JP2012059511A - Single core superconducting wire - Google Patents

Single core superconducting wire Download PDF

Info

Publication number
JP2012059511A
JP2012059511A JP2010201185A JP2010201185A JP2012059511A JP 2012059511 A JP2012059511 A JP 2012059511A JP 2010201185 A JP2010201185 A JP 2010201185A JP 2010201185 A JP2010201185 A JP 2010201185A JP 2012059511 A JP2012059511 A JP 2012059511A
Authority
JP
Japan
Prior art keywords
superconducting
layer
loss
superconducting wire
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010201185A
Other languages
Japanese (ja)
Inventor
Kazuhiro Kajikawa
一弘 柁川
Taketsune Nakamura
武恒 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010201185A priority Critical patent/JP2012059511A/en
Publication of JP2012059511A publication Critical patent/JP2012059511A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly efficient single core superconducting wire of low loss based on self-magnetic field.SOLUTION: A stabilization layer 2 consisting of a low resistance material is arranged on the inside of a single core superconducting wire 1 having a circular cross-section, and a superconducting layer 3 consisting of a superconductor is arranged on the outside of the stabilization layer 2. The superconductor is formed continuously in the circumferential direction in the cross-section of the superconducting layer 3 perpendicular to the longitudinal direction. When the low resistance material is copper (Cu) and the superconductor is magnesium diboride (MgB), a barrier layer 4 is provided between the stabilization layer 2 and the superconducting layer 3. A high resistance sheath layer 5 consisting of a high resistance material is arranged on the outside of the superconducting layer 3.

Description

本発明は、超伝導モータのコイルに用いる単芯の超伝導線に関する。   The present invention relates to a single-core superconducting wire used for a coil of a superconducting motor.

エネルギー問題や環境問題を是正する技術として、水素利用の可能性が検討されている。燃料電池等で水素を酸化し、エネルギーを生成し続けるためには、水素を安全に且つ安定的に製造、輸送、貯蔵、移送等を行うシステムの構築が必要である。その際、圧縮ガスとしてだけではなく、液化ガスとして水素を利用することも不可欠となる。これは、液体水素やスラッシュ水素の体積密度が圧縮ガスに比べて非常に大きく、貯蔵効率が優れているためである(非特許文献1を参照)。   The possibility of using hydrogen is being studied as a technology for correcting energy and environmental problems. In order to oxidize hydrogen and continue to generate energy in a fuel cell or the like, it is necessary to construct a system that safely, stably manufactures, transports, stores, and transfers hydrogen. At that time, it is indispensable to use hydrogen not only as a compressed gas but also as a liquefied gas. This is because the volume density of liquid hydrogen or slush hydrogen is much larger than that of compressed gas, and the storage efficiency is excellent (see Non-Patent Document 1).

そこで、液体水素やスラッシュ水素を循環又は移送するための手段として、超伝導モータが提案されている(非特許文献2を参照)。本モータは、移送すべき液体水素自体が冷媒として機能するため、冷却ペナルティを考慮する必要がなくなり、常伝導モータに比べてはるかに低消費電力で液体水素用ポンプを駆動することが期待される。つまり、超伝導線をかご型誘導モータの回転子巻線に適用すると、非特許文献3−8で既に実証されているように、当該モータの同期回転により極低温環境における損失を大幅に抑制でき、さらに従来機に比べてトルクや出力を大幅に向上することが可能となる。また、三相交流が流れる固定子巻線をも超伝導線で構成すると、従来機の銅巻線を液体水素温度に冷却した場合に比べて、一次巻線で発生する損失を大幅に低減することが期待される。   Therefore, a superconducting motor has been proposed as a means for circulating or transferring liquid hydrogen or slush hydrogen (see Non-Patent Document 2). In this motor, the liquid hydrogen itself to be transferred functions as a refrigerant, so there is no need to consider the cooling penalty, and it is expected to drive the liquid hydrogen pump with much lower power consumption than the normal motor. . In other words, when superconducting wire is applied to the rotor winding of a squirrel-cage induction motor, as already demonstrated in Non-Patent Document 3-8, loss in a cryogenic environment can be significantly suppressed by synchronous rotation of the motor. In addition, torque and output can be greatly improved compared to conventional machines. In addition, if the stator winding through which three-phase AC flows is also composed of superconducting wires, the loss generated in the primary winding is greatly reduced compared to the case where the copper winding of the conventional machine is cooled to the liquid hydrogen temperature. It is expected.

また、超伝導体を利用した技術として、例えば特許文献1に銅合金からなる複数のフィラメントを中心に配設し、その外側に磁気的に分離された複数の超伝導体(テープ状の超伝導体)をスパイラル状に配設する構造の超伝導ケーブル、特許文献2にNb3Al化合物系超伝導線材において、安定化材を内部に配設すると共にNb−Al複合物で形成されるシングル線材を複数配設する構造が開示されている。 Further, as a technique using a superconductor, for example, in Patent Document 1, a plurality of superconductors (tape-shaped superconductors) are arranged around a plurality of filaments made of a copper alloy and magnetically separated from the outside. A superconducting cable having a structure in which the body is arranged in a spiral shape, in Patent Document 2, a single-wire material formed of an Nb-Al composite in the Nb 3 Al compound-based superconducting wire, with a stabilizing material disposed therein A structure in which a plurality of components are arranged is disclosed.

R.D.McCarty: "Hydrogen technology survey-Thermophysical properties," NASA Special Publication (1975) SP-3089.R.D.McCarty: "Hydrogen technology survey-Thermophysical properties," NASA Special Publication (1975) SP-3089. K.Kajikawa and T.Nakamura: "Proposal of a fully superconducting motor for liquid hydrogen pump with MgB2 wire," IEEE Trans. Appl. Supercond., Vol.19, No.3 (2009) pp.1669-1673.K. Kajikawa and T. Nakamura: "Proposal of a fully superconducting motor for liquid hydrogen pump with MgB2 wire," IEEE Trans. Appl.Supercond., Vol.19, No.3 (2009) pp.1669-1673. J.Sim, M.Park, H.Lim, G.Cha, J.Ji and J.Lee: "Test of an induction motor with HTS wire at end ring and bars," IEEE Trans. Appl. Supercond., Vol.13, No.2 (2003) pp.2231-2234.J. Sim, M. Park, H. Lim, G. Cha, J. Ji and J. Lee: "Test of an induction motor with HTS wire at end ring and bars," IEEE Trans. Appl. Supercond., Vol. 13, No.2 (2003) pp.2231-2234. J.Sim, K.Lee, G.Cha and J.-K.Lee: "Development of a HTS squirrel cage induction motor with HTS rotor bars," IEEE Trans. Appl. Supercond., Vol.14, No.2 (2004) pp.916-919.J. Sim, K. Lee, G. Cha and J.-K. Lee: "Development of a HTS squirrel cage induction motor with HTS rotor bars," IEEE Trans. Appl. Supercond., Vol. 14, No. 2 ( 2004) pp.916-919. T.Nakamura, H.Miyake, Y.Ogama, G.Morita, I.Muta and T.Hoshino: "Fabrication and characteristics of HTS induction motor by the use of Bi-2223/Ag squirrel-cage rotor," IEEE Trans. Appl. Supercond., Vol.16, No.2 (2006) pp.1469-1472.T. Nakamura, H. Miyake, Y. Ogama, G. Morita, I. Muta and T. Hoshino: "Fabrication and characteristics of HTS induction motor by the use of Bi-2223 / Ag squirrel-cage rotor," IEEE Trans. Appl.Supercond., Vol.16, No.2 (2006) pp.1469-1472. G.Morita, T.Nakamura and I.Muta: "Theoretical analysis of a YBCO squirrel-cage type induction motor based on an equivalent circuit," Supercond. Sci. Technol., Vol.19, No.6 (2006) pp.473-478.G. Morita, T. Nakamura and I. Muta: "Theoretical analysis of a YBCO squirrel-cage type induction motor based on an equivalent circuit," Supercond. Sci. Technol., Vol. 19, No. 6 (2006) pp. 473-478. T.Nakamura, Y,Ogama, H.Miyake, K.Nagao and T.Nishimura: "Novel rotating characteristics of a squirrel-cage-type HTS induction/synchronous motor," Supercond. Sci. Technol., Vol.20, No.10 (2007) pp.911-918.T. Nakamura, Y, Ogama, H. Miyake, K. Nagao and T. Nishimura: "Novel rotating characteristics of a squirrel-cage-type HTS induction / synchronous motor," Supercond. Sci. Technol., Vol. 20, No .10 (2007) pp.911-918. T.Nakamura, K.Nagao, T.Nishimura, Y.Ogama, M.Kawamoto, T.Okazaki, N.Ayai and H.Oyama: "The direct relationship between output power and current carrying capability of rotor bars in HTS induction/synchronous motor with the use of DI-BSCCO tapes," Supercond. Sci. Techno1., Vol.21, No.8 (2008) 085006.T.Nakamura, K.Nagao, T.Nishimura, Y.Ogama, M.Kawamoto, T.Okazaki, N.Ayai and H.Oyama: "The direct relationship between output power and current carrying capability of rotor bars in HTS induction / synchronous motor with the use of DI-BSCCO tapes, "Supercond. Sci. Techno1., Vol.21, No.8 (2008) 085006.

特表2007−536700号公報Special table 2007-536700 gazette 特開2001−52547号公報JP 2001-52547 A

しかしながら、非特許文献2−8に記載のモータを構成する固定子巻線に三相交流を通電すると、従来機と同様な銅線を適用した場合は多大なジュール損失や渦電流損失が発生し、また超伝導線を適用した場合は超伝導体のピンニング機構に伴う電磁気的な損失(履歴損失という)や常伝導金属部で生じる渦電流損失等の交流損失が発生するため、高効率なモータを実現できない。   However, if a three-phase AC current is applied to the stator windings that constitute the motor described in Non-Patent Document 2-8, a large Joule loss or eddy current loss occurs when a copper wire similar to the conventional machine is applied. In addition, when superconducting wire is used, AC loss such as electromagnetic loss (historical loss) associated with the pinning mechanism of superconductors and eddy current loss generated in normal metal parts occurs. Cannot be realized.

また、特許文献1、2に記載の技術は、多芯構造の超伝導体であることから明らかなように、いずれも超伝導体をスパイラル状に捻って電流を通電するため、超伝導層の内側にも導体長手方向の自己磁界(自分自身に流れる電流がつくる磁界)が発生し、内部にある常伝導金属部(銅合金等)に渦電流が生じるといった交流損失が発生し、効率よく電流を通電することができない。   Further, as is clear from the techniques described in Patent Documents 1 and 2 that the superconductor has a multi-core structure, in order to pass a current by twisting the superconductor spirally, A self-magnetic field in the longitudinal direction of the conductor (a magnetic field generated by the current flowing through itself) is also generated on the inner side, and an AC loss such as eddy current is generated in the normal metal part (copper alloy, etc.) inside, resulting in efficient current flow. Can not be energized.

そこで、本発明は上記のような超伝導ケーブルや外部磁界を主体とする多芯構造の超伝導線と異なり、自己磁界を主体とする低損失で高効率的な単芯の超伝導線を提供する。   Therefore, the present invention provides a low-loss and high-efficiency single-core superconducting wire mainly composed of a self-magnetic field, unlike the above-described superconducting cables and multi-core superconducting wires mainly composed of an external magnetic field. To do.

本願に開示する単芯超伝導線は、断面円形状の超伝導線の内側に低抵抗材からなる安定化層を配設し、当該安定化層の外側に超伝導体からなる超伝導層を配設し、前記超伝導層が、長手方向に対して垂直な断面において周方向に前記超伝導体を連続して形成されているものである。   In the single-core superconducting wire disclosed in the present application, a stabilizing layer made of a low resistance material is disposed inside a superconducting wire having a circular cross section, and a superconducting layer made of a superconductor is disposed outside the stabilizing layer. The superconducting layer is formed by continuously forming the superconductor in the circumferential direction in a cross section perpendicular to the longitudinal direction.

このように、本願に開示する単芯超伝導線においては、低抵抗材の安定化層を内側に配設し、超伝導体からなる超伝導層を外側に配設しているため、超伝導層を流れる電流による低抵抗材への渦電流の誘起をなくすことができ、交流損失を低減することができるという効果を奏する。また、超伝導層が、長手方向に対して垂直な断面において、周方向に前記超伝導体を連続して形成する単芯であるため、多芯構造のようにスパイラル状にすることで内部に自己磁界を生じるようなことがなく、低抵抗材への渦電流の誘起をなくして交流損失を低減することができるという効果を奏する。   As described above, in the single-core superconducting wire disclosed in the present application, the low-resistance material stabilizing layer is disposed on the inner side, and the superconducting layer made of a superconductor is disposed on the outer side. Induction of eddy currents in the low-resistance material due to the current flowing through the layers can be eliminated, and the AC loss can be reduced. Also, since the superconducting layer is a single core that continuously forms the superconductor in the circumferential direction in a cross section perpendicular to the longitudinal direction, it can be formed inside by spiraling like a multicore structure. There is no self-magnetic field, and there is an effect that AC loss can be reduced by eliminating induction of eddy currents in the low-resistance material.

また、内側に低抵抗材の安定化層を配設することで、超伝導層の外径が相対的に大きくなり、履歴損失を低減させることができるという効果を奏する。すなわち、超伝導層の内径をR0、外径をR1とすると、Beanモデルに基づく単位長あたりの履歴損失Qは、次式のように表される。 Further, by providing the stabilization layer of the low resistance material on the inner side, the outer diameter of the superconducting layer becomes relatively large, and it is possible to reduce the history loss. That is, assuming that the inner diameter of the superconducting layer is R 0 and the outer diameter is R 1 , the hysteresis loss Q per unit length based on the Bean model is expressed by the following equation.

ここで、imは臨界電流Icで規格化した通電電流振幅であり、Q0=μ0c 2/π、c=1−R0 2/R1 2である。(1)式より、超伝導層の履歴損失はcに比例していることから、超伝導層を円筒状(内部が中空状であり、その中空領域に低抵抗材が配設される構造)に形成することで、外径R1が相対的に大きくなりcが小さくなるため、履歴損失を低減できることが可能であることがわかる。 Here, i m is the energizing current amplitude normalized by the critical current I c, which is Q 0 = μ 0 I c 2 / π, c = 1-R 0 2 / R 1 2. Since the hysteresis loss of the superconducting layer is proportional to c from the formula (1), the superconducting layer is cylindrical (the inside is hollow and a low resistance material is disposed in the hollow region). It can be seen that the hysteresis loss can be reduced because the outer diameter R 1 is relatively increased and c is decreased.

本願に開示する単芯超伝導線は、前記低抵抗材が銅(Cu)であり、前記超伝導体が二ホウ化マグネシウム(MgB2)であり、前記安定化層と超伝導層との間に、前記銅と二ホウ化マグネシウムとの反応を防止するバリア層を有するものである。 In the single-core superconducting wire disclosed in the present application, the low-resistance material is copper (Cu), the superconductor is magnesium diboride (MgB 2 ), and between the stabilization layer and the superconducting layer. And a barrier layer for preventing the reaction between the copper and magnesium diboride.

このように、本願に開示する単芯超伝導線においては、低抵抗材のCuと超伝導体のMgB2との間にバリア層を有するため、CuとMgB2との反応を確実に防止して、高性能な単芯超伝導線を形成することができるという効果を奏する。 As described above, the single-core superconducting wire disclosed in the present application has a barrier layer between the low-resistance material Cu and the superconductor MgB 2 , thereby reliably preventing the reaction between Cu and MgB 2. Thus, there is an effect that a high-performance single-core superconducting wire can be formed.

本願に開示する単芯超伝導線は、前記低抵抗材が純鉄であることを特徴とするものである。
このように、本願に開示する単芯超伝導線においては、低抵抗材が純鉄であるため、安定化層としての機能を有すると共に、安定化層と超伝導層との結合反応を防止するバリア層としての機能を有し、製造工程を簡略化して作業効率を上げることができるという効果を奏する。
The single-core superconducting wire disclosed in the present application is characterized in that the low-resistance material is pure iron.
Thus, in the single-core superconducting wire disclosed in the present application, the low-resistance material is pure iron, so that it has a function as a stabilizing layer and prevents a binding reaction between the stabilizing layer and the superconducting layer. It has a function as a barrier layer, and has the effect of simplifying the manufacturing process and increasing work efficiency.

本願に開示する単芯超伝導線は、前記超伝導層の外側に高抵抗のシースを配設するものである。
このように、本願に開示する単芯超伝導線においては、超伝導層の外側に高抵抗のシースを配設するため、超伝導層を確実に保護すると共に、超伝導層を流れる大電流によりシースに誘起される渦電流が生じにくくなり、交流損失を低減することができるという効果を奏する。
In the single-core superconducting wire disclosed in the present application, a high-resistance sheath is disposed outside the superconducting layer.
As described above, in the single-core superconducting wire disclosed in the present application, since the high-resistance sheath is disposed outside the superconducting layer, the superconducting layer is reliably protected, and a large current flowing through the superconducting layer is used. An eddy current induced in the sheath is unlikely to occur, and an AC loss can be reduced.

本願に開示する単芯超伝導線は、当該単芯超伝導線が、超伝導回転機の固定子の鉄心における凹部に収納されて巻回されるコイルであるものである。
このように、本願に開示する単芯超伝導線においては、単芯超伝導線が、超伝導回転機の固定子の鉄心における凹部に収納されて巻回されるコイルであるため、自己磁界が主体となる電磁環境下の交流損失を低減した高効率な超伝導回転機を実現することができるという効果を奏する。また、交流損失を低減させることができることから、コイルの細線化が可能となり、超伝導回転機の小型化を実現することができるという効果を奏する。さらに、コイルを細線化することで、固定子の鉄心における凹部間の距離を大きく確保することができ、ギャップ磁界を大きくして高性能な回転機を実現することができるという効果を奏する。
The single-core superconducting wire disclosed in the present application is a coil in which the single-core superconducting wire is housed and wound in a recess in the iron core of a stator of a superconducting rotating machine.
As described above, in the single-core superconducting wire disclosed in the present application, the single-core superconducting wire is a coil that is housed and wound in the recess in the iron core of the stator of the superconducting rotating machine. There is an effect that it is possible to realize a highly efficient superconducting rotating machine with reduced AC loss in the main electromagnetic environment. Further, since the AC loss can be reduced, the coil can be thinned, and the superconducting rotating machine can be miniaturized. Further, by thinning the coil, it is possible to ensure a large distance between the recesses in the iron core of the stator, and it is possible to realize a high-performance rotating machine by increasing the gap magnetic field.

交流損失を測定するための試料としての超伝導線の特性を示す図である。It is a figure which shows the characteristic of the superconducting wire as a sample for measuring an alternating current loss. 試料線材の単位長さ、1周期当りの通電損失を示す図である。It is a figure which shows the energization loss per unit length and 1 period of a sample wire. 負荷率一定で周波数10〜100Hzの範囲で交流損失を測定した結果を示す図である。It is a figure which shows the result of having measured the alternating current loss in the range of frequency 10-100Hz with a constant load factor. 交流通電時における超伝導部、シース材のNb層、Cu層、全体の損失の電流振幅依存性を示す図である。It is a figure which shows the current amplitude dependence of the superconducting part at the time of alternating current supply, the Nb layer of a sheath material, Cu layer, and the whole loss. 試料線材中の電流配分の数値計算結果を示す図である。It is a figure which shows the numerical calculation result of the current distribution in a sample wire. 交流電流をMgB2試料線材に通電したときの線材内の磁界分布を示す図である。It is a figure which shows magnetic field distribution in a wire when an alternating current is passed through a MgB 2 sample wire. 第1の実施形態に係る単芯超伝導線の断面を示す図である。It is a figure which shows the cross section of the single core superconducting wire which concerns on 1st Embodiment. 第1の実施形態に係る単芯超伝導線について単位長当たりの線材全体の交流損失計算結果を比較したものである。It compares the AC loss calculation result of the whole wire per unit length about the single core superconducting wire which concerns on 1st Embodiment. 第1の実施形態に係る単芯超伝導線材を利用した超伝導モータの固定子の模式図である。It is a schematic diagram of the stator of the superconducting motor using the single core superconducting wire which concerns on 1st Embodiment.

以下、本発明の実施の形態を説明する。本発明は多くの異なる形態で実施可能である。また、本実施形態の全体を通して同じ要素には同じ符号を付けている。   Embodiments of the present invention will be described below. The present invention can be implemented in many different forms. Also, the same reference numerals are given to the same elements throughout the present embodiment.

(本発明の第1の実施形態)
本実施形態に係る単芯超伝導線材について図1ないし図9を用いて説明する。図1は、交流損失を測定するための試料としての超伝導線の特性を示す図、図2は、試料線材の単位長さ、1周期当りの通電損失を示す図、図3は、負荷率一定で周波数10〜100Hzの範囲で交流損失を測定した結果を示す図、図4は、交流通電時における超伝導部、シース材のNb層、Cu層、全体の損失の電流振幅依存性を示す図、図5は、試料線材中の電流配分の数値計算結果を示す図、図6は、交流電流をMgB2試料線材に通電したときの線材内の磁界分布を示す図、図7は、本実施形態に係る単芯超伝導線の断面を示す図、図8は、本実施形態に係る単芯超伝導線について単位長当たりの線材全体の交流損失計算結果を比較したもの、図9は、本実施形態に係る単芯超伝導線材を利用した超伝導モータの固定子の模式図である。
(First embodiment of the present invention)
A single-core superconducting wire according to this embodiment will be described with reference to FIGS. FIG. 1 is a diagram showing characteristics of a superconducting wire as a sample for measuring AC loss, FIG. 2 is a diagram showing a unit length of a sample wire, and a conduction loss per cycle, and FIG. 3 is a load factor. The figure which shows the result of having measured the alternating current loss in the range of frequency 10-100Hz with constant, FIG. 4 shows the current amplitude dependence of the superconducting part at the time of alternating current supply, the Nb layer of a sheath material, Cu layer, and the whole loss. FIG. 5 is a diagram showing a numerical calculation result of current distribution in the sample wire, FIG. 6 is a diagram showing a magnetic field distribution in the wire when an alternating current is passed through the MgB 2 sample wire, and FIG. FIG. 8 is a diagram showing a cross section of a single-core superconducting wire according to the embodiment, FIG. 8 is a comparison of AC loss calculation results of the entire wire per unit length for the single-core superconducting wire according to the present embodiment, FIG. It is a schematic diagram of a stator of a superconducting motor using a single core superconducting wire according to the present embodiment. .

なお、本実施形態においては、超伝導体として二ホウ化マグネシウム(MgB2)を用いた単芯超伝導線について説明する。MgB2は、21世紀初めに発見された新しい金属系超伝導体であり、約39Kの超伝導転位温度(臨界温度)を有し、大気圧下で約20Kの沸点を持つ液体水素中で電気抵抗のない超伝導状態を維持できる。しかし、現状のMgB2線材の臨界電流密度は20K中で数テスラの外部磁界が印加されると大幅に低下するため、自己磁界(自分自身に流れる電流がつくる磁界)が主体となる場合を含む低磁界応用が適当と考えられる。 In the present embodiment, a single-core superconducting wire using magnesium diboride (MgB 2 ) as a superconductor will be described. MgB 2 is a new metallic superconductor discovered at the beginning of the 21st century. It has a superconducting transition temperature (critical temperature) of about 39K and is electrically charged in liquid hydrogen having a boiling point of about 20K under atmospheric pressure. Superconducting state without resistance can be maintained. However, since the critical current density of the current MgB 2 wire is drastically reduced when an external magnetic field of several Tesla is applied at 20K, it includes the case where the main magnetic field (the magnetic field generated by the current flowing through itself) is the main component. Low magnetic field applications are considered appropriate.

まず、本願の発明者らが鋭意努力の結果判明した、MgB2単芯線の交流損失特性について説明する。
(1)通電損失の測定
下記の表1に試料線材の諸元を示す。試料線材は、Cuとニオブ(Nb)をシース材とした単芯構造線で、線径2R3は0.8mm、Nbの外径2R2は0.685mm、超伝導フィラメントの外径2R1は0.555mmである。
First, the AC loss characteristic of the MgB 2 single core wire, which has been found by the inventors of the present application as a result of diligent efforts, will be described.
(1) Measurement of current loss Table 1 below shows the specifications of the sample wire. The sample wire is a single core structure wire using Cu and niobium (Nb) as a sheath material, the wire diameter 2R 3 is 0.8 mm, the outer diameter 2R 2 of Nb is 0.685 mm, and the outer diameter 2R 1 of the superconducting filament is 0.555 mm.

また、試料線材の断面図と抵抗率の温度特性を図1(a)、(b)に示す。線材には1Aの直流電流を流し、そのとき線材に設けた電圧タップ間に生じる電圧を測定して抵抗率を求める。図1(b)から、MgB2試料線材の臨界温度Tcは36Kである。MgB2の抵抗率が非常に大きく全て金属シース部の抵抗率であると仮定して、20K以下で抵抗率の値が一定となるように通電損失測定の試験温度下(26.4Kと30.3K)の金属シース部の抵抗率を外挿する。この試験温度下の金属シース部の抵抗率とNbの抵抗率からCuの抵抗率を求める。 Moreover, sectional drawing of a sample wire and the temperature characteristic of a resistivity are shown to Fig.1 (a), (b). A 1 A direct current is passed through the wire, and the resistivity is determined by measuring the voltage generated between the voltage taps provided on the wire. From FIG. 1B, the critical temperature T c of the MgB 2 sample wire is 36K. Assuming that the resistivity of MgB 2 is very large and that of the metal sheath part, the resistance value is constant at 20K or less (26.4K and 30.30). 3K) extrapolate the resistivity of the metal sheath. The resistivity of Cu is obtained from the resistivity of the metal sheath portion and the resistivity of Nb at the test temperature.

通電損失測定は、自己磁界中で所謂四端子法により行う。温度制御はヘリウムガスフローによる伝導冷却であり、ヒータとガス流量で調整する。サンプルホルダは銅ブロックで構成され、試料とサンプルホルダの間は電気絶縁材で熱伝導率のよい窒化アルミニウム基板が配設されている。試料温度は、この基板上の試料近くに設置した温度センサで測定する。測定温度は、26.4K、30.3Kの2点であり、測定中の温度の安定性は±0.1Kの範囲である。また、試料線材のタップ間電圧は発振器信号を参照信号としロックインアンプによって測定する。タップ間距離は10mmである。また、回路内に設置した液体窒素温度下の誘導コイルの信号を用いて測定系に生じる位相のずれを補正する。   The current loss is measured by a so-called four-terminal method in a self-magnetic field. Temperature control is conduction cooling by helium gas flow and is adjusted by the heater and gas flow rate. The sample holder is composed of a copper block, and an aluminum nitride substrate having a good thermal conductivity is disposed between the sample and the sample holder with an electrical insulating material. The sample temperature is measured by a temperature sensor installed near the sample on this substrate. The measurement temperature is 26.4K and 30.3K, and the temperature stability during measurement is in the range of ± 0.1K. The voltage between taps of the sample wire is measured by a lock-in amplifier using the oscillator signal as a reference signal. The distance between taps is 10 mm. In addition, the phase shift generated in the measurement system is corrected using the signal of the induction coil under liquid nitrogen temperature installed in the circuit.

試料線材の単位長さ、1周期当りの通電損失を図2に示す。周波数は50Hzと100Hzである。横軸の負荷率im=Im/Icは、電流振幅Imを臨界電流Icで規格化したものである。また、曲線は臨界電流密度一定のBeanモデルを仮定したときの丸線の単位長さ、一周期当りの通電損失であり、 The unit length of the sample wire and the energization loss per cycle are shown in FIG. The frequencies are 50 Hz and 100 Hz. Load factor i m = I m / I c on the horizontal axis, is obtained by normalizing the current amplitude I m in the critical current I c. Moreover, the curve is the unit length of the round line when assuming a Bean model with a constant critical current density, the conduction loss per cycle,

ここで、Q0=μ0c 2/πである。この図から、温度が高くなると通電損失が減少することが分かる。これは、臨界電流の温度依存性により温度が高いと臨界電流が減少するためである。次に、負荷率一定で周波数10〜100Hzの範囲で測定した結果を図3に示す。この図から、周波数が高いと損失が多少大きくなることが分かる。これは、金属シース部において通電電流の周波数に依存する渦電流損失が発生したためと推察される。 Here, Q 0 = μ 0 I c 2 / π. From this figure, it can be seen that the energization loss decreases as the temperature increases. This is because the critical current decreases when the temperature is high due to the temperature dependence of the critical current. Next, FIG. 3 shows the result of measurement in a frequency range of 10 to 100 Hz with a constant load factor. From this figure, it can be seen that the loss increases somewhat at higher frequencies. This is presumably because an eddy current loss depending on the frequency of the energized current occurred in the metal sheath portion.

(2)通電損失の数値解析
ここでは、超伝導フィラメント径2Rl、シース部のNbとCuの外径がそれぞれ2R2、2R3の無限長超伝導丸線モデルを考え、この超伝導線の交流損失の数値解析を行った。長手方向の中心軸をz軸とし、z方向に交流電流Iを通電するとき、超伝導丸線内の電磁界は1次元のMaxwellの方程式
Here numerical analysis of (2) current loss, superconducting filament diameter 2R l, respectively the outer diameter of the Nb and Cu sheath portion considered infinite length superconducting round wire model 2R 2, 2R 3, the superconducting wire Numerical analysis of AC loss was performed. When the central axis in the longitudinal direction is the z axis and an alternating current I is applied in the z direction, the electromagnetic field in the superconducting round wire is a one-dimensional Maxwell equation.

を満足する。ここで、Bはθ方向の局所的磁束密度、E,Jはそれぞれz方向の局所的電界と電流密度である。ただし、(4)式において、変位電流の項は無視している。試料線材のE−J特性は、超伝導体部にn値モデルを、金属シース部にオームの法則を適用すると、   Satisfied. Here, B is the local magnetic flux density in the θ direction, and E and J are the local electric field and current density in the z direction, respectively. However, in the equation (4), the term of displacement current is ignored. The EJ characteristics of the sample wire are obtained by applying an n-value model to the superconductor part and Ohm's law to the metal sheath part.

となる。ここで、Jcは臨界電流密度、Ecは電界基準、ρmは金属シース部の抵抗率である。また、境界条件は次式で与えられる。 It becomes. Here, J c is the critical current density, E c is the electric field reference, and ρ m is the resistivity of the metal sheath part. The boundary condition is given by the following equation.

ここで、Imは電流振幅、ωは角周波数である。式(3)、(4)を径方向に等間隔に離散化した1次元差分法により、丸線内の電磁界分布の時間変化を数値解析する(例えば、寺澤裕一,「酸化物超伝導線材の簡便な通電損失評価法の提案」,九州大学大学院システム情報科学府電気電子システム工学専攻修士論文,2002,p.10を参照)。得られた電磁界分布より、各部の単位長さ、1周期当りの交流損失Qは、 Here, I m is the current amplitude, and ω is the angular frequency. Numerical analysis of temporal changes in electromagnetic field distribution in a round wire is performed by a one-dimensional difference method in which equations (3) and (4) are discretized at equal intervals in the radial direction (for example, Yuichi Terasawa, “Oxide Superconducting Wires”). Proposal of a simple method for evaluating current loss ”, see Kyushu University Graduate School of Systems and Information Sciences, Department of Electrical and Electronic Systems Engineering, 2002, p.10). From the obtained electromagnetic field distribution, the unit length of each part and the AC loss Q per cycle are:

で与えられる。ここで、rは各部の径方向領域である。 Given in. Here, r is a radial region of each part.

図4(a)は、26.4Kにおける50Hz交流通電時の超伝導部、シース材のNb層、Cu層、そして全体の損失の電流振幅依存性を示したものである。また、併せて通電損失の実験結果も表示している。この図から、全交流損失の数値計算結果は、実験結果とよく一致することが分かる。また、超伝導部の損失の数値計算結果はBeanモデルによる理論値とよく一致する。さらに、Nbシース部の損失は非常に小さく無視できるものだが、Cuシース部の損失は無視できず、超伝導部の損失と同程度の大きさであることが分かる。以上のことから、Cuシース部の損失が比較的大きいため、実験結果はBeanモデルに基づく理論値よりも大きくなるといえる。   FIG. 4 (a) shows the current amplitude dependence of the superconducting portion, the Nb layer of the sheath material, the Cu layer, and the overall loss during 50 Hz alternating current energization at 26.4K. In addition, the experimental results of current loss are also displayed. From this figure, it can be seen that the numerical calculation results of the total AC loss agree well with the experimental results. In addition, the numerical calculation result of the loss of the superconducting part agrees well with the theoretical value by the Bean model. Furthermore, although the loss of the Nb sheath portion is very small and can be ignored, the loss of the Cu sheath portion cannot be ignored and it can be seen that the loss is the same as the loss of the superconducting portion. From the above, since the loss of the Cu sheath portion is relatively large, it can be said that the experimental result is larger than the theoretical value based on the Bean model.

図4(b)の26.4Kにおける100Hz交流通電時の結果、図4(c)の30.3Kにおける50Hz交流通電時の結果、図4(d)の30.3Kにおける100Hz交流通電時の結果も、上記の結果と同様である。ただし、30.3Kにおける結果において、電流振幅が大きい場合、実験結果が数値計算結果より多少大きいが、その原因として交流損失に伴う発熱により試料線材の温度が上昇していることが考えられる。なお、図4(a)〜(d)の三角(▲)記号と菱形(◆)記号が示す結果については後述する。   The result at the time of 100 Hz alternating current energization in 26.4K of Drawing 4 (b), the result at the time of 50 Hz alternating current energization in 30.3K of Drawing 4 (c), and the result at the time of 100 Hz alternating current energization in 30.3K of Drawing 4 (d) Is similar to the above result. However, in the result at 30.3 K, when the current amplitude is large, the experimental result is somewhat larger than the numerical calculation result, but it is considered that the temperature of the sample wire is rising due to heat generation due to AC loss. The results indicated by the triangle (▲) and rhombus (♦) symbols in FIGS. 4A to 4D will be described later.

次に、試料線材中の電流配分の数値計算結果を図5に示す。横軸に負荷率をとり、全電流を1として各部に流れる電流の割合を表す。この結果から、金属シース部に流れる電流は無視できるほど微小であり、ほとんど超伝導部に流れることが分かる。ただし、臨界電流値に近いところでは超伝導部に流れる電流は多少減少する。   Next, the numerical calculation result of the current distribution in the sample wire is shown in FIG. The load factor is taken on the horizontal axis, and the ratio of the current flowing through each part is shown with the total current being 1. From this result, it can be seen that the current flowing through the metal sheath portion is negligibly small and almost flows through the superconducting portion. However, the current flowing through the superconducting portion is somewhat reduced near the critical current value.

(3)渦電流損失の理論表式
図5より、MgB2試料線材に交流通電した場合、ほとんどの電流が超伝導部に流れるため、ここでは全電流が超伝導部のみに流れると仮定して、金属シース部で発生する渦電流損失の理論表式を導出する。まず、交流電流をMgB2試料線材に通電したときの線材内の磁界分布を図6に示す。超伝導体表面の磁界Bi(t)と最大磁界Bimは通電電流I(t)(=Imcosωt)を用いて、
(3) Theoretical expression of eddy current loss From FIG. 5, it is assumed that most current flows only in the superconducting part because most of the current flows in the superconducting part when the MgB 2 sample wire is energized. The theoretical expression of the eddy current loss generated in the metal sheath part is derived. First, FIG. 6 shows the magnetic field distribution in the wire when an alternating current is passed through the MgB 2 sample wire. The magnetic field B i (t) and the maximum magnetic field B im on the surface of the superconductor are obtained by using a conduction current I (t) (= I m cosωt).

と表される。交流ピーク時の磁束フロント位置r1は、次式で与えられる。 It is expressed. The magnetic flux front position r 1 at the AC peak is given by the following equation.

ここで、Bpは中心到達磁界であり、 Where B p is the center reaching magnetic field,

と表わされる。また、減磁過程における磁束の折れ曲がり位置r2は、次式で与えられる。 It is expressed as Further, the bending position r 2 of the magnetic flux in the demagnetization process is given by the following equation.

したがって、超伝導体内部の鎖交磁束をΦとすると、超伝導体表面における電界E(R1)は、 Therefore, if the interlinkage magnetic flux inside the superconductor is Φ, the electric field E (R 1 ) on the superconductor surface is

と表わせる。また、(13)式を用いて超伝導フィラメント表面上のポインティングベクトルを1周期にわたって積算すると、(2)式と同じ結果が得られる。つぎに、超伝導フィラメント外部の誘導電界は、 It can be expressed as Further, when the pointing vector on the surface of the superconducting filament is integrated over one period using the equation (13), the same result as the equation (2) is obtained. Next, the induced electric field outside the superconducting filament is

となる。よって、金属シース部における損失Qe It becomes. Therefore, the loss Q e in the metal sheath portion is

と表わされる。ここで、fは周波数、Sm、ρm、rmはそれぞれ金属シース部の断面積、抵抗率、平均半径である。この理論表式から、渦電流損失は周波数fと抵抗率ρmの逆数に比例することが分かる。 It is expressed as Here, f is the frequency, S m, ρ m, r m cross-sectional area of each of the metal sheath, the resistivity, the average radius. From this theory table type, an eddy current loss is proportional to the reciprocal of the frequency f resistivity [rho m.

ここで、交流損失の電流振幅依存性について説明する。図4(a)〜(d)における三角記号(▲)と菱形記号(◆)が、理論表式から求められるCuシース部、Nbシース部での単位長さ、1周期当りの渦電流損失の電流振幅依存性を示している。これらの図から、求めた渦電流損失の理論表式は数値解析結果を非常によく再現しているといえる。また、渦電流損失は振幅の小さいところでは2乗に、大きいところでは3乗に比例している。さらに、図より電流振幅Imが臨界電流Icに近づくと、Cuシース部に多少の電流が分流して全ての電流が超伝導部に流れるという仮定が成り立たなくなるため、理論値は数値計算結果よりも大きくなることが分かる。以上のことから、MgB2試料線材の金属シース部で見られた損失は渦電流損失であると考えられ、また求めた理論表式はそれをよく説明しているといえる。 Here, the current amplitude dependence of AC loss will be described. The triangular symbols (▲) and rhombus symbols (♦) in FIGS. 4A to 4D indicate the eddy current loss per unit length and one unit length in the Cu sheath portion and Nb sheath portion obtained from the theoretical expression. The current amplitude dependency is shown. From these figures, it can be said that the calculated theoretical expression of the eddy current loss reproduces the numerical analysis result very well. The eddy current loss is proportional to the square when the amplitude is small and proportional to the cube when it is large. Further, the current amplitude I m from Fig approaches the critical current I c, since all of the current diverted some of the current to the Cu sheath can not hold the assumption that flows through the superconducting part, theoretical values numerical results It turns out that it becomes larger. From the above, it can be said that the loss observed in the metal sheath portion of the MgB 2 sample wire is an eddy current loss, and the obtained theoretical expression well explains it.

このように、図1(a)のような構造を持つ線材の通電損失は、Beanモデルに基づくMgB2フィラメント部の履歴損失と、Cuシース部の渦電流損失の和で与えられる。つまり、比較的大きな抵抗率をもつNbシース部の損失は非常に小さく無視できるが、MgB2フィラメント部に流れる大部分の通電電流により、比較的小さな抵抗率をもつCuシース部に渦電流が誘起され、Beanモデルに基づく理論表式よりも大きな交流損失が発生する。 As described above, the conduction loss of the wire having the structure as shown in FIG. 1A is given by the sum of the hysteresis loss of the MgB 2 filament portion based on the Bean model and the eddy current loss of the Cu sheath portion. In other words, the loss of the Nb sheath portion having a relatively large resistivity is very small and can be ignored, but an eddy current is induced in the Cu sheath portion having a relatively small resistivity by the most energized current flowing in the MgB 2 filament portion. Thus, an AC loss larger than the theoretical expression based on the Bean model is generated.

そこで、超伝導線の構造を図7に示すような単芯超伝導線とする。図7(a)は、低抵抗材からなる安定化層2と超伝導体からなる超伝導層3との間にバリア層4を配設した構造の単芯超伝導線1であり、図7(b)は、安定化層2と超伝導層3との間にバリア層4を配設しない構造の単芯超伝導線1であり、図7(c)は、図7(a)の単芯超伝導線の超伝導層3にのみ電流が流れた場合の線材内の磁界分布である。超伝導体をMgB2とし、低抵抗材をCuとした場合、単芯超伝導線1の製造工程において、MgB2とCuとが反応してしまうため、間にバリア層4が必要となる。一方、超伝導体をMgB2とし、低抵抗材を純鉄とした場合は、単芯超伝導線1の製造工程において、純鉄がバリア層4の役目を兼用することができるため、別途バリア層4を形成する必要がない。したがって、材料に応じて図7(a)の構造にするか、図7(b)の構造にするかが決定される。 Therefore, the structure of the superconducting wire is a single-core superconducting wire as shown in FIG. FIG. 7A shows a single-core superconducting wire 1 having a structure in which a barrier layer 4 is disposed between a stabilization layer 2 made of a low resistance material and a superconducting layer 3 made of a superconductor. (B) is a single-core superconducting wire 1 having a structure in which the barrier layer 4 is not disposed between the stabilization layer 2 and the superconducting layer 3, and FIG. This is a magnetic field distribution in the wire when a current flows only in the superconducting layer 3 of the core superconducting wire. When the superconductor is MgB 2 and the low resistance material is Cu, MgB 2 and Cu react in the manufacturing process of the single-core superconducting wire 1, so that the barrier layer 4 is necessary. On the other hand, when the superconductor is MgB 2 and the low-resistance material is pure iron, pure iron can also serve as the barrier layer 4 in the manufacturing process of the single-core superconducting wire 1. There is no need to form layer 4. Therefore, depending on the material, it is determined whether the structure shown in FIG. 7A or the structure shown in FIG.

また、超伝導層3の内半径をR0、外半径をR1とすると、Beanモデルに基づく単位長あたりの履歴損失Qは(1)式となり、幾何学的係数cに比例する。したがって、超伝導層3の内側に安定化層2を有する図7(a)、(b)のような構造にすることで、超伝導層3が円筒状となり、外半径R1が相対的に大きくなってcが小さくなり、履歴損失が小さくなる。さらに、超伝導層3の外側には、高抵抗材からなる高抵抗シース層5が配設されている。この高抵抗シース層5により、超伝導層4を確実に保護すると共に、高抵抗シース層5が高抵抗であるため、超伝導層4を流れる大部分の電流により誘起される渦電
流が生じにくくなり、交流損失を低減することができる。
Further, assuming that the inner radius of the superconducting layer 3 is R 0 and the outer radius is R 1 , the hysteresis loss Q per unit length based on the Bean model is expressed by equation (1), and is proportional to the geometric coefficient c. 7A and 7B having the stabilization layer 2 inside the superconducting layer 3, the superconducting layer 3 becomes cylindrical and the outer radius R 1 is relatively It becomes larger and c becomes smaller, and history loss becomes smaller. Further, a high resistance sheath layer 5 made of a high resistance material is disposed outside the superconductive layer 3. The high resistance sheath layer 5 reliably protects the superconducting layer 4 and the high resistance sheath layer 5 has a high resistance, so that eddy currents induced by most of the current flowing through the superconducting layer 4 are unlikely to occur. Thus, AC loss can be reduced.

超伝導層3にのみ電流が流れた場合の磁界は、図7(c)に示すような分布となり、この図から明らかなように、超伝導層3の内側の安定化層2は磁界がゼロであることがわかる。すなわち、図6に示したような安定化層における渦電流がなくなり、交流損失を低減することができる。   When the current flows only in the superconducting layer 3, the magnetic field has a distribution as shown in FIG. 7C. As is clear from this figure, the stabilizing layer 2 inside the superconducting layer 3 has a zero magnetic field. It can be seen that it is. That is, the eddy current in the stabilization layer as shown in FIG. 6 is eliminated, and the AC loss can be reduced.

図7(a)の構造における損失低減効果を確認するために、図1(a)の構造との比較を行った結果を説明する。まず、超伝導部のE−J特性としてn値モデルを仮定し、更に単芯超伝導線1の各層の断面積を図1(a)の場合と同じとする条件で設計し、臨界電流及びn値も図1(a)の場合と同じと仮定する。数値解析には円柱座標系の径方向を等間隔に離散化した1次元差分法を用いて電磁界分布の時間変化を求める。差分法により得られた電磁界分布より、交流損失は局所的電界と電流密度の積を径方向に空間積分し、1周期にわたり時間積分することで求められる。   In order to confirm the loss reduction effect in the structure of FIG. 7A, the result of comparison with the structure of FIG. 1A will be described. First, an n-value model is assumed as the EJ characteristic of the superconducting portion, and the cross-sectional area of each layer of the single-core superconducting wire 1 is designed under the same conditions as in FIG. It is assumed that the n value is the same as that in FIG. In the numerical analysis, the time change of the electromagnetic field distribution is obtained by using a one-dimensional difference method in which the radial direction of the cylindrical coordinate system is discretized at equal intervals. From the electromagnetic field distribution obtained by the difference method, the AC loss is obtained by spatially integrating the product of the local electric field and the current density in the radial direction and integrating over time over one period.

解析結果として26.4K、100Hzにおける単位長当たりの線材全体の交流損失計算結果を比較したものを図8に示す。このとき、線径が0.8mm、臨界電流Icが192A、n値が116である。図8より、図7(a)の場合の線材において、全体の通電損失が図1(a)の場合の3分の1程度まで下がっており、低損失な線材であることが明らかである。 FIG. 8 shows a comparison of AC loss calculation results of the entire wire per unit length at 26.4K and 100 Hz as an analysis result. At this time, the wire diameter is 0.8 mm, the critical current I c is 192 A, and the n value is 116. From FIG. 8, it is clear that in the wire in the case of FIG. 7 (a), the overall energization loss is reduced to about one third of that in FIG. 1 (a), and it is a low loss wire.

なお、単芯超伝導線1の構造において、低抵抗材として例えば、銅、アルミ、銀等を使用することができ、バリア層の材料且つ低抵抗材として例えば、純鉄等を使用することができ、バリア層や高抵抗シースとして例えば、Nb、ステンレス鋼、CuNi、Ta等を使用することができ、超伝導体としてMgB2、Bi系酸化物、Y系酸化物、希土類系酸化物等を使用することができる。また、上記単芯超伝導線1は、超伝導モータや超伝導発電機等の超伝導回転機の固定子に巻回されるコイル、超伝導電流リード等に適用することができるものである。 In the structure of the single-core superconducting wire 1, for example, copper, aluminum, silver or the like can be used as the low resistance material, and pure iron or the like can be used as the material of the barrier layer and the low resistance material. For example, Nb, stainless steel, CuNi, Ta or the like can be used as a barrier layer or a high resistance sheath, and MgB 2 , Bi-based oxide, Y-based oxide, rare earth-based oxide, or the like can be used as a superconductor. Can be used. The single-core superconducting wire 1 can be applied to a coil wound around a stator of a superconducting rotating machine such as a superconducting motor or a superconducting generator, a superconducting current lead, or the like.

以下に単芯超伝導線1を超伝導回転機に適用した場合について説明する。   The case where the single core superconducting wire 1 is applied to a superconducting rotating machine will be described below.

単芯超伝導線1は超伝導回転機の固定子の鉄心における凹部に収納されて巻回されるコイルとして利用することができる。図9は、単芯超伝導線1を超伝導モータの固定子のコイルとして利用した場合の模式図である。図9(a)が固定子全体の模式図であり、図9(b)が固定子の一部拡大図である。   The single-core superconducting wire 1 can be used as a coil that is housed and wound in a recess in the iron core of a stator of a superconducting rotating machine. FIG. 9 is a schematic diagram when the single-core superconducting wire 1 is used as a stator coil of a superconducting motor. FIG. 9A is a schematic diagram of the entire stator, and FIG. 9B is a partially enlarged view of the stator.

なお、ここでは超伝導モータについて説明するが、同様の構成で超伝導発電機に利用することも可能である。   Although a superconducting motor will be described here, it can also be used for a superconducting generator with the same configuration.

図中のa、b、cは、それぞれa相、b相、c相を示しており、符号は電流の向きを示している。各鉄心スロットには位相が異なる2つのコイルが収納され(各コイルのターン数は任意とし、例えば1つのスロットに3ターンずつコイルが巻回されているものとする)、それらの電流の和で与えられる正味の電流はia+ib+ic=0(ia、ib、icは互いに120度ずれた三相交流電流とする)より、反対向きの残りの相の電流に等しくなる。すなわち、ia+ib=−icとなる。 In the figure, a, b, and c indicate the a-phase, b-phase, and c-phase, respectively, and the sign indicates the direction of current. Each core slot contains two coils with different phases (the number of turns of each coil is arbitrary, for example, three coils are wound in one slot), and the sum of their currents The net current applied is equal to the current of the remaining phase in the opposite direction, since i a + i b + i c = 0 (i a , i b , i c are three-phase alternating currents that are offset by 120 degrees). That is, i a + i b = −i c .

コイルの巻き方は、例えば図9(b)に示すように、+a11を通って収納された1本の単芯超伝導線1が−a12を通って収納され、それが決まった数のターン数(例えば、1〜10ターンのうち予め設計されたターン数)で巻回されると、次に+a21を通って収納された単芯超伝導線1が−a22を通って収納され、それが決まった数のターン数で巻回され
ると、次に+a31を通って収納された単芯超伝導線1が−a32を通って収納され、それが決まった数のターン数で巻回される。他の±a、±b、±cの各スロットで上記のように単芯超伝導線1が巻回されて超伝導モータの固定子が形成される。回転子については、固定子に対してトルクが得られる一般的に知られている構成であればよく、ここでの詳細な説明は省略する。また、回転子については、必ずしも超伝導体を用いる必要はなく、銅線やアルミ、永久磁石等であってもよい。
Winding of the coil, for example, as shown in FIG. 9 (b), + a 11 1 pieces of single core superconducting wire 1 housed through is accommodated through -a 12, it fixed number of When wound with the number of turns (for example, the number of turns designed in advance among 1 to 10 turns), the single-core superconducting wire 1 accommodated through + a 21 is accommodated through -a 22. If it is wound with a fixed number of turns, then the single core superconducting wire 1 stored through + a 31 is stored through -a 32 , which is the fixed number of turns. It is wound with. The single-core superconducting wire 1 is wound as described above in the other slots of ± a, ± b, and ± c to form a stator of the superconducting motor. The rotor may have a generally known configuration capable of obtaining torque with respect to the stator, and detailed description thereof is omitted here. The rotor does not necessarily need to use a superconductor, and may be a copper wire, aluminum, a permanent magnet, or the like.

一般的に全超伝導モータの固定子巻線については、鉄心の飽和磁界(〜約2T)以上の発生磁界を利用するため、鉄心における凹部には収納されず、外部磁界が主体となるものであるが、本実施形態の場合は、鉄心を利用し、コイルを単芯超伝導線1で形成して、鉄心における凹部に収納するものである。すなわち、固定子側のコイルで生じる外部磁界が透磁率の高い鉄心を通ることで、自己磁界を主体として回転子を回転させることができる。従って、本実施形態に係る単芯超伝導線1のような自己磁界を主体として交流損失を低減させることができる超伝導線をコイルとして利用することが非常に有効となる。   In general, the stator winding of an all superconducting motor uses a magnetic field generated above the saturation magnetic field of the iron core (up to about 2T), so it is not housed in the recess in the iron core and is mainly composed of an external magnetic field. However, in the case of this embodiment, an iron core is used, a coil is formed with the single-core superconducting wire 1, and it accommodates in the recessed part in an iron core. That is, the external magnetic field generated by the stator coil passes through the iron core having a high magnetic permeability, so that the rotor can be rotated mainly by the self magnetic field. Therefore, it is very effective to use, as a coil, a superconducting wire that can reduce AC loss mainly using a self-magnetic field such as the single-core superconducting wire 1 according to this embodiment.

このように、単芯超伝導線1を超伝導回転機の固定子の鉄心における凹部に収納されて巻回されるコイルとして利用することで、交流損失を低減した高効率な超伝導回転機を実現することができる。また、交流損失を低減させることができることから、コイルの細線化が可能となり、超伝導回転機の小型化を実現することができる。さらに、コイルを細線化することで、固定子の鉄心における凹部間の距離d2を大きく確保することができ(図9(b)のd1を小さくすることで、d1とd2との比率を大きくすることができ)、ギャップ磁界を大きくして高性能な回転機を実現することができる。さらにまた、移送する対象を液体水素とすると、その移送すべき液体水素自身が冷媒として働くため、冷却ペナルティを考慮する必要がなくなり、既存の常伝導モータに比べはるかに低消費電力で液体水素用ポンプを駆動可能になる。 Thus, by using the single-core superconducting wire 1 as a coil that is housed and wound in the recess in the iron core of the stator of the superconducting rotating machine, a highly efficient superconducting rotating machine with reduced AC loss is obtained. Can be realized. Further, since the AC loss can be reduced, the coil can be made thin, and the superconducting rotating machine can be miniaturized. Further, by thinning the coil, it is possible to ensure a large distance d 2 between the recesses in the iron core of the stator (by reducing d 1 in FIG. 9B, d 1 and d 2 The ratio can be increased), and a high-performance rotating machine can be realized by increasing the gap magnetic field. Furthermore, if the target to be transferred is liquid hydrogen, the liquid hydrogen to be transferred itself acts as a refrigerant, so there is no need to consider the cooling penalty, and it is much lower power consumption than existing normal motors. The pump can be driven.

以上の前記実施形態により本発明を説明したが、本発明の技術的範囲は実施形態に記載の範囲には限定されず、この実施形態に多様な変更又は改良を加えることが可能である。   Although the present invention has been described with the above embodiment, the technical scope of the present invention is not limited to the scope described in the embodiment, and various modifications or improvements can be added to this embodiment.

1 単芯超伝導線
2 安定化層
3 超伝導層
4 バリア層
5 高抵抗シース層
1 Single-core superconducting wire 2 Stabilization layer 3 Superconducting layer 4 Barrier layer 5 High resistance sheath layer

Claims (5)

断面円形状の超伝導線の内側に低抵抗材からなる安定化層を配設し、当該安定化層の外側に超伝導体からなる超伝導層を配設し、前記超伝導層が、長手方向に対して垂直な断面において周方向に前記超伝導体を連続して形成されていることを特徴とする単芯超伝導線。   A stabilizing layer made of a low resistance material is arranged inside the superconducting wire having a circular cross section, and a superconducting layer made of a superconductor is arranged outside the stabilizing layer. A single-core superconducting wire, wherein the superconductor is continuously formed in a circumferential direction in a cross section perpendicular to the direction. 請求項1に記載の単芯超伝導線において、
前記低抵抗材が銅(Cu)であり、前記超伝導体が二ホウ化マグネシウム(MgB2)であり、
前記安定化層と超伝導層との間に、前記銅と二ホウ化マグネシウムとの反応を防止するバリア層を有することを特徴とする単芯超伝導線。
In the single-core superconducting wire according to claim 1,
The low resistance material is copper (Cu), the superconductor is magnesium diboride (MgB 2 ),
A single-core superconducting wire comprising a barrier layer for preventing a reaction between the copper and magnesium diboride between the stabilizing layer and the superconducting layer.
請求項1に記載の単芯超伝導線において、
前記低抵抗材が純鉄であることを特徴とする単芯超伝導線。
In the single-core superconducting wire according to claim 1,
A single-core superconducting wire, wherein the low-resistance material is pure iron.
請求項1ないし3のいずれかに記載の単芯超伝導線において、
前記超伝導層の外側に高抵抗のシースを配設することを特徴とする単芯超伝導線。
In the single-core superconducting wire according to any one of claims 1 to 3,
A single-core superconducting wire, wherein a high-resistance sheath is disposed outside the superconducting layer.
請求項1ないし4のいずれかに記載の単芯超伝導線が、超伝導回転機の固定子の鉄心における凹部に収納されて巻回されるコイルであることを特徴とする単芯超伝導線。   The single-core superconducting wire according to any one of claims 1 to 4, wherein the single-core superconducting wire is a coil that is housed and wound in a recess in an iron core of a stator of a superconducting rotating machine. .
JP2010201185A 2010-09-08 2010-09-08 Single core superconducting wire Pending JP2012059511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010201185A JP2012059511A (en) 2010-09-08 2010-09-08 Single core superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010201185A JP2012059511A (en) 2010-09-08 2010-09-08 Single core superconducting wire

Publications (1)

Publication Number Publication Date
JP2012059511A true JP2012059511A (en) 2012-03-22

Family

ID=46056388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010201185A Pending JP2012059511A (en) 2010-09-08 2010-09-08 Single core superconducting wire

Country Status (1)

Country Link
JP (1) JP2012059511A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106128632A (en) * 2016-06-16 2016-11-16 中国科学院电工研究所 Based on MgB4the magnesium scattering preparation of the MgB 2 superconductor wire material of precursor powder
JPWO2015092910A1 (en) * 2013-12-20 2017-03-16 株式会社日立製作所 Superconducting magnet, MRI and NMR
US11127514B2 (en) 2015-07-24 2021-09-21 Hitachi, Ltd. Superconducting wire, superconducting coil, MRI and NMR

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015092910A1 (en) * 2013-12-20 2017-03-16 株式会社日立製作所 Superconducting magnet, MRI and NMR
US11127514B2 (en) 2015-07-24 2021-09-21 Hitachi, Ltd. Superconducting wire, superconducting coil, MRI and NMR
CN106128632A (en) * 2016-06-16 2016-11-16 中国科学院电工研究所 Based on MgB4the magnesium scattering preparation of the MgB 2 superconductor wire material of precursor powder

Similar Documents

Publication Publication Date Title
US6066906A (en) Rotating machine having superconducting windings
KR20120013427A (en) Refrigerator cooling-type superconducting magnet
Kajikawa et al. Proposal of a Fully Superconducting Motor for Liquid Hydrogen Pump With MgB $ _ {2} $ Wire
EP2611007A2 (en) A superconductive synchronous motor generator
Oberly et al. ac Loss analysis for superconducting generator armatures wound with subdivided Y–Ba–Cu–O coated tape
Li et al. Charging optimization of a YBCO racetrack coil with a linear-motor type flux pump for an HTS synchronous motor
Biasion et al. Superconductivity and its Application in the Field of Electrical Machines
Ye et al. A linear-motor type HTS flux pump with pumped current exceeding 640 A
Kajikawa et al. Development of Stator Windings for Fully Superconducting Motor With $\hbox {MgB} _ {2} $ Wires
JP5240008B2 (en) DC superconducting cable
JP2012059511A (en) Single core superconducting wire
Patel et al. Evaluation of a solid nitrogen impregnated MgB2 racetrack coil
Marignetti et al. Cryogenic characterization of copper-wound linear tubular actuators
Nam et al. Design and characteristic analysis of a 1 MW superconducting motor for ship propulsions
Lee et al. Experimental analysis of charging characteristics of HTS field coils with HTS contactless rotary excitation device considering various HTS loads
Baik et al. Performance analysis of a superconducting motor for higher efficiency design
Lee et al. Electrical properties analysis and test result of windings for a fully superconducting 10 HP homopolar motor
JP6462490B2 (en) Superconducting motor and superconducting generator
US8275429B1 (en) High magnetic field gradient strength superconducting coil system
Krasnoperov et al. 2G HTS tape and double pancake coil for cryogen-free superconducting magnet
Hatanaka et al. A HTS scanning magnet and AC operation
Malozemoff Electric power grid application requirements for superconductors
Kovalev et al. High specific power HTS electric machines
Lee et al. Design of field coil for 100 hp class HTS motor considering operating current
Sohn et al. Performance of high temperature superconducting field coils for a 100 HP motor