-dimensional electron gas exists in the heterojunction portion 20 at a high concentration. Therefore, even if holes are generated by ultraviolet irradiation, the generated holes are immediately recombined with the two-dimensional electron gas and disappear, so that it is difficult for the holes to reach the surface of the AlGaN layer 18. For this reason, it is considered that the above reactions 1 to 4 hardly occur on the surface of the AlGaN layer 18 and the growth rate of the gate insulating film 26 is slow. When the applied voltage exceeds 4.3 V, the potential of the aqueous solution 48 is sufficiently lower than the potential of the GaN layer 16. As a result, the two-dimensional electron gas at a position close to the opening 32 is reduced, the holes reach the surface of the AlGaN layer 18, and the growth rate of the gate insulating film 26 is considered to increase rapidly. Therefore, the applied voltage of the power source 52 is preferably 4.3 V or higher.

また、図5は、PEC酸化処理の時間をそれぞれ異ならせてHEMTを製造したときの、各HEMTのドレイン電圧−ドレイン電流特性を示している。なお、図5の特性は、ゲート電極28を形成する前に測定されているので、ゲート電圧が印加されていないときの特性を示している。図5に示すように、PEC酸化処理時間を変化させることで、ドレイン電圧−ドレイン電流特性が変化することがわかる。このようにドレイン電圧−ドレイン電流特性が変化する理由は、PEC酸化処理時間に応じて、AlGaN層18の厚さが変化し、2次元電子ガスの濃度が変化するためである(すなわち、PEC酸化処理時間が長いほど、酸化されるAlGaNが多くなるので、ゲート絶縁膜26の下方のAlGaN層18は薄くなる。AlGaN層18が薄くなるほど、その下方の2次元電子ガスの濃度は低下する。)。この実験例では、PEC酸化処理時間が350secを超えると、HEMTがノーマリオフとなることが分かる。このように、本実施例のPEC酸化処理によれば、ゲート絶縁膜26の厚さを細かく制御することができる。これにより、HEMTの特性を細かく制御することができる。   FIG. 5 shows the drain voltage-drain current characteristics of each HEMT when the HEMT is manufactured with different PEC oxidation treatment times. The characteristics shown in FIG. 5 are measured before the gate electrode 28 is formed, and thus show the characteristics when no gate voltage is applied. As shown in FIG. 5, it can be seen that the drain voltage-drain current characteristics change by changing the PEC oxidation treatment time. The reason why the drain voltage-drain current characteristic changes in this way is that the thickness of the AlGaN layer 18 changes and the concentration of the two-dimensional electron gas changes according to the PEC oxidation processing time (that is, PEC oxidation). (The longer the processing time is, the more AlGaN is oxidized, so the AlGaN layer 18 below the gate insulating film 26 becomes thinner. The thinner the AlGaN layer 18, the lower the concentration of the two-dimensional electron gas below it.) . In this experimental example, it is understood that the HEMT is normally off when the PEC oxidation treatment time exceeds 350 seconds. Thus, according to the PEC oxidation process of the present embodiment, the thickness of the gate insulating film 26 can be finely controlled. Thereby, the characteristic of HEMT can be controlled finely.

以上に説明したように、実施例の技術によれば、AlGaN酸化膜からなるゲート絶縁膜26を形成することができる。PEC酸化処理は、常温常圧に近い環境で実施することができるので、大掛かりな装置を用いることなく容易に、しかも、短時間でゲート絶縁膜26を形成することができる。なお、従来は、熱酸化法等によりAlGaN層を酸化させることが試みられていたが、熱酸化法ではAlGaN層全体が酸化してしまう。一方、PEC酸化処理によれば、AlGaN層の表面だけを酸化させることができる。このため、この方法によれば、AlGaN層上にAlGaN酸化層が形成された構造を実現することができる。そのうえ、PEC酸化処理によれば、AlGaN酸化膜の厚さを細かく制御することができる。したがって、HEMTの特性を制御することができる。   As described above, according to the technique of the embodiment, the gate insulating film 26 made of an AlGaN oxide film can be formed. Since the PEC oxidation treatment can be performed in an environment close to normal temperature and pressure, the gate insulating film 26 can be formed easily and in a short time without using a large-scale apparatus. Conventionally, an attempt has been made to oxidize the AlGaN layer by a thermal oxidation method or the like, but the entire AlGaN layer is oxidized by the thermal oxidation method. On the other hand, according to the PEC oxidation treatment, only the surface of the AlGaN layer can be oxidized. For this reason, according to this method, a structure in which an AlGaN oxide layer is formed on the AlGaN layer can be realized. Moreover, according to the PEC oxidation treatment, the thickness of the AlGaN oxide film can be finely controlled. Therefore, the characteristics of the HEMT can be controlled.

また、AlGaN層上にSiO等のゲート絶縁膜が形成された従来のHEMTでは、AlGaN層とゲート絶縁膜との界面における界面準位密度を制御することが不可能であり、界面準位密度が極めて大きくばらつく。このため、従来のHEMTは、オン電圧のばらつきが大きいという問題を有していた。実施例の方法によれば、AlGaN層上に、AlGaN層と略同じ比率でAlとGaを含有するAlGaN酸化膜を形成することができる。すなわち、AlGaN層と近い組成の絶縁膜をAlGaN層上に形成することができる。このため、AlGaN層と絶縁膜との界面における界面準位密度が低減されることが期待される。これにより、HEMTのオン電圧やゲート閾値電圧のばらつきが抑制されることが期待される。 In addition, in the conventional HEMT in which a gate insulating film such as SiO 2 is formed on an AlGaN layer, it is impossible to control the interface state density at the interface between the AlGaN layer and the gate insulating film. Vary greatly. For this reason, the conventional HEMT has a problem that the variation in on-voltage is large. According to the method of the embodiment, an AlGaN oxide film containing Al and Ga can be formed on the AlGaN layer at substantially the same ratio as the AlGaN layer. That is, an insulating film having a composition close to that of the AlGaN layer can be formed on the AlGaN layer. For this reason, it is expected that the interface state density at the interface between the AlGaN layer and the insulating film is reduced. As a result, it is expected that variations in the ON voltage of the HEMT and the gate threshold voltage are suppressed.

なお、上述した実施例では、PEC酸化処理において、3%酒石酸とプロピレングリコールとを約1:2の割合で混合した溶液を用いたが、他のアルカリ溶液を用いてもよい。PEC酸化処理に用いる溶液としては、PEC酸化処理中にイオン濃度が変化し難いアルカリ溶液が適している。例えば、NaOH水溶液やKOH水溶液等を用いてもよい。   In the above-described embodiment, a solution in which 3% tartaric acid and propylene glycol are mixed at a ratio of about 1: 2 is used in the PEC oxidation treatment, but other alkaline solutions may be used. As the solution used for the PEC oxidation treatment, an alkaline solution whose ion concentration hardly changes during the PEC oxidation treatment is suitable. For example, an aqueous NaOH solution or an aqueous KOH solution may be used.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例をさまざまに変形、変更したものが含まれる。
本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology illustrated in the present specification or the drawings achieves a plurality of objects at the same time, and has technical utility by achieving one of the objects.

10:HEMT
12:半導体層
16:GaN層
18:AlGaN層
20:ヘテロ接合部
22:ソース電極
24:ドレイン電極
26:ゲート絶縁膜
28:ゲート電極
30:フォトレジスト
40:半製品
42:ガラス基板
44:陰極
46:参照電極
48:溶液
52:電源
54:UVランプ
10: HEMT
12: Semiconductor layer 16: GaN layer 18: AlGaN layer 20: Heterojunction 22: Source electrode 24: Drain electrode 26: Gate insulating film 28: Gate electrode 30: Photoresist 40: Semi-finished product 42: Glass substrate 44: Cathode 46 : Reference electrode 48: Solution 52: Power supply 54: UV lamp

Claims (5)

AlGaN層と、AlGaN層の表面に形成されたAlGaN酸化膜とを備えている半導体装置の製造方法であって、
アルカリ溶液中にAlGaN層を有する基板と陰極とを浸した状態で、AlGaN層と陰極との間にAlGaN層がプラスとなる電圧を印加するとともに、AlGaN層に紫外線を照射する酸化ステップを有していることを特徴とする製造方法。
A method for manufacturing a semiconductor device comprising an AlGaN layer and an AlGaN oxide film formed on the surface of the AlGaN layer,
In the state in which the substrate having the AlGaN layer and the cathode are immersed in an alkaline solution, a voltage is applied between the AlGaN layer and the cathode so that the AlGaN layer is positive, and an oxidation step is performed to irradiate the AlGaN layer with ultraviolet rays. The manufacturing method characterized by the above-mentioned.
酸化ステップ中に、陰極から基板に向かって流れる電流を積分することを特徴とする請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the current flowing from the cathode toward the substrate is integrated during the oxidation step. AlGaN層と、AlGaN層の表面に形成されたAlGaN酸化膜とを備えている半導体装置。   A semiconductor device comprising an AlGaN layer and an AlGaN oxide film formed on the surface of the AlGaN layer. AlGaN酸化膜がゲート絶縁膜であることを特徴とする請求項3に記載の半導体装置。   The semiconductor device according to claim 3, wherein the AlGaN oxide film is a gate insulating film. AlGaN層に接するGaN層をさらに有しており、
GaN層とAlGaN層とAlGaN酸化膜が、HEMTの一部を構成していることを特徴とする請求項3または4に記載の半導体装置。
A GaN layer in contact with the AlGaN layer;
The semiconductor device according to claim 3 or 4, wherein the GaN layer, the AlGaN layer, and the AlGaN oxide film constitute a part of the HEMT.
JP2010204479A 2010-09-13 2010-09-13 SEMICONDUCTOR DEVICE HAVING AlGaN OXIDE FILM AND MANUFACTURING METHOD OF THE SAME Pending JP2012060066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010204479A JP2012060066A (en) 2010-09-13 2010-09-13 SEMICONDUCTOR DEVICE HAVING AlGaN OXIDE FILM AND MANUFACTURING METHOD OF THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010204479A JP2012060066A (en) 2010-09-13 2010-09-13 SEMICONDUCTOR DEVICE HAVING AlGaN OXIDE FILM AND MANUFACTURING METHOD OF THE SAME

Publications (1)

Publication Number Publication Date
JP2012060066A true JP2012060066A (en) 2012-03-22

Family

ID=46056761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010204479A Pending JP2012060066A (en) 2010-09-13 2010-09-13 SEMICONDUCTOR DEVICE HAVING AlGaN OXIDE FILM AND MANUFACTURING METHOD OF THE SAME

Country Status (1)

Country Link
JP (1) JP2012060066A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015112350A1 (en) 2014-07-29 2016-02-04 Toyota Jidosha Kabushiki Kaisha Semiconductor device and method for manufacturing the same
CN106158693A (en) * 2015-04-07 2016-11-23 苏州能屋电子科技有限公司 Etching self-stopping technology realizes the system and method for recessed grid enhancement mode HEMT device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04120298A (en) * 1990-09-07 1992-04-21 Showa Alum Corp Method for controlling thickness of anodically oxidized film in anodic-oxidation treatment
JP2002329863A (en) * 2001-02-27 2002-11-15 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2004311869A (en) * 2003-04-10 2004-11-04 Mitsubishi Electric Corp Nitride semiconductor type field effect transistor and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04120298A (en) * 1990-09-07 1992-04-21 Showa Alum Corp Method for controlling thickness of anodically oxidized film in anodic-oxidation treatment
JP2002329863A (en) * 2001-02-27 2002-11-15 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2004311869A (en) * 2003-04-10 2004-11-04 Mitsubishi Electric Corp Nitride semiconductor type field effect transistor and its manufacturing method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6014013170; T. Rotter, et al.: '"First AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor based on photoano' Electronics Letters Vol. 37, No. 11, 20010524, p. 715-716 *
JPN6014013171; Nanako SHIOZAKI, Taketomo SATO, Tamotsu HASHIZUME: '"Formation of Thin Native Oxide Layer on n-GaN by Electrochemical Process in Mixed Solution with Gly' Japanese Journal of Applied Physics Vol. 46, No. 4A, 20070405, p. 1471-1473 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015112350A1 (en) 2014-07-29 2016-02-04 Toyota Jidosha Kabushiki Kaisha Semiconductor device and method for manufacturing the same
CN106158693A (en) * 2015-04-07 2016-11-23 苏州能屋电子科技有限公司 Etching self-stopping technology realizes the system and method for recessed grid enhancement mode HEMT device

Similar Documents

Publication Publication Date Title
TWI617024B (en) Method of manufacturing semiconductor device, and semiconductor device
KR100596189B1 (en) Field emission-type electron source and manufacturing method thereof and display using the electron source
JP2013149914A (en) Photoelectrochemical device and manufacturing method for semiconductor device
WO2006083858A3 (en) Plasma gate oxidation process using pulsed rf source power
JPWO2007105281A1 (en) Method for manufacturing compound semiconductor device and etching solution
JP2020031171A (en) Method for measuring interface characteristic between semiconductor layer and insulator layer
JP6952983B2 (en) Etching method and etching equipment
Koshiga et al. The anodic oxidation of GaAs in an oxygen plasma generated by a dc electrical discharge
Maher et al. Smooth wet etching by ultraviolet-assisted photoetching and its application to the fabrication of AlGaN/GaN heterostructure field-effect transistors
JP2012060066A (en) SEMICONDUCTOR DEVICE HAVING AlGaN OXIDE FILM AND MANUFACTURING METHOD OF THE SAME
JP3416113B2 (en) Precision wide band gap semiconductor etching
JP2014183092A (en) Semiconductor device manufacturing method and dry etching device used therefor
US11248306B2 (en) Anodic-oxidation equipment, anodic-oxidation method, and method for producing cathode of anodic-oxidation equipment
JP2016145408A (en) Water splitting method, water splitting device and anodal electrode for oxygen generation
CN103155105B (en) The manufacture method of semiconductor device
JP2001015504A (en) Manufacture of semiconductor device
JP2018056348A (en) Semiconductor device
JP2009267019A (en) Method for manufacturing semiconductor device
JP2008109162A (en) Photoelectrochemical etching apparatus
Shiozaki et al. Improvements of electronic and optical characteristics of n-GaN-based structures by photoelectrochemical oxidation in glycol solution
Sato et al. Damage-less wet etching for normally-off AlGaN/GaN HEMTs using photo-electrochemical reactions
JP3528762B2 (en) Field emission type electron source and method of manufacturing the same
CN105633793A (en) Facet passivation method of semiconductor laser
JP2011049314A (en) Semiconductor device and manufacturing method thereof
JP2006080274A (en) Etching method and manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141209