JP2012059632A - Method of evaluating lifetime of gas insulated switchgear - Google Patents

Method of evaluating lifetime of gas insulated switchgear Download PDF

Info

Publication number
JP2012059632A
JP2012059632A JP2010203583A JP2010203583A JP2012059632A JP 2012059632 A JP2012059632 A JP 2012059632A JP 2010203583 A JP2010203583 A JP 2010203583A JP 2010203583 A JP2010203583 A JP 2010203583A JP 2012059632 A JP2012059632 A JP 2012059632A
Authority
JP
Japan
Prior art keywords
test
current
voltage
life
correction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010203583A
Other languages
Japanese (ja)
Other versions
JP5502669B2 (en
Inventor
Jiro Ikeda
次郎 池田
Yasuhiko Hanamaki
安彦 花巻
Kiichiro Yokotsu
棋一郎 横津
Takeshi Yamashita
武健志 山下
Akiyo Fukawa
明世 府川
Takayuki Kobayashi
隆幸 小林
Shigeyuki Tsukao
茂之 塚尾
Hideaki Senda
英昭 千田
Takayuki Kido
隆行 城戸
Akihisa Mukoda
彰久 向田
Yuji Arima
祐二 有馬
Hiroshi Kaneda
浩 金田
Masao Takahama
政夫 高浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP2010203583A priority Critical patent/JP5502669B2/en
Publication of JP2012059632A publication Critical patent/JP2012059632A/en
Application granted granted Critical
Publication of JP5502669B2 publication Critical patent/JP5502669B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Keying Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of evaluating the lifetime of a gas insulated switchgear capable of effectively deciding a post-replacement inspection timing of the contact points of the switchgear.SOLUTION: A test voltage Vand a test current Ito be applied at the time of a switching test of contact points are predetermined. A plurality of switching tests are to be performed for both the Vand the Iwith either one of them fixed and varying the other. A current correction coefficient β, and a voltage correction coefficient γ for a degree of contact point wearing are obtained based on a relation between a variation amount of the voltage or the current and a wearing amount w of the contact points. An estimated lifetime number of a switchgear under operation is estimated based on a recovery voltage V and a load current I of the switchgear under operation, the test voltage Vand the test current I, and the current correction coefficient β and the voltage correction coefficient γ as described.

Description

本発明の実施形態は、ガス絶縁開閉装置の寿命評価方法に関する。   Embodiments described herein relate generally to a life evaluation method for a gas insulated switchgear.

ガス絶縁開閉装置(GIS:gas insulated switchgear)は、遮断器、母線、断路器その他多数の機器を単一の接地容器内に収めた縮小形開閉設備である。ガス絶縁開閉装置では、接地容器内に封入した六フッ化硫黄(SF6)ガスにより、絶縁ならびに消弧(電流遮断)を行う。ガス絶縁開閉装置の断路器は、通常の運転状態においてループ電流や充電電流を遮断する場合に、多数回の動作により機器内部の接点部分(電流を遮断する部分)が劣化する。この接点の劣化は最終的に地絡などの重大な事故に至るため、適切な時期に点検を行う必要がある。   A gas insulated switchgear (GIS: gas insulated switchgear) is a reduction-type switchgear in which a circuit breaker, a bus bar, a disconnector, and many other devices are housed in a single grounded container. In the gas insulated switchgear, insulation and arc extinguishing (current interruption) are performed by sulfur hexafluoride (SF6) gas sealed in a grounded container. In the disconnector of the gas insulated switchgear, when the loop current and the charging current are cut off in a normal operation state, the contact part (the part that cuts off the current) inside the device deteriorates due to many operations. Since this contact deterioration eventually leads to a serious accident such as a ground fault, it must be inspected at an appropriate time.

この接点の要修後・点検時を知るためには、接点の劣化損耗の程度を内部点検で実際に確認する必要がある。しかし、接点の内部点検は、断路器を分解するなど作業上の負担が大である。そこで、接点の要修後・点検時は、開閉動作が予め定められた動作回数(以下、寿命回数という)に至る時である、と推定する寿命評価方法が考えられている。この方法においては、GISの断路器の内部点検をすることなく、開閉動作回数が寿命回数に至ったときに、断路器接触部の交換などにより接点の修復をする。   In order to know when the contact is required to be repaired or inspected, it is necessary to actually confirm the degree of deterioration and wear of the contact through internal inspection. However, the internal inspection of the contacts has a large work burden such as disassembling the disconnector. In view of this, a life evaluation method that estimates that the opening / closing operation reaches a predetermined number of times of operation (hereinafter referred to as the number of times of life) after the contact must be repaired or inspected is considered. In this method, the contact point is repaired by exchanging the disconnector contact portion or the like when the number of opening / closing operations reaches the number of lifetimes without performing an internal inspection of the disconnector of the GIS.

上述の寿命回数は、例えば、電気規格調査会(JEC(Japanese Electrotechnical Committee))、国際電気標準会議(IEC(International Eectrotechnical Commission))などの規格、或いはGISの製造者が採用している試験条件により予め定められた試験電圧V及び試験電流Iに応じて定められる。この試験電圧Vと試験電流I値に基づいて定められた寿命回数を本明細書中では、試験寿命回数Qと呼ぶ。 The number of lifetimes mentioned above depends on standards such as the Electrotechnical Commission (JEC), the International Electrotechnical Commission (IEC), or the test conditions adopted by the GIS manufacturer. It is determined according to a predetermined test voltage V T and the test current I T. The number of lifetimes determined based on the test voltage V T and the test current IT value is referred to as a test lifetime number Q T in this specification.

また、試験寿命回数Qによる判定以外に、GISの接点の交換時期を外部より判定するために、ループ遮断電流を測定し接点の寿命を推定する電極消耗率計測装置が提案されている。この装置は、データ処理部において、ループ遮断電流を累積加算することにより接点の消耗率を推定している。一方、GISの接点の損耗を評価する方法として、接点材料と遮断電流とアーク時間とにより接点の損耗量を算出し、その結果から適切な時期に接点の点検及び修復をする方法が提案されている。 Besides the determination by the test service life times Q T, to determine from the outside replacement timing of contact of the GIS, electrode wear ratio measuring apparatus for estimating the life of the contacts was measured loop breaking current has been proposed. In this device, the contact consumption rate is estimated by cumulatively adding the loop breaking current in the data processing unit. On the other hand, as a method for evaluating contact wear of GIS, there has been proposed a method of calculating contact wear amount based on contact material, breaking current and arc time, and checking and repairing the contact at an appropriate time from the result. Yes.

特開平7−6664号公報Japanese Patent Laid-Open No. 7-6664

社団法人電気協同研究会発刊第33巻4号「SF6ガス絶縁機器保守基準」Published by Electric Cooperative Research Group Vol.33 No.4 "Maintenance Standard for SF6 Gas Insulation Equipment"

上述のGISの寿命評価方法において、接点の要修後・点検時に至る動作回数(試験寿命回数Q)は、前述の試験電流I及び試験電圧Vで運用された場合を前提としている。しかし、実際のGISの運用状態において、ループ遮断電流などの負荷電流や回復電圧は、試験電流Iや試験電圧Vとは異なるのが一般的である。 In the life evaluation method of the above-described GIS, operation times leading to at YoOsamugo and inspection of the contacts (test life count Q T) is assumed when it is operated by the aforementioned test current I T and the test voltage V T. However, in an actual GIS operating state, the load current such as the loop breaking current and the recovery voltage are generally different from the test current IT and the test voltage V T.

そのため、従来の寿命評価方法のように、一定値である試験電圧Vや試験電流Iに基づいて一律に断路器動作回数を定め、長期間の設備停止時間を必要とする接点の要修後・点検時を決定することは不適切である。本発明は、適切な接点の要修後・点検時の判定が可能となるGISの寿命評価方法を提供することを目的とする。 Therefore, as in the conventional life evaluation methods, determine the disconnector operation times uniformly based on a certain value at which the test voltage V T and the test current I T, YoOsamu contacts that require prolonged equipment downtime It is inappropriate to decide when to check after. An object of the present invention is to provide a method for evaluating the life of a GIS that enables determination at the time of inspection or inspection of appropriate contacts.

本発明の実施形態は、接点の開閉試験時に印加する試験電圧Vと試験電流Iのそれぞれについて、その一方を固定した条件下で他方を変化させながら複数回の開閉試験を行い、電圧値または電流値の変化量と接点の損耗量wとの相関に基づいて、電流補正係数βと電圧補正係数γとを求め、
運用状態における回復電圧Vと負荷電流I、前記試験電圧Vと試験電流IT、前記試験電圧Vと試験電流Iによって算定した試験寿命回数Q、及び前記電流補正係数βと電圧補正係数γに基づいて、
推定寿命回数Q=試験寿命回数Q×(1/(負荷電流I/試験電流Iβ)×(1/(回復電圧V/試験電圧Vγ
により、推定寿命回数Qを推定することを特徴とする。
Embodiments of the present invention, for each of the test voltage V T and the test current I T to be applied by breaking the test contacts is performed a plurality of times of opening and closing the test while changing the other under the conditions fixed one of them, the voltage value Alternatively, the current correction coefficient β and the voltage correction coefficient γ are obtained based on the correlation between the change amount of the current value and the wear amount w of the contact,
Recovery voltage V and the load current I in the operational state, the test voltage V T and the test current I T, the test voltage V T and the test current I T number tested life was calculated by Q T, and the current correction coefficient β and the voltage correction Based on the coefficient γ,
Estimated life number Q = Test life number Q T × (1 / (load current I / test current I T ) β ) × (1 / (recovery voltage V / test voltage V T ) γ )
Thus, the estimated life count Q is estimated.

本発明の実施形態に係る断路器遮断部を説明する図である。It is a figure explaining the disconnection switch interruption part concerning the embodiment of the present invention. 本発明の実施形態に係る電流補正係数βを説明する図である。It is a figure explaining current correction coefficient beta concerning an embodiment of the present invention. 本発明の実施形態に係る電圧補正係数γを説明する図である。It is a figure explaining the voltage correction coefficient (gamma) which concerns on embodiment of this invention. 前記実施形態において、複数のガス絶縁開閉装置の推定寿命回数を示す図である。In the said embodiment, it is a figure which shows the estimated frequency | count of a some gas insulated switchgear.

図1は、本実施形態を適用する断路器の遮断部10の一例を説明する図である。図に示すように、断路器遮断部10は、可動側接触部20a、固定側接触部20b、可動側接触子30a、固定側接触子30b及び可動ロッド40を有している。この図において、可動ロッド40は固定側接触子30bに接触しており、断路器の閉路状態を示している。   FIG. 1 is a diagram illustrating an example of a disconnecting unit 10 of a disconnector to which the present embodiment is applied. As shown in the figure, the disconnector breaker 10 includes a movable contact 20a, a fixed contact 20b, a movable contact 30a, a fixed contact 30b, and a movable rod 40. In this figure, the movable rod 40 is in contact with the fixed contact 30b and shows the closed state of the disconnector.

可動ロッド40は、図示されていないリンクなどを介して回転レバーに接続されている。可動ロッド40は、外部からの回転力が回転レバーに伝達されることにより、固定側接触子30bに対して、入りと切り、すなわち断路器遮断部10の開閉動作をする。   The movable rod 40 is connected to the rotary lever via a link (not shown). The movable rod 40 is turned on and off with respect to the stationary contact 30b, that is, opens and closes the disconnector breaker 10 when a rotational force from the outside is transmitted to the rotary lever.

このような断路器遮断部10の開閉動作により、電流が遮断される際に、固定側接触子30bと可動ロッド40との接触部分、すなわち、接点は、アークにより損耗する。この損耗量は、負荷電流I及び回復電圧Vのそれぞれとの間に相関がある。本実施形態のGISの寿命評価方法は、上述の相関から従来の試験寿命回数Qをより効果的なものに補正する補正係数β,γを求める。本実施形態において、接点の寿命回数を求める計算式である寿命評価一般式は、これらの補正係数β,γを含んでいる。 When the current is cut off by such an opening / closing operation of the disconnector breaker 10, the contact portion between the fixed contact 30 b and the movable rod 40, that is, the contact is worn by the arc. This amount of wear has a correlation between the load current I and the recovery voltage V. Life evaluation method of GIS according to the present embodiment, the correction coefficient for correcting the conventional test lifetime number Q T to more effective from the correlation of the above beta, seek gamma. In the present embodiment, the life evaluation general formula, which is a calculation formula for obtaining the contact life count, includes these correction coefficients β and γ.

以下、本実施形態のGISの寿命評価方法について説明する。
図2は、本実施形態に係る電流補正係数を説明する図である。すなわち、回復電圧Vを一定値(試験電圧V)とした場合における負荷電流Iの変化に対する接点の損耗量の変化を示すもので、横軸は負荷電流I(A)であり、縦軸は接点の損耗量(mg/回数)である。
Hereinafter, the GIS life evaluation method of the present embodiment will be described.
FIG. 2 is a diagram for explaining a current correction coefficient according to the present embodiment. That is, the change in the amount of contact wear with respect to the change in the load current I when the recovery voltage V is a constant value (test voltage V T ) is shown. The horizontal axis is the load current I (A), and the vertical axis is This is the amount of contact wear (mg / times).

図2に示すように、この場合、一定値とする回復電圧Vとしては、JECやIECで定められた試験電圧VやGISの製造者が定めた試験条件で定められた試験電圧Vが使用される。回復電圧Vを一定とした場合、負荷電流Iの変化に対して、損耗量wは累乗的に変化しており、これらの負荷電流Iと損耗量wとから電流依存を示す電流補正係数βが求められる。 As shown in FIG. 2, in this case, the recovery voltage V to a constant value, the test voltage V T defined by test conditions by the manufacturer of the test voltage V T and GIS stipulated by JEC or IEC-defined used. When the recovery voltage V is constant, the wear amount w changes in a power manner with respect to the change in the load current I, and a current correction coefficient β indicating current dependence is obtained from the load current I and the wear amount w. Desired.

電流補正係数βを求める累乗近似式は、「w=a×Iβ」である。この式において、wは損耗量、aは定数、Iは負荷電流、βは電流補正係数である。この式に、上述の負荷電流Iとそれに対応した損耗量wを代入することにより、電流補正係数βは求められる。なお、図2に示す回帰曲線は、この累乗近似式を示す累乗近似曲線である。 The power approximation formula for obtaining the current correction coefficient β is “w = a × I β ”. In this equation, w is an amount of wear, a is a constant, I is a load current, and β is a current correction coefficient. The current correction coefficient β is obtained by substituting the above-described load current I and the wear amount w corresponding to the load current I into this equation. Note that the regression curve shown in FIG. 2 is a power approximation curve indicating this power approximation formula.

図3は、本実施形態に係る電圧補正係数γ説明する図である。すなわち、図3は、前記電流補正係数βの場合とは逆に、負荷電流Iを一定値(試験電流I)とした場合における回復電圧Vの変化に対する接点の損耗量の変化を示すもので、横軸は回復電圧V(V)であり、縦軸は接点の損耗量(mg/回数)である。本実施形態に係る電圧補正係数γを求める例についての説明は、電流補正係数αを求める例と共通しており、説明は省略する。この電圧補正係数γに係る累乗近似式は、「w=b×Vγ」である。この式において、wは損耗量、bは定数、Vは回復電圧、γは電圧補正係数である。 FIG. 3 is a diagram illustrating the voltage correction coefficient γ according to the present embodiment. That is, FIG. 3 shows the change of the contact wear amount with respect to the change of the recovery voltage V when the load current I is a constant value (test current I T ), contrary to the case of the current correction coefficient β. The horizontal axis is the recovery voltage V (V), and the vertical axis is the contact wear amount (mg / times). The description about the example which calculates | requires the voltage correction coefficient (gamma) based on this embodiment is common in the example which calculates | requires the current correction coefficient (alpha), and abbreviate | omits description. The power approximation formula for this voltage correction coefficient γ is “w = b × V γ ”. In this equation, w is an amount of wear, b is a constant, V is a recovery voltage, and γ is a voltage correction coefficient.

本実施形態では、前記図2、図3のようにして求めた補正係数β,γから、寿命評価一般式
「推定寿命回数Q=試験寿命回数Q×α×1/(負荷電流I/試験電流Iβ×1/(回復電圧V/試験電圧Vγ
但し、α=限界動作回数Q/試験寿命回数Q
を求める。
In this embodiment, from the correction coefficients β and γ obtained as shown in FIG. 2 and FIG. 3, the life evaluation general formula “estimated life number Q = test life number Q T × α × 1 / (load current I / test Current I T ) β × 1 / (Recovery voltage V / Test voltage V T ) γ
However, α = limit operation number of times Q L / test life number of times Q T
Ask for.

寿命評価一般式に含まれるαは限界回数に関する補正係数である。この補正係数αは、限界動作回数Qを予め定められた断路器の動作回数、すなわち試験寿命回数Qで除した値である。限界動作回数Qとは、例えば、GISの規格試験などにおいて規定の動作回数Qを超えた場合に、性能上の限界を示す動作回数に至った回数である。 Α included in the general formula for life evaluation is a correction coefficient related to the limit number of times. The correction coefficient α is, the number of operations of the predetermined disconnector limits the number of operations Q L, that is, a value obtained by dividing the test life count Q T. The limit operation number Q L is, for example, the number of times that the operation number indicating the performance limit is reached when the specified operation number Q T is exceeded in a GIS standard test or the like.

この限界動作回数は、例えば、
(1)開閉速度管理値の範囲内であること。
(2)断路器主回路接触抵抗が管理値以内であること。
(3)断路器の絶縁性能が試験後も規格値を満足すること。
(4)電流開閉の開離度が規格上の基準以下であること。
などの条件に基づいて求められる。寿命評価一般式にこの限界回数に関する補正係数αを含ませることは、推定寿命回数Qがより現実的となり、より適切な接点の要修後・点検時の推定が可能となる。
The limit number of operations is, for example,
(1) It is within the range of the switching speed management value.
(2) The disconnector main circuit contact resistance is within the control value.
(3) The insulation performance of the disconnector shall satisfy the standard value after the test.
(4) The opening / closing degree of the current switching is below the standard in the standard.
It is calculated based on such conditions. Inclusion of the correction coefficient α related to the limit number in the general life evaluation formula makes the estimated life number Q more realistic, and makes it possible to estimate the contact after proper repair and inspection.

なお、限界動作回数試験の前後で少なくともGISの規格上の耐電圧性能が確保できていれば、この項目以外にも管理基準が含まれていてもよく、また少なくても良い。また、JEC等の規格がない場合や、現在より低い規格・基準で開発し製造していた過去の開閉装置に現在の規格を当てはめると限界値が低い場合には、補正係数αの値が1より小さくなるが、その場合でも同様に接点損耗状態が推測でき、寿命を評価することができる。   In addition, as long as the withstand voltage performance according to the GIS standard can be secured at least before and after the limit operation number test, the management standard may be included or less than this item. In addition, when there is no standard such as JEC, or when the limit value is low when the current standard is applied to a past switchgear developed and manufactured with a standard / standard lower than the current standard, the value of the correction coefficient α is 1. Even in this case, the contact wear state can be estimated and the life can be evaluated.

前記の寿命評価一般式を用いて、接点の寿命を判定する場合には、この式に含まれる負荷電流I及び回復電圧Vに、GISのモニタリング装置などで入手した実フィールドにおける実際の負荷電流値I及び回復電圧値Vを入力し、さらに、規格試験上での電流Iと電圧V、及び試験寿命回数Qを入力する。これにより、求められた推定寿命回数Qと現実の開閉回数とを比較することにより、接点の交換、補修時期を知ることができる。 When the contact life is determined using the above-mentioned general formula for evaluating the life, the actual load current value in the actual field obtained by the GIS monitoring device or the like is added to the load current I and the recovery voltage V included in this formula. I and the recovery voltage value V are input, and further, the current IT and voltage V T on the standard test and the test life number Q T are input. Thus, the contact replacement / repair time can be known by comparing the obtained estimated life count Q with the actual number of switching times.

また、本実施形態を前記のようなフィールドでの寿命評価以外に、各種の運用条件下における接点の寿命を評価するシミュレーションに使用することも可能であり、その場合には、前記式の負荷電流Iや回復電流Vにシミュレートする電圧値や電流値を代入する。   In addition to the lifetime evaluation in the field as described above, the present embodiment can also be used for a simulation for evaluating the lifetime of contacts under various operating conditions. The voltage value or current value to be simulated is substituted into I or the recovery current V.

以上が、本発明のGISの寿命評価方法についての一例であるが、本発明は、上述した実施形態に限られず、例えば、以下の変形例を包含する。   The above is one example of the GIS life evaluation method of the present invention, but the present invention is not limited to the above-described embodiment, and includes, for example, the following modifications.

(1)接点の材質、開閉速度が近似しているGIS(例えば、線路ループ電流開閉責務を有する機器や、誘導電流開閉責務を有する接地開閉器など)においては、GIS毎に上述の限界回数の補正係数αを求めることなく、既に求められている補正係数αを転用してもよい。これにより、近似したGISの接点の要修後・点検時は、新たに補正係数αを求めることなく、本発明の寿命評価方法を使用して推定できる。 (1) In a GIS (for example, a device having a line loop current switching duty or a grounding switch having an induced current switching duty) whose contact material and switching speed are approximate, the above limit number of times is set for each GIS. The correction coefficient α that has already been obtained may be diverted without obtaining the correction coefficient α. As a result, it is possible to estimate by using the life evaluation method of the present invention without newly calculating the correction coefficient α after the repair or inspection of the approximate GIS contact point.

(2)推定寿命回数が異なる複数のGISを使用する場合において、これらの推定寿命回数を比較することにより、複数のGIS間で修復作業の優先順位付けをしてもよい。この優先順位付けにより接点の修復作業を適切かつ効率的にすることができる。この点に付いて、以下、図4を用いて説明する。 (2) In the case where a plurality of GISs having different estimated lifetimes are used, the restoration work may be prioritized among the plurality of GISs by comparing these estimated lifetimes. This prioritization can make contact repairing work appropriate and efficient. This point will be described below with reference to FIG.

図4は、複数のGISの推定寿命回数を示す図である。図の横軸は負荷電流I(A)であり、縦軸は回復電圧V(V)である。図に示す曲線は、推定寿命回数が200回と2000回とに該当する場合の負荷電流Iと回復電圧Vとの組み合わせを示す。これらの曲線を境にして、推定寿命回数が200回未満、200回以上2000回未満、2000回以上などの領域に分類している。   FIG. 4 is a diagram showing the estimated number of lifetimes of a plurality of GIS. The horizontal axis in the figure is the load current I (A), and the vertical axis is the recovery voltage V (V). The curve shown in the figure shows a combination of the load current I and the recovery voltage V when the estimated lifespan corresponds to 200 times and 2000 times. Using these curves as a boundary, the estimated lifetime is classified into regions such as less than 200 times, 200 times or more and less than 2000 times, 2000 times or more.

この図4中に、運用状態にあるGIS(図の例では、断路器A〜C)毎の負荷電流Iと回復電圧Vをプロットする。例えば、断路器Aは回復電圧Vと負荷電流が小さいので推定寿命回数が10000回程度、断路器Bは回復電圧Vと負荷電流が中程度なので推定寿命回数が1000回程度、断路器Cは回復電圧Vと負荷電流が大きいので推定寿命回数が100回程度であることが、一目瞭然に判別することができる。このようにして、プロットされた各点を比較することで、各GISの接点の修復作業の優先順位付け、すなわち寿命回数の少ない断路器ほど優先的に点検・補修を実施する必要があることが容易に判別できる。   In FIG. 4, the load current I and the recovery voltage V for each GIS in the operating state (in the example shown in the figure, the disconnectors A to C) are plotted. For example, the disconnector A has a low recovery voltage V and load current, so the estimated life is about 10,000 times. The disconnector B has a medium recovery voltage V and load current, so the estimated life is about 1000. The disconnector C recovers. Since the voltage V and the load current are large, it can be determined at a glance that the estimated lifetime is about 100 times. In this way, by comparing each plotted point, it may be necessary to prioritize repair work for each GIS contact point, that is, to inspect and repair the disconnector with the lower number of lifetimes preferentially. Easy to distinguish.

10…断路器遮断部、20a…可動側接触部、20b…固定側接触部、30a…可動側接触子、30b…固定側接触子、40…可動ロッド DESCRIPTION OF SYMBOLS 10 ... Disconnector interruption | blocking part, 20a ... Movable side contact part, 20b ... Fixed side contact part, 30a ... Movable side contactor, 30b ... Fixed side contactor, 40 ... Movable rod

Claims (3)

予め定められた試験電流と試験電圧とに応じて定められた開閉器動作回数である試験寿命回数に基づいて接点の寿命を推定するガス絶縁開閉装置の寿命評価方法であって、
接点の開閉試験時に印加する試験電圧Vと試験電流Iのそれぞれについて、その一方を固定した条件下で他方を変化させながら複数回の開閉試験を行い、電圧値または電流値の変化量と接点の損耗量wとの相関に基づいて、電流補正係数βと電圧補正係数γとを求め、
運用状態における回復電圧Vと負荷電流I、前記試験電圧Vと試験電流IT、前記試験電圧Vと試験電流Iによって算定した試験寿命回数Q、及び前記電流補正係数βと電圧補正係数γに基づいて、
推定寿命回数Q=試験寿命回数Q×(1/(負荷電流I/試験電流Iβ)×(1/(回復電圧V/試験電圧Vγ
により、推定寿命回数Qを推定することを特徴とするガス絶縁開閉装置の寿命評価方法。
A life evaluation method for a gas-insulated switchgear that estimates the life of a contact based on the number of times of test life that is a switch operation frequency determined according to a predetermined test current and test voltage,
For each test voltage V T and the test current I T to be applied by breaking test of contacts, it is performed a plurality of times of opening and closing the test while changing the other under the conditions fixed one of them, and the amount of change in the voltage or current value Based on the correlation with the wear amount w of the contact, the current correction coefficient β and the voltage correction coefficient γ are obtained,
Recovery voltage V and the load current I in the operational state, the test voltage V T and the test current I T, the test voltage V T and the test current I T number tested life was calculated by Q T, and the current correction coefficient β and the voltage correction Based on the coefficient γ,
Estimated life number Q = Test life number Q T × (1 / (load current I / test current I T ) β ) × (1 / (recovery voltage V / test voltage V T ) γ )
A method for evaluating the life of a gas insulated switchgear, characterized in that the estimated number of times of life Q is estimated by:
前記電流補正係数βは、前記試験電圧Vにおいて、前記負荷電流Iと前記損耗量wとの相関に基づいた累乗近似から求める定数であり、かつ、前記電圧補正係数γは、前記試験電流Iにおいて、前記回復電圧Vと前記損耗量wとの相関に基づいた累乗近似から求める定数であることを特徴とする請求項1に記載のガス絶縁開閉装置の寿命評価方法。 The current correction coefficient β is a constant obtained from power approximation based on the correlation between the load current I and the wear amount w at the test voltage V T , and the voltage correction coefficient γ is the test current I 2. The method for evaluating the life of a gas insulated switchgear according to claim 1, wherein T is a constant obtained from power approximation based on a correlation between the recovery voltage V and the wear amount w. 開閉器開閉動作の限界である限界動作回数Qを前記試験寿命回数Qで除した値である限界回数の補正係数αを求め、
推定寿命回数Q=試験寿命回数Q×α×(1/(負荷電流I/試験電流Iβ)×(1/(回復電圧V/試験電圧Vγ
により、推定寿命回数Qを推定することを特徴とする請求項1または請求項2に記載のガス絶縁開閉装置の寿命評価方法。
Obtaining a correction coefficient α for the limit number of times, which is a value obtained by dividing the limit operation number Q L which is the limit of the switching operation of the switch by the test life number Q T ,
Estimated life number Q = Test life number Q T × α × (1 / (load current I / test current I T ) β ) × (1 / (recovery voltage V / test voltage V T ) γ )
3. The method for evaluating the life of a gas-insulated switchgear according to claim 1 or 2, wherein the estimated life frequency Q is estimated by:
JP2010203583A 2010-09-10 2010-09-10 Life evaluation method for gas insulated switchgear Active JP5502669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010203583A JP5502669B2 (en) 2010-09-10 2010-09-10 Life evaluation method for gas insulated switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010203583A JP5502669B2 (en) 2010-09-10 2010-09-10 Life evaluation method for gas insulated switchgear

Publications (2)

Publication Number Publication Date
JP2012059632A true JP2012059632A (en) 2012-03-22
JP5502669B2 JP5502669B2 (en) 2014-05-28

Family

ID=46056484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010203583A Active JP5502669B2 (en) 2010-09-10 2010-09-10 Life evaluation method for gas insulated switchgear

Country Status (1)

Country Link
JP (1) JP5502669B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017241A1 (en) 2012-07-24 2014-01-30 株式会社 日立製作所 Switch
JP2016535564A (en) * 2013-09-25 2016-11-10 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for determining the deterioration of electronic interrupting elements, in particular contactors
JP2020004603A (en) * 2018-06-28 2020-01-09 富士電機株式会社 Electrode consumption amount estimation method and electrode consumption amount estimation device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003281976A (en) * 2002-03-22 2003-10-03 Mitsubishi Electric Corp Consumption detecting device for gas-blast circuit breaker

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003281976A (en) * 2002-03-22 2003-10-03 Mitsubishi Electric Corp Consumption detecting device for gas-blast circuit breaker

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017241A1 (en) 2012-07-24 2014-01-30 株式会社 日立製作所 Switch
JP2016535564A (en) * 2013-09-25 2016-11-10 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for determining the deterioration of electronic interrupting elements, in particular contactors
JP2020004603A (en) * 2018-06-28 2020-01-09 富士電機株式会社 Electrode consumption amount estimation method and electrode consumption amount estimation device
JP7046735B2 (en) 2018-06-28 2022-04-04 富士電機株式会社 Electrode wear estimation method and electrode wear estimation device

Also Published As

Publication number Publication date
JP5502669B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
KR101215800B1 (en) System and method for evaluating integrity of Gas Insulated Switchgear
KR101255317B1 (en) Arrester Soundness Decision and Line Monitoring System by Measuring Leakage current of Arrester
KR20140008131A (en) Cubicle type gas insulated switchgear monitoring and diagnosis system
JP5502669B2 (en) Life evaluation method for gas insulated switchgear
Velásquez et al. Reliability model for switchgear failure analysis applied to ageing
US11848557B2 (en) Utility distribution fault restoration system
KR20140006413A (en) Valuation apparatus for soundness of gis breaker
US20230268723A1 (en) Method for Determining the State of an Electrical Switchgear Assembly, Monitoring Unit for an Electrical Switchgear Assembly, And Electrical Switchgear Assembly
KR102338272B1 (en) System for detecting fault distribution line, Method thereof, and Computer readable storage medium having the same method
KR101077128B1 (en) Diagnosis system for circuit breaker of power utilities
JP5225323B2 (en) Method for detecting wear of arc contact of gas circuit breaker
Khiar et al. Diagnosis of OLTC via duval triangle method and dynamic current measurement
Choonhapran Applications of high voltage circuit-breakers and development of aging models
Pickett et al. Reducing outages through improved protection, monitoring, diagnostics, and autorestoration in transmission substations—(69 kV and above)
Dalke et al. Application of numeric protective relay circuit breaker duty monitoring
Matavalam et al. Reliability assessment of industrial circuit breakers with design enhancements
Khalyasmaa et al. The methodology of analysis of technical state assessment of circuit breakers
Stoving et al. Interruption life of vacuum circuit breakers
Zhang et al. Life Management of 550kV SF 6 circuit breakers
Sprague Service-life evaluations of low-voltage power circuit breakers and molded-case circuit breakers
KR20100011682U (en) Earthing switch for gas insulated switchgear
Al-Suhaily et al. Indexing the actual condition of GIS at the component level, bay level, and the GIS level
Gräf Investigations at operational aged switchgears with the age up to 50 years
Vianna et al. SF6 gas circuit breakers reliability estimation, considering likely wear points
Al-Suhaily et al. Analysis of diagnostic methods to prevent failure of critical GIS components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140313

R150 Certificate of patent or registration of utility model

Ref document number: 5502669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350