JP2012059081A - Reference voltage generation circuit - Google Patents

Reference voltage generation circuit Download PDF

Info

Publication number
JP2012059081A
JP2012059081A JP2010202503A JP2010202503A JP2012059081A JP 2012059081 A JP2012059081 A JP 2012059081A JP 2010202503 A JP2010202503 A JP 2010202503A JP 2010202503 A JP2010202503 A JP 2010202503A JP 2012059081 A JP2012059081 A JP 2012059081A
Authority
JP
Japan
Prior art keywords
voltage
switch means
group
semiconductor junction
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010202503A
Other languages
Japanese (ja)
Inventor
Mitsutoshi Sugawara
光俊 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsutoshi Sugawara
Original Assignee
Mitsutoshi Sugawara
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsutoshi Sugawara filed Critical Mitsutoshi Sugawara
Priority to JP2010202503A priority Critical patent/JP2012059081A/en
Publication of JP2012059081A publication Critical patent/JP2012059081A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Electrical Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a circuit which generates a highly accurate reference voltage without being affected by variation of elements.SOLUTION: The circuit includes: means which causes currents having different current densities to flow to semiconductor junctions; means which charges a voltage proportional to a difference voltage to a parallel connection of a plurality of capacities; means which connects the capacities in series to generate a voltage; means which charges a voltages of the semiconductor junctions to the series connection of the plurality of capacities when necessary; means which connects the capacities in parallel to generate a voltage proportional to the voltage of the semiconductor junctions; and means which adds this voltage and the former generated voltage. The difference voltage is a difference between a voltage which is generated by causing a constant current to flow to a parallel connection of a first number of semiconductor junctions or constant current sources out of the plurality of semiconductor junctions or a plurality of constant current sources and a voltage generated by connecting a second number of semiconductor junctions or constant current sources in parallel, and if necessary, a plurality of combinations are successively selected when the first number and the second number are selected.

Description

本発明は基準電圧発生回路に関し、特に絶対温度に比例した基準電圧と、それを用いてゼロを含む任意の温度係数を持つ基準電圧の発生回路に関する。 The present invention relates to a reference voltage generation circuit, and more particularly to a reference voltage generation circuit having a reference voltage proportional to absolute temperature and an arbitrary temperature coefficient including zero using the reference voltage.

従来からバンドギャップリファレンスと称される基準電圧発生回路が知られている。これは例えばシリコン半導体PN接合(以下「接合」という)に生ずる電圧が常温で約0.7V、約−2mV/℃という負の温度係数を持つことと、接合に流れる電流密度を変えた対を作るとその電位差が絶対温度に比例する正の温度係数になるので、それを所定の抵抗比で増幅して前記接合の電圧と加算して温度係数を相殺する回路である。 Conventionally, a reference voltage generation circuit called a band gap reference is known. This is because, for example, a voltage generated in a silicon semiconductor PN junction (hereinafter referred to as “junction”) has a negative temperature coefficient of about 0.7 V and about −2 mV / ° C. at room temperature, and a pair in which the current density flowing in the junction is changed. In this circuit, the potential difference becomes a positive temperature coefficient proportional to the absolute temperature, and is amplified by a predetermined resistance ratio and added to the junction voltage to cancel the temperature coefficient.

特許公開2002−304224「電圧発生回路および電圧発生方法」 発明者 菅原光俊Patent Publication 2002-304224 "Voltage Generation Circuit and Voltage Generation Method" Inventor Mitsutoshi Sugawara 特開平2−012509「定電圧回路」 発明者 菅原光俊Japanese Patent Laid-Open No. 02-015093 “Constant Voltage Circuit” Inventor Mitsutoshi Sugawara USP 6,384,586”Regulated Low−Voltage Genation Circuit” inventor MitSutoShiSugawaraUSP 6,384,586 "Regulated Low-Voltage Generation Circuit" inventor MitSutoShiSugawara

図7は特許文献1に記載した本願発明者の発明になる従来のCMOS型バンドギャップリファレンス回路であり、CMOSプロセスでも作れ、かつシリコンのバンドギャップ電圧約1.3Vよりも低電圧の温度係数がほぼゼロの基準電圧も発生できる基準電圧発生回路である。 FIG. 7 shows a conventional CMOS type band gap reference circuit invented by the present inventor described in Patent Document 1, which can be manufactured by a CMOS process and has a temperature coefficient lower than a silicon band gap voltage of about 1.3 V. This is a reference voltage generation circuit capable of generating a substantially zero reference voltage.

以下、簡単に原理と動作説明をする。
電流源I1により接合D1に生ずる電圧VD1の関係は
I1=Is×exp(q×VD1÷(k×T))
で与えられる。ここでIsはプロセスと接合の大きさで決まる飽和電流、qは電子の電荷、kはボルツマン係数、Tは絶対温度である。同様に電流源I2により接合D2に生ずる電圧VD2は
I2=m×Is×exp(q×VD2÷(k×T))
で与えられる。ここでIsは集積回路上ではほぼ等しく、mは電流密度比である。この二式から
VD1−VD2=(k×T÷q)×ln(m×I1÷I2)
となり、絶対温度に比例する電圧が得られる。例えば、接合D2の面積をD1の10倍とし、I1=I2とすれば、常温T=300°Kで、V1−V2≒60mVとなる。
The principle and operation will be briefly described below.
The relationship of the voltage VD1 generated at the junction D1 by the current source I1 is I1 = Is × exp (q × VD1 ÷ (k × T))
Given in. Here, Is is a saturation current determined by the size of the process and the junction, q is an electron charge, k is a Boltzmann coefficient, and T is an absolute temperature. Similarly, the voltage VD2 generated at the junction D2 by the current source I2 is I2 = m × Is × exp (q × VD2 ÷ (k × T)).
Given in. Here, Is is almost equal on the integrated circuit, and m is a current density ratio. From these two formulas, VD1−VD2 = (k × T ÷ q) × ln (m × I1 ÷ I2)
Thus, a voltage proportional to the absolute temperature is obtained. For example, assuming that the area of the junction D2 is 10 times that of D1 and I1 = I2, V1−V2≈60 mV at room temperature T = 300 ° K.

これを差動アンプA1で、その入力電圧差がゼロに近づくように負帰還をかけることにより、抵抗R1の両端がVD1−VD2に限りなく等しくなる。従ってオームの法則により
I2=(VD1−VD2)÷R1
となる。
一方、バイアス電流源I4によって接合D3に生ずる電圧VD3を、抵抗R2とR3で分圧し、そこにI2のn倍の電流I3を流入させると、テブナンの定理により、出力電圧
Vout=VD3×R3÷(R2+R3)+I3×(R2//R3)
が得られる。ここで//は抵抗の並列を示し、R2//R3≡R2×R3÷(R2+R3)である。
Vout=V3×R3÷(R2+R3)+R2×R3÷(R2+R3)÷R1×n×k×T×ln(m)÷q
となる。
第一項目は接合の温度特性に比例する負の温度特性を持ち、第二項目は絶対温度に比例する正の温度係数を持つので、R1,R2,R3,mを適正に選ぶことにより負、ゼロ、正の任意の温度係数を持つ電圧が得られる。
工業的にはゼロが頻繁に使われ、正や負の温度係数を補正する等の目的で用いることもある。
By applying negative feedback to the differential amplifier A1 so that the input voltage difference approaches zero, both ends of the resistor R1 become equal to VD1-VD2. Therefore, according to Ohm's law, I2 = (VD1−VD2) ÷ R1
It becomes.
On the other hand, when the voltage VD3 generated at the junction D3 by the bias current source I4 is divided by the resistors R2 and R3 and a current I3 that is n times the current I2 is caused to flow there, the output voltage Vout = VD3 × R3 ÷ by the Thevenin theorem. (R2 + R3) + I3 × (R2 // R3)
Is obtained. Here, // indicates resistance parallel, and R2 // R3≡R2 × R3 ÷ (R2 + R3).
Vout = V3 * R3 / (R2 + R3) + R2 * R3 / (R2 + R3) / R1 * n * k * T * ln (m) / q
It becomes.
The first item has a negative temperature characteristic that is proportional to the temperature characteristic of the junction, and the second item has a positive temperature coefficient that is proportional to the absolute temperature. Therefore, by selecting R1, R2, R3, m appropriately, A voltage having an arbitrary temperature coefficient of zero or positive can be obtained.
Industrially, zero is frequently used and may be used for purposes such as correcting positive and negative temperature coefficients.

例えば、接合D2の面積をD1の10倍とし、I1=I2=I3,R2=R3=10×R1とすれば、m=10,n=1となり、常温T=300°Kのとき、第一項目は接合の電圧の半分で約350mVで−1mV/℃となり、第二項は約300mVで+1mV/℃となる。合わせて約650mVで温度係数が相殺されてほぼゼロにできる。 For example, if the area of the junction D2 is 10 times that of D1, and I1 = I2 = I3, R2 = R3 = 10 × R1, then m = 10 and n = 1, and the first temperature is T = 300 ° K. The item is half of the junction voltage, which is about 350 mV and becomes -1 mV / ° C, and the second term is about 300 mV and becomes +1 mV / ° C. In total, the temperature coefficient cancels at about 650 mV, and can be made almost zero.

この回路を集積回路に作るとき、プロセス上のバラツキに充分配慮するが、接合D1とD2の飽和電流Isや面積比m、差動アンプのオフセット、電流源の電流比、抵抗比等の微小ばらつきによって、10mV台がんばってもmV程度の誤差や温度変動を許容せざるを得なかった。また差動アンプのオフセットは温度係数を持ち、抵抗はパッケージに封入した際に応力の影響を受けやすい等、出力電圧と温度係数の高精度化には限界があった。
この回路に限らず、ほぼ全てのバンドギャップリファレンス回路が類似の方式なので、同様な課題を持っていた。
When making this circuit into an integrated circuit, sufficient consideration is given to process variations, but there are slight variations in the saturation current Is and the area ratio m of the junctions D1 and D2, the offset of the differential amplifier, the current ratio of the current source, the resistance ratio, etc. Therefore, even if the 10 mV range was worked out, an error of about mV and temperature fluctuation had to be allowed. In addition, the offset of the differential amplifier has a temperature coefficient, and the resistance is easily affected by stress when encapsulated in a package, so there is a limit to increasing the accuracy of the output voltage and temperature coefficient.
Not only this circuit but almost all band gap reference circuits have similar methods, and thus have similar problems.

本発明を適用すれば、抵抗比に依らずに絶対温度に比例する所望の基準電圧を発生することができ、かつ接合に生ずる電圧に比例する電圧と組み合わせて、ゼロを含む所望の温度特性を持つ基準電圧を発生することができる。素子バラツキの影響を低減することもできる。
また、本願発明の一例として、電源電圧わずか0.5Vでも出力約0.4Vの温度係数ゼロの基準電圧発生回路を実現できる。
By applying the present invention, a desired reference voltage proportional to the absolute temperature can be generated without depending on the resistance ratio, and a desired temperature characteristic including zero can be obtained in combination with a voltage proportional to the voltage generated at the junction. A reference voltage can be generated. It is also possible to reduce the influence of element variation.
As an example of the present invention, a reference voltage generation circuit having a temperature coefficient of zero and an output of about 0.4 V can be realized even with a power supply voltage of only 0.5 V.

本発明は、差動アンプも抵抗比も用いず、代わって、集積回路上で比較的相対精度が良い容量比を用いることで、接合の電流密度差に依る電圧を作る。必要に応じ、接合の電圧に比例する電圧も、比較的相対精度が良い容量比を用いて実現する。
さらに高精度化する場合には、電流密度差を作り出す素子を順次切替えて、時間的に平均化し、精度を高める。
The present invention does not use a differential amplifier or a resistance ratio, but instead uses a capacitance ratio with relatively good relative accuracy on an integrated circuit, thereby creating a voltage depending on the current density difference of the junction. If necessary, a voltage proportional to the voltage of the junction is also realized using a capacitance ratio with relatively good relative accuracy.
In the case of higher accuracy, elements that produce a current density difference are sequentially switched and averaged over time to improve accuracy.

本発明の基準電圧発生手段を列記すると、
1.接合に異なる電流密度の電流を流したときの差電圧に比例する電圧を、まず複数の容量の並列接続に充電し、次にかかる容量を直列接続につなぎ変えた電圧を発生する手段を有する。
2.必要に応じ、まず接合の電圧を複数の容量の直列接続に充電し、次にかかる容量を並列接続につなぎ変えて、接合の電圧に比例する電圧を発生し、前記1.の電圧と加算する手段を有する。
3.まず複数の接合を第一の個数(例えば10個)並列接続し、定電流を流して生ずる電圧を、容量に充電する。次に接合を第二の個数(例えば1個)の並列接続に切替えて生ずる電圧と前記容量に充電された電圧との差電圧を作る手段を有する。
あるいは、まず複数の定電流源のうち、第一の個数(例えば1個)並列接続し、定電流を流して生ずる電圧を、容量に充電する。次に定電流源の個数を(例えば10個に)切替えて生ずる電圧と前記容量に充電された電圧との差電圧を作る手段を有する。
4. さらに前記3.の少なくとも一方の個数(例えば1個)を選択する際に、同一個数ながら複数の異なる素子を複数組み合せ用意し、順次切替えて、時間的に平均値をとる手段を有してもよい。
上記の全部もしくは一部を適用する。
When listing the reference voltage generating means of the present invention,
1. A voltage proportional to a difference voltage when currents having different current densities are supplied to the junction is first charged in a parallel connection of a plurality of capacitors, and then a voltage is generated by connecting the capacitors to a series connection.
2. If necessary, the junction voltage is first charged into a series connection of a plurality of capacitors, and then the capacitance is switched to a parallel connection to generate a voltage proportional to the junction voltage. Means for adding to the voltage.
3. First, a first number (for example, 10) of a plurality of junctions are connected in parallel, and a voltage generated by flowing a constant current is charged into a capacitor. Next, there is provided means for creating a differential voltage between a voltage generated by switching the junction to a second number (for example, one) in parallel connection and a voltage charged in the capacitor.
Alternatively, first, among the plurality of constant current sources, a first number (for example, one) is connected in parallel, and a voltage generated by flowing a constant current is charged to the capacitor. Next, there is provided means for creating a differential voltage between a voltage generated by switching the number of constant current sources (for example, 10) and a voltage charged in the capacitor.
4). Further, in the above 3. When selecting at least one of the numbers (for example, one), there may be provided means for preparing a combination of a plurality of different elements with the same number and sequentially switching them to obtain an average value over time.
All or part of the above applies.

図1は、本発明の第一の実施例である。
電流源I0により接合D0に生ずる電圧VD1の関係は
I0=Is×exp(q×VD1÷(k×T))
で与えられる。ここでIsはプロセスと接合の大きさで決まる飽和電流、qは電子の電荷、kはボルツマン係数、Tは絶対温度である。同様に電流源I1により接合D1〜D10の並列接続に生ずる電圧VD2の関係は
I1=10×Is×exp(q×VD2÷(k×T))
で与えられる。ここで集積回路上でIsは、個々の同一サイズの接合ではほぼ等しい。この二式から
VD1−VD2=(k×T÷q)×ln(10×I0÷I1)
となり、絶対温度Tに比例する電圧が得られる。
ここで個々の接合面積を等しくし、I0=I1とすれば、常温T=300°Kで、V1−V2≒60mVとなる。ここまでは従来例と同様である。
FIG. 1 shows a first embodiment of the present invention.
The relationship of the voltage VD1 generated at the junction D0 by the current source I0 is I0 = Is × exp (q × VD1 ÷ (k × T))
Given in. Here, Is is a saturation current determined by the size of the process and the junction, q is an electron charge, k is a Boltzmann coefficient, and T is an absolute temperature. Similarly, the relationship of the voltage VD2 generated in the parallel connection of the junctions D1 to D10 by the current source I1 is I1 = 10 × Is × exp (q × VD2 ÷ (k × T)).
Given in. Here, on the integrated circuit, Is is substantially equal for each junction of the same size. From these two formulas, VD1−VD2 = (k × T ÷ q) × ln (10 × I0 ÷ I1)
Thus, a voltage proportional to the absolute temperature T is obtained.
Here, if the individual junction areas are made equal, and I0 = I1, then V1−V2≈60 mV at room temperature T = 300 ° K. The process up to this point is the same as the conventional example.

ここでスイッチ手段S30a〜S39aとS30b〜S39bを閉じて、容量C20〜C29を並列接続し、その両端に前記のVD1とVD2の差電圧を充電する。次にスイッチ手段S30a〜S39aとS31b〜S39bを開き、スイッチ手段S40〜S49を閉じ、容量C20〜C29を直列接続に切り替える。S30bは閉じたままでよい。C20〜C29の容量値が等しい場合、電荷保存則により、C20〜29の直列接続の両端には、10×(VD1−VD2)の電圧が現れる。この電圧は、従来例と同様に、約600mVで絶対温度に比例し常温で+2mV/℃の温度特性を持つ電圧である。この電圧をS30bを介して、約−2mV/℃の温度特性を持つ接合D1〜D10の並列接続に生ずる電圧VD2(ほぼ0.7V)と加算し、基準電圧Voutとして出力する。約1.3Vで温度特性ゼロの基準電圧となる。
なお、スイッチ手段として、MOSトランジスタを使うのが極めて一般的である。
また容量C20〜C29の少なくとも1つの容量値を他と変えることにより、10倍以外の端数を含む倍率に変更することが出来る。あるいは定電流源I0とI1の比をずらすことにより、10倍以外の端数を含む倍率に変更することが出来る。
Here, the switch means S30a to S39a and S30b to S39b are closed, the capacitors C20 to C29 are connected in parallel, and the difference voltage between the VD1 and VD2 is charged at both ends thereof. Next, the switch means S30a to S39a and S31b to S39b are opened, the switch means S40 to S49 are closed, and the capacitors C20 to C29 are switched to series connection. S30b may remain closed. When the capacitance values of C20 to C29 are equal, a voltage of 10 × (VD1−VD2) appears at both ends of the series connection of C20 to 29 due to the charge conservation law. This voltage is a voltage proportional to the absolute temperature at about 600 mV and having a temperature characteristic of +2 mV / ° C. at room temperature, as in the conventional example. This voltage is added to the voltage VD2 (approximately 0.7 V) generated in parallel connection of the junctions D1 to D10 having a temperature characteristic of about −2 mV / ° C. via S30b, and is output as the reference voltage Vout. At about 1.3 V, the reference voltage has zero temperature characteristics.
It is very common to use a MOS transistor as the switch means.
Further, by changing at least one capacitance value of the capacitors C20 to C29 with another, it is possible to change to a magnification including a fraction other than 10 times. Alternatively, by changing the ratio of the constant current sources I0 and I1, it is possible to change the magnification to include a fraction other than 10 times.

この回路は抵抗素子を使っていないため、抵抗のばらつきや、抵抗の応力変動の影響を一切受けない。一般に集積回路上では容量のばらつきは抵抗のそれより少なく、応力の影響も受けないので、図1の回路は、抵抗を使った従来のバンドギャップリファレンス回路よりばらつきの少ない基準電圧回路である。 Since this circuit does not use a resistance element, it is not affected by variations in resistance or fluctuations in resistance stress. In general, the variation in capacitance on an integrated circuit is less than that of a resistor and is not affected by stress. Therefore, the circuit of FIG. 1 is a reference voltage circuit with less variation than a conventional bandgap reference circuit using resistors.

図2は、本発明の第二の実施例である。
PNPトランジスタQ0〜Q8は、それぞれコレクタとベースを接続しており、ベース・エミッタ間の接合の順方向電圧に応じたエミッタ電流が流れる等価ダイオード動作することが広く知られている。そして通常のMOSプロセスで追加工程無しで、P型基板をコレクタ、N型ウェルをベース、P型拡散領域をエミッタとするPNPトランジスタを作ることが出来るので、これを用いるのが一般的であるが、特にそれのみ限定するものではない。
電流源I0によりベース・エミッタ間の接合Q0に生ずる電圧VD1の関係は
I0=Is×exp(q×VD1÷(k×T))
で与えられる。
ここでIsはプロセスと接合の大きさで決まる飽和電流、qは電子の電荷、kはボルツマン係数、Tは絶対温度である。同様に電流源I1により接合Q1〜Q7の並列接続に生ずる電圧VD2の関係は
I1=8×Is×exp(q×VD2÷(k×T))
で与えられる。電流源I2により接合Q8の並列接続に生ずる電圧VD3は
I2=Is×exp(q×VD3÷(k×T))
で与えられる。ここで集積回路上でIsは、個々の同一サイズの接合ではほぼ等しい。この第一及び第二の式から
VD1−VD2=(k×T÷q)×ln(8×I0÷I1)
となり、絶対温度Tに比例する電圧が得られる。ここで個々の接合面積を等しくし、I0=I1とすれば、常温T=300°Kで、V1−V2≒54mVとなる。
FIG. 2 shows a second embodiment of the present invention.
It is widely known that the PNP transistors Q0 to Q8 each have a collector and a base connected to each other and operate as an equivalent diode in which an emitter current corresponding to a forward voltage at the junction between the base and the emitter flows. In addition, a PNP transistor having a P-type substrate as a collector, an N-type well as a base, and a P-type diffusion region as an emitter can be formed without additional steps in a normal MOS process, and this is generally used. However, it is not limited to that.
The relationship of the voltage VD1 generated at the base-emitter junction Q0 by the current source I0 is I0 = Is × exp (q × VD1 ÷ (k × T))
Given in.
Here, Is is a saturation current determined by the size of the process and the junction, q is an electron charge, k is a Boltzmann coefficient, and T is an absolute temperature. Similarly, the relationship between the voltage VD2 generated in parallel connection of the junctions Q1 to Q7 by the current source I1 is I1 = 8 × Is × exp (q × VD2 ÷ (k × T)).
Given in. The voltage VD3 generated in the parallel connection of the junction Q8 by the current source I2 is I2 = Is × exp (q × VD3 ÷ (k × T))
Given in. Here, on the integrated circuit, Is is substantially equal for each junction of the same size. From the first and second expressions, VD1−VD2 = (k × T ÷ q) × ln (8 × I0 ÷ I1)
Thus, a voltage proportional to the absolute temperature T is obtained. Here, if the respective junction areas are made equal, and I0 = I1, the normal temperature T = 300 ° K, and V1−V2≈54 mV.

ここでスイッチ手段S30a〜S33aとS30b〜S33bを閉じて、容量C20〜C23を並列接続し、その両端に前記のVD1とVD2の差電圧を充電する。
次にスイッチ手段S30a〜S33aとS31b〜S33bを開き、スイッチ手段S40〜S43を閉じ、容量C20〜C23を直列接続に切り替える。C20〜C23の容量値が等しい場合、電荷保存則により、C20〜23の直列接続の両端には、4×(VD1−VD2)の電圧である216mVが現れる。この電圧は絶対温度に比例するので300°Kで、0.72mV/℃である。
一方、等価ダイオードQ8と電流源I2により生ずる接合の順方向電圧は、例えば約720mVで、常温で−2.1mV/℃の温度特性を持つと仮定する。ここでスイッチ手段S20c,S21c,S22c,S22bを閉じて、容量C10,C11,C12を直列接続し、その両端に前記の等価ダイオードQ8に生じた電圧を充電する。次にスイッチ手段S20c,S21c,S22cを開き、スイッチ手段S20a〜S22aとS20b〜S22bを閉じ、容量C10〜C12を並列接続に切り替える。C10〜C12の容量値が等しい場合、電荷保存則により、C10〜C12の並列接続の両端には、等価ダイオードQ8の順方向電圧約720mV÷3の電圧である約240mVが現れる。この温度係数は約−0.7mV/℃である。この電圧と、前記C20〜23の直列接続の両端の電圧を加算すると、456mVで、温度係数が0.02mV/℃と極めて小さい電圧を作ることができる。
I0,I1,I2の電流比、もしくはC10〜C12,C20〜C23の容量比のいずれかを少しずらすことにより、温度係数をちょうどゼロにすることもできる。
この加算された電圧で負荷容量Coを繰り返し繰り返し充電すると、やがてCoの電圧つまり出力Voutは加算された電圧まで充電され、その電圧で一定になる。つまりほぼ直流電圧が得られる。
Here, the switch means S30a to S33a and S30b to S33b are closed, the capacitors C20 to C23 are connected in parallel, and the difference voltage between the VD1 and VD2 is charged at both ends thereof.
Next, the switch means S30a to S33a and S31b to S33b are opened, the switch means S40 to S43 are closed, and the capacitors C20 to C23 are switched to series connection. When the capacitance values of C20 to C23 are equal, 216 mV, which is a voltage of 4 × (VD1−VD2), appears at both ends of the series connection of C20 to 23 due to the charge conservation law. Since this voltage is proportional to the absolute temperature, it is 300 ° K and 0.72 mV / ° C.
On the other hand, it is assumed that the forward voltage of the junction generated by the equivalent diode Q8 and the current source I2 is about 720 mV, for example, and has a temperature characteristic of −2.1 mV / ° C. at room temperature. Here, the switch means S20c, S21c, S22c, and S22b are closed, the capacitors C10, C11, and C12 are connected in series, and the voltage generated in the equivalent diode Q8 is charged at both ends thereof. Next, the switch means S20c, S21c, S22c are opened, the switch means S20a to S22a and S20b to S22b are closed, and the capacitors C10 to C12 are switched to parallel connection. When the capacitance values of C10 to C12 are equal, approximately 240 mV, which is a forward voltage of approximately 720 mV ÷ 3 of the equivalent diode Q8, appears at both ends of the parallel connection of C10 to C12 due to the law of conservation of charge. This temperature coefficient is about -0.7 mV / ° C. When this voltage is added to the voltage at both ends of the series connection of C20 to 23, a very small voltage of 456 mV and a temperature coefficient of 0.02 mV / ° C. can be produced.
By slightly shifting either the current ratio of I0, I1, or I2 or the capacitance ratio of C10 to C12 and C20 to C23, the temperature coefficient can be made just zero.
When the load capacitance Co is repeatedly and repeatedly charged with the added voltage, the Co voltage, that is, the output Vout is eventually charged up to the added voltage and becomes constant at the voltage. That is, almost a DC voltage can be obtained.

さらに本実施例では、容量Ciとスイッチ手段S01〜S04からなる昇圧回路を有している。この動作は、まずスイッチ手段S01とS04を閉じ、容量Ciを電源電圧VDDまで充電する。次にスイッチ手段S01とS04を開き、スイッチ手段S02とS03を閉じて、電源電圧VDD自身に容量Ciの充電電圧を加算する。これにより定電流源I0,I1,I2の共通端は電源電圧VDDのほぼ2倍の電圧になる。例えばVDD=0.5Vであっても、この回路より電流源I0,I1,I2の共通端は約1Vとなり、等価ダイオード(約0.7V)を駆動するに充分である。
なお、容量Ciが電流源I0,I1,I2を駆動しているときに容量C10〜C12とC20〜C23を充電し、容量Ciを充電するときに容量C10〜C12とC20〜C23が容量Coを充電するよう、交互に切り替えるのが効率的である。
Further, in this embodiment, a booster circuit including a capacitor Ci and switch means S01 to S04 is provided. In this operation, first, the switch means S01 and S04 are closed to charge the capacitor Ci to the power supply voltage VDD. Next, the switch means S01 and S04 are opened, the switch means S02 and S03 are closed, and the charging voltage of the capacitor Ci is added to the power supply voltage VDD itself. As a result, the common ends of the constant current sources I0, I1, and I2 become approximately twice the voltage of the power supply voltage VDD. For example, even if VDD = 0.5V, the common end of the current sources I0, I1, and I2 is about 1V from this circuit, which is sufficient to drive an equivalent diode (about 0.7V).
The capacitors C10 to C12 and C20 to C23 are charged when the capacitor Ci is driving the current sources I0, I1, and I2, and the capacitors C10 to C12 and C20 to C23 are charged with the capacitor Co when the capacitor Ci is charged. It is efficient to switch alternately to charge.

この回路は抵抗素子を使っていないため、抵抗のばらつきや、抵抗の応力変動の影響を一切受けない。一般に集積回路上では容量のばらつきは抵抗のそれより少なく、応力の影響も受けないので、図1の回路は、抵抗を使った従来のバンドギャップリファレンス回路よりばらつきの少ない基準電圧回路である。
特に第二の実施例では、わずか0.5Vの電源で、本来のバンドギャップレギュレータの値の約1.3Vよりも低い温度係数ゼロ等の定電圧を発生でき、かつほぼ直流電圧が得られる等の効果がある。
Since this circuit does not use a resistance element, it is not affected by variations in resistance or fluctuations in resistance stress. In general, the variation in capacitance on an integrated circuit is less than that of a resistor and is not affected by stress. Therefore, the circuit of FIG. 1 is a reference voltage circuit with less variation than a conventional bandgap reference circuit using resistors.
In particular, in the second embodiment, a constant voltage such as zero temperature coefficient lower than the original band gap regulator value of about 1.3 V can be generated with a power supply of only 0.5 V, and almost a DC voltage can be obtained. There is an effect.

図3は、本発明の第三の実施例である。
まず、定電流I0をスイッチ手段S10〜S19を閉じて接合D0〜D9の並列接続に流し、このときの接合の両端の電圧VDをスイッチ手段S20を閉じて比較的大きな容量C10に充電する。次にS20を開き、スイッチ手段S10を閉じたまま、S11〜S19を開く。D0〜D9とS10〜S19を同一サイズで構成する場合、接合D0の電流密度は10倍となり、前述のように接合D0の電圧は60mV増加する。
スイッチ手段S30a〜S39aとS30b〜S39bを閉じて、かかる接合D0の電圧と前記容量C10に充電しておいた電圧との差電圧を、容量C20〜C29の並列接続に充電する。次にS30a〜S39aとS31b〜S39bを開き、スイッチ手段S40〜S49とスイッチS20とS30bを閉じ、容量C20〜C29を直列接続する。するとC20〜C29が等しい場合は、この容量C20〜C29の直列接続に掛かる電圧はそれぞれに掛かる電圧の10倍となる。出力Voutにはこの電圧と、前記定電流I0を接合D0〜D9に流したときの電圧の和となる。
FIG. 3 shows a third embodiment of the present invention.
First, the constant current I0 is closed and the switching means S10 to S19 are closed to flow in the parallel connection of the junctions D0 to D9. At this time, the voltage VD at both ends of the junction is closed and the switching means S20 is closed to charge the relatively large capacitor C10. Next, S20 is opened, and S11 to S19 are opened while the switch means S10 is closed. When D0 to D9 and S10 to S19 are configured with the same size, the current density of the junction D0 becomes 10 times, and the voltage of the junction D0 increases by 60 mV as described above.
The switch means S30a to S39a and S30b to S39b are closed, and the difference voltage between the voltage at the junction D0 and the voltage charged in the capacitor C10 is charged into the parallel connection of the capacitors C20 to C29. Next, S30a to S39a and S31b to S39b are opened, switch means S40 to S49 and switches S20 and S30b are closed, and capacitors C20 to C29 are connected in series. Then, when C20 to C29 are equal, the voltage applied to the series connection of the capacitors C20 to C29 is 10 times the voltage applied to each. The output Vout is the sum of this voltage and the voltage when the constant current I0 flows through the junctions D0 to D9.

Voutから流出する電流が無視できる場合、上記スイッチ操作を繰り返すことにより、容量C10の充電電圧は前記定電流I0を接合D0〜D9に流したときの電圧に収束し、容量C20〜C29の充電電圧は前記定電流I0を接合D0〜D9に流したときの電圧に収束し、出力電圧Voutは、S49が閉じたときは、これらの電圧の和に収束する。
前者は常温300°Kで約700mVで約−2mV/℃の温度特性を持ち、後者は常温300°Kで約600mVで絶対温度に比例するため約+2mV/℃の温度特性となり、和は約1.3Vで温度係数が相殺される。これで従来のバンドギャップリファレンスと呼ばれる回路と同様の電圧と温度係数の出力電圧Voutを得ることが出来る。
なお上記説明では容量C10の値が比較的大きいとして来たが、仮に小さい場合容量比に依る影響が出ることがあるが、この影響を計算に盛り込んで使うことも可能である。
When the current flowing out from Vout is negligible, by repeating the above switch operation, the charging voltage of the capacitor C10 converges to the voltage when the constant current I0 flows through the junctions D0 to D9, and the charging voltage of the capacitors C20 to C29. Converges to the voltage when the constant current I0 flows through the junctions D0 to D9, and the output voltage Vout converges to the sum of these voltages when S49 is closed.
The former has a temperature characteristic of about −2 mV / ° C. at about 700 mV at a room temperature of 300 ° K. The latter has a temperature characteristic of about +2 mV / ° C. because it is proportional to the absolute temperature at about 600 mV at a room temperature of 300 ° K. The sum is about 1 .3V cancels temperature coefficient. As a result, it is possible to obtain the same voltage and temperature coefficient output voltage Vout as a circuit called a conventional bandgap reference.
In the above description, the value of the capacitance C10 is assumed to be relatively large, but if it is small, there may be an effect depending on the capacity ratio. However, this effect can be included in the calculation and used.

この回路は抵抗素子を使っていないため、抵抗のばらつきや、抵抗の応力変動の影響を受けない。一般に集積回路上では容量のばらつきは抵抗のそれより少なく、応力の影響も受けないので、図1の回路は、抵抗を使った従来のバンドギャップリファレンス回路よりばらつきの少ない基準電圧回路である。 Since this circuit does not use a resistance element, it is not affected by variations in resistance or resistance stress fluctuations. In general, the variation in capacitance on an integrated circuit is less than that of a resistor and is not affected by stress. Therefore, the circuit of FIG. 1 is a reference voltage circuit with less variation than a conventional bandgap reference circuit using resistors.

図3における各スイッチ手段の制御を、図4に示す表に従って切り替えるのが、本発明の第四の実施例である。図4の横1列が各クロックでの設定を示し、0から19まで順次実行し、再度0から繰り返す。
ここでクロック1,2は、上記第三の実施例で述べた手順でそのものである。また全ての偶数クロックの動作は実施例3と同じなので説明を省略する。
クロック3では、スイッチ手段S10の代わりにS11をオンする。そしてクロック2で充電した接合D0〜D9の並列接続に生じた電圧を蓄積した容量C10の電圧と、接合D1の電圧との差電圧で、容量C20〜C29を並列に充電する。
以下同様にクロック5ではS12を、クロック7ではS13を、・・と順次オンする箇所をずらしていく。
こうすることにより、奇数クロックで選択される接合が順次変わる。素子のばらつきで接合D0〜D9に生ずる電圧が若干づつ変わるので、それに応じて出力Voutもクロック毎に変動する。出力Voutに平滑用容量を繋ぎ(図示せず)、繰り返し繰り返し充電すると、出力電圧はVoutの平均値に収束する。このことは偶数クロック時に接合D0〜D9の並列接続に生ずる電圧と、奇数クロック時に接合D0〜D9の個々に生ずる電圧の平均値との差電圧を、容量C20〜C29の個数倍したものが、出力電圧Voutの平滑電圧となることと等価である。
In the fourth embodiment of the present invention, the control of each switch means in FIG. 3 is switched according to the table shown in FIG. The horizontal one row in FIG. 4 shows the setting at each clock, and is executed sequentially from 0 to 19 and repeated from 0 again.
Here, the clocks 1 and 2 are exactly the procedures described in the third embodiment. Since all the even clock operations are the same as those in the third embodiment, the description thereof is omitted.
In clock 3, S11 is turned on instead of switch means S10. Then, the capacitors C20 to C29 are charged in parallel with the voltage difference between the voltage of the capacitor C10 storing the voltage generated in the parallel connection of the junctions D0 to D9 charged by the clock 2 and the voltage of the junction D1.
Similarly, S12 is sequentially shifted in the clock 5, S13 is shifted in the clock 7, and so on.
By doing so, the junction selected by the odd-numbered clock sequentially changes. Since the voltage generated at the junctions D0 to D9 slightly changes due to the variation of the elements, the output Vout also varies with each clock accordingly. When a smoothing capacitor is connected to the output Vout (not shown) and repeatedly charged repeatedly, the output voltage converges to the average value of Vout. This is obtained by multiplying the difference voltage between the voltage generated at the parallel connection of the junctions D0 to D9 at the even clock and the average value of the voltages generated at the junctions D0 to D9 at the odd clock by the number of capacitors C20 to C29. This is equivalent to the smoothing voltage of the output voltage Vout.

この回路により、出力電圧Voutの平滑電圧は、個々の接合D0〜D9のばらつきの影響を受けない極めて高精度な電圧を得ることができる。 With this circuit, the smoothing voltage of the output voltage Vout can be obtained with extremely high accuracy without being affected by variations in the individual junctions D0 to D9.

図5は本発明の第五の実施例である。
図3では接合D0〜D9に直列にスイッチ手段S10〜S19が入っているので、かかるスイッチ手段がオンしたときに電流I0で生ずる電圧降下が、接合に生ずる電圧に対して無視しうるように、オン抵抗の小さなスイッチ手段が必要だった。
図5では電流I0を流すスイッチ手段S10aからS16aと、接合D0〜D6に生ずる電圧で容量を充電するスイッチ手段S10b〜S16bとに分離している。こうすることで、スイッチ手段S10a〜S16aに生ずる電圧降下の影響を無視することができる。
実施例1〜4で述べてきた内容を準用して、簡単に説明をする。図5では、接合の電流密度比1:7で生ずる電位差(kT/q)ln(7)=50mVを、スイッチ手段S30a〜S35a,S30b〜S35bおよびS40〜S45からなる容量C20〜C25の並列・直列切替回路で6倍した300mVと、スイッチ手段S20a,S21a,S20b,S21b,S20c,S21cによって接合D0〜D6の並列に生ずる電圧を容量C10とC11の並列・直列切替で1/2にした約350mVの和である約650mVが出力電圧Voutとなる。温度係数は前者が絶対温度に比例するので常温300°Kでは+1mV/℃となり、後者は約−1mV/℃となり、相殺し、出力電圧Voutの温度変化はゼロになる。
実施例4で示したのと同様に、クロック毎にスイッチ手段S10a〜S16aとS10b〜S16bを切り替えて接合D0〜D6のうちの1個づつを順次選択し、容量Coで平滑して平均化することで、ばらつきを減らすことも出来る。
FIG. 5 shows a fifth embodiment of the present invention.
In FIG. 3, since the switch means S10 to S19 are inserted in series with the junctions D0 to D9, the voltage drop caused by the current I0 when the switch means is turned on can be ignored with respect to the voltage generated at the junction. A switch means with low on-resistance was required.
In FIG. 5, the switch means S10a to S16a for supplying the current I0 and the switch means S10b to S16b for charging the capacitance with the voltage generated at the junctions D0 to D6 are separated. By doing so, the influence of the voltage drop generated in the switch means S10a to S16a can be ignored.
The contents described in the first to fourth embodiments will be applied mutatis mutandis. In FIG. 5, the potential difference (kT / q) ln (7) = 50 mV generated at a junction current density ratio of 1: 7 is expressed as parallel / capacitance of capacitors C20 to C25 including switch means S30a to S35a, S30b to S35b, and S40 to S45. About 300 mV multiplied by 6 in the series switching circuit, and the voltage generated in parallel at the junctions D0 to D6 by the switch means S20a, S21a, S20b, S21b, S20c, and S21c is halved by parallel / series switching of the capacitors C10 and C11. About 650 mV, which is the sum of 350 mV, is the output voltage Vout. Since the former is proportional to the absolute temperature, the former is +1 mV / ° C. at a room temperature of 300 ° K. The latter is about −1 mV / ° C., canceling out, and the temperature change of the output voltage Vout becomes zero.
As in the fourth embodiment, the switching means S10a to S16a and S10b to S16b are switched for each clock, and one of the junctions D0 to D6 is sequentially selected and smoothed and averaged by the capacitor Co. This can also reduce the variation.

この回路も他の実施例度同様に、シリコンのバンドギャップ電圧より低い、温度係数ゼロの電圧を精度良く作れることに加え、スイッチ手段を小型化でき、かつ接合や容量の数を減らせる等の効果がある。 In this circuit, as in the other embodiments, in addition to being able to accurately generate a voltage with a temperature coefficient lower than the band gap voltage of silicon, the switch means can be reduced in size and the number of junctions and capacitors can be reduced. effective.

図6は本発明の第六の実施例である。
本実施例では等価ダイオード特性を示すQの電流密度を変える手段として、スイッチ手段S100〜S117で定電流源I00〜I17の個数を、18個の場合と1個の場合を選択する。接合Qに生ずる電位差(kT/q)ln(18)=75mVを、スイッチ手段S30a〜S37a,S30b〜S37b,S40〜S47からなる容量C20〜C27の並列・直列切替回路で8倍した600mVと、接合Qに生ずる電圧との和である約1.3Vが出力電圧Voutとなる。
その温度係数は前者が絶対温度に比例するので常温300°Kでは+2mV/℃となり、後者は約−2mV/℃なので、相殺し、出力電圧Voutの温度変化はゼロになる。
実施例4で示したのと同様に、クロック毎にスイッチ手段S100〜S117を、例えば偶数クロック時には全並列、奇数クロック時は順次1個づつ選択するように切り替えて、端子Vout以降に接続される平滑回路で平均化することで、ばらつきを減らすことも出来る。
特に図示しないが、温度特性を微調整のためI17を他の0.8倍にする場合を考える。この場合、奇数クロック毎に切り替えるべきはI00〜I16である。
FIG. 6 shows a sixth embodiment of the present invention.
In the present embodiment, as means for changing the current density of Q showing the equivalent diode characteristics, the number of constant current sources I00 to I17 is selected from 18 cases and 1 case by switch means S100 to S117. 600 mV obtained by multiplying the potential difference (kT / q) ln (18) = 75 mV generated at the junction Q by a parallel / series switching circuit of capacitors C20 to C27 including switch means S30a to S37a, S30b to S37b, and S40 to S47; About 1.3 V, which is the sum of the voltage generated at the junction Q, is the output voltage Vout.
Since the former is proportional to the absolute temperature, the former is +2 mV / ° C. at a room temperature of 300 ° K. The latter is about −2 mV / ° C., which cancels out and the temperature change of the output voltage Vout becomes zero.
As in the fourth embodiment, the switching means S100 to S117 are switched for each clock so as to select, for example, all parallel when the clock is an even number and one by one when the clock is an odd number, and are connected after the terminal Vout. Variations can be reduced by averaging with a smoothing circuit.
Although not particularly illustrated, consider a case where I17 is set to another 0.8 times for fine adjustment of the temperature characteristics. In this case, I00 to I16 should be switched every odd number of clocks.

他の実施例で示した効果に加え、接合の電流密度の切替が容易であり、その電位差が大きいため、よりばらつきに強い回路である。 In addition to the effects shown in other embodiments, switching of the junction current density is easy and the potential difference is large, so that the circuit is more resistant to variations.

本発明の各回路は、一般的なCMOSプロセスで作ることが出来、個別素子のバラツキに依らないため、これまでよりも精度が良いバンドギャップレギュレータを実現できることは、LSI産業に取って有用である。
特に電源電圧わずか0.5Vでも動作可能なバンドギャップレギュレータが実現できたことは特筆すべきであり、今後の微細化に伴う電源電圧低下時にも対応できる。
Since each circuit of the present invention can be manufactured by a general CMOS process and does not depend on variations of individual elements, it is useful for the LSI industry that a bandgap regulator with higher accuracy than before can be realized. .
In particular, it should be noted that a bandgap regulator that can operate even with a power supply voltage of only 0.5 V can be realized, and can cope with a power supply voltage drop due to future miniaturization.

なお、本発明は実施例として例示したものに限定することなく、また任意に組み合わせて実施することも可能である。
また各実施例ではよく使われる温度係数ゼロになるよう接合や容量の個数を選んでいるが、必要によりこれらの個数を変えることで、所望の正又は負の温度係数を持つ基準電圧を発生する回路を構成できる。
In addition, this invention is not limited to what was illustrated as an Example, It is also possible to implement combining arbitrarily.
In each embodiment, the number of junctions and capacitors is selected so that the temperature coefficient that is often used is zero, but by changing these numbers as necessary, a reference voltage having a desired positive or negative temperature coefficient is generated. A circuit can be constructed.

第一の実施例で、高精度な約1.3Vで温度係数ゼロの基準電圧発生回路In the first embodiment, a highly accurate reference voltage generation circuit having a temperature coefficient of about 1.3 V and a zero temperature coefficient 第二の実施例で、高精度な456mVで温度係数が0.02mV/℃の基準電圧発生回路In the second embodiment, a reference voltage generating circuit having a high accuracy of 456 mV and a temperature coefficient of 0.02 mV / ° C. 第三の実施例で、高精度な約1.3Vで温度係数ゼロの基準電圧発生回路In the third embodiment, a highly accurate reference voltage generating circuit having a temperature coefficient of about 1.3 V and a zero temperature coefficient. 第四の実施例で、さらに高精度化するための図3の回路のスイッチ手段の動作手順を記載したものIn the fourth embodiment, the operation procedure of the switch means of the circuit of FIG. 3 for further improving the accuracy is described. 第五の実施例で、高精度な約650mVで温度係数ゼロの基準電圧発生回路In the fifth embodiment, a highly accurate reference voltage generation circuit having a temperature coefficient of about 650 mV and a zero temperature coefficient 第六の実施例で、高精度な約1.3Vで温度係数ゼロの基準電圧発生回路In the sixth embodiment, a highly accurate reference voltage generating circuit having a temperature coefficient of about 1.3 V and a zero temperature coefficient 従来例で、特許文献1に記載された回路図The circuit diagram described in Patent Document 1 in the conventional example

D0〜D10 半導体接合
Q,Q0〜Q8 トランジスタ
I0〜I2,I4,I00〜I17 電流源
Ci,C10〜C12,C20〜C29,Co 容量
S01〜S04,S10〜S19,S20 スイッチ手段
S10a〜S16a,S10b〜S16b スイッチ手段
S20a〜S22a,S20b〜S22b スイッチ手段
S20c〜S22c スイッチ手段
S30a〜S39a,S30b〜S39b スイッチ手段
S40〜S49,S100〜S117 スイッチ手段
R1〜R3 抵抗
A1 差動アンプ
VDD 電源
GND 接地
Vout 出力端子
D0 to D10 Semiconductor junction Q, Q0 to Q8 Transistors I0 to I2, I4, I00 to I17 Current sources Ci, C10 to C12, C20 to C29, Co capacitors S01 to S04, S10 to S19, S20 Switch means S10a to S16a, S10b S16b Switch means S20a to S22a, S20b to S22b Switch means S20c to S22c Switch means S30a to S39a, S30b to S39b Switch means S40 to S49, S100 to S117 Switch means R1 to R3 Resistor A1 Differential amplifier VDD Power supply GND Ground Vout Output Terminal

Claims (7)


半導体接合に異なる電流密度の電流を流したときの差電圧に比例する電圧を基準電圧の少なくとも一部として利用する基準電圧発生回路において、
複数の容量からなる第一の容量群と、
かかる容量を前記差電圧に並列に接続する第一のスイッチ手段群と、
前期第一の容量群を直列接続に切り替える第二のスイッチ手段群とを有し、
前期第一の容量群の直列接続に生ずる電圧を前記「出力の少なくとも一部」とすることを特徴とする基準電圧発生回路。

In a reference voltage generation circuit that uses a voltage proportional to a difference voltage when currents of different current densities are passed through a semiconductor junction as at least part of the reference voltage,
A first capacity group comprising a plurality of capacity;
A first switch means group for connecting the capacitor in parallel with the differential voltage;
And a second switch means group for switching the first capacity group to the serial connection in the previous period,
A reference voltage generating circuit, characterized in that a voltage generated in series connection of the first capacity group in the previous period is said “at least part of output”.

半導体接合に異なる電流密度の電流を流したときの差電圧に比例する電圧と、前記もしくは別の半導体接合に生ずる順方向電圧に比例する電圧の和からなる基準電圧発生回路において、
複数の容量からなる第一の容量群と、
かかる第一の容量群を前記差電圧に並列に接続する第一のスイッチ手段群と、
前期第一の容量群を直列接続に切り替える第二のスイッチ手段群とを有し、
前期第一の容量群の直列接続に生ずる電圧と、前記「前記もしくは別の半導体接合に生ずる電圧に比例する電圧」の和からなることを特徴とする基準電圧発生回路。

In a reference voltage generation circuit comprising a sum of a voltage proportional to a differential voltage when a current having a different current density flows through a semiconductor junction and a voltage proportional to a forward voltage generated in the semiconductor junction, or
A first capacity group comprising a plurality of capacity;
A first switch means group for connecting the first capacity group in parallel to the differential voltage;
And a second switch means group for switching the first capacity group to the serial connection in the previous period,
A reference voltage generating circuit comprising a sum of a voltage generated in series connection of the first capacity group in the previous period and a "voltage proportional to a voltage generated in the or another semiconductor junction".
前項の基準電圧発生回路において、
複数の容量からなる第二の容量群と、
かかる第二の容量群を、前記もしくは別の半導体接合に生ずる電圧に直列に接続する第三のスイッチ手段群と、
前期第二の容量群を並列接続に切り替える第四のスイッチ手段群とを付加し、
かかる第四のスイッチ手段の両端の容量の並列電圧を、前項の「半導体接合に生ずる電圧に比例する電圧」とすることを特徴とする基準電圧発生回路。
In the reference voltage generation circuit of the previous section,
A second capacity group consisting of a plurality of capacity;
A third group of switch means for connecting the second group of capacitors in series with a voltage generated at the or another semiconductor junction;
Add a fourth switch means group to switch the second capacity group of the previous period to parallel connection,
A reference voltage generating circuit characterized in that the parallel voltage of the capacitances at both ends of the fourth switch means is the “voltage proportional to the voltage generated at the semiconductor junction” in the preceding paragraph.
前3項の基準電圧発生回路において、
複数の半導体接合と、
第一の定電流源と、かかる第一の定電流源に、
前記半導体接合を第一及び第二の個数で選択的に並列接続する第五のスイッチ手段群と、
かかるスイッチ手段群を介して前記第一の個数の半導体接合の電圧を充電する第三の容量とを有し、
前記第五のスイッチ手段群を切替えて前記第二の個数の半導体接合の電圧を発生させ、
かかる電圧と前記第三の容量の電圧との差電圧を、前記各項の「半導体接合に異なる電流密度の電流を流したときの差電圧」とすることを特徴とする基準電圧発生回路。
In the reference voltage generation circuit of the previous three items,
Multiple semiconductor junctions;
In the first constant current source and the first constant current source,
A fifth switch means group for selectively connecting the semiconductor junctions in first and second numbers in parallel;
A third capacity for charging the voltage of the first number of semiconductor junctions via such switch means group;
Switching the fifth switch means group to generate a voltage of the second number of semiconductor junctions;
A differential voltage between the voltage and the voltage of the third capacitor is referred to as “differential voltage when a current having a different current density is passed through the semiconductor junction” in each item.

半導体接合に異なる電流密度の電流を流したときの差電圧に比例する電圧と、前記もしくは別の半導体接合に生ずる電圧に比例する電圧の和からなる基準電圧発生回路において、
複数の半導体接合と、
第一の定電流源と、かかる第一の定電流源に、
前記半導体接合を第一及び第二の個数で選択的に並列接続する第五のスイッチ手段群と、
かかるスイッチ手段群を介して前記第一の個数の半導体接合の電圧を充電する第三の容量とを有し、
前記第五のスイッチ手段群を切替えて前記第二の個数の半導体接合の電圧を発生させ、
かかる電圧と前記第三の容量の電圧との差電圧を、前記「半導体接合に異なる電流密度の電流を流したときの差電圧」とすることを特徴とする基準電圧発生回路。

In a reference voltage generation circuit consisting of a sum of a voltage proportional to a difference voltage when a current having a different current density is passed through a semiconductor junction and a voltage proportional to a voltage generated in the semiconductor junction or in another semiconductor junction,
Multiple semiconductor junctions;
In the first constant current source and the first constant current source,
A fifth switch means group for selectively connecting the semiconductor junctions in first and second numbers in parallel;
A third capacity for charging the voltage of the first number of semiconductor junctions via such switch means group;
Switching the fifth switch means group to generate a voltage of the second number of semiconductor junctions;
A reference voltage generating circuit, wherein a difference voltage between the voltage and the voltage of the third capacitor is referred to as the “difference voltage when a current having a different current density is passed through the semiconductor junction”.

半導体接合に異なる電流密度の電流を流したときの差電圧に比例する電圧と、前記もしくは別の半導体接合に生ずる電圧に比例する電圧の和からなる基準電圧発生回路において、
半導体接合と、
複数の定電流源と、
かかる複数の定電流源を第三及び第四の個数で選択的に前記半導体接合に並列接続する
第六のスイッチ手段群と、
かかるスイッチ手段群を介して前記第三の個数の定電流源印加時の前記半導体接合の電圧を
充電する第四の容量とを有し、
前記第六のスイッチ手段群を切替えて前記第四の個数の定電流源印加時の前記半導体接合の電圧を発生させ、
かかる電圧と前記第四の容量の電圧との差電圧を、前記「半導体接合に異なる電流密度の電流を流したときの差電圧」とすることを特徴とする基準電圧発生回路。

In a reference voltage generation circuit consisting of a sum of a voltage proportional to a difference voltage when a current having a different current density is passed through a semiconductor junction and a voltage proportional to a voltage generated in the semiconductor junction or in another semiconductor junction,
Semiconductor junctions,
A plurality of constant current sources;
A sixth switch means group for selectively connecting a plurality of such constant current sources in parallel to the semiconductor junction in a third and a fourth number;
A fourth capacity for charging the voltage of the semiconductor junction when the third number of constant current sources are applied via the switch means group;
Switching the sixth switch means group to generate a voltage of the semiconductor junction when the fourth number of constant current sources are applied;
A reference voltage generating circuit characterized in that a difference voltage between the voltage and the voltage of the fourth capacitor is referred to as the “difference voltage when a current having a different current density is passed through the semiconductor junction”.
前3項の基準電圧発生回路において、
個数選択する際の少なくとも一方は、同一個数ながら異なる素子を選択する組合せを複数種類用意し、これらを順次選択することで、時間的に平均化することを特徴とする基準電圧発生回路。
In the reference voltage generation circuit of the previous three items,
A reference voltage generation circuit characterized in that at least one of the number selection is prepared by preparing a plurality of types of combinations for selecting different elements with the same number, and selecting them sequentially to average them over time.
JP2010202503A 2010-09-09 2010-09-09 Reference voltage generation circuit Pending JP2012059081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010202503A JP2012059081A (en) 2010-09-09 2010-09-09 Reference voltage generation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010202503A JP2012059081A (en) 2010-09-09 2010-09-09 Reference voltage generation circuit

Publications (1)

Publication Number Publication Date
JP2012059081A true JP2012059081A (en) 2012-03-22

Family

ID=46056086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010202503A Pending JP2012059081A (en) 2010-09-09 2010-09-09 Reference voltage generation circuit

Country Status (1)

Country Link
JP (1) JP2012059081A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI470399B (en) * 2012-12-20 2015-01-21 Integrated Circuit Solution Inc Low voltage bandgap reference circuit
CN109341722A (en) * 2018-11-21 2019-02-15 中国船舶重工集团公司第七0七研究所 A kind of multi-path constant-current source that the calibration of high-precision IF conversion module is used

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI470399B (en) * 2012-12-20 2015-01-21 Integrated Circuit Solution Inc Low voltage bandgap reference circuit
CN109341722A (en) * 2018-11-21 2019-02-15 中国船舶重工集团公司第七0七研究所 A kind of multi-path constant-current source that the calibration of high-precision IF conversion module is used

Similar Documents

Publication Publication Date Title
US9785176B2 (en) Small-circuit-scale reference voltage generating circuit
US7078958B2 (en) CMOS bandgap reference with low voltage operation
US7170336B2 (en) Low voltage bandgap reference (BGR) circuit
US9122290B2 (en) Bandgap reference circuit
US8786271B2 (en) Circuit and method for generating reference voltage and reference current
US8421433B2 (en) Low noise bandgap references
KR20060124655A (en) Voltage generating circuit and semiconductor integrated circuit device
JP2008108009A (en) Reference voltage generation circuit
US8816756B1 (en) Bandgap reference circuit
CN108345338A (en) The system and method generated for voltage
JP2013038234A (en) Semiconductor device and voltage-dividing circuit
JP2012243054A (en) Band gap reference circuit
CN102386895A (en) Hysteresis comparator
TWI402655B (en) Constant current circuit
US7671637B2 (en) Differential transistor pair current switch supplied by a low voltage VCC
JP2012059081A (en) Reference voltage generation circuit
JP2009251877A (en) Reference voltage circuit
US9304528B2 (en) Reference voltage generator with op-amp buffer
JP2014013546A (en) Reference voltage output circuit and method for adjusting the same
JP2009277076A (en) Bandgap reference circuit
JP2016057962A (en) Reference voltage circuit and power supply circuit
JP6269936B2 (en) Integrated circuit
JP2013003615A (en) Tunnel current circuit
JPH0720960A (en) Current generating device
Ruzza et al. An offset compensation technique for bandgap voltage reference in CMOS technology