JP2012059495A - Charging cable for electric vehicle - Google Patents

Charging cable for electric vehicle Download PDF

Info

Publication number
JP2012059495A
JP2012059495A JP2010200792A JP2010200792A JP2012059495A JP 2012059495 A JP2012059495 A JP 2012059495A JP 2010200792 A JP2010200792 A JP 2010200792A JP 2010200792 A JP2010200792 A JP 2010200792A JP 2012059495 A JP2012059495 A JP 2012059495A
Authority
JP
Japan
Prior art keywords
feeder
charging cable
electric vehicle
conductor
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010200792A
Other languages
Japanese (ja)
Inventor
Masahiro Isaki
雅宏 伊崎
Kiyoyuki Ito
清行 伊藤
Isao Izui
功夫 伊豆井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Cable Co Ltd
Original Assignee
Oki Electric Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Cable Co Ltd filed Critical Oki Electric Cable Co Ltd
Priority to JP2010200792A priority Critical patent/JP2012059495A/en
Publication of JP2012059495A publication Critical patent/JP2012059495A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Insulated Conductors (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a charging cable for an electric vehicle which has a small outside diameter, does not require shielding and is superior in flexibility.SOLUTION: The cable is so structured that it has four feeders made by uniformly dividing the conductor cross-sectional area of a feeder into two and arranging feeders having the same polarity in parallel or in diagonal positions. The outside diameter of the cable can be made small and a charging cable for an electric vehicle which is flex and superior in handleability and housing property can be obtained by uniformly dividing the conductor cross-sectional area of the feeder into two to make four feeders. Since the outside diameter of the feeder becomes small by dividing the conductor cross-sectional area of the feeder into two, and consequently the distance between the conductors of the feeder becomes short, the characteristic impedance between the polarities of the feeder can be decreased, and the emission of noise occurring from the feeder to the outside can be prevented.

Description

本発明は、電気自動車の充電用ケーブルに関するものである。   The present invention relates to a charging cable for an electric vehicle.

動力源としてバッテリに蓄電された電力を用いて走行する電気自動車の実用化が進んでいる。これらの電気自動車は、各家庭に供給されている商用電源、または屋外の充電施設から電力供給を受けて、バッテリを充電している。
バッテリの充電には、電源供給口と車両搭載の電源バッテリとを接続する電気自動車用充電ケーブルが用いられている。
充電ケーブルは、一般的には陽極(+極)および陰極(−)の2本の給電線と複数本の信号制御線から構成されている。この種の充電ケーブルの給電線には、大電流を安全に電気自動車のバッテリに供給して短時間で充電を完了するために、比較的断面積の大きな導体が用いられている。
An electric vehicle that travels using electric power stored in a battery as a power source has been put into practical use. These electric vehicles charge a battery by receiving power supply from a commercial power source supplied to each household or an outdoor charging facility.
For charging a battery, a charging cable for an electric vehicle that connects a power supply port and a power supply battery mounted on a vehicle is used.
The charging cable is generally composed of two power supply lines of an anode (+ electrode) and a cathode (−) and a plurality of signal control lines. A power supply line of this type of charging cable uses a conductor having a relatively large cross-sectional area in order to safely supply a large current to a battery of an electric vehicle and complete charging in a short time.

また、給電線に大きな電流が流れることにより、これらの給電線に近接する信号制御線に対してのノイズを防止するため、信号制御線には確実に遮蔽を施されている。   Further, since a large current flows through the feeder lines, the signal control lines are reliably shielded in order to prevent noise with respect to the signal control lines adjacent to these feeder lines.

上述したような電気自動車のバッテリを充電するために用いられる充電ケーブルは、給電線の導体断面積が大きいために、ケーブル外径が大きくなり柔軟性が損なわれる。また、信号制御線に遮蔽を施すことによっても、ケーブルの剛性が高くなる。従って、取扱い性や収納性の点から柔軟性のある電気自動車用充電ケーブルの開発が望まれている。   Since the charging cable used for charging the battery of the electric vehicle as described above has a large conductor cross-sectional area of the feeder line, the outer diameter of the cable is increased and flexibility is impaired. Moreover, the rigidity of the cable is increased by shielding the signal control line. Therefore, it is desired to develop a flexible charging cable for an electric vehicle from the viewpoint of handling and storage.

従来技術の外径が大きく、剛性の高い電気自動車用充電ケーブルには、次のような問題がある。
(1)外径が大きく、剛性が高いため、充電ケーブルの長さを十分確保して、この長さ分の弾性を利用して取扱い性を良くしなければならない。
(2)充電作業をする際には、充電ケーブルを屈曲させるために大きな曲率半径が必要となり、大きな作業スペースを確保する必要がある。
(3)自動車のトランク内の充電ケーブル収納装置に充電ケーブルを巻き取る際に、充電ケーブル収納装置を大きくする必要がある。
(4)ケーブル外径を大きくする分だけコストが高くなり、また車両の重量増の一因になる。
The charging cable for electric vehicles having a large outer diameter and high rigidity according to the prior art has the following problems.
(1) Since the outer diameter is large and the rigidity is high, it is necessary to secure a sufficient length of the charging cable and improve the handleability by utilizing the elasticity of this length.
(2) When charging, a large radius of curvature is required to bend the charging cable, and it is necessary to secure a large working space.
(3) When the charging cable is wound around the charging cable storage device in the trunk of the automobile, it is necessary to enlarge the charging cable storage device.
(4) The cost increases as the cable outer diameter increases, and the weight of the vehicle increases.

本発明はこれらの問題点を解決するためになされたもので、給電線の導体断面積が同一でもケーブル外径が小さく、柔軟性に優れ、使い勝手の良い、安価な充電ケーブルを提供することを目的とする。   The present invention has been made to solve these problems, and provides an inexpensive charging cable that has a small cable outer diameter, excellent flexibility, and is easy to use even if the conductor cross-sectional area of the feeder line is the same. Objective.

さらに本発明は、遮蔽を施さなくても、電力供給源(インバータ、コンバータ)から給電線へ伝播する伝導ノイズが信号制御線に回り込むことによって起こる信号制御線に接続される電気機器の誤動作や、また給電線を伝播するノイズが給電線をアンテナとして放射ノイズとして放出され、信号制御線や近接した位置の電子機器に対してノイズとなることを防止する充電ケーブルを提供することを目的とする。   In addition, the present invention is a malfunction of the electrical equipment connected to the signal control line caused by the conduction noise propagating from the power supply source (inverter, converter) to the power supply line wrapping around the signal control line without shielding, It is another object of the present invention to provide a charging cable that prevents noise propagating through a feeder line from being emitted as radiated noise using the feeder line as an antenna and becoming a noise to a signal control line or an electronic device in a close position.

上記目的を達成するために、本発明の電気自動車用充電ケーブルは、設定された給電線の導体断面積を均等に2分割して、同一な導体断面積の4本の給電線と適宜必要な複数本の信号制御線を撚り合わせて構成される集合体にシースを施すことにより、ケーブル外径を細くした電気自動車用充電ケーブルであって、前記充電ケーブルの両端において4本の給電線導体を2本ずつに合わせることによって、充電側給電口および電気自動車の受電口陽極の(+極)および陰極(−)に接続することを特徴としている。     In order to achieve the above object, the charging cable for an electric vehicle according to the present invention equally divides the set conductor cross-sectional area of the power supply line into two parts, and appropriately requires four power supply lines having the same conductor cross-sectional area. A charging cable for an electric vehicle in which the outer diameter of the cable is reduced by applying a sheath to an assembly formed by twisting a plurality of signal control lines, and four feed line conductors are provided at both ends of the charging cable. It is characterized by being connected to the charging side feeding port and the (+) pole and the cathode (−) of the receiving port anode of the electric vehicle by matching them two by two.

また、給電線導体を2分割することにより、外径を細くした4本の給電線の同一極性の給電線を並列または対角に配置することによって、導体断面積を2分割しない給電線の導体間距離よりも導体間距離を短くして、給電線極性間の特性インピーダンスを低減させることにより、給電線内のノイズを給電線外部に放出しないことを特徴としている。   Also, by dividing the feeder line conductor into two parts and arranging the feeder lines of the same polarity of the four feeder lines with a reduced outer diameter in parallel or diagonally, the conductor of the feeder line that does not divide the conductor cross-sectional area into two parts By reducing the distance between the conductors and reducing the characteristic impedance between the feed line polarities, the noise in the feed line is not emitted outside the feed line.

本発明によれば、給電線の導体断面積が同じでも、充電ケーブル外径を小さくすることが可能になり、剛性の小さい・柔軟性に優れた使い勝手の良い電気自動車用充電ケーブルを提供することができる。   According to the present invention, it is possible to reduce the outer diameter of the charging cable even when the conductor cross-sectional area of the feeder line is the same, and to provide a charging cable for an electric vehicle that is small in rigidity and excellent in flexibility and easy to use. Can do.

また、給電線から漏れるノイズを確実に低減できるため、信号制御線の遮蔽やケーブル全体の遮蔽の必要がなくなることにより、剛性の小さい・安価な電気自動車用充電ケーブルを提供することができる。 Further, since noise leaking from the power supply line can be surely reduced, there is no need to shield the signal control line or the entire cable, thereby providing a low-rigidity and inexpensive charging cable for an electric vehicle.

本発明の同一極性の給電線を並列に配置した電気自動車用充電ケーブルの断面図Sectional drawing of the charging cable for electric vehicles which arrange | positioned the feed line of the same polarity of this invention in parallel 本発明の同一極性の給電線を対角に配置した電気自動車用充電ケーブルの断面図Sectional drawing of the charging cable for electric vehicles which arrange | positioned the feed line of the same polarity of this invention diagonally 従来の電気自動車用充電ケーブルの断面図Sectional view of a conventional charging cable for electric vehicles 従来の電気自動車用充電ケーブルの信号制御線の拡大図Enlarged view of the signal control line of a conventional charging cable for electric vehicles

本発明の電気自動車用充電ケーブルは、下記の2つの知見に基づいて創作されたものである。 The electric vehicle charging cable of the present invention has been created based on the following two findings.

本発明の電気自動車用充電ケーブルは図1および図2に示すように、給電線4本と複数本の信号制御線から構成され、同一極性の給電線を並列(図1)または対角(図2)に配置することによって、極性の異なる給電線導体間の距離を短くなるように配置したものである。   As shown in FIGS. 1 and 2, the charging cable for an electric vehicle of the present invention is composed of four power supply lines and a plurality of signal control lines, and the same polarity power supply lines are arranged in parallel (FIG. 1) or diagonally (see FIG. 1). By arranging in 2), the distance between feeder conductors having different polarities is arranged to be short.

(1)給電線の導体断面積を均等に2分割して、給電線を4本にすることによる給電線集合撚り外径の細径化

給電線の導体外径は、設定された導体断面積から次の式により導き出される。
A=πr^2 より
d=2・√(A/π)
d:導体外径 A:導体面積 r:導体半径
(1) Dividing the conductor cross-sectional area of the feeder line into two equal parts, and reducing the outer diameter of the feeder line aggregate twist by using four feeder lines

The conductor outer diameter of the feeder line is derived from the set conductor cross-sectional area by the following equation.
From A = πr ^ 2 d = 2 · √ (A / π)
d: conductor outer diameter A: conductor area r: conductor radius

給電線の絶縁体の厚さは、給電線に要求される絶縁抵抗から決定されるが、そのときの給電線外径は次の式から導き出される。

絶縁抵抗R=0.366ρlog(D/d)×10^-5
給電線外径D=[10^(R/(0.366ρ×10^-5))]×d

R:給電線の絶縁抵抗(Ω・km)
ρ:絶縁体材質の体積固有抵抗(Ω・cm)
D:給電線外径
d:導体外径
The thickness of the insulator of the feeder line is determined from the insulation resistance required for the feeder line, and the outer diameter of the feeder line at that time is derived from the following equation.

Insulation resistance R = 0.366ρlog (D / d) × 10 ^ -5
Feed wire outer diameter D = [10 ^ (R / (0.366ρ × 10 ^ -5))] × d

R: Insulation resistance of power supply line (Ω · km)
ρ: Volume resistivity (Ω · cm) of insulator material
D: Feeder outer diameter d: Conductor outer diameter

給電線を撚り合わせた時の集合外径は、次の式から導き出される。

給電線の集合外径Da=〔(1+1/sin(π/n)〕×D

Da:集合外径
n:集合撚りの給電線の心数
D:給電線外径
The outer diameter of the assembly when the feeder lines are twisted is derived from the following equation.

Outer diameter of feeder line Da = [(1 + 1 / sin (π / n)] × D

Da: collective outer diameter n: number of cores of collective twisted feed line D: feed line outer diameter

上述の式より、給電線の導体断面積を2分割しない場合の断面積をA=1とし(ケーブルの給電線本数2本)、均等に2分割した場合の断面積をA=0.5(ケーブルの給電線本数4本)とし、給電線に要求される絶縁抵抗R=50×106Ω・kmおよび給電線に使用される材料の体積固有抵抗ρ=5×1013Ω・cm(絶縁材料をPVCにした時の値)として集合撚り外径を算出すると、
2分割しない場合の断面積A=1のとき
導体外径d=1.13、 給電線外径D=2.12、 給電線集合撚り外径Da=4.23
2分割した場合の断面積A=0.5のとき
導体外径d=0.80、 給電線外径D=1.50、 給電線集合撚り外径Da=3.61
になる。
From the above formula, the cross-sectional area when the conductor cross-sectional area of the feeder line is not divided into two is A = 1 (the number of the feeder lines of the cable is two), and the sectional area when equally divided into two is A = 0.5 ( 4), and insulation resistance R required for the feed line R = 50 × 10 6 Ω · km and volume specific resistance of the material used for the feed line ρ = 5 × 10 13 Ω · cm (the insulation material is PVC) When calculating the aggregate twist outer diameter as the value when
Conductor outer diameter d = 1.13, feeder line outer diameter D = 2.12, feeder line aggregate twist outer diameter Da = 4.23 when cross-sectional area A = 1 when not divided into two
Conductor outer diameter d = 0.80 when the cross-sectional area A is 0.5 when divided into two, feeder outer diameter D = 1.50, feeder aggregate twist outer diameter Da = 3.61
become.

上記の結果より、給電線の導体断面積を均等に2分割することによって、給電線集合撚り外径を約15%細径化できる。このことにより、電気自動車用充電ケーブルの細径化が可能になる。   From the above results, the outer diameter of the feeder line aggregate twist can be reduced by about 15% by equally dividing the conductor cross-sectional area of the feeder line into two. This makes it possible to reduce the diameter of the electric vehicle charging cable.

(2)給電線の導体断面積を均等に2分割し、給電線を細径化し、極性の異なる給電線導体間の距離を短くすることによるノイズ低減
電力源から充電ケーブルに供給される電力は、インバータやコンバータを介して、充電に適した電気成分(周波数・電圧など)に変換されて供給される。インバータやコンバータは、スイッチング制御によって電力変換をおこなっているため、スイッチングに起因するノイズが発生し易く、生じたノイズは、電力波形に重なる形で給電線を伝播する。
(2) The power supplied from the power source to the charging cable is reduced by dividing the conductor cross-sectional area of the feeder line into two equal parts, reducing the diameter of the feeder line, and shortening the distance between the feeder conductors of different polarities. It is converted into an electrical component (frequency, voltage, etc.) suitable for charging and supplied through an inverter or converter. Since inverters and converters perform power conversion by switching control, noise due to switching is likely to occur, and the generated noise propagates through the feeder line in a form overlapping the power waveform.

給電線を伝播するノイズは、様々な周波数成分からなり、給電線の絶縁体が持つ静電容量を介して外部へ放出され易い性質がある。   Noise propagating through the feeder line is composed of various frequency components, and has a property that it is likely to be released to the outside through the electrostatic capacitance of the insulator of the feeder line.

充電ケーブルにおいては、給電線の絶縁体が持つ静電容量がノイズの拡散に影響を与えており、この絶縁体の静電容量を介して異なる極性(逆方法へ流れる)を持った隣接する絶縁心線(他の給電線や信号制御線)へノイズを伝播させている。   In charging cables, the capacitance of the feeder insulation affects the noise diffusion, and adjacent insulation with a different polarity (flowing in the reverse direction) through the capacitance of the insulation. Noise is propagated to the core wire (other power supply lines and signal control lines).

給電線を伝播するノイズの拡散を防止する方策としては、極性の異なる(逆方向へ流れる)給電線間の静電容量を増加させることで、陽極(+極)を伝播するノイズが陰極(GND)の給電線にリークし易くする。これによって、ノイズを給電線内でループさせ、給電線の外部へのノイズ放出を低減するということが効果的である。   As a measure for preventing the spread of noise propagating through the power supply line, the noise between the power supply lines having different polarities (flowing in the opposite direction) is increased, so that the noise propagating through the anode (+ pole) becomes the cathode (GND). ) To be easily leaked. In this way, it is effective to cause noise to be looped in the feed line and reduce noise emission to the outside of the feed line.

静電容量は次の式で表される。

静電容量C=(12.05ε)/〔log10(D1+√(D12−k2・d2)/(k・d)〕

C:静電容量(nF/km)
D1:給電線の導体間距離(mm)
k:導体実効外径係数
d:導体径(mm)
ε:実効比誘電率
このことより、静電容量は、異なる極性の給電線の導体間隔が小さくなるほど、大きくなることがわかる。
The capacitance is expressed by the following formula.

Capacitance C = (12.05ε) / [log10 (D1 + √ (D12−k2 · d2) / (k · d)]

C: Capacitance (nF / km)
D1: Feeder conductor distance (mm)
k: Conductor effective outer diameter coefficient d: Conductor diameter (mm)
ε: Effective relative permittivity From this, it can be seen that the capacitance increases as the conductor spacing of the feed lines of different polarities decreases.

また、給電線に電流が流れると、給電線の持つインダクタンスによって誘導起電力が生じる。誘導起電力は、電流の流れで生じた磁束により、電流の流れと逆方向に生じる電圧のことであり、電流の流れを阻害する。よって、陰極(GND)へリークさせたノイズを効率よく流すうえで、インダクタンスの低減が有効となる。
インダクタンスは次の式で表される。

インダクタンスL=0.4loge(2D1/d)+0.1μ

L:インダクタンス(mH/km)
D1:導体間距離(mm)
d:導体径(mm)
μ:導体の比透磁率(銅=1)
このことより、インダクタンスは、異なる極性の給電線の導体間隔が小さいほど、小さくなることがわかる。
Further, when a current flows through the feeder line, an induced electromotive force is generated due to the inductance of the feeder line. The induced electromotive force is a voltage generated in a direction opposite to the current flow due to the magnetic flux generated by the current flow, and inhibits the current flow. Therefore, in order to efficiently flow the leaked noise to the cathode (GND), it is effective to reduce the inductance.
Inductance is expressed by the following equation.

Inductance L = 0.4loge (2D1 / d) + 0.1μ

L: Inductance (mH / km)
D1: Distance between conductors (mm)
d: Conductor diameter (mm)
μ: Relative permeability of conductor (copper = 1)
From this, it can be seen that the inductance becomes smaller as the conductor spacing of the feeding lines of different polarities is smaller.

上述したと静電容量Cとインダクタンスおよび特性インピーダンスZ0には、次の関係がある。
Zo=√(L/C)
効果的なノイズ低減効果を発揮するためには、静電容量Cが大きいほど、また、インダクタンスLが小さいほど、上式に当てはめれば、特性インピーダンスZ0が低いほどノイズ低減効果が高いことになる。
As described above, the capacitance C, the inductance, and the characteristic impedance Z0 have the following relationship.
Zo = √ (L / C)
In order to exert an effective noise reduction effect, the larger the capacitance C, the smaller the inductance L, and the above equation, the lower the characteristic impedance Z0, the higher the noise reduction effect. .

上述の原理に基づき、本発明は2本の給電線の導体断面積を均等に2分割して、給電線を4本として、給電線の外径を細径化することによって極性の異なる給電線同士の導体間距離を短くすることと、さらには同一極性の給電線を対角に配置して異なる極性の給電線を隣接させて、その導体間距離を短くすることによって、静電容量を大きく、インダクタンスを小さくし、特性インピーダンスZ0を下げることによりノイズを低減するものである。
以下、本発明の実施形態に係わるケーブル構造について、図面を参照して具体的に説明する。
Based on the above-described principle, the present invention equally divides the conductor cross-sectional area of the two power supply lines into two parts, sets the power supply lines to four, and reduces the outer diameter of the power supply lines, thereby providing different power supply lines. Capacitance can be increased by shortening the distance between the conductors, and by further arranging power supply lines of the same polarity diagonally and adjacent to each other with different polarity power supply lines. The noise is reduced by reducing the inductance and lowering the characteristic impedance Z0.
Hereinafter, a cable structure according to an embodiment of the present invention will be specifically described with reference to the drawings.

図1は、給電線の導体断面積を35.6mm2に設定した場合の本発明を適用した電気自動車用充電ケーブルの断面図であり、表1はこの充電ケーブルの構成および特性インピーダンス性能を示したものである。   FIG. 1 is a cross-sectional view of a charging cable for an electric vehicle to which the present invention is applied when the conductor cross-sectional area of the feeder line is set to 35.6 mm 2, and Table 1 shows the configuration and characteristic impedance performance of this charging cable. Is.

図1において、給電線の導体は、素線径0.18mmの素線を700本撚り合わせたもので、その断面積は、設定された給電線導体断面積の1/2の導体断面積のものである。この導体の外側に前述の式から算出された厚さのPVCの絶縁被覆を形成した。そして、陽極の給電線1a・1b(2本)と陰極の給電線2a・2b(2本)を同一の極性の給電線が並列になるように配置し、対撚りされた遮蔽が施されていない信号制御線3とを合わせて、図1の断面図に示すような配置で撚り合わせ、その外側にシース4を形成した。この充電ケーブルの給電線導体径は5.50mm、給電線外径9.1mm、集合撚り外径22.3mmであった。
なお、信号制御線3は、給電線の集合体に生じる空間に配置することにより、給電線の集合撚り外径に与える影響はない。
また、給電線極性間の特性インピーダンスはディジタルサンプリングオシロスコープ「テクトロニクス社製TDS8200」を用いてTDR方式で測定したところ46Ωであった。
In FIG. 1, the conductor of the feeder line is made by twisting 700 strands having a strand diameter of 0.18 mm, and its cross-sectional area is a conductor cross-sectional area that is ½ of the set cross-sectional area of the feeder line conductor. Is. An insulation coating of PVC having a thickness calculated from the above formula was formed outside the conductor. The anode power supply lines 1a and 1b (two) and the cathode power supply lines 2a and 2b (two) are arranged so that the power supply lines of the same polarity are arranged in parallel, and are shielded against twisting. The signal control line 3 is combined and twisted in the arrangement shown in the cross-sectional view of FIG. 1, and the sheath 4 is formed on the outside thereof. The charging cable had a feeder line conductor diameter of 5.50 mm, a feeder line outer diameter of 9.1 mm, and an aggregate twist outer diameter of 22.3 mm.
In addition, the signal control line 3 does not affect the collective outer diameter of the power supply line by being arranged in a space generated in the power supply line assembly.
Further, the characteristic impedance between the polarities of the feeder lines was 46Ω when measured by the TDR method using a digital sampling oscilloscope “TDS8200 manufactured by Tektronix”.

陽極の給電線1a・1b(2本)と陰極の給電線2a・2b(2本)を、同一の極性の給電線が対角の位置に配置した以外は同じ条件で充電ケーブルを製作した。
この充電ケーブルの給電線導体径、給電線外径、集合撚り外径は実施例1と同じであった。
また、給電線極性間の特性インピーダンスを実施例1と同じくTDR方式で測定したところ27Ωであった。
A charging cable was manufactured under the same conditions except that the anode feeders 1a and 1b (two) and the cathode feeders 2a and 2b (two) were arranged at diagonal positions with the same polarity of the feeder.
The charge cable conductor diameter, the feed line outer diameter, and the collective twist outer diameter of this charging cable were the same as those in Example 1.
Further, the characteristic impedance between the feeder line polarities was 27Ω when measured by the TDR method in the same manner as in Example 1.

比較例Comparative example

図3は、給電線の導体断面積を実施例と同じ35.6mm2に設定した場合の従来の電気自動車用充電ケーブルの断面図であり、表1はこの充電ケーブルの構成および特性インピーダンス性能を示したものである。   FIG. 3 is a cross-sectional view of a conventional charging cable for an electric vehicle when the conductor cross-sectional area of the feeder line is set to 35.6 mm 2 as in the embodiment, and Table 1 shows the configuration and characteristic impedance performance of this charging cable. It is a thing.

図3において、給電線の導体は、素線径0.18mmの素線を1400本撚り合わせたものである。この導体の外側に前述の式から算出した厚さのPVCの絶縁被覆を形成した。そして、陽極の給電線5と陰極の給電線6および図4に拡大して示す遮蔽が施された対撚り信号制御線7を図3の配置で撚り合わせ、その外側にシース8を形成した。この充電ケーブルの給電線導体径は7.77mm、給電線外径12.9mm、集合撚り外径26.1mmであった。
なお、信号制御線7は、本発明の実施例の図1および図2の充電ケーブルと同様に、給電線の集合体に生じる空間に配置することにより、給電線の集合撚り外径に与える影響はない。
また、給電線極性間の特性インピーダンスを実施例1と同じくTDR方式で測定したところ77Ωであった。
In FIG. 3, the conductor of the feeder line is obtained by twisting 1400 strands having a strand diameter of 0.18 mm. An insulation coating of PVC having a thickness calculated from the above formula was formed outside the conductor. Then, the anode power supply line 5 and the cathode power supply line 6 and the anti-twist signal control line 7 which is shielded as shown in FIG. 4 are twisted together in the arrangement shown in FIG. The charging cable had a feeding line conductor diameter of 7.77 mm, a feeding line outer diameter of 12.9 mm, and an aggregate twist outer diameter of 26.1 mm.
It should be noted that the signal control line 7 has an influence on the outer diameter of the collective twist of the feed line by being arranged in a space generated in the aggregate of the feed lines, similarly to the charging cable of FIGS. 1 and 2 of the embodiment of the present invention. There is no.
Further, the characteristic impedance between the feed line polarities was measured by the TDR method in the same manner as in Example 1, and it was 77Ω.

表1の実施例と比較例を対比してわかるように、同一導体断面積において、本発明の電気自動車用充電ケーブルは、従来の電気自動車用充電ケーブルに比べて、集合撚り外径を理論通り約15%細径化できた

また、シースの厚さを、保護の目的から同一厚の3.60mmに設定した場合でも、本発明の充電ケーブル外径は29.5mm、従来充電ケーブルは33.3mmになり約11%の細径化が図れた。
As can be seen by comparing the examples of Table 1 and the comparative example, in the same conductor cross-sectional area, the charging cable for an electric vehicle of the present invention has a collective twist outer diameter as theoretically compared to a conventional charging cable for an electric vehicle. The diameter was reduced by about 15%.
Even when the thickness of the sheath is set to the same thickness of 3.60 mm for the purpose of protection, the outer diameter of the charging cable of the present invention is 29.5 mm, and the conventional charging cable is 33.3 mm, which is about 11% thinner. The diameter was reduced.

異なる極性の給電線間の特性インピーダンスは、従来の電気自動車用充電ケーブルでは、77Ωであったが、表1の実施例1は、46Ωであった。これは、給電線の絶縁外径が細くなることにより、極性の異なる給電線の導体間隔が小さくなったことによる。   The characteristic impedance between the feed lines of different polarities was 77Ω in the conventional electric vehicle charging cable, but was 46Ω in Example 1 in Table 1. This is due to the fact that the conductor interval of the power supply lines having different polarities is reduced by reducing the insulation outer diameter of the power supply line.

また、表1の実施例2では、異なる極性の給電線間のインピーダンスは、27Ωであった。これは、
実施例1(図1)では、対角に配置されていた異なる極性の給電線が、実施例2(図2)では、隣接に配置されたことで、図1の1a−2b間及び1b−2a間の静電容量が大きくなり、インダクタンスが小さくなったことによる。
Moreover, in Example 2 of Table 1, the impedance between the feed lines of different polarities was 27Ω. this is,
In the first embodiment (FIG. 1), the power supply lines having different polarities arranged diagonally are arranged adjacent to each other in the second embodiment (FIG. 2). This is because the capacitance between 2a increases and the inductance decreases.

給電線が発生するノイズ量の比率は、給電線極性間の特性インピーダンスに反比例し、本発明の電気自動車用充電ケーブルでは、従来の電気自動車充電ケーブルから発生するノイズに比べて、実施例1では40%の低減ができ、実施例2では65%の低減ができた。   The ratio of the amount of noise generated by the power supply line is inversely proportional to the characteristic impedance between the power supply line polarities. In the charging cable for an electric vehicle of the present invention, the noise generated from the conventional electric vehicle charging cable is higher in Example 1. The reduction was 40%, and in Example 2, the reduction was 65%.

このことにより、従来の充電ケーブルの信号制御線7から遮蔽を省くことが可能になった。   This makes it possible to omit shielding from the signal control line 7 of the conventional charging cable.

以上、本発明の実施形態について説明したが、本発明は給電線の導体断面積35.6mm2に限定されるものでなく、いかなる導体断面積のものにおいても本発明の趣旨を逸脱しない範囲で同様の効果が得られる。   The embodiment of the present invention has been described above. However, the present invention is not limited to the conductor cross-sectional area of 35.6 mm 2, and the same applies to any conductor cross-sectional area within the scope of the present invention. The effect is obtained.

1a 2分割導体断面積の給電線(陽極)
1b 2分割導体断面積の給電線(陽極)
2a 2分割導体断面積の給電線(陰極)
2b 2分割導体断面積の給電線(陰極)
3 遮蔽なし信号制御線
4 シース
5 2分割していない導体断面積の給電線(陽極)
6 2分割していない導体断面積の給電線(陰極)
7 遮蔽された信号制御線
8 シース
9 介在
10 押さえ巻きテープ
11 編組シールド
12 アルミテープシールド
1a Feed line (anode) with two-part conductor cross-sectional area
1b Feed wire (anode) with two-part conductor cross-sectional area
2a Feed wire (cathode) with two-part conductor cross-sectional area
2b Feed wire (cathode) with two-part conductor cross-sectional area
3 Signal control line without shielding 4 Sheath 5 Feed line (anode) of conductor cross-section not divided into two
6 Feed line (cathode) with conductor cross-section not divided into two
7 Shielded signal control line 8 Sheath 9 Intervening 10 Holding tape 11 Braided shield 12 Aluminum tape shield

Claims (1)

電源から供給される電力量から設定された給電線導体の断面積を均等に2分割して4本の給電線導体にし、前記導体の外側に絶縁被覆が形成されて成る4本の給電線と適宜必要な複数本の信号制御線を撚り合わせて構成される電気自動車用充電ケーブルにおいて、前記同一極性の給電線を並列または対角に配置し、そのケーブルの両端において、4本の給電線導体を2本ずつ合わせることによって、陽極(+極)および陰極(−)の給電線にして充電側給電口と電気自動車の受電口に接続することを特徴とする電気自動車用充電ケーブル   The four cross sections of the power supply line conductor set from the amount of power supplied from the power source are equally divided into four power supply line conductors, and four power supply lines having an insulation coating formed on the outside of the conductor; In a charging cable for an electric vehicle configured by twisting together a plurality of necessary signal control lines as appropriate, the feeding lines of the same polarity are arranged in parallel or diagonally, and four feeding line conductors are provided at both ends of the cable. A charging cable for an electric vehicle, characterized in that the two are connected to the charging side feeding port and the receiving port of the electric vehicle as anode (+ pole) and cathode (-) feeding lines
JP2010200792A 2010-09-08 2010-09-08 Charging cable for electric vehicle Pending JP2012059495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010200792A JP2012059495A (en) 2010-09-08 2010-09-08 Charging cable for electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010200792A JP2012059495A (en) 2010-09-08 2010-09-08 Charging cable for electric vehicle

Publications (1)

Publication Number Publication Date
JP2012059495A true JP2012059495A (en) 2012-03-22

Family

ID=46056376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010200792A Pending JP2012059495A (en) 2010-09-08 2010-09-08 Charging cable for electric vehicle

Country Status (1)

Country Link
JP (1) JP2012059495A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104616801A (en) * 2015-02-12 2015-05-13 江苏中辰电缆有限公司 Anti-pulling abrasion-resistant electric automobile charging cable
US9417416B2 (en) 2013-04-25 2016-08-16 Hitachi Metals, Ltd. Optoelectrical composite cable
CN107680730A (en) * 2017-09-29 2018-02-09 特瓦特能源科技有限公司 DC charging wire harness, electrical connection module and charging port component
CN107871547A (en) * 2016-09-27 2018-04-03 深圳市联嘉祥科技股份有限公司 A kind of direct current charging cable for electric automobile and preparation method thereof
CN112447315A (en) * 2020-12-04 2021-03-05 远东电缆有限公司 High-power charging cable for new energy automobile and preparation method
JP2022013040A (en) * 2020-07-03 2022-01-18 日立グローバルライフソリューションズ株式会社 refrigerator
US11987188B2 (en) * 2012-04-20 2024-05-21 Proterial, Ltd. Complex harness

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11987188B2 (en) * 2012-04-20 2024-05-21 Proterial, Ltd. Complex harness
US9417416B2 (en) 2013-04-25 2016-08-16 Hitachi Metals, Ltd. Optoelectrical composite cable
CN104616801A (en) * 2015-02-12 2015-05-13 江苏中辰电缆有限公司 Anti-pulling abrasion-resistant electric automobile charging cable
CN107871547A (en) * 2016-09-27 2018-04-03 深圳市联嘉祥科技股份有限公司 A kind of direct current charging cable for electric automobile and preparation method thereof
CN107680730A (en) * 2017-09-29 2018-02-09 特瓦特能源科技有限公司 DC charging wire harness, electrical connection module and charging port component
JP2022013040A (en) * 2020-07-03 2022-01-18 日立グローバルライフソリューションズ株式会社 refrigerator
JP7280224B2 (en) 2020-07-03 2023-05-23 日立グローバルライフソリューションズ株式会社 refrigerator
CN112447315A (en) * 2020-12-04 2021-03-05 远东电缆有限公司 High-power charging cable for new energy automobile and preparation method

Similar Documents

Publication Publication Date Title
JP2012059495A (en) Charging cable for electric vehicle
US9870845B2 (en) Multi-layer coaxial cable
US20140284100A1 (en) Wire harness
US20120234577A1 (en) High frequency power cable
CN201532808U (en) Single-phase 27.5kV electric power cable of electrified railway
JP2016195071A (en) Cabtyre cable and cable with connector
JP2014026775A (en) Shielded cable
US11745673B2 (en) Wire harness
SE538433C2 (en) Electrical wire
CN203839071U (en) High-voltage-resistant highly insulating composite flat cable
CN212010410U (en) High-temperature-resistant high-flexibility single-core cable
WO2012141075A1 (en) Wire harness
CN202134267U (en) High temperature resistant and high pressure resistant frequency conversion cable
CN206075854U (en) A kind of XLPO insulation, the super soft charging electric vehicle cable of TPU sheaths
WO2018168830A1 (en) Conductive wire, braided member for use in shield, and wire harness
CN204926884U (en) Crosslinked polyethylene shielding frequency conversion cable
CN202258450U (en) Highly shielded frequency conversion cable
CN203118558U (en) Cable used for power measurement
CN212303134U (en) Cross-linked polyethylene insulation low-smoke halogen-free shielding computer cable
CN203588706U (en) Mobile medium-voltage silicone rubber special cable resistant to high and low temperature and interference
CN210429337U (en) Cable for aluminum alloy frequency converter
CN202887851U (en) Small-section cable with split conductor structure
CN215731057U (en) Strengthen marine power cable of shielding nature
CN208444614U (en) Cable is used in bridging
CN207883355U (en) A kind of long-life, resistance to high radiation flat type measured cable